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The Greenland ice sheet (GrIS) is at present the largest single contributor to
global-mass-induced sea-level rise, primarily because of Arctic amplificationonan
increasingly warmer Earth'>. However, the processes of englacial water accumulation,

storage and ultimate release remain poorly constrained. Here we show that a
noticeable amount of the summertime meltwater mass is temporally buffered along
the entire GrlS periphery, peaking inJuly and gradually reducing thereafter. Our
results arise from quantifying the spatiotemporal behaviour of the total mass of water
leaving the GrIS by analysing bedrock elastic deformation measured by Global
Navigation Satellite System (GNSS) stations. The buffered meltwater causes a
subsidence of the bedrock close to GNSS stations of at most approximately 5mm
during the melt season. Regionally, the duration of meltwater storage ranges from
4.5 weeks in the southeast to 9 weeks elsewhere. We also show that the meltwater
runoff modelled from regional climate models may contain systematic errors,
requiring further scaling of up to about 20% for the warmest years. These results
reveal a high potential for GNSS data to constrain poorly known hydrological
processes in Greenland, forming the basis forimproved projections of future GrIS
melt behaviour and the associated sea-level rise®.

Increased meltwater runoff constitutes the largest contributor (roughly
55%) to post-2000 GrIS massloss'>’. En route to the ocean, meltwater
may be temporarily stored in surface lakes (supraglacially), inside firn
(the layer of compressed snow) or inice cavities (englacially), at the
ice-bedrock interface (subglacially) or as groundwater®?° (Fig.1). Most
of thisbuffered water storage (BWS) isgradually released to the ocean
before the onset of the next melt season. BWS affects ice-sheet evolu-
tion in several ways. In the interior accumulation zone, liquid water
typically percolatesinto thefirnlayer,in whichit refreezes or recharges
firnaquifers. Over semi-impermeableice in the marginal ablation zone,
meltwater enters supraglacial lakes and streams, ultimately draining
totheice sheet-bedrockinterface through moulins and crevasses™ .
Inthe subglacial environment, BWS induces high basal water pressure,
creatingatemporary lubrication effect and ice-flow acceleration, par-
ticularly at the beginning of the melt season®2%, When the melt season
progresses, the accumulation of water creates an efficient subglacial

drainage system® %, reducing basal water pressure. But these drainage

systems and the glacier bed are highly heterogeneous, and high basal
water pressure can persist if the drainage system s hydraulically poorly
connected to the channels®.

In situ observations on the GrIS remain too sparse to spatiotempo-
rally resolve the highly heterogeneous (basal) water accumulation
and flow®. Ice-penetrating radar detects propertiesindicative of basal
water but lacks information on water volume and pressure®. Satellite
gravimetry quantifies water storage and release butitsrelatively coarse
sampling prevents a regionally resolved assessment of Greenland
hydrology**. Here we apply a new method to quantify the spatiotem-
poral evolution of Greenland BWS: continuous monitoring of elastic
vertical bedrock displacements by 22 Greenland GNSS Network (GNET)
stations (Fig. 2). Elastic bedrock deformation happens instantaneously
when mass is redistributed. The accumulation of mass at the surface
(for example, growth of the seasonal snow cover) generally leads to
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Fig.1|Evolution of water storage and associated bedrock displacements
within the GrIS at different stages of the meltseason. a, Ice sheet before
meltseason. Water mass is minimal; actual vertical position of the bedrock is
consistent with that computed on the basis of background models (dashed
whiteline). b, Early phase of the melt season. Liquid water rapidly accumulates
because discharge into the oceanis minimal, so that the actual vertical position
ofthe bedrock shows only aminor uplift (brown arrow); position of the bedrock
based onbackground models, which do not take the water accumulationinto
account, isabove the true position, showing arapid uplift (white arrow); the
separation between the actual and calculated positionsincreases, so that the
residual bedrock displacementbecomes more and more negative (blue arrow
directed downwards), reflecting a continuing water accumulation. ¢, Late phase
of the melt season. Both accumulated and newly produced water is subject to
rapid dischargeinto the ocean through an efficient system of englacial and
subglacial channels; position of the bedrock based on the background models
isstillabove the true position, but the separation between the actual and
calculated positions decreases owing to a decreasing water mass, so that the
residual bedrock displacement becomes less and less negative (blue arrow
directed upwards).

crustal subsidence, whereas mass removal causes crustal uplift. In this
way, each GNET station offers quantitative information on regional
mass changes in glaciers, ice caps, the ice sheet and aquifers within a
roughly 200 km radius (see Methods). Correcting for known nuisance
signalsyields time series of residual vertical displacements. Anotable
correction concerns the glacier surface mass balance (SMB), the sea-
sonal accumulation and ablation of snow and ice. For this, SMB models
are used, which only account for local, shallow meltwater storage by
capillary retention and refreezing in seasonal snow and firn; further

meltwaterisassumed toreach the oceaninstantly. Inreality, BWS causes
amarked runoff delay: we expect the increase in BWS in the early melt
seasontoresultinadownward residual bedrock displacement, which
slowly reduces to zero towards the end of the melt season, as meltwater
isgradually released into the ocean.

In this study, we address three questions: (1) how does GrIS BWS
evolve during the melt season?; (2) are there spatial variations in the
duration of GrIS BWS?; (3) can GNET data be used to improve runoff
estimates from SMB models?

Seasonal cycle and its spatial variations

We produce time series of vertical bedrock displacements (‘shifts’) at
22 GNSS stations from GNET over the period 2009-2015. We isolate
the BWS signal by subtracting SMB-related and other nuisance signals
from the total displacements observed (Extended Data Table 1). Mass
variations caused by SMB processes are provided by the RACM02.3p2
regional climate model® covering the entire GrlS. Figure 2 shows the
mean annual cycles of detrended residual vertical displacements for
all GNET stations under consideration. The patternis similar for all sta-
tions: aslow downward motion from February to April (corresponding
to the accumulation of stored water), which accelerates in May and
peaksin]july. Ingeneral, residual downward motion corresponds toan
accumulation of stored water that is not shallow and/or local, that s, not
accounted for in the SMB models, and vice versa. Therefore, we inter-
pret thissignal asBWS accumulation within roughly 200 km around the
GNSS station starting from the onset of the melt season (Fig. 1), which
is unaccounted for in the SMB models. After July, the stations show
relatively constant upward motion until February the following year,
which s attributed to a gradual reduction of BWS through discharge
into the ocean. We conducted acomprehensive analysis, including vali-
dationwithindependent GRACE satellite gravimetry data (Fig. 3), which
demonstrates that thissignalis real and not an artefact resulting from
errorsin models or data, or a seasonality of ice discharge (Methods).
The time series also reveal aspatial variability superimposed onto the
meanannual cycle of residual vertical displacements (Fig. 2). Details of
vertical motion differ among the stations, notably starting from July.
The stations in the south and southeast typically show a sharp and
quick bedrock uplift after July, evidence of a rapid loss of BWS there.
By contrast, most of the remaining stations show a slower BWS loss
until September or October and an accelerated loss only later. Finally,
many stations show areduction of BWS loss rate by the end of winter.

