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Abstract: Hydrological ecosystem services (HESS) describe the benefits of water for multiple purposes
with an emphasis on environmental values. The value of HESS is often not realized because primary
benefits (e.g., food production, water withdrawals) get the most attention. Secondary benefits such as
water storage, purification or midday temperature cooling are often overlooked. This results in an
incorrect evaluation of beneficial water usage in urban and rural resettlements and misunderstandings
when land use changes are introduced. The objective of this paper is to propose a standard list
of 17 HESS indicators that are in line with the policy and philosophy of the Consultative Group
of International Agricultural Research (CGIAR) and that are measurable with earth observation
technologies in conjunction with GIS and hydrological models. The HESS17 framework considered
indicators that can be directly related to water flows, water fluxes and water stocks; they have a
natural characteristic with minimal anthropogenic influence and must be quantifiable by means of
earth observation models in combination with GIS and hydrological models. The introduction of a
HESS framework is less meaningful without proper quantification procedures in place. Because of
the widely diverging management options, the role of water should be categorized as (i) consumptive
use (i.e., evapotranspiration and dry matter production) and (ii) non-consumptive use (stream flow,
recharge, water storage). Governments and responsible agencies for integrated water management
should recognize the need to include HESS17 in water allocation policies, water foot-printing, water
accounting, transboundary water management, food security purposes and spatial land-use planning
processes. The proposed HESS17 framework and associated methods can be used to evaluate land,
soil and water conservation programs. This paper presents a framework that is non-exhaustive but
can be realistically computed and applicable across spatial scales.

Keywords: hydrological ecosystem services; remote sensing; ecosystem services framework; ecosystem
services accounting

1. Introduction

Ecosystem services are defined as the goods and services provided by ecosystems that
are direct and indirect contributions to human well-being [1,2]. Ecosystem services are
the benefits that people and societies receive from nature, such as food, water, pollination,
nutrient cycling and many others. Hydrological ecosystem services (HESS), also referred
to as water-related ecosystem services, link these services to the hydrological cycle, thus
making explicit that the magnitude of the ecosystem service depends on water availability,
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i.e., quantity and quality. For example, certain stream flow regimes are required for main-
taining fish, birds and perennial corridors that provide food and income for local people [3].
Recurring rainfall is required for keeping dryland agro-forestry ecosystems productive.
The hydrological processes of the unsaturated zone control gaseous exchanges in water
vapor (H2O), carbon dioxide (CO2), methane (CH4), ammonification (NH4) and nitrous
oxide (N2O) between land and atmosphere, thereby regulating atmospheric greenhouse gas
concentrations and warming of the earth. Vegetated surfaces have great ecological value,
but they require certain soil moisture regimes for sufficient photosynthesis. The World Wide
Assessment Program (2018) [4] synthesized the international developments on nature-based
solutions (NbS) for water and highlighted the growing emphasis on the inclusion of ecosys-
tem services as quantifiable benefits into integrated land and water resource management
around the world. The Consultative Group of International Agricultural Research (CGIAR)
established its Ecosystem Services and Resilience Framework (ESR) defining an ecosystem
service-based approach to build community resilience and restore ecosystem services for
provisioning goals or in ways that support and regulate these goals, while reducing the
negative impacts on the natural resource base that underpins these ecosystem services [5].
CGIAR’s ESR provided an excellent entry point for creating a minimal list of HESS indices
that followed ES characteristics and quantification methods, i.e., use of earth observation
data in combination with GIS and eco-hydrological tools. The use of scenarios and models
for HESS quantification allows a pragmatic approach to support decision making in river
basin planning and environmental monitoring within time and space boundaries [6]. Exam-
ples include assessment of marginal benefits to nature and humans as consequences from
basin management alternatives. Furthermore, inclusion of HESS ensures the transition from
traditional top-down and single objective systems into multi-criteria and human-centred
approaches that can prioritize activities with a broader spectrum of benefits [7]. Especially,
HESS ensures the uptake of international guidance, such as integrated water resources
management (IWRM), by achieving a win-win co-development of water with, among
others, land and ecosystems, while fully delivering the benefits to humans and society [8].

The quantification of HESS has become one of the fastest growing areas of environ-
mental research [9]. Yet, due to the absence of operational information systems, policy
makers continue with business as usual. Clear definitions and explanatory methods for
quantification of HESS are vital to close this policy–practice gap. Both the benefits and
the water volumes needed to establish these benefits must be estimated across areas with
spatially variable physiographic conditions.

The lack of a standardized framework and consensus for quantifying HESS as a spatial
process limits the uptake by policy makers and managers [10–12]. In this context, the devel-
opment of a minimum list of HESS indicators is a great contribution to ecosystem services
research. Such a framework would improve comparability between river basins and wa-
tersheds and help people understand the impacts of longer term policies, implementation
plans, projects and investments on achieving a healthier water-related ecosystem.

Analytical tools for spatial assessment of HESS have been developed [7,10] including
distributed hydrological models, e.g., soil and water assessment tool (SWAT) [13,14]; ecosys-
tem services-oriented tools, e.g., integrated tool to value ecosystem services (InVEST) [15];
or artificial intelligence for ecosystem services (ARIES) [16]. SWAT has the ability to con-
nect surface water, soil moisture and groundwater hydrologically using local land use and
soil information to further water quality and food production [11,17]. Various elements
of HESS such as water yield, water purification and sediment retention can be assessed
by tools such as InVEST [18,19]. A different form of HESS modelling was outlined by
Simons et al. [20] who demonstrated how publicly available earth observation data sets can
be applied to generate HESS assessments at pixel level. Using pixels of 250 m × 250 m or
1 km × 1 km provides new opportunities to locally report HESS.

The objective of the current paper is to describe a framework for HESS indicators
which is in line with the policy and philosophy of CGIAR [5]. Seventeen HESS indicators
will be proposed and possible methodologies to quantify them will be discussed using
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remote sensing, GIS and hydrological models. This list is not exhaustive and can always
be expanded; it should be considered as a first attempt in the direction of standardization.
An accompanying paper [21] shows a practical example of HESS determination in the Red
River, Vietnam.

2. Brief Literature Review of Hydrological Ecosystem Services (HESS)

The Consultative Group on International Agricultural Research (CGIAR) on Water,
Land and Ecosystems published a comprehensive report on ecosystem services and a
resilience framework [5]. Similar to TEEB (2010) [22], ESR catalysed the flow of ecosys-
tem services to and from agriculture to increase production and subsequently food and
livelihood security. In terms of a HESS framework, Grizzetti et al. [11] developed an
analysis framework for inland waters in European basins considering the links between
pressures, ecological status and ecosystem services. In this study, four HESS attributes
were identified, i.e., water quantity (including seasonality), water quality, biological quality
elements and hydromorphological/physical structure. Focusing on the way ecosystems
affect hydrologic attributes, i.e., water quantity, quality, location of delivery and timing
of delivery, Brauman et al. [23] presented a framework for defining and assessing HESS
attributes, which translate eco-hydrological processes into an ecosystem service context
useful to decision makers; it included water for municipal use, hydropower, recreation,
fish supply, reduction in flood damage, water and nutrients to support vital estuaries and
other habitats, preservation of options, etc. With a similar end result, Belmar et al. [24]
assessed the relationships between annual mean discharges, fish populations and shellfish
species (prawns and shrimps) in the lower Ebro. The mean annual discharge was able to
explain the variation in fish-based ecological quality; model performance increased when
aquatic vegetation was incorporated. Among HESS studies focusing on provisioning and
regulation, Poff et al. [25] introduced the ELOHA framework which considers a number of
hydrological and ecological processes for different river types to understand the linkages
between hydrologic, ecological and social aspects of environmental flow assessment. These
relationships are established based on paired streamflow and ecological data from through-
out the region of interest. Similarly, Pan and Choi [26] developed a conceptual framework
for HESS consisting of a temporal demonstration of water provision, flood control and
sediment regulation in the Milwaukee River Basin (US) based on ground observation of
streamflow and sedimentation for calibration.

