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Abstract: Producing a global and comprehensive description of atmospheric aerosols requires
integration of ground-based, airborne, satellite and model datasets. Due to its complexity,
aerosol monitoring requires the use of several data records with complementary information
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content. This paper describes the lessons learned while developing and qualifying algorithms to
generate aerosol Climate Data Records (CDR) within the European Space Agency (ESA) Aerosol_cci
project. An iterative algorithm development and evaluation cycle involving core users is applied.
It begins with the application-specific refinement of user requirements, leading to algorithm
development, dataset processing and independent validation followed by user evaluation. This cycle
is demonstrated for a CDR of total Aerosol Optical Depth (AOD) from two subsequent dual-view
radiometers. Specific aspects of its applicability to other aerosol algorithms are illustrated with four
complementary aerosol datasets. An important element in the development of aerosol CDRs is the
inclusion of several algorithms evaluating the same data to benefit from various solutions to the
ill-determined retrieval problem. The iterative approach has produced a 17-year AOD CDR, a 10-year
stratospheric extinction profile CDR and a 35-year Absorbing Aerosol Index record. Further evolution
cycles have been initiated for complementary datasets to provide insight into aerosol properties (i.e.,
dust aerosol, aerosol absorption).

Keywords: aerosols; AOD; dust; absorbing aerosol; stratospheric aerosol extinction; satellite climate
data record; algorithm evolution and climate data record production; best practices

1. Introduction

Aerosols influence the distribution of radiation, both directly by scattering, absorbing and emitting
radiation and indirectly by acting as condensation or nucleation sites in clouds. The indirect effect
influences the hydrological cycle through impacts on cloud properties, cloud lifetime, precipitation
and atmospheric stability (as absorbing aerosols alter local heating rates in distinct layers). In the
stratosphere, they play a crucial role in ozone chemistry and ozone depletion through their contribution
to the formation of polar stratospheric clouds. IPCC (Intergovernmental Panel on Climate Change)
assessments confirm that the aerosol indirect effect remains the largest uncertainty in understanding
the evolving climate [1,2]. Beyond their climate relevance, atmospheric aerosols also play an important
role in air quality and its consequences to human health.

Global observation is necessary to understand the role of atmospheric aerosols in the climate
system and to monitor changes in their abundance and composition. Obtaining such observations
with validated accuracy and precision is not straightforward. Satellite instruments are capable of
providing global observations of the last few decades (see, e.g., [3–5]). To be used properly, their
information content needs to be validated over a variety of regions. Global aerosol models can
provide a comprehensive picture and fill gaps between satellite measurements (or even provide
additional types of dataset). However, such results depend on a model’s ability to describe all
relevant processes and its underlying initialization data (e.g., emissions). Therefore, model data also
require validation. Ground-based and airborne observations provide limited spatial and temporal
coverage but use instruments specifically designed to measure aerosol properties. Furthermore, they
allow accurate observation of local features. Additionally, ground-based instruments typically have
better accuracy than satellite remote sensing and are, therefore, often used as validation datasets.
The comparison between satellite, model and ground-based observations ultimately reveals the
strengths and limitations of each observing system. By properly integrating them, understanding and
monitoring of the Earth system at all relevant scales can be facilitated. In light of the next round of
experiments by the Coupled Model Inter-comparison Project (CMIP-6) to prepare for the next IPCC
assessment, there is a need for well-qualified, satellite-based, aerosol Climate Data Records (CDRs).

Aerosols are highly variable in their composition and spatial concentration, as a result of many
natural and anthropogenic sources and processes. This complexity requires observing several variables
to understand and monitor the role of aerosols in the climate system. This cannot (yet) be done by
exploiting one single sensor but requires the combination of different instruments with complementary
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information content. The Global Climate Observing System (GCOS) sets out observation requirements
from satellites for aerosols as one ECV (Essential Climate Variable) [2]: The variables needed are aerosol
optical depth (AOD), single scattering albedo (SSA), vertical extinction profiles and layer height.

The user requirements of GCOS [2] provide a generalized statement of the required data record
characteristics. For AOD at 550 nm, it states the need for an accuracy better than 10% or 0.03 (whichever
is larger), with a horizontal resolution of 5–10 km, a temporal resolution of 4 h and a stability of 0.01 per
decade. Single scattering albedo requires an accuracy of 0.03 and stability of 0.01 per decade at the
same spatio-temporal resolution as AOD. Aerosol extinction profiles require a horizontal resolution
of 200–500 km, a vertical resolution lower than 1 km near the tropopause and of about 2 km in the
middle stratosphere, and a temporal resolution of one week. Accuracy and stability should be of
10% and 20% respectively. In general, user requirements differ substantially for different applications
(e.g., monitoring, trend analysis, model development/initialization, process studies), which is not
considered in detail in the CGOS satellite supplement [2], but is taken into account in the collection
(so-called “rolling review”) of requirements by WMO (World Meteorological Organization).

GCOS has also published a set of principles for producing satellite climate data records [6].
These principles cover the design of space and ground hardware to ensure uninterrupted observations
of sufficient quality and stability to meet user needs for climate research. The principles discuss
documentation (algorithms, metadata), testing, and regular assessments of the algorithms used to
produce climate data records. Operational capability for data access and user support is requested.
Further demands cover the specification of users’ needs as a basis for instrument design, the evaluation
of homogeneity and consistency, and sustained production. Complementary in situ data need to be
available as reference and uncertainties in the satellite products have to be quantified.

A CDR is nominally required to contain a time series of 30 or more years. As individual satellite
missions have shorter lifetimes (e.g., designed for 5 years, but may last 15), a CDR must be built from
multiple data records. Even though operational systems assure continuity by launching a series of
identical sensors, their characteristics may change due to large mechanical stresses during launch and
post-launch optical degradation or orbital drift. If similar, but not identical, instruments are used then
the impact of the differences needs to be assessed in the derived aerosol products. For example, [7]
studied a three-year overlap characterizing the AOD time series of the NASA (National Aeronautics
and Space Administration) MODIS (Moderate Resolution Imaging Spectro-Radiometer) and NOAA
(National Oceanic and Atmospheric Administration) VIIRS (Visible Infrared Imaging Radiometer
Suite) instruments when applying both identical and distinct algorithms.

The longest available satellite aerosol CDRs include AOD over ocean AVHRR (Advanced Very
High Resolution Radiometer)—time series back to early 1980s; [8,9]) and Absorbing Aerosol Index from
several spectrometers TOMS (Total Ozone Mapping Spectrometer)—time series back to 1978; [10,11],
and the data record described in this paper). A quantitative absorption record (single scattering
albedo) with OMI (Ozone Monitoring Instrument) starts in 2005 [12]. The earliest suitable AOD data
records over land extend back into the mid-1990s ATSR-2 (Along Track Scanning Radiometer No. 2)
from 1995 as described in this paper and SeaWIFs (Sea-viewing Wide Field-of-view Sensor) from
1997 to 2010; [13]). For stratospheric aerosols, time series of extinction at 1 µm were developed from
satellite measurements back to 1978 [5,14]. More than 16 years of stratospheric particle size distribution
parameters have been developed from the SAGE II (Stratospheric Aerosol and Gas Experiment)
experiment [15–17].

In the European Space Agency (ESA) Climate Change Initiative (CCI; [18]) the Aerosol_cci project
has worked on the development and qualification of several complementary aerosol CDRs. The major
goal of this activity, which started in 2010, has been to produce aerosol CDRs which satisfy the
requirements on data quality and transparent documentation set by GCOS. As first steps towards this
goal, several algorithm experiments [19] and a round robin exercise [20] for total AOD were performed.
Algorithms for stratospheric aerosol extinction and an absorbing aerosol index were also evaluated.
Based on these early analyses, a full re-processing of complete mission time series has started within
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an iterative evolution cycle. Work on additional variables, such as dust AOD and aerosol typing, was
added to increase the information content.

With this paper we want to share the scientific and programmatic experiences during
climate-quality aerosol data records production. We demonstrate the iterative development and
evaluation cycle with an AOD CDR from dual-view radiometers in Section 2. Section 3 describes
additional specific elements of AOD data record evaluation. The applicability of the iterative approach
to other aerosol datasets is then illustrated in Section 4 with four complementary aerosol datasets.
Section 5 summarizes and discusses lessons learned and conclusions.

2. Iterative Algorithm Development and Evolution Demonstrated with ATSR AOD CDRs

2.1. General Approach

In order to satisfy the GCOS climate monitoring principles [6] and provide aerosol CDRs of
the best possible quality, a cyclic approach has been implemented (see Figure 1). Iteration of this
sequence of steps has proven necessary, since aerosol retrieval algorithms have to make use of
experimental elements due to the ill-posed nature of the underlying retrieval problem (e.g., use
of auxiliary/climatological datasets, simplifications of aerosol models and surface treatment). It can
thus not be expected that theoretical considerations alone will solve all problems. The successful use
of such experimental elements is based on a retrieval expert’s experience and can only be justified
through validation of the resulting dataset.
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Figure 1. Overview of the cyclic evolution to produce climate quality Climate Data Records (CDRs)
starting from user requirements (1) via algorithm development (2); dataset processing (3); independent
validation (4) and user evaluation (5). In preparation for algorithm development, algorithm experiments
(2a) and round robin exercises (2b) may be conducted.