Quantification of BWS

To quantify BWS variations within the GrlS, we propose an analytic func-
tiontofittheresidual vertical displacement time series (Methods). The
function assumes BWS to decay exponentially, with the exponent being
inversely proportional to the parameter T, which is termed as ‘water
storage time’ and fitted to the data. This parameter indicates for how
long the water is bufferedinside the ice sheet during and after the melt
season. Extended Data Fig. 1a shows the time series of residual verti-
cal displacements and its approximation with the computed analytic
function using the GNET KAGA station as an example.

Notably, theintroduced analytic function takes into account possible
inaccuracies in the runoff magnitude estimated by the adopted SMB
model. Itis assumed that the true runoff is related to the modelled
runoff by a scaling factor. To determine its value, the modelled run-
off time series are scaled with empirical factors calculated per year
using nonlinear optimization (Methods). The resulting estimates of
water-mass variations are referred to as ‘calibrated’. For comparison,
we also estimate variations in the water mass without applying this
scaling (referred to as ‘uncalibrated’).

On the basis of the proposed analytic function, we compute time
series of the vertical displacements caused by BWS. These estimates
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Fig.2|The mean annual cycles of residual vertical displacements at GNET
sites. Note that displacements are obtained after subtracting theloading
signals resulting from modelled SMB and non-ice processes (Methods), as well
asasubsequentdetrending. Thered shading depicts the one-sigmauncertainty.
Vertical bluelines denote May (as the onset of the melt season) andJuly (as the

account for variations in the total BWS, that is, water stored in all ice-
sheet compartments, including snow/firn, moulins, lakes, basal water
storage, as well as groundwater storage below theice sheet. Taking the
KAGA station as anexample, we show the displacements based onboth
calibrated and uncalibrated estimates of BWS variations in Extended
Data Fig. 1b. Both time series reveal the largest BWS in 2012, a year of
extreme meltin Greenland?. For the calibrated BWS estimates, the dis-
placementat the KAGA station reaches 14 mm. Similar features are found
inthe time series from other GNET stations, particularly those located
insouthernand southwestern Greenland: from HJOR to QAAR (Fig.4).
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month ofthe peak water storage). The map inthe centre shows meanice-flow
velocities during1985-2018 from NASA’s Making Earth System Data Records for
UseinResearch Environments (MEaSUREs) programme®. Extended Data Fig. 3
showsanexample of how theresidual vertical displacements are computed.

Most of the stations outside the northern part of Greenland show the
second largest BWS in 2010, another year of extreme summer melt*®.

Evaluation of modelled runoffestimates

Comparison between modelled and observed vertical displacements
indicates that applying ascaling factor to SMB-modelled runoffis nec-
essary to improve agreement. The calibrated estimates of BWS show
larger temporal variations at the KAGA station than the uncalibrated
ones (Extended Data Fig. 1b): for example, the calibrated estimate in
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the extraordinarily warm 2012 summer is larger than the uncalibrated
estimate by about 20%. Thisimplies that the scaling factors arerelatively
large during high-melt summers. Analysis of the other GNET stations
supports this conclusion: scaling factorsin warmyears (2010 and 2012)
aretypically larger thanin ‘ordinary’ meltyears (2011and 2014), to say
nothing aboutrelatively low-melt years (2013 and 2015); see Fig. 5 and
Extended Data Table 2 (year 2009 isnot considered as it represents the
‘initialization” year (Methods)). This difference between low-melt and
high-melt summersis particularly pronounced for northern and north-
eastern stations. Itis also notable that differences in average scaling fac-
tor within asingle year but for different GrIS regions are typically smaller
than year-to-year scaling-factor variations (Extended Data Table 2).
Thisisinspite of the fact that the scaling factors are estimated for each
GNET stationindependently. This finding demonstrates the robustness
ofthe scaling factors (particularly if averaged over a sufficiently large
GrlIS region). We confirm the scaling factor dependence on summer
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temperatures by showing anotable (R = 0.42) correlationbetween the
scaling factors and the mean annual summer temperature anomalies
for each GNSS station using ERAS (ref. 37) (Extended Data Fig. 2).

Water storage times

The estimated water storage times T are between 3 and 13 weeks
for most stations, with a 55-day (roughly 8-week) average (Fig. 6 and
Extended Data Table 3). In northeastern Greenland (stations from
LEFN to VFDG), the water storage time is slightly above the average:
64 +16 days (thatis, about 9 weeks). Western Greenland (stations from
KAPIto SRMP)is characterized, on average, by the same water storage
time, but the station-to-station variations are larger (64 + 20 days).
In the south and southeast regions (stations from MIK2 to SENU), the
average water storage time is halved: 31 £ 12 days. The longest water
storage time (129 days) is observed at station MARG in the extreme
northwest of the GrIS.

Discussion

Our study reveals new insights into the spatial and temporal variability
of Greenland water storage within the GrIS. GNET GNSS data are used
as anew source of valuable information on BWS within the GrIS. The
results show that, across the GrlS ablation zone, the BWS reaches its
maximuminJuly and gradually decreases thereafter. Furthermore, the
vertical displacements clearly show interannual variations in BWS. For
instance, it is particularly large in high-melt summers, such as those
0f2010 and 2012.

The BWS after calibration shows larger interannual variations than
modelled runofffromthe regional climate model RACMO02.3p2 suggest.
We quantify this further by a noticeable correlation (R = 0.42) between
the estimated scaling factors and summer temperature anomalies
(Extended Data Fig. 2d). In other words, the runoff scaling factors for
the high-melt (warmer) years, whenthe BWSislarge, arelarger than for
low-melt (colder) years. For the years with highest summer tempera-
tures (forexample, 2012), the upscaling may reach about 20%. This can
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be interpreted as evidence that the adopted regional climate model
either underestimates melting or overestimates water retention in
‘warm’ years (or both). The latter might be explained by an unaccounted
ortooslow modelled firn degradationin ‘warmer’ years, which reduces
the fraction of produced liquid water that can be retained in the firn
layer. Asaresult, the actual runoffin ‘warmer’ yearsis higher than that of
theregional climate model. Such aninterpretation may also explainthe
relatively poor correlation between the estimated scaling factors and
summer temperature anomalies. Strong firn degradationin a ‘warm’
year probably has along-termimpact: it may affect water retention not
only inthat year but alsoin the years to follow, independently of their
summer temperatures.