In terms of HESS quantification and trade-off analyses, Gao et al. [27] analysed land-
use change and corresponding variations in water-related ecosystem services, i.e., water
yield, soil conservation and water purification services in the Guishui River Basin, China.
Their study underscored that HESS services were greatly affected by different land-use
change scenarios. Thus, land-use and water-use policies should include water-related
ecosystem services. Willaarts et al. [28] empirically assessed the relationship between the
use and management of agroecosystems, their hydrological functioning and HESS, through
a list of nine HESS indicators including forage, drinking water, flow regulation, recreation,
olive crops and cork production, meso-climate regulation, hydropower generation and
maintenance of aquatic biodiversity. Bangash et al. [29] evaluated the impacts of climate
change in the water provisioning and erosion control services in the densely populated
Mediterranean Llobregat River Basin (Spain). Their study found that drinking water is
expected to decrease between 3 and 49%, while total hydropower production will decrease
between 5 and 43%. Fan et al. [30] determined water yield, inorganic nutrients, organic
nutrients and sediment retention in the Teshio watershed (Japan) using the SWAT model.
The results indicate that HESS provides an effective trade-off between environmental
protection (sediment and organic nutrient retention) and economic development (water
yield and inorganic nutrient retention).

The point of this brief review is to highlight that authors often have similar thoughts on
the usefulness of water resources for the environment, with diverging and often ambiguous
definitions; however, quantification methods are not ambiguous. Existing frameworks on
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interpretations of HESS are comprehensive and contain indicators that are amenable to
quantification. The inclusion of supporting and cultural services is often overlooked and
questionable in terms of a quantification method [31]; nonetheless, it seems to be necessary
for consideration in any framework. Similar discussions on the segregation of supporting
services from provisioning and regulating indicate that different views still exist [1,5,32].

For this reason, we aim at defining a minimum and standard list of 17 HESS indicators
congruent with the CGIAR framework.

3. Definition of the Hydrological Ecosystem Services (HESS) Framework
3.1. Formulation of the HESS17 Framework

A minimum list of HESS indicators was taken from the CGIAR report using certain cri-
teria. The formulation of this non-exhaustive framework on HESS and their quantifications
are underpinned by the view that a conceptualized and standardized assessment skeleton
of multiple values of hydrological ecosystems and their benefit to humans needs to be
recognized and valued. Through this process, priorities on the development pathways and
scenarios that most benefit people while adequately address the challenge of sustainability
at different scales, e.g., global, river basin or community level [33]. There are numerous
frameworks that establish as a priority the use of models for monitoring of provisioning
and regulating services, such as water provisioning or soil erosion [15,18]. However, there is
a shortage of approaches that can incorporate values of HESS into river basin management
and across the nature–human sphere. This shortcoming occurs in two aspects: the first is
providing a conceptualization, seamless valuing and representation of hydrological ecosys-
tem services in provisioning, regulating, supporting and cultural functions; the second
is their ability to include the development of scenarios and pathways across scales and
benchmark the level of sustainability. Another characteristic of the HESS17 framework is
its capability to provide an ample space for adding more indicators in the future, following
the implementation of SDGs or achievement of human development targets.

Existing frameworks [1,11,25] show a greater abundance and clear imbalance towards
provisioning and regulation services rather than cultural and support services; many stud-
ies solely focus on the former [9,29]. This drawback results from the characteristics of
HESS in that they have a much stronger connection to regulation and provisioning services,
i.e., water flows, storage and moisture circulation, than on cultural and/or habitat services.
In this framework, we aim to have a full spectrum of indicators from the entire four HESS
categories by including HESS that represent supporting and cultural services. The selected
set of HESS indicators succinctly defines how multiple values of ecosystems and their
contributions to people should be acknowledged. Selected HESS indicators should fulfil
certain criteria: they should be water flows, water fluxes and water stocks; they should also
be clearly adhered to a natural function or process of the ecosystem with minimal anthro-
pogenic influence; and they must be quantifiable by means of earth observation models in
combination with GIS and hydrological models. Apart from considering HESS properties,
the HESS17 aims to catalyse the interactions between eco-hydrological components and
processes and build up a feedback mechanism that reflects human–nature relationships,
e.g., through the simulation of land use changes, urban heatwave, agricultural production
and an investigation of NbS outcomes. The valuation and assessment of feedback functions
will allow the calculation of benefits and expenses of HESS in spatially and temporally explicit
manners [18]. Examples of this are the generation of runoff or maintenance of dry season
flows from upstream, which can benefit downstream communities or the improvement in
sustaining rainfall within the basin’s perimeter through effective water management.

The HESS indicators should not be related to specific remote sensing algorithms or
numerical models. McCartney et al. [34] emphasized that HESS should be based on natural
water services in pristine environments and landscapes; this is a narrower view that empha-
sizes mainly the role of natural lakes and wetlands as natural sponges that retain water and
reduce peak flows. While this is fundamental, a broader view of natural benefits from water
consumption is necessary. Natural vegetation communities consume vast amounts of water,
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and their benefits for living organisms are significant, ranging from the provision of shade
to biodiversity, to insects that enhance pollination. The consumptive use of water resources
in river basins, e.g., evapotranspiration, forms the basis for various environmental services,
such as sustaining rainfall or providing micro-climate cooling. It is a key process since
these water resources originated from surface water and groundwater flows and stocks;
thus, they should be utilized as responsibly as possible [35–39]. The general categories
of ecosystem descriptions are fresh water, food, fuels, fresh water supply, disturbance
regulation, air climate and quality, water quality, habitat provision and recreation (see
Table 1). They can be synthesized into provisioning, regulating, supporting and cultural
services. Because of the irreversible character of consumptive use, it is sound to separate
HESS into processes that are related to consumptive use (e.g., evapotranspiration) and
non-consumptive use (e.g., runoff, percolation, baseflow). Furthermore, one remaining
question in addressing HESS is the spatial–temporal connection between locations that are
providing and demanding HESS, i.e., where are HESS produced and where are HESS con-
sumed? The proposed HESS framework aims to delineate these spatial–temporal relations
by identifying the locations that are providing and those that are demanding, i.e., at the
larger river basin scale or in localities where HESS is consumed by local communities, and
the time aspect of when benefits or potential demands for HESS can be mapped.

In total, 17 HESS were identified and selected, categorized into provisioning (4),
regulating (11), supporting (1) and cultural (1) services.

Table 1. Proposed framework of 17 hydrological ecosystem services (HESS) based on a CGIAR workshop.