The cycle starts with the application-specific refinement of user requirements (building on GCOS
requirements, [2]). In our case, requirements from specific user communities are added. Algorithm
development is then conducted and small quantities of data are processed and undergo independent
validation (comparison to reference datasets which have a smaller error than the satellite data products).
Finally, the time series are tested by users in concrete applications to understand their value, strengths
and limitations in various domains. The loop closes by comparing the original requirements to the data
assessment and identifying remaining needs for improvements. In each iteration more demanding
requirements to tackle new scientific questions and applications may need to be included. During all
steps, users, algorithm developers, validation experts and system engineers remain in close dialogue.
A similar concept has been presented in the context of satellite data uncertainty characterization by [21].
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Algorithm development can start with preparatory elements: Algorithm experiments identify
key sensitivities or areas for harmonization across a set of algorithms (e.g., [19]). As one example,
a common definition of optical aerosol components was defined and implemented within eight
different AOD algorithms. Other modules, such as cloud masking or surface treatment, were
shown to be algorithm-intrinsic (and were therefore not harmonized). To avoid cloud contamination,
post-processing was found to be most efficient excluding AOD outliers which are probably cloud
contaminated [22].

A round robin exercise (e.g., [20]) conducts a validation of several precursor algorithms against
external references, comparing their results. A precursor algorithm has already reached a minimum
standard of maturity and documentation (nominally a peer-reviewed publication of its principles).
This round robin exercise allows the selection of algorithms with suitable quality for large-scale
processing and further developments.

The amount of data processed and validated may increase during the evolution of both the
algorithms and their processing systems. Assessments may start with small data amounts, sufficient to
understand sensitivities during algorithm experiments (e.g., one month of global data), extend to more
comprehensive volumes (e.g., covering all seasons) and finally consider full-mission time series.

2.2. New ECV CDRs from Two Dual-View ATSR Radiometers

This section outlines an implementation of the development and evaluation cycle of Figure 1.
Total AOD is retrieved using three different algorithms, each based on different principles, applied to
the ATSR instruments (ATSR-2 onboard ERS-2 (European Remote Sensing Satellite 2), useful for aerosol
retrieval from 1995 until 2003; and AATSR (Advanced Along-Track Scanning Radiometer) onboard
ENVISAT (ESA’s Environmental Satellite), used from March 2002 until April 2012). The datasets from
these two instruments have an overlap of about one year. Three algorithms, ADV/ASV (AATSR
Dual/Single View), in brief denoted as ADV), ORAC (Oxford RAL Aerosol and Cloud retrieval) and
SU (Swansea University), are used. An overview of the ATSR-2/AATSR datasets discussed in this
paper is presented in Table 1; for more extensive descriptions we refer to [20] or the references provided
in Table 1.

Table 1. Overview of ATSR (Along Track Scanning Radiometer) data records and algorithms discussed
in this paper.

Vertical Parameter Sensor(s) Coverage,
Resolution

Algorithm,
Version Characteristics References

Total column

AOD
0.55 µm,
0.67 µm,
0.87 µm

ATSR-2
AATSR

1995–2003
2002–2012

global
10 ˆ 10 km,

6-daily
1˝ ˆ 1˝

daily/monthly

Principle: dual view radiometer in the visible and near-infrared;
thermal infrared for cloud masking

ADV/ASV
V2.30

LUT approach [20]
land surface: spectral constant
reflectance ratio [23]

ocean surface: modelled reflectance [24]
aerosol model: mixing Aerosol_cci
common components [20]

cloud mask: combined thresholds, [25]
post-processing [26]

ORAC
V3.02

optimal estimation [27]
land surface: bi-directional
reflectance model [28]

ocean surface: modelled reflectance [29]
aerosol model: mixing Aerosol_cci
common components [20]

cloud mask: combined thresholds

SU
V4.21

Iterative model inversion [30]
land surface: bi-directional
reflectance model [28]

ocean surface: modelled reflectance [31]
aerosol model: mixing Aerosol_cci
common components [20]

cloud mask: combined thresholds [26]
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These data records are freely disseminated through the Aerosol_cci ftp site ([32]; common account
and password can be obtained from [33]). Datasets are provided in sensor projection (termed “level 2”
or in short “L2” datasets) and as gridded datasets (named “level 3” or “L3”; aggregated into daily,
weekly or monthly products).

Initially, the three ATSR algorithms were studied alongside five other AOD algorithms to identify
modules for improvement [19]. A round robin exercise [20] selected these three algorithms as the
most promising for future development. This benchmarking also found that no single algorithm
demonstrated superior performance in all conditions.

2.3. Extended User Requirements from the Aerosol Climate Modelling Community

For an application-specific adaptation of the GCOS requirements, we focus on the climate
modelling community (Aerosol Comparisons between Observations and Models AEROCOM,
Aerosol-Cloud-Precipitation-Chemistry ACPC) supporting climate studies for IPCC (within CMIP).
This community typically works with gridded model datasets (e.g., 1˝ latitude/longitude grid) to
analyze long-term changes and trends in aerosols over regions of interest. Their representatives
outline accuracy requirements that bridge the intrinsic satellite resolution and the grid model size.
By averaging pixel-level AODs over space and time, the random part of their uncertainties can typically
be reduced. Model analysis often studies large patterns, i.e., regional or seasonal homogeneous
aggregations. To detect changes in those, accuracy requirements become more stringent with increasing
spatial/temporal scale (Table 2). Furthermore, the rather weakly qualified GCOS need for “additional
aerosol properties” is rationalized to mean parameters that are suitable for satellite retrieval and can be
directly compared to model datasets. Fine mode AOD or dust AOD are highlighted as these can also
serve as proxies for cloud condensation nuclei (CCN) or ice nuclei (IN), respectively, in aerosol-cloud
interaction studies. Required accuracies for those quantities are derived by multiplying their maximum
fraction of total AOD with the AOD accuracy.

Table 2. Total column Aerosol Optical Depth (AOD) accuracy requirements as function of spatial/
temporal resolution.

Total Column Properties

Property Satellite Product Model Grid Regional Inter-Annual Decadal

Spatial Resolution 0.1˝ ˆ 0.1˝ 1˝ ˆ 1˝ 10˝ ˆ 10˝ 10˝ ˆ 10˝ 10˝ ˆ 10˝

Temporal Resolution 2 h daily monthly seasonal annual

AOD, 550 nm 0.04 0.02 0.01 0.008 0.006
Fine mode AOD, 550 nm 0.03 0.015 0.008 0.006 0.005
Absorbing AOD, 550 nm 0.01 0.005 0.003 0.0025 0.002
Dust AOD, 550 nm 0.03 0.015 0.008 0.006 0.005

2.4. Algorithm Development and Validation—Benefit of Repeated Development Cycles for ATSR Datasets

2.4.1. Overall Improvement of Algorithms

Iterative algorithm development and independent validation assure transparent and credible
proof of any changes made. The cycle improves the individual algorithms while producing
a convergence of their datasets. Our validation is based on comparison to independent data from the
AERONET [34] and MAN [35] sun photometer networks [36]. The results are first validated for L2
products. A spatial threshold of +/´35 km and a time frame of +/´30 min is used to match satellite
pixels with the independent data.

The following metrics are considered: Pearson correlation coefficients (K), bias, Root Mean Square
Error (RMSE) of satellite retrieved AOD vs. the reference AOD data set and the fraction of retrieved
pixels which satisfy the GCOS requirement for AOD accuracy (named “GCOS fraction”). Table 3
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shows these for the oldest and newest versions of the three AATSR algorithms (newest versions are
2.30 for ADV, 3.02 for ORAC and 4.21 for SU). This analysis evaluates only the small volume of data
processed at the start of the development cycle (September 2008 global; [19]). All but three metrics
improve after the development cycle. Similar results have been achieved for ATSR-2 despite smaller
data volumes.

Table 3. Validation of the oldest and latest versions of the three AATSR (Advanced Along-Track
Scanning Radiometer) AOD (aerosol optical depth) datasets vs. AERONET (Aerosol Robotic Network)
AOD for September, 2008. Improved metrics are highlighted in green, metrics which became worse are
in red colors.

Metric
Algorithm

ADV/ASV ORAC SU

V1.0 V2.3 V1.0 V3.02 V1.0 V4.21

Over Ocean

number of points 75 64 65 102 13 52
bias 0.04 0.02 0.07 0.10 0.06 ´0.002

RMSE 0.16 0.09 0.15 0.16 0.08 0.06
correlation 0.58 0.89 0.81 0.93 0.89 0.86

GCOS fraction (%) 17 66 46 31 15 58

Over Land

number of points 306 185 262 262 138 343
bias ´0.005 ´0.05 0.03 ´0.002 ´0.001 ´0.01

RMSE 0.16 0.13 0.16 0.08 0.08 0.11
correlation 0.59 0.66 0.59 0.86 0.72 0.82

GCOS fraction (%) 37 54 40 51 46 62

2.4.2. Algorithm Validation with Growing Data Volumes

A validation exercise should be designed such that its results are independent of the volume of
data considered. Results drawn from excessively small comparison datasets can be misleading as the
data may omit localized biases. However, it may not be appropriate to process full mission datasets in
the early stages of algorithm evolution. To evaluate our procedure, we compare the validation results
for AOD retrieved over land with the Swansea algorithm (v4.21) over three different data volumes:
four months (one in each season) from 2008 (round robin exercise; [20]); the entire year of 2008; and
the complete AATSR mission period 2002–2012 (Figure 2 and Table 4). The top row shows scatter
plots while the bottom row shows probability density functions (PDFs) of the difference between AOD
values retrieved from satellite and AERONET (Aerosol Robotic Network). Those PDFs are separated
for low and high aerosol loading (blue color corresponds to PDF for AOD > 0.2, red color corresponds
to PDF for AOD < 0.2, black color shows their sum). Figure 2 and Table 4 demonstrate that all of the
statistical measures are robust across the different data volumes; this remains also true when analyzing
only 1 month of global data (see Table 4).

