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Abstract

In this thesis we study an interacting particle system: the Symmetric Inclusion Process with
slowly varying inhomogeneities (SIP(α)). In the SIP(α) particles display random walk like
behaviour subjected to an attractive type of interaction whilst evolving in an inhomogeneous
environment. We set out to prove its hydrodynamic limit. The main tool helping us for obtaining
the hydrodynamic limit is the self-duality property of the process.
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Chapter 1

Introduction

Interacting particle systems (IPS) are models used to describe phenomena with a high degree of
complexity and involving a large number of agents. IPS can be found in the field of statistical
mechanics, social sciences, financial markets and many more. In probability theory IPS are used
as models in the context of non-equilibrium statistical mechanics. The agents are modeled as
particles that evolve in a lattice according to various local rules. The interaction and dynamics
of the particles are given on a microscopic level. Often times the rules governing the particle
dynamics on the microscopic level are modeled ı̀n a stochastic manner. Henceforth IPS are
stochastic processes. Commonly known models as such are the single particle random walk,
symmetric exclusion process (SEP) and the symmetric inclusion process (SIP).

The field of IPS is still relatively young. The works of R.L. Dobrushin and F. Spitzer in 1970
established the first real foundations, after which many others followed suit. The first classical
models where general existence and uniqueness had been established are the SEP, stochastic
Ising model, Voter model and the contact process. By 1975 elementary properties, and some
not so elementary properties, had already been shown. The field really matured in 1985 when
Ligget [18] published his renowned book on IPS. After 1985 many more models were introduced
and studied. One of which is the SIP.

In this thesis we consider a variation on the SIP: the SIP with slowly varying inhomo-
geneities (SIP(α)). In the SIP(α) we consider the particles to be inhabiting the lattice sites
in Z. Particles jump randomly to neighbouring sites and interact via so called inclusion jumps.
These inclusion jumps describe the mutual attraction between particles. This IPS is the direct
bosonic analogue to the fermionic SEP. The slowly varying inhomogeneities are modelled by the
parameters (α(x))x∈Z. α is given by a smooth and bounded macroscopic profile,

R ∋ x 7−→ α(x) > 0.

With α(x) we model the inhomogeneous environment in which the particles evolve. Physically
one can think of either composite materials or layered materials. The transition from the
microscopic into the macroscopic is facilitated by the slowly varying function αN (x) = α

(
x
N

)
,

for each x ∈ Z and for any scaling parameter N ∈ N. When N is large αN (x) ≈ αN (x + 1),
hence why we refer to the inhomogeneities as being slowly varying. Complete dynamics of the
SIP(α) is given by the generator,

LN
SIP(α)f(η) =

∑
x∈Z

η(x)(αN (x+ 1) + η(x+ 1))(f(ηx,x+1)− f(η))

+ η(x+ 1)(αN (x) + η(x))(f(ηx+1,x)− f(η)).

1
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Generator LN
SIP(α) will be properly defined in chapter 5.

The main objective is to understand and formally describe the emerging macroscopic dy-
namics from this microscopic model description. These emergent macroscopic behaviours are
best captured by the so called hydrodynamic limit (HDL). The HDL provides us a rigorous
manner to derive the emerging partial differential equation (PDE) for the density field. In our
case this will be a specific Cauchy problem. In the macroscopic world we seem to observe less
complexity as compared with the microscopic world. In the macroscopic world most is described
by conservation laws (conservation of energy, conservation of momentum). Microscopically each
particle has its own energy and momentum. The only quantity that is conserved is the number
of particles in the system. We see the huge discrepancy in complexity between the macroscopic
and microscopic world. Nevertheless we expect to be able to prove the HDL of the SIP(α).

This thesis is structured as follows. First all basic, but necessary, mathematical background
is covered. E.g. Markov processes, Markov semigroups, infinitesimal generators, invariant mea-
sures, reversible measures, detailed balance and self-adjointness are defined in order to com-
pletely understand this thesis. In chapter 3 the SIP(α) is introduced and its generator is
defined. Moreover the invariant measures of the SIP(α) are computed. Chapter 4 proves the
self-duality property of the SIP(α). Chapter 5 covers the main theorem of this thesis of which
concerns itself with the HDL. The proof of the theorem is split into subsections of this chapter.
Lastly, we conclude on all of the obtained results and provide suggestions and ideas for future
research.



Chapter 2

Preliminaries on Markov Processes

In this thesis we desire to compute the hydrodynamic limit of the rescaled empirical density field.
At the core of this matter lies the field of Interacting Particle Systems (IPS). Thus before diving
deep into the subject matter it is pivotal to understand the basic concepts underpinning IPS.
Most notably the theory of Markov processes, Markov semigroups and generators. Moreover a
key theorem, essentially an application of the Hille-Yosida theorem, is introduced.

2.1 Markov Processes

Markov processes are a type of stochastic process that model systems with limited past memory.
This property is commonly revered to as the Markov property, or memoryless property. Meaning
that the conditional probability of an arbitrary future state, given all its past states, only depends
on the present state.

Definition 2.1.1. Let (Ω,F ,P) be a probability space and Ft = {Xr : r ≤ t} be the σ-algebra
generated by the random variables {Xr : r ≤ t}. Stochastic process {Xt : t ≥ 0}, on probability
space (Ω,F ,P), satisfies the Markov property if,

E
[
f(Xt)

∣∣Fs

]
= E

[
f(Xt)

∣∣Xs

]
holds for all bounded, measurable f : Ω −→ R. We call {Xt : t ≥ 0} a Markov process.

For better understanding of this definition the following examples are provided.

Example 2.1.1 (Poisson process). Let {Nt : t ≥ 0} be a Poisson process. One can think of Nt

denoting the number of jumps of a simple random walk on Z. [6] So Nt is a rate one Poisson
process i.e.,

P (Nt = n) =
tn

n!
e−t.

Nt has independent Poisson increments, meaning that Nti − Nti−1 ⊥ Nti−1 − Nti−2 for all i =
2, . . . , n. To see that this process is indeed a Markov process notice that,

3
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P
(
Nt = n

∣∣Nt1 = k1, . . . , Ntn = kn
)

= lim
s↓tn

P
(
Nt −Ns = n− kn

∣∣Nt1 −Nt0 = k1, Nt2 −Nt1 = k2 − k1, . . . , Ntn −Ntn−1 = kn − kn−1

)
= lim

s↓tn
P (Nt −Ns = n− kn) = P (Nt −Ntn = n− kn)

(IND INCR)
= P

(
Nt − n

∣∣Ntn = kn
)
.

Where in the second line we use that the probability of an extra jump occurring in [tn, s) goes to
0 when s ↓ tn. The Poisson process {Nt : t ≥ 0} thus satisfies the Markov property. [2]

Example 2.1.2 (Brownian Motion). Let {Bt : t ≥ 0} be a Brownian motion on R. This means
{Bt : t ≥ 0} satisfies,

1) B0 = 0,

2) Independent Gaussian increments, so Wti −Wti−1 ⊥Wti−1 −Wti−2 for all i = 2, . . . , n.

And Wti −Wti−1

d
= N (0, ti − ti−1),

3) t 7−→Wt is continuous in t.

Verifying that {Bt : t ≥ 0} is Markov goes similarly as with the Poisson process in 2.1.1.

2.2 Markov Semigroups and Generators

Using the Markov processes as defined in the previous section we are able to introduce various key
concepts which play a major role in the study of interacting particle systems. Markov semigroups
and generators are such concepts highlighted here. Suppose we are given a measurable function
f : Ω −→ R, where Ω is the state space of continuous time Markov process {Xt : t ≥ 0}, then we
define a family of linear operators Pt : C(Ω) −→ C(Ω), equipped with the supremum norm, by

Ptf(x) := E
[
f(Xt)

∣∣X0 = x
] (set)

= Exf(Xt). (2.1)

Notice that we can write Ptf(x) =
∑

y∈Ω P
(
Xt = y

∣∣X0 = x
)
f(y), whenever Ω is finite. This

means that Pt can be interpreted as the matrix (Pt)xy = Pt(x, y) := P
(
Xt = y

∣∣X0 = x
)
. However

this interpretation will not be utilized, as it does not generalize to the more general case when
Ω is a compact metric space.

Semigroups obey various properties. A few of these are given in proposition 2.2.1. These
properties will just be restricted to so called Feller processes. This is a special class of Markov
processes for which (Ptf)(x) is continuous as a function of x, such that f : Ω −→ R belongs to
C(Ω) and Ω is a compact metric space. These restrictions are made as allowing for a broader
class of functions can be troublesome.

Proposition 2.2.1. Properties of semigroup Pt [4],

a) P0 = I, i.e. P0f = f, ∀f ∈ C(Ω)

b) The map t 7−→ Ptf is right continuous for all f ∈ C(Ω) w.r.t. the supremum norm

c) Pt+sf = Pt(Psf) = Ps(Ptf) ∀t, s > 0

d) f ≥ 0 =⇒ Ptf ≥ 0

e) Pt1 = 1

f) sup
x

∣∣(Ptf)(x)
∣∣ ≤ sup

x

∣∣f(x)∣∣, (so ∥Pt∥ ≤ 1 for all t ≥ 0).
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Notice that property c) holds true, because of the Markov property.

(Pt+sf)(x) = Exf(Xt+s)

= E
(
Ex

[
f(Xt+s)

∣∣Xt

])
= ExEXtf(Xs)

= Ex(Psf)(Xt) = (Pt(Psf))(x)

For these types of semigroups we are able to find its corresponding operator, which in this
instance we refer to as its generator. The generator of a Markov process (Feller process) tells
us how the process evolves in an instance of time. Hence it’s commonly revered to as the
infinitesimal generator of the Markov process, or semigroup.

Definition 2.2.1 (Generator). Let {Xt : t ≥ 0} be a Feller process. We define the domain D(A)
of the infinitesimal generator as [3],

D(A) :=

{
f ∈ C(Ω) : lim

t↓0

Ptf − f

t
∈ C(Ω)

}
. (2.2)

If f belongs to the domain D(A), then

Af = lim
t↓0

Ptf − f

t
. (2.3)

Remark. To see why we call A the infinitesimal generator, notice from 2.3 that,

Ptf(x) = Exf(Xt) = f(x) + tAf(x) + o(t)

For arbitrary f ∈ D(A) and bounded, and where o(t)
t −→ 0. Thus A describes how the Feller

process evolves in an infinitesimally small time interval. [3]

A well know result tells us that the generator is the derivative w.r.t. time of the mapping
t 7−→ Ptf(x), formally meaning that d

dtPtf(x) = APtf(x). This result describes a class of PDEs
given as follows,

{
ut(t, x) = Au(t, x)

u(0, x) = f(x)
(2.4)

where u(t, x) = Ptf(x). The PDEs implied by the semigroup and its generator is a big reason
for studying these objects. Another major reason for the study of generators is its link to weak
solutions of SDEs, Dirichlet forms and Carré du Champ operators. All of which we will revisit,
and properly define in chapter 5 as these are required for proving the hydrodynamic limit of the
SIP(α). Here we will just introduce Dynkin’s formula.

Definition 2.2.2 (Dynkin’s formula). Let {Xt : t ≥ 0} be a Feller process. If f ∈ D(A), then

Mf
t := f(Xt)− f(X0)−

∫ t

0
Af(Xs)ds, t ≥ 0 (2.5)

is a martingale.
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Thus by utilizing Dynkin’s formula, and the generator A we are able to associated a class of
martingales to {Xt : t ≥ 0}. [5]

For an even better grasp on semigroups and generators a few examples are provided. Both
examples will turn out to play a vital role for understanding the hydrodynamic limit of the
SIP(α).