General
Cate-

gories
HESS

Ecosystem
Services/
Concept

Major Principles Unit

Spatial Connection
between Providing and

Demanding Locations of
HESS

Temporal Connection
between Providing and

Demanding Locations of
HESS

Consum-
ptive
Use

Non-
Consum-

ptive
Use

Provisioning services (related to water)

Fresh
water 1 Basin runoff

Ultimate source of
water available for
multiple purposes

m3/ha
River basin, in-stream

directional benefits
(downstream)

Annual, seasonal (wet and
dry period) x

Food 2 Inland capture
fishery

Catch from lakes,
wetlands, rivers kg/ha Local, surrounding

communities Annual x x

Food 3
Natural

livestock feed
production

Dry matter
production from
natural pastures,
alpine pastures,

wetlands and more

kg/ha Local, surrounding
communities Annual x

Fuels 4
Fuelwood

from natural
forests

Dry matter
production from

forests and savannahs
kg/ha Local, surrounding

communities Annual x

Regulating services (related to water)

Fresh
water

supply
5

Dry season
flow

(“baseflow”)

Flow from
groundwater outflow,
lakes, wetlands and

upstream runoff

m3/s River basin, directional
benefits (downstream)

Seasonal (during dry
period) x

Fresh
water

supply
6

Total
groundwater

recharge

Vertical transient
moisture flow

originating from
percolation reaching

saturated
groundwater

m3/ha River basin Annual, seasonal (wet and
dry period) x

Fresh
water 7 Surface water

storage

Total water stock in
natural surface water

systems (lakes,
wetlands)

m3 River basin, local,
surrounding communities

Annual, seasonal (wet and
dry period) x

Fresh
water

supply
8 Root zone

water storage

Retention of soil
moisture in

unsaturated zone for
carrying over water

from wet to dry
seasons

m3 River basin, local,
surrounding communities

Annual, seasonal (wet and
dry period) x

Fresh
water

supply
9 Sustaining

rainfall

Sustaining rainfall
originating from land

evaporation
m3/ha River basin Annual x
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Table 1. Cont.

General
Cate-

gories
HESS

Ecosystem
Services/
Concept

Major Principles Unit

Spatial Connection
between Providing and

Demanding Locations of
HESS

Temporal Connection
between Providing and

Demanding Locations of
HESS

Consum-
ptive
Use

Non-
Consum-

ptive
Use

Disturbance
regulation 10 Peak flow

attenuation

Attenuated peak flow
for safeguarding

downstream areas
from flooding by

means of ecological
intervention

% River basin, directional
benefits (downstream) Seasonal (wet period) x

Air
quality

and
climate

11 Carbon
sequestration

Assimilating
atmospheric carbon

into crop organs
(wood, roots) and soil

kg C/ha River basin Annual x

Air
quality

and
climate

12
Reduce

greenhouse
gas emissions

Reduced methane
emissions and other
trace gasses due to
changes in land use

and water
management

kg C/ha River basin Annual x

Air
quality

and
climate

13 Micro-climate
cooling

Evaporative cooling
of the vegetation and

near-surface
atmosphere due to

changes in land and
water management

◦C River basin Annual x

Water
quality 14

Natural
reduction of

water
eutrophication

Reduction in
eutrophication due to
changes in land use

and water
management

% River basin, directional
benefits (downstream)

Annual, seasonal (wet and
dry period) x

Water
quality 15 Reduction in

soil erosion

Reducing erosion and
sedimentation by

increased vegetation
cover

kg/ha River basin, directional
benefits (downstream)

Annual, seasonal (wet and
dry period) x

Supporting services

Habitat
provision 16

Meeting
environmental

flow
requirements

Meeting minimum
flows and water

levels for biodiversity,
ecosystem health and

endangered (fish)
species

%
River basin, in-stream

directional benefits
(downstream)

Seasonal (wet and dry
period) x

Cultural services

Recreational 17 Leisure

Socialisation of
humans via water

sports, golf courses,
eco-tourism, aesthetic

views, mountain
biking, forest BBQs,

etc.

Number
of visitors

Local, surrounding
communities

Annual, seasonal (wet and
dry period) x x

3.2. Definition of HESS Presented in the Framework
3.2.1. HESS1: Basin Runoff

Basin runoff (HESS1) from a river basin is the amount of surface and groundwater
resources that are generated internally in a watershed or river basin. Inflows from upstream
basins is excluded. Surface runoff creates stream and river flows which are the source
for aquatic ecosystems. Excess water from the surface network and the unsaturated soil
through leakage and percolations feeds aquifer systems that convey water laterally and
interact with streams. Because surface water can become groundwater and vice versa, the
term basin runoff is preferred for defining HESS1.

At the aggregate level of the basin, basin runoff is the sum of surface runoff into
streams and natural percolation from the root zone into drainage networks and aquifers
(this excludes non-natural percolation arising from water resource withdrawals). The
baseflow is ultimately available in streams as flows during the dry season. Interflow occurs
on undulating or sloping terrain where unsaturated zone moisture has a lateral component
due to layered soil properties, perched water tables, etc. Because HESS1 represents the
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basin runoff, the exact flow path of water to reach streams and rivers, as well as the stream
flow, are less relevant.

Basin runoff is the primary source for all multi-purpose withdrawals, both natu-
rally (e.g., floods, lakes, groundwater dependent ecosystems) and manmade withdrawals
(e.g., domestic, industry, irrigation). Natural withdrawals can be significant, and blue water
resource consumption related to withdrawals is not available for other usage [23,38,40].

A simple t definition of basin runoff is precipitation minus ET from green water
resources (P-ETgreen), sometimes indicated as net precipitation. This definition excludes
all water withdrawals (including natural withdrawals). Water stored in permanent surface
and groundwater systems should also be subtracted from basin runoff.

Several papers have been published that show how P can be solved from earth
observations, e.g., [41,42]. Different energy balance models can be chosen for the estimation
of ET, e.g., [43,44]. Spatial ET data can also be used for various types of hydrological
analysis, e.g., [14]. The GRACE gravity mission measures the changes in water storage ∆S
in an independent manner [45,46]. P, ET and ∆S together can be used to assess basin runoff.

3.2.2. HESS2: Inland Capture Fishery

HESS2 describes the fish catch from inland lakes, rivers, mangroves, lagoons and
other natural water bodies. The catch from these waters is of economic value and provides
nutrients to local communities. Specific flow regimes are an asset for prawning, fish
migration and fish catch. Most freshwater fish have evolved life cycles that are adapted to
natural river habitat and flow regimes. The evaporation from these water systems can be
considered as the water consumed for achieving the fish catch. Information on the size of
open water bodies together with the evaporation from water bodies is required to relate
inland capture fisheries to water consumption.

Information on the capture of inland fish can come from standardized statistical
records. The database of FAOSTAT [47] and WorldFish [48] are good options to obtain
data and they reveal a linear growth over the last 50 years. FAO estimates that 12 million
tonnes of inland fish were captured in 2018; this was 6.7% of total fish production [49].
Marine capture is seven times more than inland capture. Current data are sufficient only
for a general overview of global inland catches of fish, rather than for the detailed analysis
needed for management, policy formulation and valuation of inland fisheries [50].

Several studies [51–53] illustrated the use of different spectral indicators to identify the
size of water bodies using optical data. During monsoon with frequent cloud cover and
floods, the quality of the optical data is hampered, and it is customary to use synthetical
active radar (SAR) data. Rebelo et al. [54] and Donlon et al. [55] showed how Sentinel-3 SAR
data can be best utilized. Various techniques consisting of L-band synthetic aperture radar
(SAR) [56], Landsat and SPOT [57] were used to monitor the status of and changes in wetlands,
both rainfed and water bodies, to calculate fisheries’ yield based on a yield-per-unit area
approach. The combination of size of the open water area, water level and water evaporation
was sufficient to compute the consumptive use of water bodies on a volume basis.