In the upper panels of Figure 2 we also show a linear regression fit. We are aware that the
use of this metric can be problematic, since the log-normal distribution of AOD tends to make such
a linear fit sensitive to high AOD outliers and biases in low AOD retrievals. We do therefore refrain
from discussing the regression parameters other than to note that we found them insensitive to the
volume of validation data used. As alternative means to obtain a more detailed insight, we have
also done regional and seasonal analysis as far as statistically valid. These can be accessed at the
AEROCOM website for Aerosol_cci [37] with gridded data analysis as discussed in Section 2.5.1.
Despite their limitations, linear regression fits are commonly used to test how closely retrieval results
fit the one-to-one line. They serve as a simple, global metric of a global dataset. In our analysis, linear
regression fits did not alter the ranking of datasets.
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Figure 2. Validation of AATSR SU (Swansea University) retrieved AOD version 4.21 (L2—level 2) over
land vs. AERONET AOD at 550 nm for four months of 2008 (panels on the (left) hand side); for the
whole year 2008 ((middle) panels) and for the years 2002–2012 (panels on the (right) hand side). Upper
panels show AOD scatter plots, lower panels contain probability histograms of the difference between
satellite and AERONET AODs. In upper panels the solid line shows a linear regression fit and the
dashed lines indicate the Global Climate Observing System (GCOS) envelope.

Table 4. Validation of AATSR SU retrieved AOD (L2) v4.21 vs. AERONET AOD for different data
volumes: one month of 2008, for four months of 2008, the whole year 2008, for years 2002–2012.

Metric
Data Volumes

September 2008 March, June, September,
December 2008 All 2008 2002–2012

Over Ocean

number of points 52 235 716 5808
bias ´0.002 ´0.002 ´0.002 0.006

RMSE 0.06 0.07 0.07 0.08
correlation 0.86 0.93 0.91 0.87

GCOS fraction 58 64 66 62

Over Land

number of points 343 993 3313 28,123
bias ´0.01 0.007 0.007 0.003

RMSE 0.11 0.12 0.14 0.15
correlation 0.82 0.86 0.81 0.79

GCOS fraction 62 56 51 52

2.4.3. Convergence between Algorithms for the Same Sensor

Since large areas of the globe are only sparsely covered by AERONET stations (part of the
Southern hemisphere, open oceans, deserts), a comparison of global maps provides additional insight
into the evolving performance of algorithms. We must avoid confusing users with large differences
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between three AOD datasets retrieved from the same sensors. Some aspects of the algorithms were
harmonized to allow for easy comparison of the results (e.g., using the same format and grid, common
basic set of aerosol components, see [19]). However, the mathematical formulation and treatment of
clouds and the surface remained distinct. This leads to differences in both the retrieved values and
their coverage. Monthly mean maps (September 2008) show convergence of the coverage with each
cycle (Figure 3). By the last step, the locations of the primary plumes (e.g., over the Atlantic, South
America, China) are qualitatively in good agreement while retaining some differences in the absolute
AOD values. Figure 4 highlights that these differences cancel out in the global average. The remaining
quantitative AOD differences between the three algorithms, together with the differences in coverage,
justify the continued development of the three algorithms as no single one is best everywhere and
under all environmental conditions.
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lines, 1: algorithm experiments; 2: round robin exercise; 3: one-year data processing; 4: 17 year data
processing) of the development cycle.

In Figure 3 one can also see a broadening of coverage with each version. This responded to user
needs for coverage, extending data where validation proved it was reliable. In cases where validation
showed unreliable results, coverage was reduced (the Sahara and Arabian Peninsula for ADV or
snow-covered areas such as Greenland for ORAC). The global average AOD (Figure 4) will be affected
by these changes in coverage, but the areas concerned are too small to fully explain the total changes
observed. Significant absolute AOD value changes can be seen for ADV over large areas of ocean and
where the major aerosol plumes occur. For ORAC, changing coverage in the Northern Hemisphere
over land makes a larger contribution to the average AOD changes. For the SU dataset, an increase in
coverage over Northern hemisphere mid-latitudes is dominant.
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2.5. User Evaluation

2.5.1. Common Point Evaluation of Gridded L3 Products

Global models typically use gridded daily or monthly datasets. The first step of user assessment
of our retrieval products is validation of gridded daily products aggregated from the satellite datasets,
matching the nearest satellite 1˝ ˆ 1˝ grid cell to daily mean AERONET values. We assess whether
this analysis yields different results to the analysis at pixel-level in Section 2.4. In the gridded analysis,
the sampling and data gaps inside a grid box are taken into account to evaluate how comparable these
datasets are to typical model datasets. A challenge in any retrieval product evaluation is to account
for differences in coverage between the retrievals. We show the impact of using a “common data
point filter”. The three gridded AATSR L3 retrieval products are compared to daily AERONET sun
photometer level 2.0 AOD products (as downloaded from the AERONET website on 21 November
2015) from sites situated below 1000 m height. In order to conduct an “apples-to-apples” comparison,
we consider only grid cells where all three retrieval products and AERONET provided a result (i.e., the
“common points”). For example, in September 2008 this filtering keeps 71% of the ADV data points in
the evaluation, 69% of ORAC and 70% of SU data points.

In Figure 5 the effect of the “common data point filter” is visualized using a quasi-logarithmic
color bar to emphasize differences for low AOD values. Due to ADV’s inability to retrieve above
bright surfaces, nearly the entire Sahara region is missing from the comparison. The northern part of
Siberia is missing due to ORAC. A vital part of the biomass burning outflow region west of Africa is
removed because of SU. Parts of the very southern oceans are removed from comparison because of
the ADV retrieval. Global mean AOD values are provided on top of each map, demonstrating that the
common data point filtering leads to only a small reduction (~0.01) of global averages, which is within
algorithm uncertainties. However, the common point filter excludes some interesting cases where only
a single algorithm deals with difficult but important regions of the globe.

Table 5 shows a compilation of the resulting statistical metrics. For the “GCOS fraction” we
assume an uncertainty in any AERONET measurement of 0.01 here (making the overall criterion:
0.04 or 10%). The analysis is given for two time frames (September 2008 and all 2008), which again
agree very well. Comparing the results of Table 5 to those of Tables 3 and 4 shows that this analysis is
consistent with that of Section 2.4.
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Figure 5. Monthly means of total AOD at 550nm for September 2008 derived from daily data from
three AATSR retrievals. In the upper panels all data points retrieved by the different algorithms are
used, in the lower panels only those data points where all three algorithms provided a valid retrieval
are averaged. Global average AOD is given above the figures.

Table 5. Statistics of L3 evaluation of the three AATSR retrievals against AERONET on common data
points for September and the entire year 2008.

Metric
Algorithm

ADV/ASV v2.30 ORAC v3.02 SU v4.21

September
2008 All 2008 September

2008 All 2008 September
2008 All 2008

number of
points 586 6072 586 6072 586 6072

bias ´0.048
(´26%)

´0.04
(´25%)

´0.001
(´2%)

´0.007
(´8%)

´0.025
(´9%)

´0.021
(´9%)

RMSE 0.12 0.11 0.11 0.11 0.11 0.10
correlation 0.71 0.80 0.74 0.79 0.80 0.83

GCOS fraction 53 52 50 49 60 59

2.5.2. Evaluation of ATSR-2/AATSR Aerosol Optical Depth Temporal Stability

Validating the stability of CDRs is an essential step in proving their suitability for climate
applications. This analysis is challenging because the satellite sensors and surface network have
evolved inconsistently over time. The ATSR seasonal AOD data record is evaluated by applying
AEROCOM tools to derive evaluation statistics based on all daily data points from 1995 to 2012.

Very few AERONET sites were in operation before 2000 (the first five years of the ATSR-2
operation). The following AERONET sites exhibit the longest record: Avignon (Southern France),
Banizoumbou (Niger), Bratts Lake (Canada), Capo Verde (Republik Cabo Verde), CEILAPBA
(Argentia), GSFC (USA), Sedeboker (Israel) and Lille (Northern France). These are used to evaluate
the three 17-year AOD CDRs (ADV, ORAC, SU). We also consider the MODIS Terra collection 6
dataset [38] from 2000. The small number of sites may produce less reliable statistics and limit the
ability to represent all global environments. However, this avoids introducing a spatial bias between
different years, which would inevitably appear had the entire network been used as it covers more
and more regions over time.
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Figure 6. Time series over the eight long-term AERONET sites (for three ATSR algorithms and MODIS
Terra collection 6). From top to bottom: number of data points, seasonal mean AOD550, modified
normalized mean bias, Pearson correlation. Note, that ADV usually misses the one station in a desert
region, Sede Boker.

In Figure 6 the number of observations within each grid cell is higher by a factor of about 4 for
MODIS than for all three AATSR data records (from 2002). This is due to the smaller swath width (also
by a factor of 4) of the ATSR instruments compared to MODIS. Figure 6 shows large fluctuation in
the number of daily observations at the eight chosen AERONET sites. Four distinct periods can be
identified. Before 1999 sun photometer measurements were irregular and sparse. The years 1999 and
2000 provide the best chance to evaluate the ATSR-2 products. MODIS Terra is used from the year
2000 onward to check for any peculiar impact from surface network instability. The stable number of
observations after the year 2000 indicates that the 8 sites delivered a rather homogenous data record
for validation. The ATSR time series suffers from sensor problems with ATSR-2, limiting the overlap
between ATSR-2 and AATSR. From autumn 2002 onward the number of data points available from
AATSR per season is mostly constant until mission failure in 2012. Numbers of observations differ
among the AATSR retrievals, due to coverage issues mentioned earlier. The second plot in Figure 6
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shows the resulting time series of AOD from the three retrievals, split into the ATSR-2 and AATSR
record, along with MODIS terra. The inconsistent coverage by the ATSR data records is believed to
explain their differences.

The modified normalized mean bias (MNMB, defined as the mean bias divided by the average of
the mean satellite AOD and the mean AERONET AOD) in the third plot confirms that most of the time
the ADV retrieval shows the smallest values at the selected sites. This is likely related to ADV missing
observations in the desert region. Biases for ORAC and SU are correlated, which is most probably due
to the fact that they use the same surface model. Comparing 1999 and 2000 MNMB against that of
later periods reveals no systematic bias of ATSR-2 against AATSR. Finally, the correlation time series
as depicted in the last plot confirm the ATSR-2 and AATSR records have similar quality. Overall, it
can be concluded that no instability can be detected in the ATSR-2/AATSR data records. Note, that
the MODIS-Terra collection 6 time series shows a slight increase in bias from 2004 to 2012 in Figure 6
(despite of improvements made from the collection 5 to 6 algorithm).