GNET data thus offer anew method toimprove GrIS SMB estimates
fromregional climate models. Those models are at present the tool of
choice for estimating GrIS-integrated surface melt rate. Despite their
generally good and consistent performance, considerable uncertainties
remain in the modelled melt products®, Having independent estimates
of adjustmentsrequired toimprove/calibrate the melt products from
regional climate models, as provided in this study, is therefore highly
valuable for the Greenland mass balance research community. Among
others, regional climate models require adjustments in this way for
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Errorbarsare defined on the basis of the 1stand the 3rd quartiles as the lower
and upper bounds, respectively, from100 Monte Carlo runs.

abnormally warm summers. This is particularly relevant in view of
projected Arctic warming' . Extremely high summer temperatures
today may become normalinthe foreseeable future. Thus, good model
performance for warmer yearsis critical to projectice-sheet behaviour
and associated sea-level rise across coming decades.

GNET data also allow us to quantify BWS on seasonal timescales.
We found that the GrIS average water storage time is about 8 weeks,
although with important spatial variations. In the northeastern and
westernregions, itis slightly above the average (about 9 weeks). Inthe
southeastern GrlIS, on the other hand, water storage time is relatively
short,implying that the hydrological regimes are regionally different.
Most probably, this is because the southeastern GrIS is characterized
by high accumulation rates, steep topographic relief, a relatively nar-
row ablation zone and short distances from surface melt locations to
the ocean. This results in—on average—rapid drainage, despite wide-
spread occurrence of firnaquifersin this region. Further investigations
are needed to shed more light onto the observed differences in GrIS
hydrological regimes.

To conclude, our study demonstrates how spatiotemporal variations
inBWS withinthe GrIS can be sensed with GNSS-based vertical displace-
ment data, which offer a higher spatial and temporal resolution than
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satellite gravimetry. This opens the door for wider use of GNSS data
for observation and better understanding of hydrological processes
within the GrIS and other ice bodies on Earth. This will be particularly
important for an accurate forecasting of the future behaviour of the
GrlS and other ice bodies, as well as the associated sea-level rise.
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Methods

GNSS dataselection and preprocessing

The GNET consists of about 54 sites, most of which are located along
the coast. Here we consider a subset comprising 22 stations that are
mounted onbedrock and located close to outlet glaciers. GNSS stations
onbedrock are sensitive to all of the processes that cause mass changes
on/in/under the ice close to the station. A few stations (for example,
UPVK, NUUK and so on) are excluded because they suffer from large
mass variation signals from the ocean. In particular, this concerns sta-
tions in the northwestern and southeastern parts of Greenland.

We use coordinates and uncertainties from the GNSS daily solutions
released by Technical University of Denmark, which are computed with
thescheme proposed inref. 40 in the International Global Navigation
Satellite System Service 2014 frame, after removing tidal deforma-
tionsrelated to the solid Earth and oceans. The vertical displacements
observed at GNET sitesinclude not only the loading signals caused by
the BWS changes but also several nuisance signals. The latter represent
the crustaldeformation caused by atmospheric pressure loading (ATM),
land water storage (LWS) on ice-free land, non-tidal ocean loading
(NTOL), SMB-related signals and thermal elastic expansion (TEM).
Toisolate variationsinthe BWS loading, we correct the observed verti-
cal displacements for the nuisance signals using background models
(Extended Data Table1). The ATM, LWS and NTOL loading changes were
computed at University of Luxembourg with the scheme proposed in
ref. 41. The SMB contribution was computed by the time integration
of signals from the RACM02.3p2 model® for the entire ice sheet. The
set of SMB signals consists of precipitation, runoff, sublimation and
snow drift components. To compute the vertical displacements at the
GNET sites caused by a given component, we used the Green’s func-
tion method*>**. Bedrock deformations are also caused by thermal
expansion owing to temperature variations. In this study, we account
for this process by using the output from ref. 44, which is computed
from the ERAS model with a finite element method. Subtraction of
all these nuisance signals results in a time series of residual vertical
displacements, which s the input for the further analysis.

As an example, Extended Data Fig. 3 shows the subtracted signals
and residual vertical displacements for station KAGA located near
Jakobshavn Isbrae (Greenlandic: Sermeq Kujalleq), one of the largest
GriSoutletglaciers. SMB and ATM signals are the largestamong those
subtracted®.

Uncertainties of the mean annual cycle of residual vertical
displacements

Next, we estimate uncertainties of the mean annual cycle of residual
vertical displacements, which is shown in Fig. 2. We identify various
nuisance signals and categorize theminto those that can be completely
neglected (for example, ice discharge, lakes) and those that need tobe
includedinthe uncertainty analysis. Note that we consider separately
shallow groundwater in tundra areas and deep groundwater beneath
the ice sheet, as detailed in the ‘Contribution of groundwater stor-
agein Greenland’ section. To that end, we compare the ‘primary’ time
series computed as explained above with a family of alternative ones.
To producethelatter time series, wereplace either theinput GNSS data
themselves or one of the background models of nuisance signals with
one or two alternative ones. The alternative set of input GNSS data
was provided by the Nevada Geodetic Laboratory at the University of
Nevada, Reno*®. The alternative background models****® are listed in
Extended Data Table1, along with the primary ones. The resulting ATM
andNTOL loading signals were downloaded fromthe International Mass
Loading Service (IMLS*®). Alternative SMB loading signals were com-
putedinhouse at DTU Space on the basis of the alternative SMB model
(MAR) in the same way as in the case of the primary one. The alterna-
tive time series of bedrock deformations owing to thermal expansion
were also computed inref. 44 from ERA5 but withaharmonic method.

Noise in the input GNSS data and in each of the nuisance signals is
quantified by computing the standard deviation between the ‘primary’
time series and the corresponding alternative one3**° (see the caption
of Extended Data Fig. 4). The total uncertainty of the mean annual
cycle of residual vertical displacements is computed as the root sum
square of the standard deviations of noise from all possible sources
consideredinthis study, thatis, GNSS dataand models of ATM,NTOL,
LWS, SMB, TEM and GWS signals.