3.2.3. HESS3: Natural Feed for Livestock

HESS3 deals with the natural feed for livestock owned by pastoralists and wild
livestock such as mountain sheep, wild mammals, cats, elephants and the like. Cattle and
cats graze on several types of natural pastures (grass fields, savannah, steppes, alpine,
wetlands). Their feed is a result of photosynthesis and water consumption (ET). HESS3 is
essential for many national parks and extensive savannah landscapes.

The physical processes of dry matter production of grasslands are widely studied.
Various versions of net primary production (NPP) models exist for the computation of the
net carbon flux of pastureland. While NPP models are often made for global ecological
studies, they can also be applied on a pixel by pixel basis. Hence satellite measurements
can be used to determine NPP and dry matter production. Remotely sensed data from mul-
tispectral satellites, e.g., MODIS, Landsat, Sentinel-2, etc., can be used to assess grassland’s
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greenness and thickness while optical sensors can capture biophysical and biochemical
information [58]. Monteith’s model [59] for the production of pasture is based on absorbed
photosynthetically active radiation (APAR) and a light use efficiency (LUE) conversion
factor. LUE values for grassland vary typically between 1.6 to 2.8 gr/MJ, depending on soil
moisture, temperature, vapor pressure deficit and grass nitrogen status [60].

A first distribution of the crop organs is between above- and below-ground accumu-
lated dry matter production. This is classically expressed by means of the root/shoot ratio,
which is 1.5 to 2.5 for grassland. Hence, above-ground production is approximately 33%
of the accumulated total dry matter production. Furthermore, not all above ground dry
matter production can be considered livestock feed. An amount of 25% of the accumulated
dry matter production of cropland is assumed to be available for feed. In addition, residues
from field crops (e.g., stems and leaves not taken away during the harvest process) are also
part of the natural feed. Part of the dry matter production from these specific land use
classes related to pasture and crop residues should therefore be HESS3 inclusive.

3.2.4. HESS4: Fuelwood

Fuelwood includes firewood, charcoal, chips, sheets, pellets and sawdust. Fuelwood
is used for cooking and heating in developing countries, where it is of great value for the
livelihoods of local communities. Fuelwood is a co-product of forestry, timber produc-
tion and woodland management. HESS4 addresses fuelwood from natural forests and
savannahs, but not from plantations. Roughly 25% of global fuelwood is produced in
sub-Saharan Africa. One ton of charcoal requires five tons of wood [61]. Similar to HESS3,
fuelwood can be computed from NPP models or earth observations of APAR and LUE [62].

The ratio of above to total dry matter production of woody vegetation types is typically
60 to 80%. Trischler et al. [63] found that above-ground carbon assimilates are 65% of
the total production value for common tree species in Sweden. In Ethiopia, Pukkala and
Pohjonen [64] showed fresh wood production for eucalypt in a range from 7 to 35 ton/ha/yr.
Fresh wood production of 20 ton/ha/yr is approximately 14 ton/ha/yr dry wood. Several
remote sensing algorithms are also available for the assessment of ET in forests, e.g., [65,66].

3.2.5. HESS5: Dry Season Flow

Dry season flow—HESS5 (also called base flow, drought flow, groundwater recession
flow)—is the portion of the streamflow that originates from the lateral groundwater flow that
seeps into the river channel. The stream flow during the dry season is fundamental for humans
disconnected from water utilities, livestock and environmental systems that only survive due
to daily access to water resources. Pollutants need to be diluted and evacuated towards seas
and oceans, and HESS5 also contributes to that process. HESS5 is a regulating service.

The recession limb of the hydrograph reveals the point where the river’s level falls
to a level where baseflow becomes the major source of stream flow. The hydrograph is
obtained typically from hydrological models, although there is more literature on the
assessment of flow from earth observations. Yang et al. [67] and Donchyts et al. [68]
showed that river widths can be delineated using multi-scale classification approaches. The
width of rivers containing water is essential for assessing whether baseflow is occurring.
If the water body area dried up, it can be concluded that the base flow has vanished.
Bjerklie et al. [69] demonstrated an integrated methodology to assess discharge, flow depth,
and flow velocity determined from remotely observed water surface area, water surface
slope, and water surface height for two reaches of the Yukon river. Durand et al. [70]
described the determination of river height, river width and river slope. Michailovsky
and Bauer-Gottwein [71] showed the development of a generic 1D stream flow Manning
equation to assess river discharges based on these river dimensions. The surface water
and ocean topography (SWOT) satellite mission planned for launch in 2022 will map river
elevations and inundated areas globally for rivers > 100 m wide. Figure 1 illustrates an
application of Sentinel-3A altimeter data for detecting water level change in river [72].
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Figure 1. Changes in the water level of the White Nile near Kodok in South Sudan measured by the
altimeter on Sentinel-3A. Base flow is pertinent when the water level is at approximately 385.4 m
AMSL (source Dahiti, Technical University of Munich) (http://dahiti.dgfi.tum.de/11745/, accessed
on 25 October 2022) [66].

3.2.6. HESS6: Total Groundwater Recharge

Aquifers are often considered the “bank savings accounts” to abide periods of drought.
Groundwater recharge from rainfall describes the renewable groundwater resources and
HESS6 forms the source of multi-sector groundwater abstractions and baseflows to feed
streams during periods without surface runoff. It is the source for total water storage
underground where there are no evaporation losses. HESS6 is fundamental for preparing
long term groundwater allocation plans to ensure sustainable withdrawals for several
users. While HESS1 focuses more on natural recharge processes, HESS6 relates to the total
recharge from various sources to maintain water in underground stocks for periods when
it is needed the most.

While water from leaking irrigation fields, reservoirs and artificially created canals
is clearly an example of anthropogenic recharge q↓anth [73], it is believed nevertheless to
be valuable for describing total recharge as an ecosystem service, for instance to ensure
sufficient drinking water for the domestic sector. Recharge from a leaking river q↓riv is
partially natural, but also partially anthropogenic because river flow is a result of upstream
interventions in the water cycle. These can be the building of dams and reservoirs, but also
diversions of surface water and the changes in land use that accelerate flow after heavy
rainfall events.