Example 2.2.1 (Random walk). Let {Nt : t ≥ 0} be a Poisson process, and let {ϵj : j ∈ N}
be a sequence of IID symmetric Bernoulli random variables. Then Xt :=

∑Nt
j=1 ϵj is a simple

random walk on Z. Poisson process Nt denotes #{jumps of Xt up to time t} [6]. Note that Nt

is similar as in Example 2.1.1. Now fix some x ∈ Z, and let Z be a random variable such that
Z ⊥ {ϵj : j ∈ N}, and

Px(Z = y) =

{
1
2 , |x− y| = 1

0, else.

We then compute the generator of {Xt : t ≥ 0} as follows. First note that Xt
d
= x1{Nt=0} +

Z1{Nt=1} +Xt1{Nt≥2}, implying that

Ptf(x) = Exf(Xt)
(IND)
= f(x)Px(Nt = 0) + Ex(f(Z))Px(Nt = 1) + Ex(f(Xt)1{Nt≥2}), holds for

all f ∈ C(Ω). Thus,

Af(x) := lim
t↓0

Exf(Xt)− f(x)

t

= lim
t↓0

1

t

(e−t − 1)f(x) +
1

2
te−t

∑
|y−x|=1

f(y) + Ex(f(Xt)1{Nt≥2})

 .
Notice that,

1)
1

t
(e−t − 1)f(x)

t→0−−→ −f(x)

2)
1

2
e−t

∑
|y−x|=1

f(y)
t→0−−→ 1

2

∑
|y−x|=1

f(y)

3)
1

t
Ex(f(Xt)1{Nt≥2}) ≤ ∥f∥∞

1

t
Px(Nt ≥ 2)

t→0−−→ 0.

And thus,

Af(x) =
1

2

∑
|y−x|=1

(f(y)− f(x)) .
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Example 2.2.2 (Diffusion Process and Brownian Motion). A one-dimensional, homogeneous
and Markovian diffusion process is described by the following SDE,

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x. (2.6)

Wt is the standard Brownian motion on R. Its corresponding generator A is given by,

Af(x) = b(x)
d

dx
f(x) +

1

2
σ2(x)

d2

dx2
f(x). (2.7)

Where both b(x), and σ(x) are C2 functions. The domain of the generator is
D(A) = {f ∈ C0 : f

′ ∈ C0 and f ′′ ∈ C0}. [2]
In particular if we choose b(x) ≡ 0, and σ(x) ≡ 1 we obtain the generator of the standard

Brownian motion on R. To see why this holds true we let Bt
d
= N (0, t) and notice that for f

smooth and compactly supported,

Ptf(x) = Exf(Xt) = Ef(x+Bt) = f(x) + f ′(x)E(Bt) +
1

2
f ′′(x)E(B2

t ) + o(t)

with o(t)
t

t→0−−→ 0. Implying that for such f ,

Af(x) = lim
t↓0

Ptf − f

t
=

1

2
f ′′(x) uniformly in x. (2.8)

We notice from definitions 2.2.1, 2.1 that in the case of Ω being a finite state space, Pt

and its corresponding generator A are matrices. Moreover proposition 2.2.1b) implies that

Pt = exp (tA) :=
∑∞

N=0
tN

N !A
N . We observe that based on this definition of Pt there should be

an one to one correspondence between semigroups and generators. However in general exp (tA)
is not well defined. A manner for resolving this issue is given by theorem 2.2.1, which generalises
the relation between semigroups and generators for an infinite state space. This theorem is an
application of the so called Hille-Yosida theorem.

Theorem 2.2.1 (Hille-Yosida). Each Markov semigroup Pt can be associated with its corre-
sponding Markov generator A. [1] The relation is given as follows,

a) Af = lim
t→∞

Ptf − f

t
for f ∈ D(A) :=

{
f : f ∈ C(Ω), lim

t→∞

Ptf − f

t
exists

}
b) Pt = lim

N→∞
(I − t

N
A)−N , for t ≥ 0.

Moreover,

c) f ∈ D(A) =⇒ Ptf ∈ D(A), and
d

dt
Ptf = APtf = PtAf

d) If g is continuous and λ ≥ 0, then f =

∫ t

0
e−tPλtgdt solves the equation f − λAf = g.
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The proof of this theorem will be omitted, but can be found in [4], as it is not important
for the subject matter at hand. However the result of this theorem will be utilized. Often
times it is most convenient to construct, and describe a process by its generator. Also proving
convergence results for the generator is often times easier, as opposed to directly showing this
for the corresponding Markov process.

A visual representation of the one-to-one relation is given in figure 2.1. Note that the correct
definition for the exponential, for deriving the semigroup, is given in 2.2.1b).

{Xt : t ≥ 0} Ptf(x) Af(x)

Exf(Xt)
lim
t↓0

Ptf(x)− f(x)

t

pt(x,B) = Pt1B(x) Pt = etA

Figure 2.1: Schematic representation of the one-to-one relation between Markov processes, semigroups
and generators. [1]

2.3 Invariant Measures and Reversibility

In this section we provide some basic background material needed for studying the SIP(α).
In particular the concepts needed for understanding the hydrodynamic limit. However we still
lack some key ingredients for this. Concepts such as invariant measures, reversible measures
and detailed balance are exemplary of this. All which will turn out to be very helpful to us for
computing the hydrodynamic limit. Here we will introduce these basic concepts, so that we can
apply these later on in upcoming chapters.

Again we start of with a Markov process {Xt : t ≥ 0}, on a compact metric space Ω. On our
space Ω we assume the natural weak topology. I.e.,

µN −→ µ ⇐⇒
∫
Ω
fdµN −→

∫
Ω
fdµ (2.9)

for all f ∈ Cb(Ω) [2]. We denote P(Ω) as the set of all probability measures on Ω. Moreover
assume that our Markov process has some initial distribution µ and corresponding semigroup
Pt. We denote µPt as the distribution of the process at some time t > 0, if we start from µ.
Formally,

∫
Ω
fd(µPt) =

∫
Ω
Ptfdµ (2.10)

for all f ∈ Cb(Ω) [2]. Measure µ is uniquely determined by this relation. An important subset
of P(Ω) is the set of measures that are invariant under action of the semigroup Pt. Meaning
that they satisfy µPt = µ a.e. Formally,

Definition 2.3.1 (Invariant measure). A probability measure µ ∈ P(Ω) is said to be invariant
if,

∫
Ω
Ptfdµ =

∫
Ω
fdµ (2.11)

holds for all t ≥ 0, and f ∈ Cb(Ω). [2]
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The r.h.s. of 2.11 determines a unique probability on Ω by the Riesz representation theorem.
Therefore if we initialize Markov process {Xt : t ≥ 0}, with corresponding semigroup Pt, from

initial measure µ, then for each future time t > 0 we have Xt
d
= µ.

In general the concept of invariant measures is important, because they play a paramount
role in describing the long-term behaviour of Markov chains. Similarly, in our case invariant
measures are relevant as they determine the long-term dynamics of our SIP(α). The following
theorems give an alternative characterization of invariant measures. Theorem 2.3.1 states that
if some arbitrary measure µ is the weak limit of the distribution of a Markov process, w.r.t. a
different measure ν, then this measure is invariant.

Theorem 2.3.1. Let Pt be some semigroup corresponding to a Feller process on a compact
metric space Ω. Assume that the weak limit µ = limt→∞ νPt exists, for some ν ∈ P(Ω). Then
µ is an invariant measure. [1]

Proof: We check if measure µ satisfies condition 2.11. By assumption we obtain,

∫
Ω
Psfdµ = lim

t→∞

∫
Ω
Psfd(νPt)

(2.10)
= lim

t→∞

∫
Ω
Pt(Psf)dν = lim

t→∞

∫
Ω
Pt+sfdν

(T=t+s)
= lim

T→∞

∫
Ω
PT fdν

(2.10)
= lim

T→∞

∫
Ω
fd(νPT )

=

∫
Ω
fdµ, for any f ∈ Cb(Ω).

■

The following theorem gives yet another characterization of what it means for a measure to
be invariant. This characterization is given via the generator A of a Markov semigroup. This can
turn out to be handy as it often times shows that proving various results is more straightforward
when using generators.

Theorem 2.3.2. µ ∈ P(Ω) is an invariant measure iff, [2]

∫
Ω
Afdµ = 0, ∀f ∈ D(A). (2.12)

Proof: Assume 2.12 holds true, then for f ∈ D(A) we have

∫
Ω
(Ptf − f)dµ =

∫
Ω

∫ t

0
APsfds dµ =

∫ t

0

(∫
Ω
APsfdµ

)
ds = 0.

Implying that,
∫
Ω Ptfdµ =

∫
Ω fdµ for all f ∈ D(A). Conversely, if µ is an invariant measure

and f in is the domain of generator A, then

∫
Ω
Afdµ = lim

t→∞

1

t

∫
Ω
(Ptf − f)dµ = 0.

Here we are allowed to exchange limit and integral as Ptf−f
t converges uniformly to Af whenever

f ∈ D(A). ■
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Theorems 2.3.1 and 2.3.2 are especially useful for checking if a measure is indeed invariant.
However one might be left with the question as to how we find such invariant measures. Most
commonly applied are so called reversible measures in order to find invariant measures.

We consider an invariant measure µ on a finite state space Ω, and let L2(µ) := {f ∈
C(Ω):

∫
Ω f

2dµ < ∞}. Note that both semigroup Pt, and corresponding generator A can be
extended to this space of square integrable functions. This extension is valid as by Jensen’s
inequality we are able to obtain,∫

Ω
(Ptf)

2 dµ ≤
∫
Ω
Pt

(
f2
)
dµ =

∫
Ω
f2d(µPt) =

∫
Ω
f2dµ <∞

whenever f ∈ L2(µ). The following is a formal definition of what we entail by reversibility of a
measure.

Definition 2.3.2 (Reversible measure). Let µ ∈ P(Ω) such that Ω is a finite state space, then
µ is called a reversible measure if semigroup Pt is self-adjoint(⋆) in L2(µ), for all f, g ∈ L2(µ).
I.e.,

∫
Ω
g (Ptf) dµ =

∫
Ω
f (Ptg) dµ (2.13)

∀t ≥ 0 and all f, g ∈ L2(µ). [1]

The manner in which reversible measures will be applied, relies on the fact that each re-
versible measure is also invariant. We then use a relation known as the detailed balance relation
for finding invariant measures. Precisely this approach will be taken for finding the invariant
measures of our SIP(α). The concept of detailed balance is explained in 2.3.2. First we show
that all reversible measures are indeed invariant.

Proposition 2.3.1. Let µ ∈ P (Ω) be a reversible measure, then µ is invariant. [1]

Proof: Let g ≡ 1, then by reversibility

∫
Ω
Ptfdµ =

∫
Ω
(Ptf) 1dµ

(2.13)
=

∫
Ω
f (Pt1) dµ =

∫
Ω
fdµ

holds true for any f ∈ L2(µ). ■

The following proposition gives us the main tool for computing the invariant measures of the
SIP(α).

Proposition 2.3.2 (Detailed balance). Assume {Xt : t ≥ 0} to be a finite state space continuous-
time Markov chain with transition rates c(x, y), then reversibility holds iff the detailed balance
relation holds, i.e.,

µ(x)c(x, y) = µ(y)c(y, x) (2.14)

for all x, y ∈ Ω. [1]

Thus if the detailed balance relation is shown to hold true, then reversibility holds. Con-
sequently proposition 2.3.1 then implies invariance of the measure. Because we only need the
backward direction of proposition 2.3.2 only this is proven here. Proving this requires introduc-
ing the concept of a symmetric operator. An operator Pt being symmetric in L2(µ) is equivalent
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to the operator A being self-adjoint on its domain L2(µ). If the operator Pt is to be unbounded,
then the self-adjointness property is stronger than the symmetry, as self-adjointness implies that
the domain is also the domain of the adjoint operator. Meaning that the domain is maximal.
For generators of symmetric semigroups of bounded operators on a Hilbert space this is always
the case [9]. Suppose that some functionspace is dense in its domain topology, then the self-
adjointness(⋆) property is equivalent to symmetry [8]. 2.13 gives a characterization of symmetry.
Equivalently,

∫
Ω
gAf dµ =

∫
Ω
fAg dµ, ∀f, g ∈ D(A). (2.15)

The following proposition states the equivalence of reversible measures and the symmetry prop-
erty.