Notably, the GWS signal in tundra areas is not a part of the SMB
models (SMB is only defined over glacial ice). Therefore, this signal
is not subtracted from GNSS data when residual vertical displace-
ments are computed. To quantify the impact of that signal, we use
hydrological models. We consider the difference between mean
annual vertical displacements per calendar month with and without
groundwater signal subtracted using PCR-GLOBWB and WGHM models.
Thisbasically resultsin the vertical displacements owing to modelled
groundwater signal alone. We show that the root mean square signals
computed from the PCR-GLOBWB and WGHM models are 0.25 mmand
0.02 mm, respectively, which is small compared with the BWS signal
(see Extended Data Fig. 4).

A comparison of the total uncertainty computed for each station
with the signal revealed in the mean annual cycle of residual vertical
displacements demonstrates that the latter far exceeds the noise level
(see Fig.2) and, therefore, cannot be explained by inaccuracies in the
input dataor exploited models. Furthermore, we have chosen the KAGA
station astherepresentative oneto demonstrate that the use of alterna-
tive models or GNSS dataleads to only minor changesinthe observed
annual cycle of residual vertical displacements (Extended Data Fig. 4).

Contribution of ice discharge

To obtainan upper bound of the contribution of seasonal ice discharge
variationsto the observed vertical displacements, we use Jakobshavn
Isbrae because it shows the largestice flow velocity seasonality among
GrIS outlet glaciers®. Note that, although the total change of mass
owing to discharge is comparable with that resulting from SMB, its
seasonal variability is much smaller®'. We used in our analysis a time
series of ice-discharge-related time series of mass anomalies obtained
inref. 52. That time series was obtained by combining two datasets:
(1) monthlyice discharge at the Jakobshavn Isbre flux gates (Extended
DataFig. 5a) computed from monthly ice velocities™and ice thickness
values®; (2) annual rates of mass-variation change fromaltimetry and
SMB-based vertical displacements. Corresponding mass anomalies
were obtained by weighting the latter annual patterns with the monthly
ice-discharge estimates. Finally, the solid-rock vertical displacements
were derived by means of the Green’s function method****, for the loca-
tion of KAGA station, whichis only about1 km from the 2015 Jakobshavn
Isbree calving front. We see that the mean contribution of Jakobshavn
Isbree ice discharge to vertical displacements does not exceed 1 mm
(Extended Data Fig. 5), which is small compared with the magnitude
of residual vertical displacements.

Contribution of lakes

There are many lakes in the Arctic region, none of which were con-
sidered in the LWS products used in this study. To further quantify
the potential water-mass impact of lakes onto GNSS loading signal
in Greenland, we consider three types of lake: lakes in the pan-Arctic
region (north of 60° N) ingeneral; supraglacial lakes (SGL) on the GrIS;
and proglacial lakes in the coastal part of Greenland.

Lakes in pan-Arctic region. Specifically, the monthly water storage
data of some large lakes were directly downloaded from a recently
published dataset™. Also, we used the intra-annual lake-level datasets
from three portals: Hydroweb (https://hydroweb.theia-land.fr/), Global
Reservoirs and Lakes Monitor (G-REALM; https://ipad.fas.usda.gov/
cropexplorer/global_reservoir/) and Database for Hydrological Time
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Series of Inland Waters (DAHITI; https://dahiti.dgfi.tum.de/en/), respec-
tively®* 8, For months without lake area data in the dataset provided in
ref. 55, we follow the empirical relationship between lake water level
and lake surface area from a similar previous study® by interpolating
the missing lake-area datawith sampler-level data and converting the
lake area and level data to water storage changes.

Itis worth mentioning that the considered lakes (38 in total, indi-
cated by blue circles in Extended Data Fig. 6a) are typically large, with
33 of them having asurface area greater than 500 km?, accounting for
61.6% of the total surface area of Arctic lakes extracted inref. 55. For the
remaining smaller inland lakes® (red circles in Extended Data Fig. 6a),
the area data are very limited. Therefore, we use a scale-up strategy®
to estimate theirimpact on mass loading.

Taking KAGA station as an example, we find that the vertical displace-
mentinduced by the load of Arctic lake water storage during the study
period (2009-2015) ranges from —0.10 to 0.04 mm (Extended Data
Fig. 7a). This magnitude is sufficiently small to allow for neglecting
the potential influence of these lakes.

SGL on the GrIS. We also assessed the vertical displacement caused
by water mass loading from SGL on the GrIS. First, we divided the GrIS
into 10 x 10-km equal-area cells and identified all the cells with SGL
using approximately 300,000 high-spatiotemporal-resolution opti-
calimages from Sentinel-2 and Landsat 8/9 over 2017-2022, as shown
in Extended DataFig. 6b. Then, the monthly SGL area changes during
the melting season (that is, May-September) were derived. Note that
itis problematic to obtain the monthly SGL area change for the entire
GriSbefore the launch of Sentinel-2B satellites in 2017 owing to a high
cloud contamination. We assumed, however, that the SGL area changes
over the2009-2015 interval were similar to those over the 2017-2022
interval. When converting the SGL area changes to mass changes, we
assumed that the maximum depth of GrIS supraglacial lakes is around
8.5 m (refs. 61,62), which allowed us to estimate the upper limit of water
mass changes (Extended Data Fig. 7b). The result shows that, even for
the maximal depth of 8.5 m, the magnitude of loading signal caused by
SGL mass changes is about 0.3 mm. Thus, supraglacial lakes provide
only aminor contribution to the total BWS signal.

Proglacial lakes in Greenland. Similar to SGL, we also consider the
impact of proglacial lakes in Greenland using the HydroLAKES database
(Extended Data Fig. 6¢). In total, 2,687 proglacial lakes are taken into
account. Most of the proglacial lakes are smaller than 5 km?, whereas
thelargest one could reach roughly 100 km? The loading signal caused
by proglacial lakes is small. At the KAGA station, for instance, it is on
the order of only 0.02 mm (Extended Data Fig. 7c).

Contribution of groundwater storage in Greenland

In the context of the impact from groundwater storage® in Greenland

on the loading signals, we distinguish two types of groundwater:

1. Shallow groundwater in tundra areas, which results from snow
melting and rainfalls there. In principle, this is an ordinary compo-
nent of the terrestrial water storage, which is described by various
hydrological models, including those addressed in the manuscript
(PCR-GLOBWB and WGHM); see Extended Data Fig. 7d,e. According
toM.Bierkens, whois adeveloper of PCR-GLOBWSB, it is very difficult
to model the groundwater accurately in this region, but the model
outcome is enough for afirst-order estimate of its magnitude (per-
sonalcommunication,2024). In this study, we analyse the uncertainty
of groundwater estimates in the ‘Uncertainties of the mean annual
cycle of residual vertical displacements’ section.