Percolation occurs when soil moisture of the unsaturated zone exceeds its field capac-
ity and drainable flow limits. Thus, wet soils and water bodies contribute significantly to
recharge and more than, for instance, settlements and rainfed cropland that usually have a
soil moisture content that is lower than field capacity. The most widely accepted mathemat-
ical solution for computing percolation fluxes in the unsaturated zone is Richard’s equation
for vertical and transient soil moisture flow; it is a combination of Darcy’s law for water flux
in unsaturated soils and the continuity equation. However, local knowledge on these soil
hydraulic properties are not common, and numerical models for solving Richard’s equation
are difficult to operate [8]. Alternative solutions have been worked out, such as the chloride
mass balance (CMB), rainfall infiltration breakthrough (RIB), extended model for aquifer
recharge and moisture transport through unsaturated hard rock (EARTH), water table
fluctuation (WTF), water balance in the saturated zone (including equal volume spring flow
(EVSF) and saturated volume fluctuation (SVF)) and groundwater modelling (GM) (see
Xu and Beekman [74] for a review of these processes). Wohling et al. [75] elaborately sum-
marize various methods for Australia, including the role of rainfall, clay content, vegetation
basal area, leaf area index, depth to water table and hydraulic conductivity on estimating
recharge in a practical manner. Hessels et al. [76] introduced an elegant method to compute
percolation fluxes from the root zone on the basis of soil water balance residuals of green
water pixels.

http://dahiti.dgfi.tum.de/11745/
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3.2.7. HESS7: Surface Water Storage

HESS7 describes water stocks, excluding rivers and reservoirs. It is the amount of
blue water present in natural surface water systems (lakes, wetlands, lagoons). Rivers
provide little storage at a monthly scale and is therefore negligible. Trends in natural water
storage are meaningful information for the health of hydrological ecosystems and for the
retention of water to carry over resources during drier spells. Water storage in lakes and
wetlands enhances ecosystem services because it is indistinguishably linked to various
services, such as water retention during floods and attenuation of peak flow; water supply
during elongated droughts; water for agriculture (cropping systems on banks; livestock
water supply, fish); water-related habitats for migratory birds and water-related mammals;
cooling off hot air masses; and leisure opportunities.

Rebelo et al. [54] conducted an overview of wetland distribution, type and condi-
tion across sub-Saharan Africa and showed that local communities highly rely on both
wetland agriculture and natural resources. The areal size of open water bodies in lakes, wet-
lands, lagoons and mangroves can be computed from satellite measurements [77] (see also
Figure 2). Water depth can be estimated from water level fluctuations using satellite-based
altimetry which, in combination with area, can be used to assess surface water stocks [78].
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3.2.8. HESS8: Root Zone Water Storage

The root zone has an important regulating role in infiltration, retention, storage and
root water uptake for the transpiration of local vegetation systems. The root zone connects
geology, pedology and biology. The soil water retention characteristic, in conjunction
with root depth, dictates the amount of water that can be retained in the sub-surface. The
soil water-holding capacity is the difference between soil moisture at field capacity and
at wilting point [79]. It varies typically between 50 to 250 mm/m. Deeper root systems
(e.g., more than 1 m) can store vast quantities of water (>5000 m3/ha) and carry water
over from the rainy season to the dry season, even from wet winters to dry winters. Root
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zone water is the first and utmost important supplier of water for vegetation in the dry
season [80]. Hence, HESS8 expresses the capture of soil water during periods with a
positive rainfall surplus. Because land surface containing roots is significantly larger than
open water bodies, HESS8 is a crucial regulator of climatological deficits and excess water.

Most remote sensing techniques for the determination of soil moisture are based
on radar and microwave technologies, e.g., [81,82]. This technique is at best useful for
detecting skin moisture under sparse vegetation. Microwave vegetation optical depth
(VOD) describes the attenuation of radiation due to scattering and absorption within the
vegetation layer, which is caused by the water contained in the vegetation [83]. The optical
depth of the vegetation is a serious constraint for measuring skin soil moisture [84].

Moisture in the root zone can therefore be best inferred from the land surface tempera-
ture of vegetated surfaces. The temperature of the vegetation reflects sub-soil processes
such as root development, storage capacity of the soil and soil water potential. Various
remote sensing solutions are therefore based on inferring soil moisture in the root zone from
evapotranspiration processes, e.g., [85–87] or from soil thermal inertia [88]. Carlson and
Petropoulos [89] and Yang et al. [90], among many others, used the trapezoid between land
surface temperature and vegetation index to infer a relative value for soil moisture. These
techniques are much simpler than microwave measurements and appeared successful in
operational and continental scale applications [91]. The changes of volumetric soil water
content in the rootzone between end of dry and end of wet season will specify the amount
of water stored in the root zone.

3.2.9. HESS9: Sustaining Rainfall

HESS9 describes the longer term changes in local rainfall due to changes in the catch-
ment’s and river basin’s water balance. Land evapotranspiration conveys large amounts of
water vapour back into the atmosphere which increases the precipitable amount of water.
Savenije [92] showed that evaporation in a transect from west to east Africa can be held re-
sponsible for high rainfall events. The total rainfall patterns over Africa could not be explained
from advection coming from the Atlantic Ocean only. For areas that are located far away from
oceans, it is thus essential to sustain rainfall from sufficient land evaporation.

While recycling of water through physical and chemical treatment processes is often
described, recycling of water through the atmospheric cycle is less common [93]. Regional
recycling at the river basin scale is an essential process for sustaining local rainfall [94].
Climate change due to greenhouse warming causes a change/shift in local rainfall, conse-
quently damaging production systems [33,95–98].

There are different procedures in place to express the evaporation contribution to local
rainfall. Van der Ent et al. [93] developed the evaporation recycling coefficient αE that can
be computed from a simple track and trace model based on atmospheric water balances.

3.2.10. HESS10: Attenuation of Peak Flow

Floods are hazardous for settlements, human life and living plant organisms. Floods
can bring about large death tolls and economic damage. Reduction in flood extent is a
necessary course of action. Attenuation of peak flood waves can be achieved from upstream
water buffering and retention; this is HESS10. Water can be stored temporarily in natural
lakes, wetlands, drainage ponds, depressions and (non-) designated inundation areas
(usually low pastureland). The capacity of these local storage systems requires background
information on topography, soil type, river morphology and land use. The HESS solution
suggested for peak flow attenuation consists of two courses of action: (i) upstream water
buffering; (ii) reduction in the runoff coefficient R/P. HESS10 is the percentage of peak flow
to be potentially skimmed off.

The baseline value of R/P is taken from the runoff on bare land. The argument is
that R/P decreases due to increased vegetation cover because rooted plants increase the
infiltration capacity into the soil. Urban areas and paved surfaces increase R/P (and thereby
creating more peak flow) while forests decrease peak flow due to infiltration and lower
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runoff coefficients. Land use thus impacts surface runoff, something generally know from
the concept of curve numbers [99]. The areas covered by paddy fields, wetlands, river
pastures and open water bodies are fundamental for high level water storage. Information
on land use and water volume to be stored in land surrounding open water systems with an
elevation lower than the peak water level can be used to compute the percentage reduction
in peak flow.

3.2.11. HESS11: Carbon Sequestration

HESS11 encompasses the water required for net intake of carbon from the atmosphere
into carbon pools [100]. This is a critical process and relevant in agro-forestry environments
where carbon sequestration significantly correlates with water availability and vice versa,
and higher evaporation and transpiration rates reduce generated runoff [101]. Without
transpiration via open stomata, CO2 will not be captured from the air. Carbon pools
consist of living above-ground biomass, living below-ground biomass, deadwood, litter
and soil organic matter (SOM) [102]. Above-ground biomass comprises all organic matter
(i.e., stems, branches, leaves, flowers, grains, understory and floor layers which includes
herbaceous plants). The dead organic matter pool includes dead fallen plant and crop
residues, the litter layer and charcoal (or partially charred organic matter) above the soil
surface. The below-ground biomass comprises living and dead roots, soil fauna and the
microbial community. Clearly, carbon stocks in vegetation change with land use [103].
Hairiah et al. [102] found that land use conversion can result in a positive or negative net
carbon sequestration as it is related to the modification of photosynthesis.