3. Special Aspects of Algorithm Evaluation

3.1. Assessment of Spatial and Temporal Correlations

A complementary test of the performance of the three ATSR retrievals is the use of skill scores
with respect to AERONET and MAN (Maritime Aerosol Network) data. Daily L3 satellite data (of the
local time morning overpasses) are compared to AERONET/MAN observations within half an hour
of the satellite overpass. To simplify comparisons, all sun photometer data were gridded to the spatial
1˝ ˆ 1˝ resolution of the satellite data.

A scoring method (see [20]) has been developed to assess the overall ability of a data record
to observe regional and seasonal patterns with respect to trusted reference data. This is done by
making the overall score a product of multiple sub-scores. At the smallest (temporal and spatial)
scales, bias and correlations are determined and later combined. To minimize misinterpretation due to
data outliers, the sub-scoring is based on the relative ordering (or ranking) of values rather than their
magnitude and on central statistics (e.g., median, interquartile average and range) instead on general
(Gaussian) statistics (e.g., averages and standard deviation).

The total score’s sign indicates the bias direction. For any score, the absolute value ranges from 0
to 1, with 1 being optimal. Statistically meaningful evaluations are often not possible for pre-defined
global regions due to retrieval coverage and the lack of reference data. Only regions with successful
scores are combined (separately for land and ocean; see Table 6), globally. The score comparison of
Table 6 indicates that the SU algorithm is slightly better over land than ORAC and ADV, particularly
in temporal correlations. Over ocean/coastal sites, differences between the three algorithms are small.

Table 6. Evaluation scores for the three ATSR AOD datasets at 550 nm based on daily L3 “common
data point” matches to AERONET data for the year 2008. Total scores are listed in column 2 and the
underlying sub-scores for bias, temporal correlation and spatial correlation are presented in columns 3–5.

Algorithm Total Score
Sub Scores

Bias Temporal Correlation Spatial Correlation

Over Coastal/Ocean Regions

ADV v2.30 ´0.74 ´0.87 0.84 0.74
ORAC v3.02 +0.73 0.88 0.83 0.77

SU v4.21 +0.75 0.89 0.84 0.77

Over Land Regions

ADV v2.30 ´0.68 ´0.86 0.80 0.85
ORAC v3.02 +0.70 0.86 0.82 0.86

SU v4.21 +0.73 0.86 0.85 0.87
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In a second step, scores for three different NASA retrievals (Multi-angle Imaging Spectro
Radiometer—MISR, version 22, ([39], and references therein); MODIS collection 6 [38] and SeaWiFS
version 4 [13]) are included for comparison (Figure 7, Table 7) as was repeatedly requested by users.
Working with six datasets prevents use of a common point filter. As an advantage, skill scores can be
calculated for more regions, but the comparability between different datasets is reduced (a regional
sub-score can be based on observations of entirely different aerosol episodes).
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coverage are related to retrieval area coverage and retrieval frequency.

Table 7. AOD evaluation scores for 3 AATSR algorithms and 3 NASA AOD retrievals over land and
ocean based on daily L3 matches to AERONET data for the year 2008.

Algorithm Total Score
Sub Scores

Bias Temporal Correlation Spatial Correlation

Over Coastal/Ocean Regions

ADV v2.30 +0.64 0.82 0.77 0.72
ORAC v3.02 +0.68 0.88 0.77 0.75

SU v4.21 +0.72 0.89 0.81 0.80
MISR v22 +0.71 0.82 0.86 0.81

MODIS collection 6 +0.67 0.81 0.82 0.82
SeaWIFS v4 +0.66 0.89 0.75 0.81

Over Land Regions

ADV v2.30 ´0.68 ´0.85 0.80 0.82
ORAC v3.02 +0.68 0.87 0.78 0.82

SU v4.21 +0.69 0.86 0.80 0.83
MISR v22 +0.76 0.88 0.87 0.85

MODIS collection 6 +0.73 0.88 0.83 0.78
SeaWIFS v4 +0.70 0.87 0.80 0.78
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While land and ocean scores are quite similar, regional skill scores, as illustrated in Figure 7, are
quite diverse. Poorer scores usually occur over continents, the Southern hemisphere, the Pacific and
higher latitude ocean regions. Many of these low scores are associated with relatively poor statistics.
Over land, MODIS and MISR AOD scores are on average better than AATSR scores (mainly due to
better temporal correlation scores). Over oceans, AATSR scores are comparable but coverage is also
much smaller than MODIS and SeaWiFS. The regional total scores in Figure 7 show that no single
ATSR retrieval is better than any other ATSR retrieval simultaneously in all regions (with available
scores). Over oceans the MISR retrieval scores surprisingly well, despite its known positive biases for
low AOD values there. It should be noted that many regions where the MISR bias is relatively large do
not contribute to the MISR ocean total score.

3.2. Assessment over a Special Region with Sparse Standard Reference Data (AOD over China)

In order to validate the new ATSR AOD records over mainland China, where AERONET data are
sparse, we compare to data from the China Aerosol Remote Sensing Network (CARSNET) for 2008.
AERONET sites in China are limited in number and most are located in eastern China. Most collocated
pairs are in March to November with few in winter. The combination of AERONET and CARSNET
alleviates issues from the small numbers and uneven distribution of AERONET sites.

CARSNET uses the same type of instrument as AERONET. The total uncertainty in its AOD
values is about 0.01 to 0.02. Five CARSNET sun photometers were calibrated at the global observatories
which are the master calibration sites for AERONET. These instruments were then installed at the
Beijing-CAMS site (39.93N, 116.32E, which is operated for both CARSNET and AERONET), and
they were used as masters to inter-calibrate all field CARSNET instruments at least once a year,
following the AERONET calibration protocol [40]. A comparison between the AODs calculated with
the CARSNET procedure vs. AERONET results showed that the AOD values at visible wavelengths
were about 0.01 larger than those from AERONET; correlation coefficients were larger than 0.999 and
had a 99.9% significance level. Thus, the sets of results from the two networks are highly consistent
with one another.

The validation results for the three AOD products over China are shown in Table 8. Using
reference data from both networks changes the evaluation results compared to using AERONET alone.
The SU and the ADV products have higher accuracy but less coverage, while the ORAC product has
more coverage at the cost of accuracy. The performances of SU and ADV products are similar with
correlation coefficients of about 0.8–0.9 and RMSE (Root Mean Square Error) within 0.15. The analysis
included high AOD values (AOD > 1). The SU algorithm retrieves more high AODs than ADV, leading
to more validation matches. All algorithms tend to underestimate AOD to some degree. Scatter plots
(not shown) indicate that the underestimation gets more severe with larger AOD.

Table 8. Validation of AATSR L2 AOD products (ADV, ORAC and SU) with ground-based data in
China for the year 2008 (AERONET alone, AERONET and CARSNET).

Metric
Algorithm

ADV/ASV ORAC SU

AERONET AERONET
+ CARSNET AERONET AERONET

+ CARSNET AERONET AERONET
+ CARSNET

number of points 50 307 66 612 57 435
bias ´0.08 ´0.15 0.03 ´0.06 ´0.03 ´0.12

RMSE 0.09 0.12 0.19 0.21 0.09 0.14
correlation 0.92 0.79 0.72 0.47 0.91 0.82

3.3. Validation of Pixel-Level Uncertainties

Uncertainty is a vital component of any dataset for climate applications as it provides the context
with which to understand the quality of the data and how it compares to other measurements.
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As highlighted in Figure 1, validation against independent observations is a fundamental step in
the development of a dataset. This applies equally to assessing the capability to predict pixel-level
uncertainties which are contained in the datasets. The validation of uncertainty is not frequently
discussed, but without it there is little reason to trust the uncertainty values produced. To validate
uncertainty, it is necessary to demonstrate that it provides a useful representation of the distribution of
error. Technically, the “true” value of AOD will never be known and so the error cannot be specified
exactly. Direct-sun observations of AOD from the AERONET sun-photometer network are substantially
more accurate than those produced by satellites as they suffer fewer sources of error (e.g., there is
no influence from the surface, the impact of multiple scattering is minimized using a long baffle).
By neglecting the uncertainty in AERONET observations and possible issues with their ability to
represent a satellite pixel area, the error in the retrieval can be approximated by the difference between
the satellite and AERONET retrievals (herein referred to as “error”).

To evaluate how well the standard uncertainty σATSR represents the observed distribution of error,
we consider the metric

∆ “
AODATSR ´ AODAERONET

σATSR

For one pixel, a standard uncertainty σATSR (which is contained in the level2 files for each
pixel) implies that we expect the errors AODATSR ´ AODAERONET to have a Gaussian distribution with
a standard deviation of σATSR. A non-zero mean of ∆ indicates the presence of residual systematic errors
(which may be resolved in future algorithm development). A standard deviation of ∆ greater than one
indicates that uncertainties are underestimated, which could result from neglecting an important source
of error. On the other hand, a standard deviation less than one indicates an overestimate. AERONET
data has been cloud filtered (in a different manner to the satellite observations). The comparison
will only represent the subset of environments that contain an AERONET station (e.g., a consistently
poor retrieval over remote mountainous regions would not be identified by this validation) and that
have a high probability of being cloud-free. If ∆ is normally distributed, 68.3% of values should fall
within the range [´1,+1]. If the fraction is smaller, uncertainties are underestimated; if it is larger,
uncertainties are overestimated.