Proposition 2.3.3. Let Pt be a Markov semigroup with corresponding generator A, and let
µ ∈ P(Ω). Then,

µ is reversible ⇐⇒ A is a symmetric generator (as defined in 2.15)[1]

Proof: Assume µ to be reversible and let f, g ∈ D(A), then

∫
Ω
g
Ptf − f

t
dµ =

∫
Ω
f
Ptg − g

t
dµ.

Now we let t→ 0 in the Hille-Yoshida theorem 2.2.1a). Which yields us,

∫
Ω
gAf dµ =

∫
Ω
fAg dµ.

I.e. the symmetry property.
Conversely now assume the symmetry property, then

∫
Ω
g(f − λAf)dµ =

∫
Ω
f(g − λAg)dµ

where λ is some positive constant. Note that for N ∈ N we can plug in f = (I − λA)−N−1f ,
and g = (I − λA)−N−1g. Yielding,

∫
Ω
g(I − λA)−Nfdµ =

∫
Ω
f(I − λA)−Ngdµ.

Letting λ = t
N and N → ∞ we obtain reversibility,

∫
Ω
g (Ptf) dµ =

∫
Ω
f (Ptg) dµ.

■
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Using this result we are now ready to give a proof of 2.3.2 (backward direction only).

Proof: [Proposition 2.3.2]
Let f ≡ 1x, and g ≡ 1y in the definition of symmetry 2.15. The definition now reads
µ(x)c(x, y) = µ(y)c(y, x), which is precisely the detailed balance relationship. ■

Thus we see that reversibility follows 2.3.2. Hence, in most cases measure µ is uniquely
determined by the generator A. Moreover, 2.15 also has a connection with the Carré du Champ
operator Γ, which we will come back to later on in this thesis. Γ is given by a symmetric bilinear
map defined as, [8]

Γ(f, g) =
1

2
[A(fg)− gAf − fAg] (2.16)

Observe that,
∫
Ω gAf dµ = −

∫
Ω Γ(f, g) dµ.

Remark (Core of the generator). For the results we have obtained in this section it is often
times enough to prove they hold on a core of the generator. A set D ⊂ D(A) is called a core
of the generator A if the closure of the graph G(A) = {(f,Af) : f ∈ D} is the complete graph
G(A) = {(f,Af) : f ∈ D(A)}. I.e. for all (f,Af) ∈ G(A) ∃(fN , AfN ) ∈ G(A) for N ∈ N, such
that (fN , AfN )

N→∞−−−−→ (f,Af).



Chapter 3

Interacting Particle Systems: SSEP
and the SIP

As one can see from the title this chapter will be on two directly opposing particle systems.
Opposing as they differ in their interaction properties; SSEP being repulsive in nature, and
SIP being attractive. However before we delve into the main subject matter, we explore the
general concept of an interacting particle system. An interacting particle system is a stochastic
process {ηt : t ≥ 0}, in particular a Markov process, in which the particles inhabit a lattice Σ
(some countable infinite graph) in which they evolve according to the dynamics depending on
the configuration of particles in a surrounding neighborhood [19]. Our choice for lattice Σ will
be NZ in case of the symmetric inclusion process. For each x ∈ Z the local state we will denote
by η(x) ∈ N. I.e. η(x) = #{particles at site x}.

The first most obvious question one can ask about stochastic processes concerns their dis-
tribution. What is the limiting distribution of the process? Meaning, what are the invariant
measures? In this chapter this question will be answered for the SSEP and SIP(α).

3.1 Symmetric Simple Exclusion Process

Before properly introducing the SIP(α) we take a look at a closely related interacting particle
system, namely the symmetric simple exclusion process (SSEP). This is a system of indistin-
guishable particles in Z which evolves according to a nearest neighbour symmetric continuous-
time random walk, in such a manner that no two particles are at the same site. I.e. a jump of
a particle, at say position x ∈ Z, does not take place if its jumpsite, either position x − 1 or
x + 1, is already occupied (exclusion rule). Because of this particle repulsion we refer to this
type of model as fermionic. Hence we are required to know the configuration of the system at
each site. This is given by the mapping η : Z −→ {0, 1}, where we have η(x) = 1 whenever site
x ∈ Z is occupied by a particle. So η ∈ {0, 1}Z is the configuration space of the particles and
η(x) = #{particles at site x ∈ Z}.

The complete dynamics of the SSEP is captured by its generator LSSEP . Let Ω := {0, 1}Z,
which is a compact metric space. Then generator LSSEP acts on local functions. A function
f : Ω −→ R is called local if f(η) = f(ξ) whenever ηA = ξA for some finite set A ⊂ Z. The
minimal set of such sets like A is referred to as the dependence set of f . E.g. f(η) = η(0) is
local with set A = {0} as its dependence set. On local functions the generator is given by 3.1.1.
More formally, [2]

13
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Definition 3.1.1. The stochastic process {ηt : t ≥ 0} is Markovian and evolves according to the
generator,

LSSEPf(η) :=
∑
x∈Z

η(x)(1− η(x+ 1))(f(ηx,x+1)− f(η)) (3.1)

+ η(x+ 1)(1− η(x))(f(ηx+1,x)− f(η)).

Where LSSEP acts on bounded local functions f : {0, 1}Z −→ R, meaning that f depends only
on a finite number of variables [7]. ηx,y denotes the configuration which will be obtained from
exchanging x and y. I.e.,

ηx,y :=


η(z), if z /∈ {x, y}
η(x), if z = y

η(y), if z = x

They are a plethora of well known results on the symmetric simple exclusion process. Ob-
taining these types of results will also be our goal for the symmetric inclusion process. Ideas
taken from the proofs of these results will also be handy for us. The follow proposition gives
us the invariant measures of the SSEP. These invariant measures tell us which measures are
unaffected by the action of the semigroup on continuous functions.

Proposition 3.1.1 (Invariant Measures of SSEP). The Bernoulli measures {νρ : ρ ∈ [0, 1]} are
invariant for the SSEP. In particular the symmetric simple exclusion process is self-adjoint
w.r.t. each νρ. Here νρ is the product measure on {0, 1}Z, such that νρ ({η(x) = 1}) = ρ =
1− νρ ({η(x) = 0}). [10]

The proof of this proposition can be found in [10].

3.2 Symmetric Inclusion Process

The symmetric inclusion process was first introduced in [11], [12], and can be considered as the
direct bosonic counterpart to the fermionic symmetric simple exclusion process. The evolution
in time of the process is straightforward to describe. We start of initially from some particle
distribution on Z, and assume no further restrictions on the number of particles per site x ∈
Z. Then each particle evolves by equipping it with two exponential clocks. One representing
the random walk jump with fixed rate α, and the other describing the inclusion event with
corresponding rate 1. Each time the random walk clock activates the particle performs a random
walk jump with probability p(x, y), from site x 7−→ y ∈ Z. Whenever the inclusion event clock
triggers the particle jumps from y 7−→ x ∈ Z with probability p(y, x). Thus giving rise to the
following generator LSIP acting on local functions,

LSIP f(η) =
∑
x,y∈Z

p(x, y)η(x)(α+ η(y))(f(ηx,y)− f(η)). (3.2)

Where ηx,y = η − δx + δy, the configuration obtained by switching a particle at site x to y.
Notice that LSIP corresponds with a Feller process whenever ∃R ∈ Z+ such that,

1) c(x, y, η) := p(x, y)η(x)(α+ η(y)) = 0, ∀x, y ∈ Z and |x− y| > R (3.3)

2) c(x, y, η) = c(0, x− y, η). (3.4)
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Remark. Note that the SIP can give rise to explosive behaviour. I.e. if the initial configuration
has ’too many’ particles at infinity, then one can have in finite time an infinite amount of
particles arriving at some site x ∈ Z. This issue is to be resolved by restricting the possible
initial particle configurations, and by making certain assumptions on this. Moreover tools such
as duality, see 4.1.2, will facilitate to show that the SIP is well defined. We refer the reader to
the thesis of M.A.A. Valenzuela [1] for complete details on this.

We are now ready to properly introduce and define the symmetric inclusion process with
an inhomogeneous profile (SIP(α)). This again is an interacting particle system where each
particle, say at position x, performs an independent random walk at rate α(x) with transition
probability c(η(x), η′(x)). α : Z −→ (0,∞) is assumed to be a bounded function of x. This
function can be viewed as the macroscopic inhomogeneous profile, inhomogeneous in the sense
that it is not a constant function of x. Moreover we assume conditions 3.3 and 3.4 to hold true.
We facilitate this by only allowing particle jumps to directly neighbouring sites, and setting
p(x, y) = 0 whenever |x− y| > 1.

The complete dynamics of the SIP(α) is captured by its generator. The generator of the
symmetric inclusion process with a inhomogeneous profile is given by,

LSIPf(η) =
∑
x,y∈S

η(x)(α(y) + η(y))(f(ηx,y)− f(η)) + η(y)(α(x) + η(x))(f(ηy,x)− f(η)). (3.5)

S := {x, y ∈ Z : |x − y| = 1} ⊆ Z, the set containing all points in Z at distance 1 from x.
For this type of processes the particles are ’invited’, at a certain rate, to jump to its nearest
neighbour, implying some kind of particle attraction. This type of IPS-models are thus called
to be bosonic. More formally,

Definition 3.2.1. The continuous-time Markov process {ηt : t ≥ 0} ∈ NZ := Σ evolves according
to generator LSIP(α) given by,

LSIP(α)f(η) =
∑
x∈Z

η(x)(α(x+ 1) + η(x+ 1))(f(ηx,x+1)− f(η)) (3.6)

+ η(x+ 1)(α(x) + η(x))(f(ηx+1,x)− f(η)).

Where f : Σ −→ R is a local function. ηx,x+1 ∈ Σ denotes the configuration obtained when
a particle jumps from x to x + 1. Meaning that ηx,x+1 = η − δx + δx+1. This occurs at rate
η(x)(α(x+ 1) + η(x+ 1)).

The generator captures the complete dynamics of the SIP(α), but it’s very formal. A more
intuitive, graphical representation is given in figure 3.1.
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x− 2 x− 1 x x+ 2x+ 1

η(x)(α(x+ 1) + η(x+ 1))

η(x)(α(x+ 1) + η(x+ 1))

Figure 3.1: One-dimensional schematic description of the Symmetric Inclusion Process with Slowly
Varying Inhomogeneities

3.3 Invariant Measures of the SIP(α)

The aim of this section is to compute the invariant measures of the SIP(α). We can explicitly
find the invariant measures by utilising the detailed balance relation. Proposition 2.3.2 shows
us the equivalence relation between reversibility and detailed balance. Then by proposition 2.13
we are to conclude invariance. This leaves us to just explicitly compute the detailed balance
relation. The following proposition gives the invariant measures of the SIP(α).

Proposition 3.3.1 (Invariant measures SIP(α)). The reversible product measures of the SIP(α)

are given by µλ(η) =
⊗
x∈Z

µ
α(x)
λ (η(x)), such that

µ
α(x)
λ (η(x) = N) =

1

Z(λ, α(x))

λN

N !