Soil organic matter is the result of carbon humification processes and carbon decompo-
sition into the atmosphere due to mineralization processes. The carbon from litter, stubble
and roots is partially stored into the soil. Peat soils are an ultimate example of soil carbon
accumulation due to lack of oxygen in flooded or stagnant water systems. Peat soils can
store 10–100 times more carbon per unit area than mineral soil types and thus contribute
significantly to sequester atmospheric carbon.

The estimation of carbon sequestration can come from (i) inventories based on in-situ
measurements of above- and below-ground carbon stocks [86,90] and eddy-covariance
flux towers (e.g., carbon flux); (ii) remote sensing algorithms for net primary produc-
tion (NPP); (iii) global ecology models [104–106]; (iv) eco-hydrological numerical models
(e.g., InVest, SWAT). IPCC AFOLU [107] is an internationally recognized framework to
compute carbon stocks by land use class. ICRAF developed a database of the density
of woody matters in trees (http://apps.worldagroforestry.org/sea/Products/AFDbases/
WD/Index.htm (accessed on 25 October 2022)). The drawback is that every land use class
has the same carbon value, while the spatial variability is significant due to differences in
photosynthesis. A comprehensive overview for various methods to assess carbon pools in
agricultural soils is provided by Nayak et al. [108].

The computation of pixel-dependent dry matter production and NPP from spectral
radiances and land surface temperature is considered a more solid solution for making
accurate assessments of carbon pools (see also HESS3 and HESS4). NPP can be subsequently
used to separate carbon assimilates into (i) above ground; (ii) below ground; (iii) soil organic
matter; (iv) dead wood and litter. A review of NPP models from remote sensing is provided
by Sun [109]. Figure 3 illustrates an example of carbon capture calculated from NPP and
humification process using remote sensing data.

http://apps.worldagroforestry.org/sea/Products/AFDbases/WD/Index.htm
http://apps.worldagroforestry.org/sea/Products/AFDbases/WD/Index.htm
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3.2.12. HESS12: Reduce Greenhouse Gas Emissions

Public concern about global warming mostly focuses on carbon dioxide, the most
prevalent greenhouse gas after water vapor H20. Methane (CH4) is also an important
greenhouse gas, yet the heating effect of an atmospheric methane increase is approximately
half of a carbon dioxide increase [110,111].

The emission from various greenhouse gasses and other trace gasses depends on land
use, soil moisture, air content and soil temperature. Industrial and domestic emissions
are not included under HESS12. Methane emissions occur under anaerobic conditions.
Inland open water such as natural lakes, ponds and reservoirs are net emitters of CH4, N2O
and CO2. These water bodies also play important roles in offsetting GHGs sequestered
by terrestrial ecosystems [112]. Rice fields have been identified as a major source of
atmospheric methane [113]. Flooding a rice field cuts off the oxygen supply from the
atmosphere to the soil, which results in anaerobic fermentation of soil organic matter.
Methane is a major by-product of anaerobic fermentation. It is released from submerged
soils to the atmosphere by diffusion and ebullition and through the roots and stems of rice
plants. Dairy farming with outdoor cows generates methane emissions while indoor cattle
is also a GHG emitter because dung needs to be spread out to the environment.

HESS12 expresses reduction in greenhouse gas emissions (GHG) covering three major
gases: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The reduction can be
achieved from better water management practices, in particular proper drainage networks.
Hence the depth to the water table and soil moisture below field capacity are key factors
for reducing methane emissions from paddy fields and pastures.

The challenge in assessing CH4 and N20 fluxes due to the lack of directly measured
data can be overcome with modelling and open-source data. The dynamic land ecosystem
model DLEM [114] is a good example of a mathematical framework. DLEM can be devel-
oped and implemented at pixel scale if soil moisture and soil temperature are prescribed.
The determination of oil moisture was discussed under HESS8. Soil temperature derivation
from earth observations has also become feasible using land surface temperatures from
thermal infrared radiometers, e.g., [115,116].

3.2.13. HESS13: Micro-Climate Cooling

The importance of micro-climates for regulating local habitats and modulating water
requirements due to changing states of the near-surface atmospheric boundary layer has
been recognized by various researchers [117]. Evaporating surfaces from water-dependent
environments such as irrigated areas, wetlands and forested areas provide significant values
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in cooling the atmosphere. HESS13 describes the impact of vegetation cover on cooling of
the local near-surface air mass. The lower part of the atmospheric boundary layer is per
definition affected by land surface fluxes. A land surface with a high evaporative fraction
(i.e., ratio of latent heat flux λE and net available energy (Rn − G)) will transport little heat
into the atmosphere and the air will remain relatively cold [118]. An air mass with lower
temperature from evaporating surfaces such as irrigated areas, wetlands and forested areas
will impact the regional air circulation. Villages located near evaporating pastures are always
cooler than villages surrounded by dryland. This is a HESS service for mankind.

The role of water on atmospheric cooling by vegetation can be best described by taking
a reference situation such as a landscape without vegetation. The energy associated with
evapotranspiration is 2.45 MJ/kg and this energy will no longer feed the sensible heat flux
that warms up the atmosphere from the land surface. The reduction in sensible heat flux
H due to ET can be expressed as a suppression of the vertical air temperature difference
(T0–Tair) yielding a colder air mass for bio-organisms and mankind in a layer of air between
crops and a 2.0 m elevation at standard observation height.

Figure 4 shows an example of how the presence of vegetation and soil moisture creates
many different micro-climatic conditions for an agricultural area in The Netherlands. Fields
with a high leaf area index and high soil moisture are 302.7 ◦K while fields with lower
vegetation cover are reaching 305.9 ◦K, hence a midday air temperature cooling of 3 ◦K
is apparent. Note that this is air temperature at observation height and that land surface
temperatures exhibit a significantly higher spatial variability (20 to 30 ◦K).

3.2.14. HESS14: Natural Reduction in the Eutrophication of Water

Algae are microscopic phytoplankton, such as bacteria and dinoflagellates, that use
photosynthesis to turn sunlight into energy. These microorganisms are naturally occurring
and live in all types of water, from fresh to salt to brackish water. When water reaches the
right mix of sunlight, temperature, low water flows and excessive amounts of nutrients
(e.g., eutrophication), algae can multiply very quickly and turn into a “bloom”. Nutrients,
such as nitrogen and phosphorus, when in overabundance, become water pollutants
and can cause super-charged algal growth. The reduction in eutrophication by sufficient
flushing is considered an ecosystem service. If these algae blooms dissipate due to improved
water quality upstream and sufficient flow, then natural purification processes occur.

The detection of algae dynamics in space and time can be described from remote
sensing water quality data sets. MODIS has particularly designed a fluorescence band
(676 nm) that can be used to detect harmful algae blooms (HAB). Water surface tempera-
ture information can be used as an additional source of information. Similarly, Landsat-
8 ETM+/OLI and Sentinel-2 MSI can be used to retrieve Chl-a information [119,120].
Ma et al. [121] combined MODIS, Landsat and Sentinel images to collectively assess HAB
by evaluating NDVI, floating algae index (FAI) and the chlorophyll reflection peak intensity
index (ρchl). Peppa et al., [122] used the maximum chlorophyll index (MCI) and maximum
peak height (MPH) from Sentinel-2 to extract Chl-a information. Time series of HAB,
Chl-a and phytoplankton will reveal the moments when water quality is improving; the
hydrological situation at that specific moment needs to be described for understanding the
amount of fresh water needed to control eutrophication.