2. Deep groundwater below the ice sheet (its presence was detected
by a hydrological well down to the depth of hundreds of metres®).
Itisaproductofice sheet melting (bothat the surfaceand at theice
sheetbase). To the best of our knowledge, little is known about vari-
ations in the deep groundwater mass. Here we consider the signal

from deep groundwater as a part of the total BWS signal we detect
in GNSS data. Unfortunately, elastic loading data do not allow the
deep groundwater to be separated from the rest of the BWS.

Validation of the results using GRACE data

Tovalidate theresults based on elastic loading data, we compared them
with water mass changes extracted from satellite gravimetry data.
We used four GRACE-based mascon data products. Three of them
are off-the-shelf products that were released by: (1) the Center for
Space Research (CSR RLO6 v02) of the University of Texas at Austin®*;
(2) theJet Propulsion Laboratory (JPLRLO6 v02)®; and (3) the Goddard
Space Flight Center (GSFC RLO6 v1.0)%¢*8, The fourth is the mascon
product computed in house****”°, We corrected the time series for
glacial isostatic adjustment using the model in ref. 71, subtracted the
SMB signal and detrended the results. Both the GRACE-based monthly
estimates of BWS and the monthly water-related elastic displacements
were averaged over entire Greenland. On this basis, BWS mean seasonal
cycleswere obtained. The mean of the four GRACE-based mean seasonal
cycles, aswell asthe mean seasonal cycles of elastic displacements, are
shown inFig. 3 for entire Greenland (the GRACE scale is inverted for
clarity). The standard deviations 6z Of the GRACE-based estimates
were computed as

1 |d2+d,2+d*+d,>
5GRACE=2/12334’ 1)

inwhich d; (withi=1, 2, 3, 4) represents the root mean square differ-
ence between the estimates based on the ith variant of the mascon
data product and the mean ones. The factor 1/2 is present because of
the fact that we address the error in the mean of the four time series,
rather than errors in the individual ones.

The seasonal cyclesbased on GRACE and GNSS data are remarkably
similar. In particular, both datasets show a mass increase from May to
July/August, with asubsequent mass loss until February the following
year. Minor differences between the GRACE-based and GNSS-based
results can be explained by random errors and the different spatial
resolutions of these two datatypes. We interpret the revealed similarity
as a confirmation that both types of data show the signal of the same
origin: an accumulation and release of water within the GrIS.

Analytic model of the BWS signal in GNSS elastic loading data
In this section, we explain the analytic function proposed to describe
the BWS signal in the residual vertical displacement data. At most of
the GNSS stations, aprominentsignalin the residual vertical displace-
ments is an upward trend, which reflects a slow mass loss caused by
ice discharge. Superimposed to this slow mass loss, there is a seasonal
BWS signal at many GNSS sites, which peaks in the middle of the sum-
mer (Fig. 2). We hypothesize that this signal is because of BWS. Our
interpretation stems from the fact that buffered water, which is not
refrozenin place, is not a part of SMB and, therefore, is not described
by SMB models.

The total mass balance for grid cell j of an SMB model can be repre-
sented as**:

dmo) _

i -DV(6) + BV (6) + ——2

ds9e) ’ Q)
de
inwhich M(¢) is the total mass, D(¢) is ice discharge, B¥(¢) is SMB and
S9(¢t)is the BWS.InRACMO02.3p2, SMB is computed as a combination of
four components%SMB =P - SU - ER - R, inwhich Pis total precipita-
tive flux (sum of snowfall and rainfall), SUis sublimation, ER is erosion
of snow by divergence of the drifting snow transport and R is runoff.
Figure 2 shows that, at many stations, the trend after the end of the
melt season does not appear as a continuation of the trend observed
before the melt season. This implies that the net changeintheice mass
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during the melt season is different from what could be expected ifice
discharge were the only cause of that mass change (atleast, under the
assumptionthattheice dischargeis constant over the considered time
period). Because the effect of temporal variations inice discharge is
probably minor (Fig. 3), we believe that there must be another expla-
nation for this mismatch. We hypothesize that it can be explained by
adifference between the mass loss owing to actual water runoff Rand
runoff R, from the SMB model. We assume that the true runoff, R, is
related to the modelled runoff, R,, as

R=(1+€)R,, 3)

in which factor ¢, accounts for errors in the modelled runoff and is
estimated per year. This factor is assumed to be spatially invariantin
the vicinity of a given GNSS station. Then, the true SMB can be repre-
sentedasSMB=P-SU-ER-R=P-SU-ER-(1+¢)R,=SMB, - €R,,
inwhichSMB, =P -SU - ER - R, is the modelled SMB. For a cell, the
true SMB contribution B%(¢) to the total mass balance can be written as

BYt)=BY(6) - ,RY(®), 4)

so that the mass balance equation given by equation (2) can be rewrit-
tenas:

dMV)(t)
de

dsY (t)

5
it )]

-D(6) + B(t) - e RO + ———

The integration of equation (5) over time yields the mass at a given
time trelative to the mass at the initial epoch ¢,. Let us assume for sim-
plicity that ¢, coincides with the beginning of a calendar year. Then,
the result of the integration is mass variation M¥(¢t), which is defined
under the assumption that MY(¢,) = O:

" t " t .
M9e) = —J" fo>(r)dr+LO BY(x)dr
K@) ‘ _ (6)
- z ekI RP(@dT+59(0) - $9(¢),

in which K(¢) is the number of the year containing the current time ¢,

by, s the time at the beginning of the kth year and by is either the time
attheendofthe kthyear (ifk < K) or the current time ¢ (if k = K). Notice
that theintegration of the term €,R,”(t) over time implies that the mod-
elledrunoffisintegrated separately in each year; theresults are scaled
with factors €, and summed over all years (up to the year containing
the currenttimet).