Γ(α(x) +N)

Γ(α(x))
. (3.7)

Where λ > 0, and Z(λ, α(x)) = (1− λ)−α(x) is a constant such that each measure µ
α(x)
λ indeed

defines a probability measure on N.

Proof: Assume that µλ(η) =
⊗
x∈Z

µ
α(x)
λ (η(x)) is a reversible product measure. The detailed

balance condition reads,

µ(η)c(η, η′) = µ(η′)c(η′, η).

Note that η −→ η′ = η − δx + δx+1, is occurring at rate c(η, η′) = η(x)(α(x + 1) + η(x + 1)).
Therefore,

µλ(η)(α(x+ 1) + η(x+ 1))η(x) = µλ(η − δx + δx+1)(α(x) + η(x)− 1)(η(x+ 1) + 1).

µλ is defined as the product measure
⊗
x∈Z

µ
α(x)
λ (η(x)) = µ

α(x)
λ (η(x))µ

α(x+1)
λ (η(x + 1)), implying

that,

µ
α(x)
λ (η(x))µ

α(x+1)
λ (η(x+ 1))(α(x+ 1) + η(x+ 1))η(x)

= µ
α(x)
λ (η(x)− 1)µ

α(x+1)
λ (η(x+ 1) + 1)(α(x) + η(x)− 1)(η(x+ 1) + 1).
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Collecting all x and x+ 1 terms on each side yields,

µ
α(x)
λ (η(x))η(x)

µ
α(x)
λ (η(x)− 1)(α(x) + η(x)− 1)

=
µ
α(x+1)
λ (η(x+ 1) + 1)(η(x+ 1) + 1)

µ
α(x+1)
λ (η(x+ 1))(α(x+ 1) + η(x+ 1))

.

As this holds for each x ∈ Z and for all η(x) ∈ N the fraction has to equal a constant λ > 0. So
that,

µ
α(x)
λ (η(x))η(x)

µ
α(x)
λ (η(x)− 1)(α(x) + η(x)− 1)

= λ.

Rearranging the terms and setting P(η(x) = N) = µ
α(x)
λ (N) produces the following,

µ
α(x)
λ (N)

µ
α(x)
λ (N − 1)

= λ · α(x) +N − 1

N
.

Notice that the proposed solution for µ
α(x)
λ in 3.7 satisfies the above recursion and thus is indeed

the unique solution. Which obtains us the desired result,

µ
α(x)
λ (N) =

1

Z(λ, α(x))

λN

N !

Γ(α(x) +N)

Γ(α(x))
.

Z(λ, α(x)) is of course just a normalising constant that makes µ
α(x)
λ (N) a probability measure.

Implying that Z(λ, α(x)) =
∑∞

N=0
λN

N !
Γ(α(x)+N)
Γ(α(x)) . Straightforward calculation gives,

Z(λ, α(x)) =
∞∑

N=0

λN

N !

Γ(α(x) +N)

Γ(α(x))
= (1− λ)−α(x).

Which confirms our claim. ■



Chapter 4

Duality for the SIP(α)

Duality is a very general and broad concept with numerous applications in many areas of math-
ematics. Sir M.F. Atiyah states, in [13], that: ”Duality in mathematics is not a theorem, but a
’principle’. Duality gives two different points of view of looking at the same object.”

In the field of interacting particles systems duality is widely applied. Properties of various
stochastic processes, e.g. SSEP and SIP, can be proved by means of duality. Something we
also set out to obtain in this chapter. We show that the SIP(α) is self-dual for the one-particle
case, and by means of this duality relation we are able to compute the moments of our symmetric
inclusion process.

4.1 Self-Duality for the SIP(α)

An important concept for the study of the SIP(α) is duality. With duality we can reduce the
complexity of infinitely many particles to problems only involving finitely many particles. This
makes it one of the more powerful tools we can apply.

This section will focus on the self-duality properties of the SIP(α). Our goal is to prove
the self-duality by explicit computation. First we formally define the concept of duality. This
is written in terms of the expectation. This can also be done via the semigroups or more
relevantly on the level of generators. An alternate, but more useful definition via the generator
of the SIP(α) is also given.

Definition 4.1.1 (Duality between Markov Processes). Let ηt and ξt be two Markov processes
with corresponding state spaces Ω and Ω̃. Moreover let D : Ω× Ω̃ −→ R be a bounded measurable
function. We call the two Markov processes to be dual w.r.t D if,

EηD(ηt, ξ) = EξD(η, ξt) (4.1)

for all η ∈ Ω, ξ ∈ Ω̃ and t ≥ 0. [14]

The definition of the generator of the SIP(α) is given in 2.2.1. Working with the generator
is often times more convenient, thus we will make use of the following definition which defines
duality via the generator.

18
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Definition 4.1.2 (Duality between Generators). Consider two Markov processes with cor-
responding generators L, and L̃. We say that generator duality holds with duality function
D : Ω× Ω̃ −→ R if,

LD( · , η)(ξ) = L̃D(ξ, · )(η) (4.2)

for all η ∈ Ω and ξ ∈ Ω̃. Which we will from now on denote as,

LleftD(ξ, η) = L̃rightD(ξ, η). (4.3)

If L = L̃, then we refer to this relation as self-duality. [14]

With this definition we should have enough in order to prove self-duality for the SIP(α).
However we do not know what this duality function D is. Thus we start of by identifying the
self-duality functions. An effortless manner for obtaining duality functions is with via the so
called cheap duality function. First we introduce the following proposition.

Proposition 4.1.1. Let L be a self dual Markov generator with self-duality function D : Ω ×
Ω −→ R. Then if S is an operator that commutes with L, the function D̂ = SD is also a
self-duality function. [1]

Proof: Let S be an operator commuting with L, then by the self-duality of D we obtain

LleftD̂(x, x̂) = LleftSleftD(x, x̂) = SleftLleftD(x, x̂)

= SleftLrightD(x, x̂)

= LrightSleftD(x, x̂)

= LrightD̂(x, x̂).

Thus LleftD̂(x, x̂) = LrightD̂(x, x̂) holds for all x, x̂ ∈ Ω. Hence, D̂ = SD is also a self-duality
function. ■

We know that for a finite state space Ω, L is represented by a square matrix. Consequently,
self-duality function D is also a square matrix such that,

LD = DL⊺. (4.4)

Consider now µ to be a reversible measure of the underlying Markov semigroup. Then by the
detailed balance relation: µ(x)L(x, y) = µ(y)L(y, x) for all x, y ∈ Ω, we notice that diagonal

matrix D(x, y) =
δx,y
µ(x) satisfies 4.4. In chapter 3 we have shown measures µλ to be reversible for

the SIP(α) 3.7. Implying, D(ξ, η) =
∏
i

δξi,ηi
µλ(ξi)

to be a cheap self-duality function. Formally,

Proposition 4.1.2. Measures µλ are reversible for the SIP(α), implying [14],

D(ξ, η) =
∏
x∈Z

η(x)!
Γ(α(x))

Γ(α(x) + η(x))
δξx,ηx (4.5)

is a cheap self-duality function.



4.1. SELF-DUALITY FOR THE SIP(α) 20

A complete proof can be found in [14]. Here Γ(·) denotes the Gamma function. I.e.,

Γ(t) =

∫ ∞

0
xt−1e−xdx

for t > 0. Remember that Γ obeys the recursion Γ(t+ 1) = tΓ(t).
However this self-duality function is a bit too simplistic. Remember that in the finite state

space case D corresponds with a diagonal matrix. The following proposition gives us the du-
ality functions we are most interested in. They will turn out to be key for computing the
hydrodynamic limit of our symmetric inclusion process.

Proposition 4.1.3 (Self-duality SIP(α)). The symmetric inclusion process with inhomoge-
neous profile α(x), as defined in 3.2.1, is self-dual with self-duality function

D(ξ, η) =
∏
x∈Z

d(ξ(x), η(x)).

Where,

d(k, n) :=
n!

(n− k)!

Γ(α(x))

Γ(α(x) + k)
1{k≤n}, k, n ∈ N. (4.6)

Remark that when ξ = δx, then D(ξ, η) = η(x)
α(x) . [14]

Proof: The complete proof for the general case relies on the abstract form of the generator,
which is something outside the scope of this thesis. The complete proof can be found in [14].
The proof presented here will just cover the one-particle case, as this is the main thing we need
for the hydrodynamic limit. Meaning that we will show,

LleftD(δx, η) = LrightD(δx, η).

Where we write L = LSIP(α). Start by noticing that we can rewrite the generator L as,

Lf(η) =
∑
x∈Z

η(x)(α(x+ 1) + η(x+ 1))(f(ηx,x+1)− f(η))

+ η(x)(α(x− 1) + η(x− 1))(f(ηx,x−1)− f(η)).

Before we use this expression for L note that, for z ∈ Z and η = δz :

η = δz 7−→ δz+1 = η′ with rate α(x+ 1)

η = δz 7−→ δz−1 = η′ with rate α(x− 1).

Moreover notice that,

Lη(x) = η(x+ 1)(α(x) + η(x)) + η(x− 1)(α(x) + η(x))

− η(x)(α(x+ 1) + η(x+ 1))− η(x)(α(x− 1) + η(x− 1))

= η(x+ 1)α(x) + η(x− 1)α(x)− η(x)α(x+ 1)− η(x)α(x− 1).
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Hence we derive,

LrightD(δx, η) = L
(
η(x)

α(x)

)
= η(x+ 1) + η(x− 1)− η(x)

α(x)
α(x+ 1)− η(x)

α(x)
α(x− 1)

= α(x+ 1)

(
η(x+ 1)

α(x+ 1)
− η(x)

α(x)

)
+ α(x− 1)

(
η(x− 1)

α(x− 1)
− η(x)

α(x)

)
= α(x+ 1) (D(x+ 1, η)−D(x, η)) + α(x− 1) (D(x− 1, η)−D(x, η))

= LleftD(δx, η).

■

We see that the SIP(α) is indeed self-dual, at least for the one-particle case. Moreover
notice that we can write,

LrightD(δx, η) = α(x+ 1)

(
η(x+ 1)

α(x+ 1)
− η(x)

α(x)

)
+ α(x− 1)

(
η(x− 1)

α(x− 1)
− η(x)

α(x)

)
= α(x+ 1)(w(x+ 1)− w(x)) + α(x− 1)(w(x− 1)− w(x)).

= L̂RW (w(x))

Where w(x) = D(x, η), and L̂RW is the generator of a simple random walk that jumps from
x 7−→ x + 1 ∈ Z with rate α(x + 1), and from x 7−→ x − 1 ∈ Z at rate α(x − 1). This fact we
will extensively utilise in chapter 5 for the hydrodynamic limit of the SIP(α).

We end this section by concluding the following theorem from proposition 4.1.3.

Theorem 4.1.1. Given a finite particle configuration ξ and η ∈ Ω we have,

ESIP
η D(ξ, ηt) = ESIP

ξ D(ξt, η). (4.7)

It is important to remark that the self-duality function is not unique. The main reason we
nevertheless select this specify duality function 4.6 is that it allows particle configuration η to
be infinite and ξ finite.



4.2. APPLICATION OF THE SIP(α) SELF-DUALITY 22

4.2 Application of the SIP(α) self-duality

As we have seen duality is a handy tool to have in our arsenal. Its powerfulness is not just found
in theorems such as 4.7, but also in its applications for the symmetric inclusion process. A first
of such is its use in calculating the moments of the SIP(α). The following proposition gives us

the first moment of the SIP(α) with respect to the invariant measure µ
α(x)
λ . This result also

obtains us the relation between µ
α(x)
λ and the self-duality polynomials d(k, n) 4.6.