Such a validation has been performed for all three ATSR algorithms over the full 17-year period
using collocations with AERONET (retrievals centred within 50 km radius and 30 min interval of
a valid L2 observation at any site). For brevity, only the results of the SU algorithm are discussed
here. Considering their histograms, the estimated uncertainty had a substantially fatter tail than the
observed error in the earlier version. In response to this evaluation, the treatment of uncertainty in the
algorithm was revised and the validation was repeated. The revised uncertainty appears to be a more
accurate representation of the error, with ~60% of values falling within the range [´1,+1]. Uncertainties
better reproduce the distribution of error over land than at coastal sites. This is not surprising since
these regions will contain mixtures of land and water, which will be poorly represented, and coastal
waters are difficult to model as they tend to be shallow and contain sediments. The histogram of
absolute values of uncertainty (Figure 8) shows that v4.21 contains a good reproduction of the observed
error, though it contains an excess of very small values. The comparison of the earlier version with
the newest version confirms that the iterative evolution cycle has led to enhanced ability to estimate
pixel-level uncertainties. This represents an important achievement in addition to improving AOD
retrieval accuracy.

The stability of the ability of the uncertainty to represent the distribution of error is evaluated
in Figure 9. The fraction of the points where the ratio ∆ falls within [´1,+1] shows that this
version presents a sensible representation of the error over land throughout the 17-year record.
The underestimation of coastal uncertainty exhibits greater variability, indicating the sources of error
omitted from the current uncertainty estimate are more likely to be transient, such as data coverage,
rather than a relatively consistent feature, such as the incorrect modelling of shallow waters. We remind
the reader that for the early part of the ATSR-2 period there were many fewer AERONET sites.
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4. Application of the Cyclic Approach to Other Complementary Aerosol Datasets

The analysis of further satellite aerosol datasets with complementary information content is
necessary so that all relevant aerosol information as requested by GCOS and AEROCOM can be
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obtained and validated globally. Accordingly, we extend our description to four more aerosol datasets.
Note, that it is not our intention to describe the full analysis of each dataset in this paper. We aim rather
at showing the transferability of our iterative user-driven approach and at illustrating one additional
aspect of the evolution cycle with each of them. We start with a CDR evaluation by polarization satellite
retrievals in regions with few ground-based data. We consider the evaluation of aerosol properties such
as dust or absorption by evaluating thermal infrared and UV measurements. For aerosol extinction
profiles we analyze star occultation observations. The datasets and algorithm characteristics of those
four studies are summarized in Table 9.

While the more mature algorithms (GOMOS—Global Ozone Monitoring by Occultation of Stars,
AAI—Absorbing Aerosol Index) have been developed and evaluated in parallel with the ATSR CDR,
the cyclic evaluation of further algorithms (POLDER—POLarization and Directionality of the Earth’s
Reflectances, IASI—Infrared Atmospheric Sounding Interferometer) has started later. In all cases,
an iterative approach with repeated algorithm development and evaluation by an integrated team of
developers and users as shown in Figure 1 is applied. In three cases only one algorithm is applied,
whereas for IASI again an ensemble of four algorithms is compared. For later cycles (e.g., IASI),
lessons learned from the earlier rounds (ATSR, GOMOS) were taken into account, which enabled
faster progress already during the round robin exercise step. We summarize those activities here, to
demonstrate the general applicability of the evolution cycle proposed.
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Table 9. Overview of further data sets and algorithms discussed in this paper.

Vertical Parameter Sensor(s) Coverage,
Resolution

Algorithm,
Version Characteristics References

Total column

AOD
0.55 µm + several
aerosol/surface

properties

POLDER/PARASOL

2008
selected regions

6 ˆ 6 km, ~weekly
1˝ ˆ 1˝

daily/monthly

Principle: polarization, multi-angle, multi-spectral radiometer in the visible

GRASP
V0.07

multi-pixel aerosol/surface retrieval, smoothness constraints [41–45]
land surface: bi-directional reflectance/polarization models [46,47]
ocean surface: water-leaving radiance model [48]
aerosol model: spheroidal kernels [43]
cloud mask: POLDER cloud mask [49]

Dust AOD 10 µm,
0.55 µm IASI

2013
Global dust belt

12 km,
twice daily

1˝ ˆ 1˝

daily/monthly

Principle: thermal infrared spectrometer

IMARS
V4.2

Spectral pattern recognition [50]
land/ocean surface: 24 example emissivity spectra [51]
aerosol model: Asymptotic Approximation Approach [52]
cloud mask: probability based a posteriori cloud filtering

LMD
V1.3

Look-up table [53]
surface temperature co-retrieved with AOD and altitude
land surface: monthly grid of IASI surface emissivity [54]
aerosol model: Mie calculations, fixed size distribution [55]
cloud mask: threshold filtering during inversion process [56]

MAPIR
V3.0

Optimal Estimation (dust profiles and surface temperature) [57]
land surface: emissivity from Zhou et al. [58]
ocean surface: emissivity from Newman et al. [59]
aerosol model: spherical, Reff 2 µm, HITRAN refract. index [60]
vertical profile: a priori [61]
cloud mask: IASI level2 (max 10%)

ULB V5.0

Neural network [62]
Surface emissivity database [58]
CALIPSO dust altitude climatology aerosol model: spherical [63]
lognormal, preset refractive indices [64]
cloud mask: IASI L2 (Eumetsat), 0% threshold

Absorbing
Aerosol Index

AAI

TOMS
GOME

SCIAMACHY
GOME-2

OMI

1978–1993
1995–2003
2002–2012

2007–
2004–

1˝ ˆ 1˝

daily/monthly

Principle: UV spectrometer, ratio of two UV wavelengths

AAI V1.4.7

index based on 2 UV reflectances [65]
compared to simulated Rayleigh reflectances
Wavelength pairs: 340/380 nm (GOME(-2), SCIAMACHY), 331/360
nm (TOMS) and 354/388 nm (OMI)
Sensitivities: mostly aerosol concentration and height
Degradation correction [66]
No cloud masking needed
sun glint and solar eclipse filtering

Vertical profile Aerosol extinction
0.55 µm GOMOS

2002–2012
Global

2.5˝ ˆ 10˝

Monthly
5˝ ˆ 60˝

5 daily

Principle: Star occultation spectrometer in the UV, visible, and NIR

AERGOM
V2.14
V2.19

vertical extinction profiles in the stratosphere [67,68]
estimate of stratospheric AOD [69]
Wavelengths: 300–750 nm; (so far at 550 nm) [70]
Polar stratospheric clouds (PSC) and subvisible
cirrus clouds [71]
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4.1. Qualifying a Satellite Dataset as Quasi-Reference (POLDER GRASP AOD and Aerosol Properties)

Validation requires suitable ground-based reference data. Where AERONET has sparse coverage,
validation remains difficult. Here an alternative solution is suggested: use another satellite dataset
as a quasi-reference. To be useful, this quasi-reference needs to exhibit a higher accuracy than the
satellite datasets under validation. With the highest information content (polarization, multi-angular,
multi-spectral) the POLDER instrument is the best candidate to produce such a reference dataset. Here
we discuss the validation of the new multi-pixel GRASP (Generalized Retrieval of Aerosol and Surface
properties) algorithm over land applied to POLDER/PARASOL data in data-sparse regions around
one selected AERONET site, each. However, GRASP provides also valuable capability to retrieve
additional aerosol properties, such as absorption and size.

Table 10 shows the dependence of the quality of GRASP retrievals on the degree to which they
fit the top of atmosphere measurements (“fitting residual”). As can be seen from the table, more
accurate fitting of PARASOL multi-angle, multi-spectral photo-polarimetric measurements secures
more accurate retrieval.

Table 10. Comparison of GRASP/PARASOL AOD and SSA at 670 nm vs. AERONET over Mongu,
Banizoumbou, IER_Cinzana, Agoufou, Ilorin sites in Africa for 2008 with two different “fitting
residuals” of 7 % and 3 %. Green colors indicate improvement for lower fitting residuals.

Metric
Parameter/Quality Control

AOD670/7%
Fit Residual

AOD670/3%
Fit Residual

SSA670/7%
Fit Residual

SSA670/3%
Fit Residual

L2 Validation (Pixel Window, Time Window, All Points)

number of points 455 182 233 100
bias 0.02 0.05 ´0.01 0

RMSE 0.18 0.14 0.06 0.04
correlation 0.88 0.95 0.65 0.72

GRASP aerosol retrievals from POLDER/PARASOL (with a “fitting residual” threshold of 3%)
in several geographical zones are then validated against AERONET data. The summary of those
comparisons is shown in Table 11 and Figure 10: GRASP aerosol retrievals are in a good agreement
with AERONET observations, the correlation coefficients are substantially higher over land than those
of the ATSR retrievals (see Table 3) and RMSE values are similar to them; furthermore, SSA is available
with similar quality. To understand the strength of the validation shown in Figure 10, it is important to
note that the AOD extends to values which are much larger than for AATSR in Figure 2. Furthermore,
in Africa, difficult bright surfaces are included among the reference sites. This means that those RMSE
values are also of highest quality.
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Table 11. Comparison of GRASP/PARASOL AOD at different wavelengths, Ångström exponent
(AE) and single scattering albedo (SSA) vs. AERONET over sites in Africa (Mongu, Banizoumbou,
IER_Cinzana, Agoufou, Ilorin) and over Beijing and Kanpur for 2008. Values are covering high extremes
(AOD: 0–4, AE: 0–2.5, SSA: 0.73–1.0).