We assume that the contribution of theice discharge does not change

over time: -DY(¢) = A%. Then, equation (6) can be simplified as:

) ) ) ¢ K@) the . .
MO =cO+ A+ [ BP@dr- Y [ “ RP@dT+s90, @
fo k=1 Lko

in which C% = A%, - $9(t,). The mass variations given by equation (7)
result in vertical elastic deformations of the solid Earth. Assuming a
linear relationship between mass variations and elastic deformations,
we canrewrite equation (7) in terms of vertical elastic deformations at
the location of a GNSS station:

K(t)

m(t) = c+at+j bo()dT - Z ekj" ro(Ddr+s(0), ®)

inwhich different signalsin the time series of vertical elastic deforma-
tions (denoted with lowercase letters) are associated with the corre-
sponding mass signals (denoted with capital lettersin equation (7) and
before). Technical details of the transformation of surface mass load

into elastic vertical deformations can be found in the section below
entitled ‘Computation of elastic vertical deformations and spatial sen-
sitivity of GNSSloading data’. The left-hand side of equation (8) contains
the residual GNSS measurements before the correction for the SMB
signal. On theright-hand side, we see, among others, the elastic defor-
mations associated with the SMB model, (I bo(T)dT) and the elastic
deformations associated with the computed (runoff (f kke ro(r)dr).Both
signals are computed on the basis of the RACMO02.3p2 nodel output.
The unknown constant factors a, cand ¢, can be estimated using least
squares from the observed time series m(t). The only term thatrequires
afurther discussion is the signal s(¢) associated with the BWS.

Let us consider the total BWS S(¢) in the drainage basins located
around the current GNSS station (more specifically, in the drainage
basins that substantially affect the elastic deformations at the current
GNSS station). Temporal variations of that BWS mass are equal to the
difference between the total runoff R(¢) in those drainage basins (which
describestherate of liquid water production) and the rate Q(t) (which
describes discharge of water from the drainage basin into the ocean):

sy
T—R(t) Q(l’) 9)

Because transport of water from the location of production to the
location of discharge can take weeks or even months, the BWS 5(t)
can be substantial. Let us assume that the discharge into the ocean is
proportional to the BWS (that is, drainable water storage), whichis a
commonly used assumption in hydrology’:

Qo) =ps(0), (10)

in which Sis a certain constant proportionality coefficient. The sub-
stitution of this expression into equation (9) yields:

SO~ po) - psto )
or

ds(e)

S +—s<r) R(0), 1)

inwhich T, = 8. Assuming that the runoff R(¢) is given, we can readily
find the solution of the differential equation given by equation (12) as

-t t _t-T
S@O)=S(tge T« + | Rme T dr. (13)
to

From this expression, it follows that the parameter T, can be inter-
preted as the characteristic time of BWS. We refer to it as the ‘water
storage time’.

The first term in equation (13) represents the impact of the initial
BWS, 5(¢,). Because ¢, is assumed to coincide with the beginning of a
calendaryear (here year 2009), we set S(¢,) = O (to minimize theimpact
ofthisassumption, we ignore year 2009 in the subsequent analysis as
an ‘initialization’ year). Then, we obtain:

t -t
S(o) =L R()e Tudr. 14)
0

Equation (14) allows us to introduce an approximate relationship
between runoff and BWS in terms of loading signals.

If the spatial pattern of runoff was similar to the spatial pattern of
BWS, equation (14) could be rewritten in terms of the loading signal
directly (as it was already done when equation (8) was introduced).
Inpractice, of course, thisis not the case. Notably, vertical deformation



reduces as the distance between the GNSS station and the location
of the surface load increases™. Therefore, the buffered water signal
measured at a GNSS station can show systematic deviations from the
values predicted on the basis of the runoffinline with equation (14). To
take this effectintoaccount, weintroduce an empirical scaling factor 8
per GNSS station, so that an approximate relationship between runoff
and BWSin terms of loading signals is:

() = eJ" r(ne T dr. (15)

Takingintoaccount that the true runoffis defined asascaled variant
of the modelled one (see equation (3)), we can rewrite the expression
above as:

K(t)

s()=0 2 (1+ek)J~ r(De T dr. (16)

After the substitution of this equation into equation (8) and the
isolation of the known terms on the right-hand side, we finally obtain:

K(t) K(t) -

c+at- Z ekj r(ndr+6 Z (1+ek)f ro(t)efT
17)

=m(® —LO by(Ddr

By considering this equation for all times t within the interval under
consideration, we can formasystem of nonlinear equations containing
n+4unknown parameters per GNSSstation:c,a, 0, T,and e, (k=1,..., n),
inwhich nis the number of years in the considered time interval.

To estimate all the unknown parameters, an iterative least-squares
adjustment could be directly applied. In the course of a preliminary
study, we realized, however, that there is a trade-off between water
storage time T, and the mean value of the corrections ¢,. Each of the
two can be used to explain signals in the input data, whereas an attempt
to estimate them simultaneously frequently results in unphysical esti-
mates (for example, a nearly zero water storage time). To solve that
problem, we haveintroduced a constraint that forces the mean value of
the corrections ¢,to be equal to zero. This constraint canbeinterpreted
asanassumption that the runoff estimates provided by the SMB model
are correct on average in the study period (even though they still may
containerrorsinindividual years). Furthermore, we watch thate, > -1.
Aviolation of thisinequality implies that the true runoffinagivenyear
isnegative. Then, inline with equation (14), the estimated BWS becomes
negative as well. Of course, all of that is unphysical. Ina few cases when
this still happens, we refrain from estimating the true runoff. Instead,
we force the corresponding estimates of €, to be exactly equal to -1.
This corresponds to a zero runoff and a zero BWS.

Once all of the unknown parameters are estimated, the vertical dis-
placements caused by variationsin BWS canbe readily computed with
equation (16). For acomparison, we also present the vertical displace-
ments computed under the assumption that the SMB-based runoff esti-
mates are correct, so thate, = 0. Under this assumption, equation (16)
simplifies to:

s(t) = Gf ro(r)e_%dr. (18)
0

To distinguish the BWS-related vertical displacements computed
with equations (16) and (18), we call them ‘calibrated’ and ‘uncalibrated’,
respectively.

Notably, the last term on the left-hand side of the functional model
givenby equation (17) describes the accumulation and discharge of the
BWS, whichisashort-term process. This signal declines exponentially

after the end of the melt season (that is, after the runoff-related signal
ro(t) turns to zero). This is fully consistent with the behaviour of BWS,

whichis primarily produced as aresult of ice/firn/snow melting and ends
up as dischargeinto the ocean. This term controls, inthe firstinstance,
the estimated water storage time T, and empirical coefficient 6. By con-
trast, the third termontheleft-hand side of equation (17) describes the
long-term effect of inaccuracies in the runoff estimated as part of the
SMB. The effect of these inaccuracies does not vanish in the course of
time. The estimated corrections ¢, are mostly controlled by this term,
whereas the impact of the fourth term on those estimates is minor. To
demonstrate that, we have considered amodified functional model that
lacks the BWS-related signal (that s, the aforementioned fourth term):

K(t)

c+at- Z ekJ" ro(Ddr=m(®) - J" by(D)dr. (19)

Of course, such afunctional modelis not applicablein the course of
the meltseason and immediately thereafter. Therefore, we have limited
theinput datatimeseries to either 6 months per year (November-April)
or even to 4 months per year (December-March). This allowed us to
obtaintwoalternative estimates of corrections ¢, (as well as those based
ontheoriginal functional model given by equation (17)). The mean of the
three estimates, as well as the associated standard deviation, isreported
interms of scaling factor (1 + ¢,) per station per year in Extended Data
Table 4. We can see that the standard deviationin most casesisless than
0.15. Only one GNET station—GMMA—may show standard deviations
larger than 0.3. This means that the obtained estimates of corrections €,
aresufficiently robust; intrinsic uncertainties associated with the spatial
distribution of BWS during the melt season have only a minor effect.