Proposition 4.2.1. For all k ≤ n, and λ ∈ (0, 1) we have,

E
µ
α(x)
λ

d(k, ·) =
∞∑
n=k

d(k, n)µ
α(x)
λ (n) =

(
λ

1− λ

)k

.

Consequently,

∫
D(ξ, η)µ

α(x)
λ (dη) =

(
λ

1− λ

)|ξ|
.

Proof:

I(λ) := E
µ
α(x)
λ

d(k, ·) =
∞∑
n=k

d(k, n)µ
α(x)
λ (n)

=
∞∑
n=k

n!

(n− k)!

Γ(α(x))

Γ(α(x) + k)

λn

n!

Γ(α(x) + n)

Γ(α(x))
(1− λ)α(x)

See that we can cancel out certain factors and apply the substitution m = n− k. This leaves us
with,

I(λ) = (1− λ)α(x)
∞∑

m=0

λm+k

m!

Γ(α(x) +m+ k)

Γ(α(x) + k)

= (1− λ)α(x)
∞∑

m=0

λm+k

m!

1

Γ(α(x) + k)

∫ ∞

0
tα(x)+m+k−1e−tdt

= (1− λ)α(x)λk
∞∑

m=0

∫ ∞

0

tα(x)+k−1

Γ(α(x) + k)

(λt)m

m!
e−tdt.

Where the first equality is justified by definition of the Γ-function. Fubini lets us interchange
summation and integration, and note that by definition

∑∞
m=0

(λt)m

m! = eλt. Thus,

I(λ) = (1− λ)α(x)λk
∫ ∞

0

tα(x)+k−1

Γ(α(x) + k)
e−(1−λ)tdt.

Observe that multiplying the integral with (1− λ)α(x)+k we precisely obtain the Γ-distribution.
Implying that, after multiplication by (1− λ)α(x)+k, the integral equates to 1. Hence,



4.2. APPLICATION OF THE SIP(α) SELF-DUALITY 23

I(λ) =
(1− λ)α(x)+k

(1− λ)α(x)+k
I(λ) = (1− λ)α(x)λk

1

(1− λ)α(x)+k

(1− λ)α(x)+k

Γ(α(x) + k)

∫ ∞

0
tα(x)+k−1e−(1−λ)tdt

=
(1− λ)α(x)λk

(1− λ)α(x)+k
· 1

=

(
λ

1− λ

)k

.

This proves the first part of the proposition. To complete the proof note that for k = 1 the

obtained result reads as, λ
1−λ =

∫
D(δx, η)µ

α(x)
λ (dη). Consequently,

∫
D(ξ, η)µ

α(x)
λ (dη) =

∏
x∈Z

∫
D(ξx, η)µ

α(x)
λ (dη(x)) =

∏
x∈Z

(
λ

1− λ

)ξx

=

(
λ

1− λ

)|ξ|
.

■



Chapter 5

Hydrodynamic Limit

In this final chapter we present the main result of this thesis, of which itself concerns with the
so called hydrodynamic limit of the SIP(α). In essence the hydrodynamic limit describes the
global behaviour of an interacting particle system over vast space and time scales, where it is
assumed that the initial particle distribution varies in space [15]. The hydrodynamic limit tries
to make rigours the transition from ’micro’ to ’macro’. Before we formalize and substantiate all
of these terms we revisit the SIP(α), in particular its generator LSIP .

We are interested in describing the evolution of particles in an inhomogeneous environment,
for instance in a layered material where each layer has different properties. These inhomo-
geneities are taken into account by the attractiveness of each site of the lattice, namely the
parameters (α(x))x∈Z. More precisely, we assume to have a bounded and smooth macroscopic
profile

R ∋ x 7−→ α(x) > 0.

For any value of the scaling parameter N ∈ N we use this macroscopic profile to facilitate
the transition from micro to macro by inducing the inhomogeneities,

αN (x) = α
( x
N

)
x ∈ Z (5.1)

in the microscopic dynamics. The scaling parameter N is there to rescale the mass, time, and
space. Notice that when N is sufficiently large, the neighboring particle positions x

N and x+1
N

will be very close together at a distance 1
N , implying that αN (x) ≈ αN (x+1) due to smoothness

of profile α. This is why we refer to the profile being slowly varying, as α varies slowly in space.
Formally adaptation of the generator LSIP yields the following generator.

Definition 5.0.1. The continuous-time Markov process {ηt : t ≥ 0} ∈ NZ := Σ evolves according
to generator LN

SIP(α) given by,

LN
SIP(α)f(η) =

∑
x∈Z

η(x)(αN (x+ 1) + η(x+ 1))(f(ηx,x+1)− f(η)) (5.2)

+ η(x+ 1)(αN (x) + η(x))(f(ηx+1,x)− f(η)).

Where f : Σ −→ R is a local function. ηx,x+1 ∈ Σ denotes the configuration obtained when
a particle jumps from x to x + 1. Meaning that ηx,x+1 = η − δx + δx+1. This occurs at rate
η(x)(αN (x+ 1) + η(x+ 1)).

24
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For convenience we will denote LN
SIP := LN

SIP(α).

We begin by initializing our continuous-time Markov process {ηt : t ≥ 0} by a probability
measure µ on Σ and we call µ the initial distribution. {ηt : t ≥ 0} describes the dynamics of our
process at microscopic scale in Z. We now desire to go from this microscopic description to a
macroscopic one in R, thus rescaling the distance between points by a factor 1/N . Formally, a
macroscopic point x ∈ R corresponds with the microscopic point ⌊Nx⌋ ∈ Z. Now in order to
formalize going from ’micro’ to ’macro’ we need to define the rescaled empirical density field.

Definition 5.0.2. The rescaled empirical density field {XN
t : t ≥ 0} is a process in D ([0,∞),S ′(R))

for each N ∈ N. D ([0,∞),S ′(R)) is the Skorokhod space of S ′(R)-valued cádlág orbits, where
S(R) denotes the Schwartz class of rapidly decreasing functions on R. S ′(R) is its topological
dual. Given the interacting particle system {ηt : t ≥ 0} evolving via 5.0.1, then the rescaled
empirical density field is given by [7],

XN
t =

1

N

∑
x∈Z

δ x
N
ηtN2(x) t ≥ 0. (5.3)

Moreover, for any test function Φ ∈ S(R) the rescaled empirical density field evaluated at Φ is
given by

XN
t (Φ) =

1

N

∑
x∈Z

Φ
( x
N

)
ηtN2(x) t ≥ 0. (5.4)

Remark. Notice in 5.3 the time rescaling constant N2. This rescaling is done as the lattice
is shrunk by 1

N . A particle roughly moves a distance in the order of t
1
2N−1, in a fixed time t.

Implying that if we want to observe macroscale dynamics we have to rescale time t by N2.

Note that XN
t assigns mass 1

N at point x
N ∈ R whenever at time t site x ∈ Z is occupied by

a particle. Technically speaking XN
t is a Radon measure on R. I.e. XN

t is a nonnegative Borel
measure with possibly infinite total mass, but it does assign finite mass to bounded sets. The
space of Radon measures is a so called Polish space equipped with the vague topology. Meaning
that, in this space of Radon measures, convergence is defined via convergence of integrals of
compactly supported functions. The goal now is to derive a law of large numbers type of result
for the density field XN

t =
∫
RΦ(x)XN

t (dx). Formally speaking we desire to obtain a result such
as the following.

If XN
0 (Φ)

N→∞−−−−→
∫
R
Φ(x)ρ(x)dx, then XN

t (Φ)
N→∞−−−−→

∫
R
Φ(x)ρ(t, x)dx. (5.5)

Where ρ(t, x) is the unique weak solution to some Cauchy problem.

The following examples serve to illustrate the reader as to how one goes about obtaining such
results.

Example 5.0.1 (IID case). The most uncomplicated case one can have is if the process ηt is IID
with mean ρ, and finite variance bounded by some ρ dependent constant σρ. With convergence
we mean that,

∫
R
Φ(x)dXN

t
N→∞−−−−→

∫
R
Φ(x)ρdx (5.6)
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holds for every test function Φ ∈ C∞
c (R). We prove consistency of the empirical density field.

I.e.,

XN
t (Φ)

P−→
∫
R
Φ(x)ρdx. (5.7)

We start by noticing that,

EXN
t (Φ)

(IID)
=

1

N

∑
x∈Z

Φ
( x
N

)
EηtN2(x) =

1

N

∑
x∈Z

Φ
( x
N

)
ρ

N→∞−−−−→
∫
R
Φ(x)ρdx.

Moreover by Chebyshevs inequality we obtain,

P
(∣∣XN

t (Φ)−
∫
R
Φ(x)ρdx

∣∣ > ϵ

)
≤ 1

ϵ2
VarXN

t (Φ) (5.8)

holds for all ϵ > 0.
Computing the variance yields,

VarXN
t (Φ)

(IID)
=

1

N2

∑
x∈Z

Φ2
( x
N

)
Var(ηtN2(x)) ≤

σρ
N

·
∑
x∈Z

Φ2
( x
N

)
N→∞−−−−→ 0 ·

∫
R
Φ(x)dx = 0.

And thus by 5.8 we conclude convergence in probability of our density field. [1]

Example 5.0.2 (IND case). We have a similar setting as previous example, however we relax

the IID assumption to just independence. Moreover assume that ηt
d
=
⊗
µN such that,

EµN η(x) = ρ
( x
N

)
VarµN (η(x)) = ψ

( x
N

)
.

We also impose the following requirement on ψ,

∫
R
ψ(x)Φ2(x)dx <∞ (5.9)

for all test functions Φ ∈ C∞
c (R).

Just as previously we can use Chebyshev to bound the probability by the variance. Computa-
tion of the variance yields,

VarXN
t (Φ)

(IND)
=

1

N2

∑
x∈Z

Φ2
( x
N

)
Var(η(x)) =

1

N
· 1

N

∑
x∈Z

Φ2
( x
N

)
ψ
( x
N

)
N→∞−−−−→ 0 ·

∫
R
ψ(x)Φ2(x)dx

5.9
= 0.

And thus we again conclude convergence in probability of our density field. [1]
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In the remaining part of this chapter we prove a similar like result for our process the
SIP(α). Proving this theorem will be done in two major steps that are outlined in the following
sections. First we show the convergence of the expectation with respect to a sequence of initial
distributions of XN

t (Φ) for any time t ≥ 0. In order to do so we apply the self-duality property
of the SIP(α). In the second part of the proof we show that a certain Dynkyn martingale has
vanishing quadratic variation. For both parts of the proof we need the following assumption.

Assumption 5.0.1. Let ρ : R −→ R+ be a continuous and bounded function. A sequence of
probability measure {µn}N∈N on Σ is said to be compatible with ρ if

EµN (η(x)) = ρ
( x
N

)
α
( x
N

)
for all N ∈ N, (5.10)

sup
x∈Z

EµN η(x)
2 ≤ A <∞. (5.11)

And,

XN
0 (Φ)

µN−→
∫
R
Φ(x)ρ(x)α(x)dx

for all test functions Φ ∈ C∞
c (R).

We now have all the ingredients needed to state the main theorem of this thesis.