In addition, there is a separate school assessing leaf nitrogen content as an essential in-
dicator of N-uptake in crops. Leaf chlorophyll and nitrogen content can be best determined
from red-edge (680–780 nm) reflectance. Satellite sensors such as Sentinel-2 and RapidEye
can provide this information [123]. Similar studies were conducted for paddy rice [124,125]
using the normalized difference red edge (NDRE) which showed a strong correlation with
N present in leaves.
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3.2.15. HESS15: Reduction in Soil Erosion

Wind and water create soil erosion. With increasing intensity of rainstorms, erosion is
likely to occur more frequently. Erosion destroys the land surface, washes out fertile soil
horizons and can be a source for landslides. Constructions are affected if soil washes away.
Soil, mud and debris can lead to high-risk situations. Years of carbon sequestration in the
soil can be washed out in a few hours.

Mitigation of erosion is essential, and healthy vegetation coverage is important to
control soil erosion [126]. Packages of soil conservation practices exist, and they help
mitigate erosion. Dang et al. [127] found that NPP was positively correlated with soil
conservation. More vegetation on sloping terrain increases the infiltration of rainwater.
However, vegetation for controlling soil erosion will consume water.

The universal soil loss equation (USLE) is the classical solution for determining
erosion [128]. Information on slope, vegetation cover and erosivity of the soil needs
to be specified. Reduction in soil erosion between vegetated landscapes and bare soil can
be calculated from changes in surface runoff and applying the USLE equation for multiple
conditions. Hourly or daily surface runoff values need to be computed. The soil moisture
deficit is a necessity for computing surface runoff with higher accuracy [129].

3.2.16. HESS16: Meeting Environmental Flow Requirements

The provision of environmental flows is vital for maintaining specific habitats for fish,
birds and plants in rivers, wetlands and estuaries. Spawning fish have, for instance, particular
requirements of flow regimes. At best, the historic hydrograph under pristine conditions
should be used for long term reference. This is from a period with less impact of global
warming, fewer populations, catchments with higher forest cover and fewer reservoirs.

Climate change, human water withdrawals and dam constructions have a strong
impact on hydrographs and can constitute a potential detriment for environmental flow
requirements. While HESS14 is related to water quality through eutrophication, HESS16
describes minimum flows and minimum water levels.

There are various techniques to assess environmental flows and their condition.
Xue et al. [130] quantified the environmental flow requirements (e-flows) to maintain
different ecosystem functions from minimum monthly runoff. A maximum of 20% modifi-
cation to a river’s natural flow is proposed by Hoekstra et al. [36] in their water scarcity
analysis of 405 river basins for the period 1996–2005. When river flow deviates by more
than 20% from its original discharges, it can be assumed that the environment is af-
fected. It is not uncommon to consider flows from 50 years ago (e.g., 1960s and 1970s).
Smatkhtin et al. [131], for instance, assessed the mean environmental flow requirements
for 128 major basins and drainage regions worldwide using measured and simulated
hydrographs. They introduced five different environmental classes and assigned fractions
of the mean annual flow.

Winsemius et al. (2009) [132] and Poortinga et al. [39] developed procedures to
integrate a streamflow model with remote sensing data of P, ET and soil moisture for the
creation of hydrographs. Return periods of a certain f stream flow could be quickly detected,
and such data are a perfect input to define flow during the 20% wettest years. Figure 5
shows the anomalies of annual runoff in the El Nino year 2009–2010 from December until
February. This is a great method for utilizing earth observation data to assess environmental
flow requirements.
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3.2.17. HESS17: Leisure

HESS17 leisure indicates the value from socialisation and purification of humans
via water sports, swimming, recreational fishing, sightseeing, aesthetic views, hiking,
mountain biking, forest BBQs, etc. The common factor is that this requires water flows,
water fluxes and open water bodies in pristine landscapes. While HESS16 is meant for
habitats, HESS17 unravels the benefits for human satisfaction to be surrounded by pristine
natural landscapes. Quantification of HESS17 can be conducted through the collection of
visitor statistics of natural and urban parks. The number of leisure-oriented businesses
(e.g., rental of fishboats or canoes), tourist taxes going to local communities and bars and
restaurants in rural and remote areas is an indication of leisure activities.

4. Proposed HESS Determination Processes

This section describes a set of suggested formulations for HESS. The inclusion of
remote sensing makes it feasible to relate hydrological processes to land use information.
Various procedures based on earth observation data are summarized in Table 2. Table 3
presents the type of satellite systems.

Table 2. Summary of HESS quantification methods.

Indicator Remote Sensing Outputs Other Quantification Methods

HESS1 P, ET, ∆S Hydrological models

HESS2 A, H, E FAOSTAT, WorldFish, statistics (mean annual
discharge and water bodies)

HESS3 NPP Look-up table for LULC

HESS4 NPP Look-up table for LULC

HESS5 Briv, H Hydrograph measurements, rainfall-runoff models

HESS6 P, ET, ∆S, Vc Tracers, hydrological model

HESS7 A, H Bathymetry, gauge readings

HESS8 EF, LST, NDVI Soil moisture and root length measurement,
unsaturated zone hydrology models

HESS9 P, ET, Vc Atmospheric models

HESS10 LU, A, H Rainfall–runoff models

HESS11 LU, Vc, NPP IPCC–AFOLU method

HESS12 LU, Vc, NPP IPCC–AFOLU method
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Table 2. Cont.

Indicator Remote Sensing Outputs Other Quantification Methods

HESS13 LST, Vc, LU Air temperature and air humidity measurements,
global/regional climate model

HESS14 LU, ABDI, FAI, Chl-a, MCI, MPH, SRRE Optical and laboratory measurement

HESS15 Vc, NPP No. of landslides, erosion measurements

HESS16 Briv, A, P, ET, ∆S, Vc Historic and current hydrographs

HESS17 ET, A, H Visitor statistics, no. of leisure businesses

Table 3. Summary of satellite measurements required for an operational HESS system.

Satellite Sensor Spatial Resolution
(Nadir, m) HESS RS Parameters

LANDSAT

OLI-2, TIRS-2 (Landsat 9)

15–90 m

HESS3, HESS4, HESS11 EF, SM, H, NPP
OLI, TIRS (Landsat 8) HESS14 Chl-a, FAI, SRRE, NDRE

ETM+ (Landsat 7) HESS1, HESS5 Q
MSS (Landsat 1, 2, 3) HESS7, HESS10, HESS17 Briv, A, ∆S, Q

TM (Landsat 4, 5)

Terra/Aqua MODIS 250–1000 m HESS3, HESS4, HESS11,
HESS14 NPP, SRRE, NDRE, FAI

PROBA-V Vegetation 120 m HESS3, HESS4, HESS11 NPP

IRS WiFS 188 m HESS3, HESS4, HESS11 NPP

Suomi VIIRS 375 m HESS3, HESS4, HESS11 NPP, LST

JASON Poseidon na HESS1, HESS5, HESS7,
HESS10, HESS16 ∆S, H

Sentinel-3 Altimeter variable HESS1, HESS5 ∆S, H, LST

Sentinel-3
Sentinel-2

Altimeter
MSI

variable
10 m

HESS7, HESS10, HESS16 ∆S, H
HESS1, HESS5 Q

Sentinel-2
Sentinel-1

MSI
C-band SAR

10 m
10 m

HESS14 Vc, chl-a, FAI, NDRE
HESS7, HESS16 Briv, A, Q
HESS1, HESS5 Q

Sentinel-1
ISS

C-band SAR
EcoStress

10 m
70 m

HESS 8 SM
HESS7, HESS10, HESS16 Briv, A, ∆S, Q

HESS9, HESS13 LST, NDVI

5. Discussion

Water is by definition a multi-purpose natural resource. Its value to the environment
is obvious and endless. Yet, it is also important to define limited metrics for expressing
the role of water in the environment. The magnitude of ecological benefits depends on
water fluxes, flows and stocks. With the presence of vegetation, there is less erosion, cooler
atmospheres and less atmospheric CO2 due to carbon capture. HESS12 considers reduced
greenhouse gas emissions as the service. This implies that a reference must be defined,
using either a record with sufficient monitoring of in situ measurements of hydrological
features or remote sensing or through a baseline established in hydrological models. For
HESS definitions focusing on changes, non-vegetated land can be taken as the reference
for highlighting the contribution of hydrological regimes, such as peak flow attenuation or
soil erosion. In other cases, good quality water or sufficient water for fish spawning is the
reference. Hence the definition and selection of the reference is not univocal.