Accuracy of the obtained estimates

Uncertainties for all reported estimates have been quantified. This
concerns both water storage times (Fig. 6 and Extended Data Table 3)
and the scaling factors to be applied to the SMB-model-based runoff
estimates (Fig. 5 and Extended Data Fig. 2d). The input for the error
propagation procedure was defined as the standard deviation of
errors in the residual displacements. To that end, the post-fit residu-
als obtained after fitting the residual displacements with the analytic
function given by equation (17) were considered as realizations of the
aforementioned errors, which were assumed to be uncorrelated. In
view of anonlinearity of theinversion procedure and a skewness of the
resulting error probability density functions, the error propagation
was implemented by means of Monte Carlo simulations™, in which
100realizations of random errors were generated for each station. The
resulting uncertainty intervals were quantified with the 1st quartile and
the 3rd quartile as the lower and upper bounds, respectively.

Computation of elastic vertical deformations and spatial
sensitivity of GNSS loading data

Because the solid earthisanelasticbody, it experiences vertical defor-
mations in response to a changing surface mass load. Let that load be
definedin terms of equivalent water height (EWH) as (¢, A), inwhich ¢
andAis geographical colatitude and longitude, respectively. We com-
pute theresulting vertical deformations* U(g, A) as the convolution of
the surface massload sources m(¢”, 1”) with the Green’s function G(¢):

U@, M =[[ m",.2")6g)do (20)

with

GW)=—5 > hiR(cosy), 1)

€ =0

inwhich g is the spherical angular distance between the points (¢, 1)
and (¢”, 1”); oistheintegration area; a. and m.are the meanradius and
mass of the Earth, respectively; h, is the nth degree load Love number;
and P,(cosy) are fully normalized Legendre polynomials. As follows
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fromequation (20), vertical deformations are proportional to the mag-
nitude of surface mass load.

Todemonstrate a possible spatial variability of elastic vertical defor-
mations, we have considered several surface mass loads, each of which
ishomogeneously distributed over a disc of agiven radius. The thick-
ness of eachdiscis defined in terms of EWH such that the deformation
atitscentrereaches 5 mm, whichis similar to the magnitude observed
inreal data (Fig. 2). We can see (Extended Data Fig. 8a) that the spatial
variability of the resulting deformations strongly depends on the spatial
extent of the surface load. We believe that a disc of 200 km (or larger)
radius, withatotal mass of (atleast) 35 Gt, gives the best approximation
of the actual surface load distribution. This is because the total BWS
mass per drainage system estimated from GRACE satellite gravimetry
dataisontheorder of20-40 Gt (ref. 34), whereas the shape of the actual
surface load distribution probably resembles half a disc rather thana
disc (most of the GNSS stations are located near the coast, whereas the
surface load over the ocean is nearly constant). This simple example
also shows that the position of any realistic surface load relative to a
given observation point must move laterally by at least a few tens of
kilometres to change the elastic vertical deformation at the observation
point substantially. This means, for instance, that alocal redistribution
of meltwater within the firn layer cannot affect deformations observed
atagiven GNSS station.

Also, we performed a sensitivity study to clarify how mass changes
over the entire GrlS, including outlet glaciers hundreds of kilometres
away, may affect the observed mass loading signal in practice”. By
taking the detrended SMB in July 2012 (Extended Data Fig. 8b) as the
GrlS mass change signal, we analyse the sensitivity of GNSS loading
observed at the KAGA station as an example. The processing strategy
is to take the KAGA station as the centre, create ring-shaped zones
outward with a step width of 50 km, calculate the vertical displace-
ment caused by SMB inside each ring and then normalize with the SMB
signal from entire Greenland. The obtained sensitivity curve (Extended
Data Fig. 8c) reveals a substantial contribution from the ‘near field”:
SMB changes within 200 km from KAGA contribute about 80% to the
detrended SMB loading displacements. There is little sensitivity to
SMB beyond 500 km from KAGA. This is evidence of a relatively high
spatial resolution compared with GRACE data: the spatial resolution
ofthelatteris onthe order of 400 km (in terms of wavelengths, when
the spherical harmonic expansion to degree 96 is considered) or even
worse.

Data availability

Water-related vertical displacements data for all GNET stations analysed
inthis study can be found at https://doi.org/10.5281/zenodo.8313978
(ref. 85). The GNSS loading dataused were provided by the International
Mass Loading Service (http:/massloading.net/; accessed 1January
2022), the Nevada Geodetic Laboratory (http://geodesy.unr.edu/;
accessed1January 2022) and Technical University of Denmark (https://
ftp.space.dtu.dk/pub/abbas/GNET/; accessed 1January 2022). The
ice-flow velocities and ice-thickness base maps are provided by NASA’s
Making Earth System Data Records for Use in Research Environments
(MEaSUREs) programme (https://doi.org/10.5067/IMR9D3PEI28U;
accessed 1January 2022). The SGL area changes data are provided at
https://doi.org/10.5281/zenodo0.10398558 (ref. 86). Source data are
provided with this paper.

Code availability

The MATLAB scripts used to process seasonal elevation changes
to plot the main figures are available at https://doi.org/10.5281/
zenodo.13836132 (ref. 87). The code of the GRACE MASCON approachto
produce mass change of GriSis also released at https://doi.org/10.5281/
zenodo.13836135 (ref. 88).
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Extended DataFig.1| Timeseries and analysis of residual vertical
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Extended DataFig.2|Summer temperature anomalies and their
correlation with estimated scaling factors. a-c,2010-2015 summer
temperature anomalies for different GNET stations. d, Scaling factor versus
temperature anomaly (all stations and yearsin the 2010-2015 interval are
considered). Thebluelinerepresents the empirical relationship between the
two quantities estimated by means of linear regression. The estimated
correlation coefficientis 0.42. The observed slope of the blueline is
statistically significant (the two-tailed P-valueis 2.7 x 10™°). Error bars are
defined onthebasis of the 1st and the 3rd quartiles as the lower and upper
bounds, respectively, from100 Monte Carlo runs.