Theorem 5.0.1 (Hydrodynamic Limit SIP(α)). Let ρ : R −→ R+ be a continuous and bounded
profile and let {µN} be a sequence of probability measure in Σ compatible with ρ (see the above
assumption). Then,

XN
t (Φ)

PµN−→
∫
R
Φ(x)ρ(t, x)α(x)dx

for all test functions Φ ∈ C∞
c (R), where [0,∞) × R ∋ (t, x) −→ ρ(t, x) solves the following

Cauchy problem

{
ρt = 2α′(x)ρx + α(x)ρxx

ρ(0, x) = ρ(x).
(5.12)

Remark. Note that in our main theorem we consider XN
t as a measure-valued process obtained

as a function of η = {ηt : t ≥ 0}. Here η is our SIP(α) process.
Moreover the sequence of probability measures we consider is µ = (µN )N∈N on the configura-

tion space Σ = NZ, for all N ∈ N. The initial measure is denoted by µN . PµN is the probability
measure on Skorokhod space D([0,∞),Σ).
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5.1 Identification of the Hydrodynamic Equation

This section is dedicated to identifying the hydrodynamic equation by showing the convergence
of our density field. Using the self-duality property of the simple inclusion process yields 4.1.3,

EηX
N
t (Φ) = Eη

[
1

N

∑
x∈Z

Φ
( x
N

) ηtN2(x)

αN (x)
αN (x)

]
(self-duality)

=
1

N

∑
x∈Z

Φ
( x
N

)
ERW
x

(
η0(X(tN2))

αN (X(tN2))

)
αN (x)

=
1

N

∑
x∈Z

Φ
( x
N

) (
SRW
tN2ψ

)
(x)αN (x).

Where SRW
tN2 is the semigroup defined as the expectation w.r.t. an one-particle random walk

starting from x ∈ Z, and ψ(x) := η(x)
αN (x) . I.e. ψ(x) is the self-duality function.

In order to make progress further we need to examine this semigroup. In particular we want to
examine adjointness properties. Lemma 5.3.2 gives us that SRW

tN2 is self-adjoint, as self-adjointness
of generators implies self-adjointness of the associated semigroups (theorem 19.25 [17]). In
our case it means that SRW

tN2 is self-adjoint on l2(Z, αN ) with inner product ⟨f, g⟩l2(Z,αN ) =∑
x∈Z f(x)g(x)αN (x). Hence we derive,

EηX
N
t (Φ) =

1

N
⟨ΦN , S

RW
tN2ψ⟩αN

(self-adjoint)
=

1

N
⟨SRW

tN2ΦN , ψ⟩αN =
1

N

∑
x∈Z

(SRW
tN2ΦN )(x)ψ(x)αN (x)

=
1

N

∑
x∈Z

(SRW
tN2ΦN )(x)η(x).

Where ΦN = Φ
(
x
N

)
. Notice that if we integrate out, w.r.t. the initial measure µN , and use

assumption 5.0.1 we obtain the following.

EµN (X
N
t (Φ)) =

∫
R
EηX

N
t (Φ)µN (dη(x)) =

1

N

∑
x∈Z

(SRW
tN2ΦN )(x)EµN (η(x))

=
1

N

∑
x∈Z

(SRW
tN2ΦN )(x)ρ

( x
N

)
α
( x
N

)
.

We see that the only manner for acquiring convergence of this summation is by convergence of
the semigroup or equivalently the convergence of the corresponding generator [17]. Precisely
Lemma 5.3.1 gives us that the random walk generator converges to some limiting generator
which corresponds to a diffusion process on R. Thus we have that semigroup SRW

tN2 converges
uniformly to the limiting semigroup St. Here St is the semigroup that corresponds to the
diffusion process x̄(t), such that x̄(t) is the solution to the stochastic differential equation:
dXt = 2α′(Xt)dt+

√
2α(Xt)dWt. Moreover from lemma 5.3.1 and [17], we also conclude that

X(tN2)

N

d−→ x̄(t) as N → ∞.

We are now left to show that indeed,
1
N

∑
x∈Z(S

RW
tN2Φ)

(
x
N

)
ρ
(
x
N

)
α
(
x
N

) N→∞−−−−→
∫
R(StΦ)(x)ρ(x)α(x)dx.
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To see why this result holds true first note that the limiting integral, by definition of the
Riemann integral, has a representation as the limit of its Riemann sum. I.e.,

I(N) :=
1

N

∑
x∈Z

(StΦ)
( x
N

)
ρ
( x
N

)
α
( x
N

)
N→∞−−−−→

∫
R
(StΦ)(x)ρ(x)α(x)dx.

Using this representation we can derive the following,

∣∣∣ 1
N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
ρ
( x
N

)
α
( x
N

)
−
∫
R
(StΦ)(x)ρ(x)α(x)dx

∣∣∣
∆−inequality

≤
∣∣∣ 1
N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
ρ
( x
N

)
α
( x
N

)
− I(N)

∣∣∣+ ∣∣∣I(N)−
∫
R
(StΦ)(x)ρ(x)α(x)dx

∣∣∣.
Implying we only need to show that the first term becomes arbitrarily small, as the other term,
by definition of the Riemann integral, converges. We are left to show that,

∣∣∣ 1
N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
ρ
( x
N

)
α
( x
N

)
− 1

N

∑
x∈Z

(StΦ)
( x
N

)
ρ
( x
N

)
α
( x
N

) ∣∣∣
≤ 1

N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

( x
N

)
− (StΦ)

( x
N

) ∣∣∣ρ( x
N

)
α
( x
N

)
N→∞−−−−→ 0.

Using that ρ
(
x
N

)
is bounded by some constant M <∞, we have that

1

N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

( x
N

)
− (StΦ)(x)

∣∣∣ρ( x
N

)
α
( x
N

)
≤ M

N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

( x
N

)
− (StΦ)(x)

∣∣∣α( x
N

)
.

We are now left to prove that indeed,

1

N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

( x
N

)
− (StΦ)

( x
N

) ∣∣∣α( x
N

)
N→∞−−−−→ 0.

Proving this will require some analytical machinery. Nagy, in [16], applies a variation of Scheffé’s
lemma.
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Lemma 5.1.1 (Scheffé). Suppose that f ∈ L1(R) and let fN ∈ L1(R), N ∈ N+ be a sequence
of functions satisfying,

(a)fN ≥ 0,

(b)fN (x)
N→∞−−−−→ f(x), ∀x ∈ R and

(c)

∫
R
fN (x)dx

N→∞−−−−→
∫
R
f(x)dx.

Then,
∫
R
∣∣fN (x)− f(x)

∣∣dx N→∞−−−−→ 0.

Before we apply this lemma 5.1.1 we need to clearly define the sequence fN and potential
limiting function f , in such manner that both fN and f are L1(R) functions. Consider,

fN (y) =
∑
x∈Z

(SRW
tN2Φ)

( x
N

)
α
( x
N

)
1[ x

N
,x+1

N )(y)

f(y) = (StΦ)(y)α(y).

Note that fN , f ∈ L1(R). Now we are ready to apply Scheffé’s lemma. We check all conditions
of the lemma step by step.

Condition (a) is trivially true, as each term (SRW
tN2Φ)

(
x
N

)
α
(
x
N

)
≥ 0.

We also claim condition (b) to hold true. I.e., fN (y)
N→∞−−−−→ f(y) pointwise for each y ∈ R.

Proof: Lemma 5.3.1 gives us the generator uniform convergence LRW
N

N→∞−−−−→ L. This uniform
convergence is there also on the level of the semigroups [17], i.e.(
SRW
tN2Φ

)
(x)

N→∞−−−−→ (StΦ) (x) uniform in x. Implying that
(
SRW
tN2Φ

)
(yN )

N→∞−−−−→ (StΦ) (y) in case
yN → y uniformly as N → ∞. For our case we want to show(
SRW
tN2Φ

)
(yN )α(yN )

N→∞−−−−→ (StΦ) (y)α(y) pointwise in yN . Intuitively this should hold as we
already have uniform convergence of the semigroup, and moreover by assumption α is a smooth
and bounded function.

Let ϵ > 0 arbitrarily and choose yN = ⌊Ny⌋
N , so that clearly yN

N→∞−−−−→ y uniformly in y.
Then from some sufficiently large n onward we have,

|fn(y)− f(y)| =
∣∣∣ (SRW

tn2 Φ
)
(yn)α(yn)− α(y)

(
SRW
tn2 Φ

)
(yn) + α(y)

(
SRW
tn2 Φ

)
(yn)− (StΦ) (y)α(y)

∣∣∣
≤
∣∣∣ (SRW

tn2 Φ
)
(yn)

∣∣∣∣∣α(yn)− α(y)
∣∣+ ∣∣α(y)∣∣∣∣∣ (SRW

tn2 Φ
)
(yn)− (StΦ) (y)

∣∣∣, ∀n ≥ N.

Due to the uniform convergence of the semigroup we know that if n is sufficiently large, then

∀n ≥ N1 :
∣∣∣ (SRW

tn2 Φ
)
(yn) − (StΦ) (y)

∣∣∣ ≤ ϵ
2M , where M is a constant that bounds

∣∣α(y)∣∣. This

leaves the first term. Bounding the first term does not seem obvious as we do not know if∣∣∣ (SRW
tn2 Φ

)
(yn)

∣∣∣ is bounded. To see why it is indeed bounded notice that from a sufficiently large

n onward we have
∣∣∣ (SRW

tn2 Φ
)
(yn)−(StΦ) (y)

∣∣∣ ≤ 1 ∀n ≥ N2, due to the uniform convergence of the

semigroup. Thus,
∣∣∣ (SRW

tn2 Φ
)
(yn)

∣∣∣ ≤ 1+
∣∣∣ (StΦ) (y)

∣∣∣ ≤ 1+K.
∣∣∣ (StΦ) (y)

∣∣∣ can be bounded by some

finite constant K as it is the finite limit of the sequence
(
SRW
tn2 Φ

)
(yn), and thus

∣∣∣ (SRW
tn2 Φ

)
(yn)

∣∣∣
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is bounded.
∣∣α(yn)−α(y)

∣∣ can be made smaller than ϵ
2(1+K) ∀n ≥ N3, due to the continuity of

α. Implying that the first term can also be made arbitrarily small. And thus, for all ϵ > 0 and
∀n ≥ N = sup{N1, N2, N3},

|fn(y)− f(y)| ≤
∣∣∣ (SRW

tn2 Φ
)
(yn)

∣∣∣∣∣α(yn)− α(y)
∣∣+ ∣∣α(y)∣∣∣∣∣ (SRW

tn2 Φ
)
(yn)− (StΦ) (y)

∣∣∣
≤ (1 +K) · ϵ

2(1 +K)
+M · ϵ

2M
= ϵ.

Hence, we have now shown that fN (y)
N→∞−−−−→ f(y) uniformly in y, which is an even stronger

result than originally claimed. ■

Now it remains to prove that condition (c) also holds true. I.e. we need to verify that indeed,

1

N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
α
( x
N

)
N→∞−−−−→

∫
R
(StΦ)(x)α(x)dx.

Proof: To see why this result holds true we write out the definition of the semigroup and use
the reversibility of the random walk with rate α

(
x
N

)
. Deriving,

1

N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
α
( x
N

)
=

1

N

∑
x∈Z

α
( x
N

)∑
y∈Z

P
(N)
tN2

( x
N
,
y

N

)
Φ
( y
N

)
.

Where, P
(N)
tN2

(
x
N ,

y
N

)
= PRW(αN )

(
X(tN2) = x

∣∣X(0) = y
)
. For the measure PRW(αN ) we have

shown reversibility w.r.t αN . I.e,

α
( x
N

)
P

(N)
tN2

( x
N
,
y

N

)
= α

( y
N

)
P

(N)
tN2

( y
N
,
x

N

)
.

Applying this detailed balance relation, and interchanging the order of summation yields,

1

N

∑
x∈Z

α
( x
N

)∑
y∈Z

P
(N)
tN2

( x
N
,
y

N

)
Φ
( y
N

)
=

1

N

∑
y∈Z

α
( y
N

)
Φ
( y
N

)∑
x∈Z

P
(N)
tN2

( y
N
,
x

N

)
.