Metric
Parameter

AOD440 AOD670 AOD865 AE (670–865) SSA670 SS865

Over African Sites

number of points 182 182 182 157 100 100
bias 0.004 0.05 0.04 0.03 0 0.01

RMSE 0.14 0.14 0.14 0.18 0.04 0.04
correlation 0.96 0.95 0.95 0.91 0.72 0.76

Over Beijing and Kanpur

number of points 58 58 58 56 21 21
bias 0.03 0.01 ´0.002 0.04 0.01 0.02

RMSE 0.25 0.18 0.14 0.28 0.06 0.06
correlation 0.97 0.96 0.95 0.86 0.55 0.67

These results suggest that the GRASP algorithm can provide robust extended aerosol
characterization over diverse land cover areas including very bright surfaces. Although GRASP does
not reach the quality of AERONET, it is overall better than ATSR and can thus serve as quasi-reference
for validating ATSR retrievals in absence of AERONET. It should be noted that so far no global full
mission CDR was processed with GRASP due to the large computing resources needed.

4.2. Round Robin Exercise for Dust AOD from Thermal Infrared Measurements by IASI

In this section, dust AOD derived from a thermal infrared spectrometer (IASI) by four different
algorithms (Table 9, acronym list in the appendix) is analyzed in a round-robin exercise. This responds
to one of the AEROCOM required variables. The IASI instrument is a Michelson interferometer
operating in the thermal infrared (TIR) spectral range with a high spectral resolution (0.5 cm´1

after apodization) and a ground resolution of 12 km at nadir. Desert dust has a clearly identifiable
extinction signal in the TIR window range caused by vibrational resonance peaks of silicates (e.g., [72].
Consequently, it is possible to retrieve dust AOD from IASI, together with other dust properties such
as altitude, particle size and dust composition. Moreover, the infrared domain allows observation over
bright desert surfaces, where many retrieval algorithms in the solar domain are not well suited [73].
A drawback is the limited sensitivity of TIR observations near the surface. Finally, both day and night
observations provide information on diurnal variations of dust loadings as unique inputs for models.

The four retrieval algorithms are largely different as characterized in Table 9. For the first time the
independent European groups working on TIR aerosol retrieval were brought together for a round
robin exercise of IASI dust AOD. This round robin exercise assesses the state of the TIR retrieval
development and sets the stage for subsequent algorithm evolution cycles. Already in preparation for
this first-ever IASI aerosol round robin exercise iterative algorithm development and validation was
conducted and led to important dataset improvements. For the round robin exercise, one year of data
(2013) has been processed with all four algorithms for a region covering the major dust source and
outflow (from 80˝W to 120˝E and from 0˝N to 40˝N). This data volume was chosen based on that used
in the round robin exercise for AATSR but adapted to the differing IASI characteristics: wider swath
(~2000 km), geophysical focus of dust observations in the selected region, 12 months of data, slightly
larger pixel size (12 km vs. 10 km ATSR super pixels).

For independent validation, AERONET data are used as “ground truth” for dust AOD. However,
AERONET does not provide dust AOD. Consequently, coarse mode AOD at 0.55 µm from the
AERONET direct-sun spectral deconvolution algorithm (SDA) product is used as a proxy for desert
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dust, even though it does not always represent desert dust. Additional filtering for small Ångström
exponent (AE) was tested, but did not introduce major changes (except reducing data amounts
significantly). Another problem arises from the conversion of the IASI AOD values from infrared to
visible wavelengths. This is not trivial since an accurate knowledge of both composition and particle
size is required but is not available [51,53]. The conversion factors used for the different algorithms
are bound to strong approximations which introduce additional uncertainty into the converted dust
AOD at 0.55 µm. Due to the different retrieval approaches, it is not possible to use the same conversion
factors for all four algorithms.

The validation against AERONET is conducted with daytime (descending orbit) IASI data over
L2 (satellite pixels) and L3 (gridded daily one degree) datasets. Figure 11 presents the scatter density
plots and difference histograms vs. AERONET coarse mode AOD for the L2 comparison of the four
algorithms, whereas Table 12 shows the L2 and L3 comparisons to AERONET.
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Figure 11. Scatter density plots (upper line) and difference histograms of dust AOD at 550 nm for
the four IASI datasets (4 columns from left to right: DLR/IMARS (Infrared Mineral Aerosol Retrieval
Scheme), LMD, BIRA/MAPIR (Mineral Aerosol Profiling from thermal Infrared Radiances), ULB) vs.
AERONET SDA (Spectral Deconvolution Algorithm) coarse mode AOD at 550 nm for the region 80˝W
to 120˝E and from 0˝N to 40˝N over the whole year 2013. The red lines show the linear regression fit.

Table 12. Validation of IASI AOD at 550 nm for the four datasets (L2 and L3) against AERONET SDA
coarse mode AOD at 550 nm for the region 80˝W to 120˝E and from 0˝N to 40˝N over the whole year
2013 for L2 (satellite projection) and L3 (gridded) datasets.

Metric
Algorithm

IMARS v4.2 LMD v1.3 MAPIR v3.0 ULB v5.0

L2 Validation (Pixel Window, Time Window, All Points)

number of points 4408 4972 3141 5053
bias ´0.08 ´0.01 +0.28 +0.02

RMSE 0.14 0.12 0.40 0.12
correlation 0.45 0.60 0.41 0.80

L3 Validation (Gridded, Daily; Common Points)

number of points 2652 2652 2637 2652
bias ´0.08 (´67%) ´0.05 (´38%) +0.12 (+94%) +0.01 (+8%)

RMSE 0.16 0.12 0.28 0.12
correlation 0.40 0.66 0.47 0.76
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It can be seen that there are substantial differences between the algorithms. The ULB and
LMD results tend to be similar and closer to AERONET than those of IMARS and MAPIR (under
and overestimating dust AOD, respectively). Additionally, the differences in coverage/number of
validation points become obvious. The reliability of the validation results is documented by the fact
that the analysis of L2 and L3 data show similar tendencies for each algorithm. For all algorithms,
further algorithm development and evaluation is needed to come closer to the user requirements
as stated in Table 2. Currently, the full 10 year IASI records are processed using further improved
algorithm versions based on the validation results of the round robin exercise. As we had learned with
the ATSR algorithms after their round robin exercise, no single algorithm is perfect; the evolution cycle
is continued with all four algorithms. Ultimately, different dust AOD datasets from entirely different
sensors and retrieval algorithms for IASI, AATSR and POLDER will be inter-compared.

4.3. Evaluating a Time Series of a Qualitative Data Record for Absorption (AAI)

Here, we discuss the use of a qualitative multi-sensor 35-year data record to study absorption,
a variable required by GCOS. The absorbing aerosol index (AAI) is a qualitative index based on Earth
reflectance measurements performed at two UV wavelengths [65,74]. The AAI from 1978 until present
from five different satellite instruments (TOMS, GOME-1—Global Ozone Monitoring Experiment,
SCIAMACHY—Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, OMI,
and GOME-2 ) is the longest global dataset on aerosol absorption. The five individual sensor
datasets can be merged after extensive calibration efforts (e.g., pre-processing correction on the Earth
reflectances, [66]). The OMI instrument shows very small instrument degradation and therefore does
not require any stability correction.

In Figure 12 we present time series of regional mean AAI for two frequently studied desert dust
and biomass burning aerosol regions. The OMI AAI time series is not plotted because it overlaps
largely with the other AAI time series. A first impression is that seasonal variations are captured by all
of the AAI data records for all regions, and that there are no obvious inconsistencies in and between
the AAI data record parts.
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Figure 12. Time series of regional mean AAI for two aerosol regions. The geographical extent of the
regions is provided in the plot windows. Different instruments are shown in different colors (TOMS:
black, GOME-1: red, SCIAMACHY: brown, GOME-2: blue; OMI is not shown). The dashed green lines
represent linear fits to the yearly minima of the time series to characterize the stability of the data record
(in the absence of aerosol) for that particular region. The dashed light blue lines represent linear fits to
the yearly maxima of the time series to represent trends in aerosol presence for the considered regions.

For discussion we focus on the first time series, labeled “West Africa”. This biomass burning area
with relatively small year-to-year variability is ideally suited for studying the integrity and consistency



Remote Sens. 2016, 8, 421 24 of 34

of the various AAI time series. There is good consistency between the GOME-1 and SCIAMACHY
AAI in the overlapping time period (August 2002–June 2003) and also between the SCIAMACHY and
GOME-2 AAI (January 2007–April 2012). Minima in the seasonal variation occur in months when
biomass burning is minimal. A best linear fit through the annual minima is shown by the dashed
green line. The calculated trend is ´0.003 ˘ 0.005 index points per year, which corresponds to a total
decrease of 0.1 ˘ 0.2 index points for the entire time period. This is a small trend compared to the
estimated accuracy of the method that was used to correct for instrument degradation (errors less than
0.1 index point, see[66]) and the estimated error on the trend is larger than the apparent trend itself.
Also for five other regions no significant trend in the aerosol minima (background conditions) was
detected. This indicates that the multi-sensor AAI data record has good stability.

Based on this background stability, we investigate the use of AAI time series for studies of trends
in the presence of aerosol. To do this, we calculate the best linear fit of annual maxima. For the biomass
burning region “West Africa” no significant trend is noticeable (+0.12 ˘ 0.2 change over the full period).
Similar small values (´0.20 ˘ 0.2, and ´0.06 ˘ 0.2), respectively, were calculated for regions “Rice
straw burning” (18˝N–28˝N, 100˝E–120˝E) and “Amazonia” (27˝S–5˝S, 66˝W–52˝W). We conclude
that the selected biomass burning regions do not show a significant trend in the presence of aerosol
which is in agreement with other findings (e.g., [75]).

The second region “Sahel” is mostly dominated by desert dust aerosol types (native and/or by
transport). The maxima trend analysis reveals a significant AAI reduction of ´0.79 ˘ 0.2 over the
35 years. Further dust-dominated regions “Sahara” (19˝N–31˝N, 7˝W–15˝E) and “North Atlantic
Ocean” (8˝N–25˝N, 52˝W–17˝W) show similar reductions of ´0.42 ˘ 0.2 and ´0.64 ˘ 0.2, respectively,
over the 35-year period. This decreasing AAI trend in the presence of aerosol in dust regions is in
agreement with other studies (e.g., [75]).