The determination of bio-physical processes in a spatial context and in dynamic
fashion is complex. Many eco-hydrological research teams have created great analytical
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tools and contributed to provide insights into interactions between water resources and
benefits that people and societies receive from nature. The use of eco-hydrological models
plays a crucial role when it comes to better recognize and understand disturbances, land
use and management and climate change scenarios. At the same time, earth observations
have developed considerably during the last three decades, and the opportunities to use
the growing number of open access databases on, for instance, water body occurrences,
NPP and evapotranspiration should be exploited more frequently (see Tables 2 and 3). The
availability of a new sensor generation (e.g., Landsat 9, SWOT, Sentinel 3 etc.) provides
more capabilities to start monitoring and reporting HESS on a regular basis, provided that
an analytical framework such as HESS17 exists. The HESS framework also requires local
statistical data or globally accepted data, such as FAOSTAT and WorldFISH.

The metrics of HESS17 include gross simplifications. Chlorophyll-A is, for instance,
the only indicator selected for eutrophication of water bodies. The extent of firewood use
as a source of daily energy does not reflect the integrated dependence of rural populations
on ecosystems in low income countries. Fish catch statistics have certain limits of accuracy
as the reporting process is different for each country. Figure 5 provides exciting new
opportunities to fill data voids for regions without hydrographs for baseflows and fish
health. However, modelled data do not have the same accuracy as flow measurements
(although flow meters also contain errors). Hydro-meteorological observatories represent
point measurements, and energy balance models driven by remote sensing data can help to
assess fluxes and soil moisture in a truly spatially distributed context. The conclusion is
that the combination of in situ measurements, remote measurements and modelling is the
way forward. As an international community, we had not previously reached the technical
capabilities we now have thanks to the Internet of Things.

On the other hand, despite showing great strengths and advantages, the use of spatial
data sets and eco-hydrological models needs careful assessment [104]. There are limitations
resulting from the complexities of climate, eco-hydrology and ecosystems, as well as
interactions with human factors. Therefore, the sensitivities and limitations of these tool sets
need cautious evaluation and transparent communication during the HESS quantification.

There is an imbalance in the list of HESS proposed in this manuscript, i.e., in the
number of presented provisioning and regulating services as compared with cultural and
support services. Evidently, this drawback results in a potential distortion while assessing
the benefits of HESS to human and non-human use, as well as in the optimization of HESS
performance at various scales. Further refinement of HESS definitions and categorizations
is needed to minimize this ambiguity in the future. Once HESS are re-defined or more HESS
are needed, the HESS framework proposed in this study can be revised and extended.

It is suggested that the integration of earth observations with eco-hydrological models
is a necessary step that deserves more attention from research for the next 10 years. A
good review on modelling soil as the centrepiece for environmental systems was provided
by Vereecken et al. [133]. Attention should be given to the fact that integrating multiple
remote sensing data sets will create noise coming from the uncertainties of each individual
parameter. Error propagation should be limited by developing hydrological consistency.
Schoups and Nasseri [134] describe a Bayesian hierarchical model that fuses monthly water
balance data and estimates the corresponding data errors and error-corrected water balance
components (precipitation, evaporation, river discharge and water storage); this type of
work needs to expand for acquiring more accurate HESS values.

The HESS17 framework can be used to assess how agricultural production practices
affect ecosystem services. For basin planners, the HESS framework can provide answers on
how watershed management can be improved to enhance HESS. The possibility of a seamless
zoom from global to regional to basin scale is crucial, not only for understanding the flow and
allocation of HESS at large and “acceptable” thresholds, but also for close monitoring and
managing by decision makers, as well as leveraging in policy and planning instruments.



Sustainability 2023, 15, 6182 20 of 26

6. Conclusions

Since the concept of ecosystem services extends across many research domains and
expertise, a consistent and comprehensible approach for the quantification of HESS should
be available for larger audiences. This study evaluated the status of different hydrological
ecosystem services as a critical step in the planning process for sustainable development.
The new HESS17 framework describes a standard list of 17 carefully defined indicators.
Although not exhaustive, it is a proper balance between essential water quantity and
water quality indices being presented as an integrated framework that is supported by
CGIAR. In fact, HESS should be classified into consumptive use and non-consumptive use.
Consumptive use leads to various services, but the water evaporated into the atmosphere
is no longer available (except for local atmospheric recycling). Non-consumptive water can
be reused and recycled.

The potential strengths and drawbacks of quantification methods such as remote
sensing, hydrological modelling and empirical calculations are provided. Most remote
sensing algorithms are meant for solving one biophysical process. The innovation of
this paper is that we sketch potential procedures to integrate multiple open access data
bases and remote sensing algorithms for quantifying a package of 17 standard HESS
indicators. The study warns that error propagation should be controlled by recognizing the
uncertainties of each parameter and seeking hydrological consistency.

Eco-hydrological models are extremely useful to estimate complex processes such
as non-source pollution contaminant transport. The fusion of remote sensing and eco-
hydrological models should be encouraged to establish more accurate HESS values under
conditions of climate change, water scarcity and land–water–soil conservation programs.
Earth observations cannot be used for future predictions, but they are useful for calibrating
historic eco-hydrological processes

In conclusion, the technology and science are sufficiently mature to provide clear-cut
and policy-oriented spatial information on HESS. Decades of development and new tech-
nologies in sensors, satellite platforms, data storage and computational power have resulted
in advanced tools that can be used for assisting policy change by HESS implications. As the
digital information era advances, future progress is expected to enable further upscaling
and standardization of operational monitoring of hydrological ecosystem services.
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Abbreviations
MSI Multi-spectral
TIR Thermal Infrared
VIIRS Visible Infrared Imaging Radiometer Suite
NPP Net Primary Production
GPP Gross Primary Production
fPAR Fraction of Absorbed Photosynthetically Active Radiation
R Runoff
LST Land Surface Temperature
NDRE Normalized Difference Red-Edge
H Surface elevation
A Surface area
B_riv River width
∆S Change in storage
EF Evaporative fraction
SM Soil moisture
P Precipitation
ET Evapotranspiration
∆S Storage change
E Evaporation
T Transpiration
Q Stream flow
LU Land Use
NDVI Normalized Difference Vegetation Index
ABDI Algal Bloom Detection Index
Chl-a Cholorphyll A
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