Note that
∑

x∈Z P
(N)
tN2

( y
N ,

x
N

)
= 1, as P

(N)
tN2 is a probability measure. Thus,

1

N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
α
( x
N

)
=

1

N

∑
y∈Z

α
( y
N

)
Φ
( y
N

)
=

1

N

∑
x∈Z

α
( x
N

)
Φ
( x
N

)
N→∞−−−−→

∫
R
Φ(x)α(x)dx.

To conclude the proof we notice that the limiting generator St is stationary w.r.t the measure
µα(dx) = α(x)dx. Hence obtaining the desired result,

1

N

∑
x∈Z

(SRW
tN2Φ)

( x
N

)
α
( x
N

)
N→∞−−−−→

∫
R
(StΦ)(x)α(x)dx.

■
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Now that we have shown all conditions of lemma 5.1.1 to hold true, we can conclude that
1
N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

(
x
N

)
−(StΦ)

(
x
N

) ∣∣∣α ( x
N

) N→∞−−−−→ 0. Earlier we have reasoned that this suffices in

order to deduce that, 1
N

∑
x∈Z

∣∣∣(SRW
tN2Φ)

(
x
N

)
− (StΦ)

(
x
N

) ∣∣∣ρ ( x
N

)
α
(
x
N

) N→∞−−−−→ 0. Hence proving

that,

1

N

∑
x∈Z

(StΦ)
( x
N

)
ρ
( x
N

)
α
( x
N

)
N→∞−−−−→

∫
R
(StΦ)(x)ρ(x)α(x)dx.

A quick recap now before we move on with the next part of the proof. Up till now we shown
that,

EµNX
N
t (Φ)

N→∞−−−−→
∫
R
(StΦ)(x)ρ(x)α(x)dx

5.3.1
=

∫
R
Φ(x)ρ(t, x)α(x)dx.

Where ρ(t, x) := Stρ(x) satisfies the PDE,

ρt = Lρ = 2α′(x)ρx + α(x)ρxx. (5.13)

Notice that in particular we have the weak form of the PDE,

∫
R
ρ(t, x)Φ(x)α(x)dx−

∫
R
ρ(0, x)Φ(x)α(x)dx−

∫ t

0

∫
R
ρ(s, x)(LΦ)(x)α(x)dxds = 0. (5.14)

In the present setting there exists a unique strong solution of PDE 5.13, which satisfies 5.14.

5.2 Proof of the HDL: Vanishing Quadratic Variation

In this section we prove the hydrodynamic limit of our density field. We start off by calculating
the so called Dynkin martingale 2.2.2. In our case Dynkin’s martingale is given by

Mf
tN2 = f(ηtN2)− f(η0)−

∫ tN2

0
Lf(ηs)ds,

where f(ηs) =
1
N

∑
x∈ZΦ

(
x
N

)
ηs(x). Notice that,

Lf(ηs) =
1

N

∑
x∈Z

ηs(x)(αN (x+ 1) + ηs(x+ 1))

(
Φ

(
x+ 1

N

)
− Φ

( x
N

))
+ ηs(x+ 1)(αN (x) + ηs(x))

(
Φ
( x
N

)
− Φ

(
x+ 1

N

))
=

1

N

∑
x∈Z

(ηs(x)αN (x+ 1)− ηs(x+ 1)αN (x))

(
Φ

(
x+ 1

N

)
− Φ

( x
N

))
=

1

N

∑
x∈Z

ηs(x)αN (x+ 1)

(
Φ

(
x+ 1

N

)
− Φ

( x
N

))
+ ηs(x)αN (x− 1)

(
Φ

(
x− 1

N

)
− Φ

( x
N

))
=

1

N

∑
x∈Z

ηs(x)L
RW
N Φ

( x
N

)
5.3.1
=

1

N

∑
x∈Z

ηs(x)LΦ
( x
N

)
+O

(
1

N2

)
.



5.2. PROOF OF THE HDL: VANISHING QUADRATIC VARIATION 33

We thus have that,

Mf
tN2 = XN

t (Φ)−XN
0 (Φ)−

∫ tN2

0

1

N

∑
x∈Z

ηs(x)

αN (x)
(LΦ)

( x
N

)
αN (x)ds.

Notice that the r.h.s. corresponds to the discretized version of the weak form of the hydrody-

namic equation as mentioned in 5.14 and thus, informally,
ηtN2 (⌊xN⌋)
αN (⌊xN⌋) −→ ρ(t, x). Thus to prove

the hydrodynamic limit we need first to show that martingale Mf
tN2 vanishes in probability as

N → ∞. More precisely we need to show that for all δ > 0,

PµN

(
sup

t∈[0,T ]

∣∣Mf
tN2

∣∣ > δ

)
N→∞−−−−→ 0. (5.15)

Applying Markov’s inequality yields,

PµN

(
sup

t∈[0,T ]

∣∣Mf
tN2

∣∣ > δ

)
≤ 1

δ2
EµN

(
sup

t∈[0,T ]
Mf

tN2

2

)
≤ 4

δ2
EµN

(
Mf

TN2

2
)
=

4

δ2

[
Mf

TN2 ,M
f
TN2

]
.

Where in the second inequality we use the maximal Doob inequality. In the last equality we use

that Mf
TN2

2
−
[
Mf

TN2 ,M
f
TN2

]
is also a martingale, and thus has constant expectation and equal

to zero. We proceed now by calculating the quadratic variation of Mf
T . The quadratic variation

of our martingale Mf
T is given by Carré du Champ 2.16.

[
Mf

TN2 ,M
f
TN2

]
=

∫ TN2

0
Γ(f)(ηs)ds =

∫ TN2

0

(
LN
SIP (f

2)− 2fLN
SIP (f)

)
(ηs)ds.

Calculation yields,

Γ(f)(ηs) =
∑
x∈Z

ηs(x)(αN (x+ 1) + ηs(x+ 1))(f2(ηx,x+1
s )− f2(ηs))

+ ηs(x+ 1)(αN (x) + ηs(x))(f
2(ηx+1,x

s )− f2(ηs))

− 2f(ηs)
(
ηs(x)(αN (x+ 1) + ηs(x+ 1))(f(ηx,x+1

s )− f(ηs))

+ ηs(x+ 1)(αN (x) + ηs(x))(f(η
x+1,x
s )− f(ηs)) 16

=
∑
x∈Z

ηs(x)(αN (x+ 1) + ηs(x+ 1))(f2(ηx,x+1
s )− f2(ηs))

+ ηs(x)(αN (x− 1) + ηs(x− 1))(f2(ηx,x−1
s )− f2(ηs))

− 2f(ηs)
(
ηs(x)(αN (x+ 1) + ηs(x+ 1))(f(ηx,x+1

s )− f(ηs))

+ ηs(x)(αN (x− 1) + ηs(x− 1))(f(ηx,x−1
s )− f(ηs)) 16

=
∑
x∈Z

ηs(x)(αN (x+ 1) + ηs(x+ 1))(f2(ηx,x+1
s )− f2(ηs)− 2f(ηs)f(η

x,x+1
s ) + 2f2(ηs))

+ ηs(x)(αN (x− 1) + ηs(x− 1))(f2(ηx,x−1
s )− f2(ηs)− 2f(ηs)f(η

x,x−1
s ) + 2f2(ηs))

=
∑
x∈Z

ηs(x)(αN (x+ 1) + ηs(x+ 1))(f(ηx,x+1
s )− f(ηs))

2

+ ηs(x)(αN (x− 1) + ηs(x− 1))(f(ηx,x−1
s )− f(ηs))

2.
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More simplified,

Γ(f)(ηs) =
∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))(f(ηx,x+y
s )− f(ηs))

2.

Remember we have f(ηs) =
1
N

∑
x∈ZΦ

(
x
N

)
ηs(x). So that,

Γ(f)(ηs) =
1

N2

∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))

(
Φ

(
x+ y

N

)
− Φ

( x
N

))2

.

Applying Taylor’s theorem yields,

Γ(f)(ηs) =
1

N2

∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))

(
y

N
Φ′
( x
N

)
+

y2

2N2
Φ′′ (ζ)

)2

≤ 2

N2

∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))

(
y2

N2
Φ′
( x
N

)2
+

y4

4N4
Φ′′ (ζ)2

)
.

Where ζ is some point between x
N and x+y

N . y2 = 1 for both y = ±1. Thus,

[
Mf

TN2 ,M
f
TN2

]
≤
∫ TN2

0

2

N4

∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))Φ′
( x
N

)2
ds

+

∫ TN2

0

1

2N6

∑
x∈Z

y∈{−1,1}

ηs(x)(αN (x+ y) + ηs(x+ y))Φ′′ (ζ)2 ds.

Taking expectations w.r.t. the initial measure µN , and bounding the integral lets us obtain,

EµN

([
Mf

TN2 ,M
f
TN2

])
≤ sup

s∈[0,TN2]

2T

N
· 1

N

∑
x∈Z

y∈{−1,1}

∣∣EµN [ηs(x)(αN (x+ y) + ηs(x+ y))]
∣∣Φ′
( x
N

)2

+ sup
s∈[0,TN2]

T

2N3
· 1

N

∑
x∈Z

y∈{−1,1}

∣∣EµN [ηs(x)(αN (x+ y) + ηs(x+ y))]
∣∣ sup
ξy(x)

Φ′′(ξy(x))
2.

Where we used that we can bound
∣∣Φ′′ (ζ)

∣∣ ≤ supξy(x)∈( x
N
,x+y

N )

∣∣Φ′′(ξy(x))
∣∣ ≤ A < ∞, as Φ is a

test function. Suppose that now we are able to show that
∣∣EµN [ηs(x)(αN (x+ y) + ηs(x+ y))]

∣∣ ≤
C <∞, then we would able to obtain,

EµN

([
Mf

TN2 ,M
f
TN2

])
≤ 4TC

N
· 1

N

∑
x∈Z

Φ′
( x
N

)2
+
TC

N3
· 1

N

∑
x∈Z

sup
ξy(x)∈( x

N
,x+y

N )
Φ′′(ξy(x))

2

N→∞−−−−→ 0 ·
∫
R
Φ′(x)2dx+ 0 ·

∫
R

sup
ξy(x)∈( x

N
,x+y

N )
Φ′′(ξy(x))

2dx = 0.
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We see that the desired result can be obtained if only it holds that,∣∣EµN [ηs(x)(αN (x+ y) + ηs(x+ y))]
∣∣ ≤ C <∞. Thus only this remains to be proven.