Since the AAI itself is a qualitative index, it must be kept in mind that it is sensitive to aerosol
concentration but also to the height of the aerosol thus making its direct interpretation somewhat
difficult. Nevertheless, it may be very useful for qualitative comparisons with aerosol presence in global
atmospheric chemical transport models. An AAI simulator, which is meant to bridge the gap between
AAI and (A)AOD (Absorbing Aerosol Optical Depth) and to fully exploit the information content
of the AAI, is currently being developed. Serving as input for this AAI simulator, the multi-sensor
AAI data record can act as an important independent reference for the behavior of chemical transport
models, especially for the earlier years which are currently not covered by satellite measurements
of (A)AOD. We conclude that the multi-sensor AAI record is a consistent time series resulting from
a stable (re-)calibration covering a 35-year time period. Its analysis is particularly meaningful in
regions of rather homogeneous conditions.

4.4. Iterative Optimization of Product Resolution to Quantify Stratospheric Extinction Profiles (GOMOS)

Finally, we consider a 10-year stratospheric extinction profile CDR to evaluate the vertical
coverage of aerosol, as requested by GCOS. GOMOS onboard ENVISAT used the stellar occultation
technique to measure transmission spectra from the Earth’s limb in the UV-Vis-NIR (ultraviolet,
visible, near-infrared) spectral range. The stratospheric product used here is generated from
AerGOM (GOMOS Aerosol Profile Information Retrieval Prototype Processor Development) extinction
profiles [70,71]. In order to reduce the noise and to increase the quality of the stratospheric extinction,
a subset of occultations are averaged. Accordingly, unlike the tropospheric products, a L3 gridded
dataset of several parameters is provided: aerosol extinction and AOD at 550 nm, and their spectral
dependence (expressed by the Ångström exponent). Each variable is also accompanied by its associated
uncertainty. After several evolution cycles, the stratospheric products are currently available in two
versions with different spatial and temporal resolutions. We discuss here the importance of the close
interaction with users to take the right decisions in optimizing a CDR during the iteration.

A modeling group evaluated the stratospheric product as a basis for comparison with their
model EMAC (ECHAM/MESSy Atmospheric Chemistry model, [76]). In this model the main source
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for background stratospheric aerosol is the oxidation of carbonyl sulfide (COS). It also includes all
known major, small to medium scale explosive volcanic eruptions where the plume reached the
stratosphere or the upper troposphere with an injected SO2 mass above 14 km exceeding 15 kt. The
volcanic SO2 injections have been estimated from the NASA SO2 database and MIPAS (Michelson
Interferometer for Passive Atmospheric Sounding) onboard ENVISAT observations [77]. To compare
with the observations, aerosol extinction is derived from the model and calculated from Mie theory
using pre-calculated look-up tables for six aerosol components: water, water-soluble species (including
sulfuric acid and sulfate aerosol), organic carbon, black carbon, mineral dust, and sea salt in the Aitken,
accumulation, and coarse modes.

A comparison of the EMAC model and the GOMOS product was initially done for 2008; results
are shown for the last 3 months in the upper and middle panels of Figure 13. The volcanic sulfate
aerosol from the Kasatochi eruption (52˝N) was visible in both GOMOS data and the model results in
the northern hemisphere near the tropopause (maxima at the right side of the monthly plots). In the
middle stratosphere the satellite extinction product was larger than in the model pointing to neglected
extinction of meteoric dust in the model.
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of 10): upper row GOMOS (Global Ozone Monitoring by Occultation of Stars) version 2.14 dataset
with monthly resolution, center row simulation by the EMAC model, lower row GOMOS version 2.19
dataset with 5-day resolution This period was impacted by the Kasatochi eruption (52˝N, 176˝W) in
August of that year.
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A detailed examination led to a set of user recommendations guiding further algorithm
development without compromising product quality by including the treatment of more difficult
measurements. Sparse coverage, particularly at high latitudes, should be improved in addition to
the removal of undesirable negative extinction values. It was also recommended to flag rather than
filter polar stratospheric clouds (PSCs). Finally, it was suggested that a finer temporal resolution be
made available, as the monthly means used in the early versions were often not sufficient to observe
small to medium scale volcanic events. In response to this assessment, an improved data record has
been produced. The selection of purely dark limb observations has been relaxed to partly include
observations in twilight situations (solar zenith angle >105˝), improving the coverage at high latitudes
without impacting significantly the product quality. A more refined selection of profiles improved the
negative extinction issues. In addition, coverage was improved near the polar regions by changing
the limitations on solar zenith angle. Finally, a different spatio-temporal resolution has been made
available in addition to the original monthly product: a 5-day resolution data record aimed at better
capability to follow smaller volcanic eruptions or rapidly evolving dynamical patterns, though the
spatial resolution had to be adjusted to ensure a sufficient number of profiles per bin. All these
changes increased the coverage and detail in the dataset while not decreasing its accuracy. The lower
panels in Figure 13 illustrate the improvements made to the data record using the latter version with
high temporal resolution (version 2.19), especially compared with the previous results (version 2.14)
presented in the upper panels. Both data records now span the entire ENVISAT mission between 2002
and 2012.

Analysis of the new product by the users confirms that it is suitable for the observation of volcanic
eruption signatures which were not visible in the previous grid. In particular, the GOMOS data
record is able to provide data in spatio-temporal regions which were insufficiently covered by other
space experiments (MIPAS, OSIRIS - Optical Spectrograph and InfraRed Imager System, etc.). This
constitutes a highly valuable data source to describe the injection of aerosols from volcanic eruptions
into the upper troposphere and the stratosphere. The 10-year ENVISAT data record is sufficiently
long to contribute to the detailed inventory of volcanic emissions behind the observed increase of
aerosol burden since 2000 [76,78]. A detailed description of this contribution will be the subject of
a future publication.

5. Conclusions

This paper summarizes the lessons learned (scientific and programmatic) during algorithm
development and evaluation cycles for aerosol Climate Data Records (CDRs) during the ESA
Aerosol_cci project. This is (so far a 5 year) collaboration of much of the European satellite remote
sensing community with 18 partner institutions and several external contributors. Having worked on
the iterative development and evolution of five different satellite aerosol CDRs with different maturity
we can draw general conclusions. We demonstrate the benefit of such a collaborative approach with one
of our most mature datasets (three ATSR 17-year CDRs). Furthermore, we highlight important aspects
of dataset evaluation with the ATSR CDRs and other four records which contain complementary aerosol
information. Through the steps outlined in this paper, we demonstrate a practical implementation of
the GCOS climate monitoring principles [6] that is relevant to algorithms and datasets (in the following
we identify numbered GCOS principles as GCOS-NN in brackets).

Firstly, new algorithm versions must be fully validated (GCOS-1 new systems or changes).
Validation needs to be comprehensive and take sampling limitations into account (GCOS-4 regular
assessment, GCOS-8, GCOS-b and GCOS-11 appropriate sampling). This is done by calculating
statistics at a global scale (separately for land and ocean in the case of tropospheric aerosols)
complemented by seasonal and regional statistics (as shown in the scoring analysis of ATSR AOD).
It can only be applied where sufficient reference stations observe fairly homogenous conditions.
When comparing different algorithms, it is recommended to analyze both all points independently
(to look at maximal coverage) and only those points observed by all data sets (a “common point”
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filter) to ensure a like-for-like comparison. The two comparisons will produce different results and
need to be interpreted with care but provide additional insight into the strengths and limitations of
each algorithm. For validation using ground-based point measurements, there are potential issues
regarding the representativity of the reference observations as, by selecting collocated cloud-filtered
sun photometer data, an additional cloud clearing is implicitly included. Thus, the validated satellite
dataset may be of better quality than the total dataset.

Validation of the datasets needs to be fully transparent and documented (GCOS-3 metadata and
documentation)—the CCI documentation standards (followed in this paper) provide a framework
to achieve this. For example, the limitations of validation described above need to be clearly stated
for users. For credibility, validation must be done by independent experts not involved in algorithm
development. If any selection of algorithms is envisaged, the selection criteria need to be defined
and agreed in advance. Criteria include typical statistical quantities, visual appearance of maps and
quantitative evaluation of the capacity to monitor spatial and temporal features. Furthermore, coverage
in space and time of important regions needs to be considered.

For long time series, an assessment of stability is mandatory (GCOS-2 and GCOS 12 overlaps
and consistency). This requires reference datasets to be available over the whole period, which
becomes more unlikely the further into the past the assessment extends (despite GCOS-6 and GCOS-19
requesting uninterrupted operation and maintenance of complementary in situ data). Limiting
validation to stations with AOD measurements throughout the satellite time series restricts the analysis
to Europe and North America but this remains a useful assessment of systematic instability of the
sensors and algorithms in a variety of retrieval conditions. In addition, the consistency of a time series
should be assessed, for example by evaluating the trend over areas where no trends are expected
(shown here for the AAI) or in overlapping periods of subsequent sensors (demonstrated for the ATSR
instruments and AAI).

Whenever a sufficient amount of reference data is available, validation should be done both at the
data’s native resolution and with daily gridded datasets as often used by the modelling community (to
account for differences in sampling, GCOS-b and GCOS-11 appropriate sampling). The analyses in this
paper were typically unaffected by using L2 or L3 data. Since the information content of an aerosol
retrieval depends on the aerosol loading, validation should be stratified into different AOD ranges.

With our iterative algorithm development and evaluation cycle, we have learned several
new lessons. We recommend that any CDR generation uses an open development team with
retrieval experts, independent validation partners and core users working together within an iterative
development and assessment cycle. The cycle starts with addressing user requirements specific to the
desired application followed by algorithm development towards those needs, independent validation
of the results and user evaluation of the products’ fitness-for-purpose. Algorithm development may
involve algorithm experiments to understand critical sensitivities and round robin exercises to assess
the suitability of multiple algorithms for large-scale processing. The open team benefits from elements
of collaboration and “friendly competition” to share best practice and stimulate progress among
the participants.