EµN [ηs(x)(αN (x+ y) + ηs(x+ y))] = EµN [αN (x+ y)ηs(x)] + EµN [ηs(x)ηs(x+ y)]

≤M · EµN [ηs(x)] +

∫
Σ
Eη [ηs(x)ηs(x+ y)] dµN (η)

Computing the r.h.s. yields,

=M

∫
Σ
Eη

[
ηs(x)

αN (x)

]
αN (x)dµN (η) +

∫
Σ
Eη

[
ηs(x)

αN (x)
· ηs(x+ y)

αN (x+ y)

]
αN (x)αN (x+ y)dµN (η)

≤M2

∫
Σ
EηD(δx, ηs)dµN (η) +M2

∫
Σ
EηD(δx + δx+y, ηs)dµN (η)

(Duality)
= M2

∫
Σ
ESIP
x D(δX(s), η0)dµN (η) +M2

∫
Σ
ESIP
x,x+yD(δX1(s) + δX2(s), η0)dµN (η)

=M2 · ESIP
x

[∫
Σ
D(δX(s), η0)dµN (η)

]
+M2·∫

Σ
ESIP
x,x+y

[
η(X1(s))

αN (X1(s))

η(X2(s))

αN (X2(s))
1{X1(s)̸=X2(s)} +

η(X1(s))

(αN (X1(s)) + 1)

(η(X1(s))− 1)

αN (X1(s))
1{X1(s)=X2(s)}

]
dµN (η)

≤M2 · ESIP
x

[∫
Σ

η(X(s))

αN (X(s))
dµN (η)

]
+M2·∫

Σ
ESIP
x,x+y

[
η(X1(s))

αN (X1(s))

η(X2(s))

αN (X2(s))
1{X1(s)̸=X2(s)} +

η(X(s))2

αN (X(s))2
1{X1(s)=X2(s)}

]
dµN (η)

≤M2 · ESIP
x

[
EµN

[
η(X(s))

α(X(s))

]]
+M2

∫
Σ
ESIP
x,x+y

[
η(X1(s))

αN (X1(s))

η(X2(s))

αN (X2(s))

]
dµN (η)

≤M2 · sup
x∈Z

EµN

[
η(X(s))

αN (X(s))

]
+M2 · ESIP

x,x+y

[∫
Σ

η(X1(s))

αN (X1(s))

η(X2(s))

αN (X2(s))
dµN (η)

]
(C.S)

≤ M2 · sup
x∈Z

EµN

[
η(X(s))

αN (X(s))

]
+M2 · sup

x,y∈Z

√√√√EµN

[(
η(X1(s))

αN (X1(s))

)2
]
EµN

[(
η(X2(s))

αN (X2(s))

)2
]

Where we have used that αN (x) is uniformly bounded, i.e. 0 < m ≤ |αN (x)| ≤ M <
∞. Note that the only manner that we can bound the expression above further only when

supx∈Z EµN

[(
η(x)
αN (x)

)β]
< ∞, for β ∈ {1, 2}. By invoking our main assumption 5.0.1 this can

be realized. Thus obtaining,

∣∣EµN [ηs(x)(αN (x+ y) + ηs(x+ y))]
∣∣ ≤M2(A+A2) := C <∞.

Which gives the desired result.
To conclude our proof of the hydrodynamic limit we follow standard techniques. We need

to show that,

1. Tightness holds for the sequence of distributions of the processes {XN
t : t ≥ 0}N

2. All limit points coincide and are supported by the unique path X(t, dx) = ρ(x, t)α(x)dx,
with ρ the unique weak (and in particular strong) bounded and continuous solution of
5.12.
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We skip the details as the proof of 1. is a simple adaptation of the proof presented in the
thesis of M.A. Ayala Valenzuela [1], and 2. follows by the uniqueness of the solution of 5.14.
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5.3 Intermediate Results for the Hydrodynamic Limit

Lemma 5.3.1. Let LRW
N be the generator of the random walk XN (t) = X(tN2)

N as defined in
5.16 and let L be the generator of the diffusion x(t) given in 5.13. Then,

sup
x∈R

∣∣LRW
N f(x)− Lf(x)

∣∣ N→∞−−−−→ 0.

Proof: The generator corresponding to the random walk XN (t) = X(tN2)
N is given by,

LRW
N f(x) = N2α

(
x+

1

N

)(
f

(
x+

1

N

)
− f (x)

)
+N2α

(
x− 1

N

)(
f

(
x− 1

N

)
− f (x)

)
.

(5.16)

This generator converges to some limiting generator L of the diffusion process dXt = 2α′(Xt)dt+√
2α(Xt)dWt. The first step for deriving this result is by applying Taylor’s theorem, around the

point x, to the rates α
(
x± 1

N

)
, and functions f

(
x± 1

N

)
. Obtaining,

• f

(
x± 1

N

)
= f (x)± 1

N
f ′ (x) +

1

2N2
f ′′ (x)± 1

6N3
f ′′′(ζ±)

• α

(
x± 1

N

)
= α (x)± 1

N
α′ (x) +

1

2N2
α′′(ξ±).

For some ζ±, ξ± in between x and x± 1
N respectively. Using these expressions we evaluate 5.16.

Deriving,

LRW
N f(x) = N2

(
α (x) +

1

N
α′ (x) +

1

2N2
α′′(ξ+)

)(
f (x) +

1

N
f ′ (x) +

1

2N2
f ′′ (x) +

1

6N3
f ′′′(ζ+)− f (x)

)
+N2

(
α (x)− 1

N
α′ (x) +

1

2N2
α′′(ξ−))

)(
f (x)− 1

N
f ′ (x) +

1

2N2
f ′′ (x)− 1

6N3
f ′′′(ζ−)− f (x)

)
.

Note that the f(x) terms in both expansions cancel out. Carefully working out the brackets
yields,

LRW
N f(x) = N2

[
α (x)

(
1

N2
f ′′ (x) +

1

6N3

(
f ′′′
(
ζ+
)
− f ′′′

(
ζ−
)))

+
1

N
α′ (x)

(
2

N
f ′ (x) +

1

6N3

(
f ′′′
(
ζ+
)
+ f ′′′

(
ζ−
)))

+
1

2N2

(
1

N
f ′ (x)

(
α′′ (ξ+)− α′′ (ξ−))+ 1

2N2
f ′′ (x)

(
α′′ (ξ+)+ α′′ (ξ−)) )

+
1

6N3

(
f ′′′
(
ζ+
)
α′′ (ξ+)− f ′′′

(
ζ−
)
α′′ (ξ−))]. 1

=⇒ LRW
N f(x) = α (x) f ′′ (x) +

1

6N

(
f ′′′
(
ζ+
)
− f ′′′

(
ζ−
))

+ 2α′ (x) f ′ (x) +
1

6N2

(
f ′′′
(
ζ+
)
+ f ′′′

(
ζ−
))

+
1

2N
f ′ (x)

(
α′′ (ξ+)− α′′ (ξ−))+ 1

4N2
f ′′ (x)

(
α′′ (ξ+)+ α′′ (ξ−) )

+
1

12N3

(
f ′′′
(
ζ+
)
α′′ (ξ+)− f ′′′

(
ζ−
)
α′′ (ξ−)). 1
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We can take f to be C3
b (R), and by assumption α is bounded and C∞(R). Implying |f (k)(ζ±)| ≤

C and |α(k)(ξ±)| ≤M , for k = 1, 2, 3. Yielding,

∣∣∣LRW
N f(x)

∣∣∣ ≤ α (x) f ′′ (x) +
C

3N
+ 2α′ (x) f ′ (x) +

C

3N2
+
MC

N
+
MC

2N2
+
MC

6N3
.

And thus,

sup
x∈R

∣∣∣LRW
N f(x)− Lf(x)

∣∣∣ ≤ sup
x∈R

∣∣∣α (x) f ′′ (x) +
C

3N
+ 2α′ (x) f ′ (x) +

C

3N2
+
MC

N
+
MC

2N2
+
MC

6N3
− Lf

∣∣∣
= sup

x∈R

∣∣∣ C
3N

+
C

3N2
+
MC

N
+
MC

2N2
+
MC

6N3

∣∣∣
N→∞−−−−→ 0.

And thus we conclude that LRW
N f(x)

N→∞−−−−→ Lf(x) =
(
2α′ (x) d

dx + α (x) d2

dx2

)
f(x) uniformly in

x. ■

Remark. The uniform convergence as shown in lemma 5.3.1 holds for f : R −→ R such that f ∈
C∞(R). Implying that in particular it also holds fN ∈ l∞

( Z
N

)
for each N ∈ N, where f : Z

N −→
R.
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Lemma 5.3.2. Generator LRW
N 5.16, the generator of the random walk XN (t) = X(tN2)

N , is
self-adjoint in l2(Z, α).

Proof: Consider the random walk operator Aα(x)f(x) = α(x + 1)(f(x + 1) − f(x)) + α(x −
1)(f(x − 1) − f(x)). This suffices to conclude reversibility of the measure ν({x}) = α(x + 1

N )
for the semigroup SRW

tN2 . And thus the self-adjointness of LRW
N .

Note, that the detailed balance relation reads as,

ν({x})c(x, x′) = ν({x′})c(x′, x)
α(x)α(x+ 1) = α(x+ 1)α(x).

Thus clearly the measure ν({x}) = α(x) is reversible for the RW(α(x)). We conclude now the
desired result from proposition 2.3.3. ■

The reversibility property is also shared by the limiting generator L. We will show the
reversibility of the measure µ(dx) = α(x)dx for the diffusion process Xt with generator L =(
2α′ (x) d

dx + α (x) d2

dx2

)
, by showing the self-adjointness of L.

Proposition 5.3.1. Generator L is a self-adjoint operator in L2(µ), with µ(dx) = α(x)dx.

Proof: Let f(x), g(x) ∈ D(L), and consider the inner products ⟨Lf, g⟩L2(α) and ⟨f,Lg⟩L2(α).
We will show that L is symmetric w.r.t. this inner product. By straightforward calculation we
show that both equate to the same integral expression. So,

⟨Lf, g⟩L2(α) =

∫
R

[
2α′(x)f ′(x) + α(x)f ′′(x)

]
g(x)α(x)dx

=

∫
R
2α(x)α′(x)g(x)f ′(x)dx+

∫
R
α2(x)g(x)df ′(x).

The first term we let be for what it is, and we’ll focus on the second integral. Note that by
integrating by parts we derive,

∫
R
α2(x)g(x)df ′(x) = α2(x)g(x)f ′(x)

∣∣∣∣x=+∞

x=−∞
−
∫
R
f ′(x)d(α2(x)g(x))

= 0−
∫
R
f ′(x)

[
2α(x)α′(x)g(x) + α2(x)g′(x)

]
dx.

Where the first term vanishes due to f, g ∈ D(L). Putting all together gives,

⟨L̃f, g⟩L2(α) = −
∫
R
α2(x)f ′(x)g′(x)dx.

Observe that ⟨Lf, g⟩L2(α) =
∫
R [2α′(x)f ′(x) + α(x)f ′′(x)] g(x)α(x)dx, and

⟨f,Lg⟩L2(α) =
∫
R f(x) [2α

′(x)g′(x) + α(x)g′′(x)]α(x)dx are expressions which are symmetrical
for f and g. Thus we can similarly derive,

⟨f,Lg⟩L2(α) = −
∫
R
α2(x)f ′(x)g′(x)dx.

Implying that ⟨Lf, g⟩L2(α) = ⟨f,Lg⟩L2(α), and thus indeed generator L is symmetric. In order
to conclude that L is also self-adjoint we notice that L is the generator of a diffusion process,
i.e. a Markov process, thus implying that L = L⋆ in L2(α). ■



Chapter 6

Conclusion

In this thesis we have introduced an inhomogeneous version of the symmetric inclusion process,
where the inhomogeneities are given by a slowly varying profile (given by bounded and smooth
function α). Using stochastic self-duality we have been able to show the hydrodynamic limit of
the SIP(α). It is given by

ρt(t, x) = 2α′(x)ρx(t, x) + α(x)ρxx(t, x),

where ρ(t, x) is the macroscopic density at time t > 0 and position x ∈ R. The self-duality
property of SIP(α) allowed us to identify the above PDE by studying the scaling of the single
particle random walk in an inhomogeneous slowly varying environment. By following standard
techniques the hydrodynamic limit was then proved.

Moreover we have shown that the invariant measures of the SIP(α) are given by the product

measure µλ(η) =
⊗
x∈Z

µ
α(x)
λ such that,

µ
α(x)
λ (η(x) = N) =

1

Z(λ, α(x))

λN

N !

Γ(α(x) +N)

Γ(α(x))
.

And where λ > 0 and Z(λ, α(x)) = (1− λ)−α(x) is a normalizing constant.
Several questions remain open and subject of future research. E.g. What can we say on the

fluctuations around the hydrodynamic limit? What is the behaviour of the boundary driven
SIP(α), i.e. the process on a finite chain {1, . . . , N} coupled with a left and a right reservoir
injecting and absorbing particles connected, respectively, with the left and the right point of the
chain. These are but a few to mention.
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