The involvement of core users from the earliest stages of the cycle helps to tie algorithm
development to concrete user needs. The evolution cycle for each data record is driven by the
validation and evaluation results, ensuring algorithms evolve towards satisfying the user requirements.
Those user requirements are tied to the intended application. As an example, a link between the
required accuracy and spatial/temporal resolution has been quantified by the global aerosol climate
modeling community supporting IPCC assessments (GCOS-5 user needs, e.g., from IPCC). User
involvement throughout the evolution cycle is of substantial benefit, as shown in the trade-off between
spatial and temporal resolution in the stratospheric extinction CDR. The combined expertise of users
and providers is needed to ensure a CDR is fit for purpose, in particular for qualitative indicators such
as the absorbing aerosol index.
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As is common practice for tropospheric satellite aerosol retrievals, different algorithm modules
are applied over land and ocean due to their differing surface properties. In our case, AOD fields in the
transition from land to ocean were scanned manually to detect any offset introduced by this approach
in aerosol plumes or low background values (not discussed further in this paper).

Qualification of an algorithm for climate data record processing requires producing a sufficient
data volume to provide a statistically significant sample, and representing the global variability of
aerosol and environmental conditions. A minimum of four months of global data covering the four
seasons can provide this for the ATSR CDRs, since it was demonstrated that the validation results did
not change much when evaluating one or 17 year(s) of data rather than four months. Alternatively one
can work with a full year of data over an important region, as shown for the IASI datasets over the
global dust belt. The evaluation of spatial and temporal correlations in different regions requires a full
year of global data to achieve significant statistics.

For an early qualification of multiple algorithms, a round robin exercise is recommended, as
demonstrated here with four IASI algorithms, which were brought together in one comparison for the
first time. A round robin exercise is a reasonable starting point for fully-fledged algorithm development
since it defines evaluation criteria and sets the scene for analyses to monitor progress towards them in
a consistent manner.

Sufficient reference data for direct comparison may not always be available, as shown in the
validation of mineral dust AOD. In this case, it may be necessary to transform the data into a form
suitable for comparison to existing references (here conversion into the visible), or—as in the case of
AAI—to compare against models. Both choices introduce significant uncertainty. In order to extend
the capabilities for validation, the use of another satellite dataset with a greater number of independent
observables offers a possible way out. For this purpose, it has to be shown that this quasi-reference can
be filtered for the highest accuracy results. This was done for POLDER/PARASOL retrievals, which
have a good accuracy for a large range of AOD values and underlying surfaces (including desert).
It should be clear that no satellite retrieval can ever replace ground-based validation, but it can extend
it into regions with sparse coverage. One important region for future assessment of different retrieval
principles such as multi-angle, thermal infrared, polarization is the inner Sahara (since there no regular
ground-based measurements are available). Particular efforts on validation in climate sensitive regions
with sparse ground-based network coverage (GCOS-7 priorities) were demonstrated over China.

To demonstrate progress towards achieving the GCOS requirements in an easily communicated
manner, it is recommended to provide statistical validation results in a way which can directly be
compared to those. This should state the fraction of pixels within the GCOS required envelope (for
normally distributed uncertainties, 68% of all pixels should fall within it).

When comparing different algorithms, we often found that no single algorithm performs best
everywhere. Algorithms can have a different sensitivity to aerosol in different aerosol conditions
(loading, type), environmental conditions (surface, clouds) and observation geometries. Thus the
combined use of several algorithms needs to be studied further as a possible way to optimize
monitoring of the global aerosol distributions.

An increasing number of users want uncertainties embedded into data records at the pixel/grid
cell level, as is done for all CDRs discussed in this paper (GCOS-20 errors and biases). Those per-pixel
uncertainties also need to be thoroughly validated (as discussed for AATSR) and their limitations need
to be thoroughly described (e.g., processing steps not yet modelled in the uncertainty propagation,
unknown correlation statistics, or conditions where reference data are not available). Where several
algorithms are applied to the same sensor their differences can be used as means of understanding
uncertainties of satellite retrievals. However, relying on the spread between different retrievals can
lead to an overestimation of the uncertainty of an individual dataset and underestimate the impact of
common but incorrect assumptions; it is therefore not generally recommended.

Having passed through the algorithm development and evaluation cycle described in this paper,
the ATSR AOD datasets have now achieved the quality level suitable for a Climate Data Record
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(up to 60% of pixels with accuracy within the GCOS required range). Their RMSE and bias are
similar to state-of-the-art NASA retrievals. They cannot completely fulfill the very challenging GCOS
requirements, but neither can any other satellite aerosol dataset. This is due to technical specifications
of the sensors (e.g., enabling observations only once a day at similar local time) and to the ill-posed
retrieval problem. Further improvements are needed, in particular for high AOD values (above 0.2).
With a stable data record over 17 years, they are useful for climate studies and extend 5 years before the
MODIS time series. However, there is a gap from 2012 until the present (despite GCOS-6 uninterrupted
observing systems). The successor instrument SLSTR (Sea and Land Surface Temperature Radiometer),
launched on the Sentinel-3 satellite on 16 February 2016, will resume this record in the near future.

The GOMOS stratospheric extinction Climate Data Record covers 10 years. For some of its
vertical range, it comes close to the GCOS accuracy requirement of 10% (not shown here, validation
coincidences to ground-based lidars are quite sparse). Its spatial and temporal resolution meet the
GCOS requirement and its usefulness was demonstrated in particular for the lower part of its vertical
coverage to identify smaller volcanic eruptions and their contribution to stratospheric aerosol.

The AAI data record provides time series of a qualitative measure for aerosol absorption.
With a stable record of 35 years (with only one gap of about two years) from five different sensors, it
allows analysis of trends in regions with homogeneous conditions. However, its use for comparison to
aerosol modelling requires a translation from model variables (i.e., an AAI simulator).

The POLDER/GRASP dataset has shown good quality and contains additional aerosol properties,
but no full mission global CDR has yet been processed. The analysis of four IASI retrievals shows
promising capabilities for monitoring a complementary quantity required by modelers, mineral dust
aerosol, and helped to identify necessary improvements prior to the first full mission reprocessing
over the global dust belt.

The Aerosol_cci project has worked for several years on improving aerosol CDRs through
several evolution cycles. One further evolution cycle of full-mission reprocessing is currently funded.
In two cases (IASI, ATSR instruments) the results from different algorithms evaluating the same data
provides an ensemble which will be assessed for potential means of combining the strengths of several
algorithms to overcome the difficulties of aerosol retrieval.

Overall, the experiences made in the course of the development and assessment cycles for different
aerosol products prove a practical implementation of the main rationale behind the GCOS climate
monitoring principles to establish credibility of long-term data records suitable for climate research.
Free access to the datasets and all associated documentation is available through the Aerosol_cci
website [33] (GCOS-17 user-friendly access to documentation and datasets).
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AAOD Absorbing Aerosol Optical Depth
AAI Absorbing Aerosol Index
AATSR Advanced Along-Track Scanning Radiometer
ACPC Aerosol-Cloud-Precipitation-Chemistry
ADV/ASV AATSR Dual/Single View
AE Angström exponent
AERGOM GOMOS Aerosol Profile Information Retrieval Prototype Processor Development
AEROCOM Aerosol Comparisons between Observations and Models
AERONET Aerosol Robotic Network
AOD Aerosol Optical Depth
ATSR Along Track Scanning Radiometer
AVHRR Advanced Very High Resolution Radiometer
CARSNET China Aerosol Remote Sensing Network
CCI Climate Change Initiative
CCN cloud condensation nuclei
CDR Climate Data Record
CMIP Coupled Model Intercomparison Project
COS carbonyl sulfide
ECV Essential Climate Variable
EMAC ECHAM/MESSy Atmospheric Chemistry model
ENVISAT ESA’s Environmental Satellite
ERS-2 European Remote Sensing Satellite 2
ESA European Space Agency
GCOS Global Climate Observing System
GOME Global Ozone Monitoring Experiment
GOMOS Global Ozone Monitoring by Occultation of Stars
GRASP Generalized Retrieval of Aerosol and Surface properties
IASI Infrared Atmospheric Sounding Interferometer
IMARS Infrared Mineral Aerosol Retrieval Scheme
IN ice nuclei
IPCC Intergovernmental Panel on Climate Change
L2 level 2, satellite sensor projected data
L3 level 3, gridded satellite dataset
LUT Look Up Table
MAN Maritime Aerosol Network
MAPIR Mineral Aerosol Profiling from thermal Infrared Radiances
MIPAS Michelson Interferometer for Passive Atmospheric Sounding
MISR Multi-angle Imaging SpectroRadiometer
MNMB modified normalized mean bias
MODIS Moderate Resolution Imaging Spectro-Radiometer
NASA National Aeronautics and Space Administration
NIR near infrared
NOAA National Oceanic and Atmospheric Administration
OMI Ozone Monitoring Instrument
ORAC Oxford RAL Aerosol and Cloud retrieval
OSIRIS Optical Spectrograph and InfraRed Imager System
PDF probability density function
POLDER POLarization and Directionality of the Earth’s Reflectances
RMSE Root Mean Square Error
SAGE II Stratospheric Aerosol and Gas Experiment
SCIAMACHY Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
SDA spectral deconvolution algorithm
SeaWIFs Sea-viewing Wide Field-of-view Sensor
SLSTR Sea and Land Surface Temperature Radiometer
SSA Single Scattering Albedo
SU Swansea University
TIR thermal infrared
TOMS Total Ozone Mapping Spectrometer
UV ultraviolet
VIIRS Visible Infrared Imaging Radiometer Suite
Vis visible
WMO World Meteorological Organisation
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