Article

2012 2013 2016

Time (Yr)
NTOL

2014

U (mm)

2012 2013 2016

Time (Yr)
TEM

2010 2014

U (mm)

2012 2013
Time (Yr)
Residual GNSS data

2014

2011

50 T

2012 2013
Time (Yr)
Models and data

2014 2016

2011

—~ 20
1S
E o
o]
-20 L i i L i
2009 2010 2011 2012 2013 2014 2015 2016
Time (Yr)

Extended DataFig. 3| Vertical bedrock displacements and the contribution
of nuisance signals. Time series of observed vertical displacements at the
KAGA station (panel a) and time series calculated for different nuisance signals,
aslistedin Extended Data Table1: ATM,NTOL, LWS, TEM and SMB (panels b-f), as

2012 2013
Time (Yr)
LWS

2015 2016

2009 2010 2012 2013 2015 2016
Time (Yr)
50 SMB
_ f T T T T T T
0]
E or
o}
50 A L L L L L
2009 2010 2011 2012 2013 2014 2015 2016
Time (Yr)

Original and Residual GNSS data

— 20ifh)
IS
E
o)
-20 L L i L L
2009 2010 2011 2012 2013 2014 2015 2016
Time (Yr)

wellas the residual displacements after subtracting the calculated nuisance
signals (panel g), the observed (blue) versus theresidual displacements (red)
after detrending (panelh) and the observed (blue) versus modelled
displacements (red) after detrending (paneli). Note the different vertical scales.



U (mm)

—%— SMB from RACMO2.3p2

8 @ 1 1 L | ] 1 . |~ SMB from MAR v3.9
2 3 4 5 6 7 8 9 10 11 12 1 2

Calendar month

U (mm)

s \V/4 ——LWS by GLDAS
© W ———LWS by PCR-GLOBWB
s ‘ ! . ‘ , | I LWS by WGHM

2 3 4 5 6 7 8 9 0 11 12 1 2
Calendar month

4 T T T T T T T T T T T

U (mm)

6

—%—TEM by FEM

Wi e s T TEM by HAR
2 3 4 5 6 7 8 9 10 11 12 1 2

Calendar month

4 ; : ; ; : ; : . ;

2
0
£
E
=2
)

-4 -

—7— without GWS
GWS by WGHM
6 (9) . ] ‘ ‘ | GWS by PCR-GLOBWB

2 3 4 5 6 7 8 9 10 11 12 1 2
Calendar month

Extended DataFig. 4| Estimation of individual contributors to the error
budget for theresidual vertical displacement meanannual cycle at the
KAGA station. For that purpose, either the primary GNSS data themselves or
one of the primary background models of nuisance signals (red lines) are
replaced with one or two alternatives (green andblack lines). The panels present
differentestimates of SMB loading variations (the estimated uncertainty is

—— ATM by NCEP
b ——— ATM by MERRA2
() Y e ATM by GEOS-FPIT

2 3 4 5 6 7 8 9 0 11 12 1 2

—%—NTOL by ECCO

8 @ I I I I | I L ——NTOL by MPIOM06
2 3 4 5 6 7 8 9 0 11 122 1 2

Calendar month

5 T T T T T T T T T T T =
\
4

ok 1
£
E
-]

5+ 8

(f) —%— GNSS by Khan et al. (2010)
10 | | | | . |— GNSS by Nevada Geodetic Laboratory

2 3 4 5 6 7 8 9 10 11 12 1 2
Calendar month

s B
—%— Consider lakes in Arctic regions

Consider supraglacial lakes in GrlS

8 L . | . L
2 3 4 5 6 7 8 9 0 11 12 1 2

Calendar month

0.71mm) (a); ATM loading variations (0.35 mm) (b); LWS loading (0.21 mm) (c);
NTOL loading variations (0.25 mm) (d); TEM variations (0.02 mm) (e); GNSS
solutions (1.04 mm) (f); groundwater loading (0.24 mm) (g); and water mass
loading from lakesin Arcticregions (0.008 mm) and supraglacial lakes in GrIS
(0.02mm) (h).



Article

70 B

60

50

Ice discharge (Gt/yr)

40

2009 2016

T T T T
2012 2013 2014 2015

Time (Yr)

T T
2010 2011

(c)

—— Residual GNSS data-SMB|{
— Seasonality of ID
T T T T T T T T T

05 06 07 08 09 10 11 12 01 02
Calendar month

-10 T
02 03 04

Extended DataFig. 5|Seasonality ofice discharge and associated vertical
displacements at the KAGA station. a, Theice discharge estimated by King
etal.”*for theJakobshavn Isbre glacier from 2009 to 2015. b, The annual
cyclesof vertical displacements at the KAGA station caused by ice discharge
variations atJakobshavnlIsbrae, showing the mean (thick red curve) and

15 —
02 03 04

T T T T T T T

T T
05 06 07 08 09 10 11 12 01 02
Calendar month

individual years from2009 to 2015 (thin curves). ¢, Observed monthly mean
vertical displacements at the KAGA station (red line), including 68% confidence
interval (red shadowing) and similar displacements computed from
Jakobshavnlsbreice discharge (blackline).



120° E Lakes without data
83, 319.88 km?
i3
a) * ‘
180° - = T = :
~ 'f' . S~
;o o0 N
7 . A a
o~ / ‘ — ’i%"\ Lake area proportion 133 88038 km?
R P e - 2
AN &t/ .
" AN
. ’ .

> 10, 000 kmz
5, 000 km?
2
1, 000 km <500 km?
Legends:
/

-5 - - 0° e Lakes without data
T . e Lakes with data

B Lakes polygon

60 W°

*evai-."
) -

Proglacial lakes on Greenland (based on HydroL AKES)

. . [ ] [ ]
. e lakearea 0-5km? 5-10km? 10-50 km? 50-100 km?* > 100 km*
“®  Lakenumber 2324 180 159 19 5

Extended DataFig. 6| Three types of lake considered in this study. a, Lakes
inthe pan-Arctic region. b, Spatial distribution of cells with SGLs. The cells with
SGLsin2017-2022 are identified using optical images from Sentinel-2 and

Landsat 8/9 satellites. The cells without SGLs are shown in grey. ¢, Spatial
distribution of proglacial lakes in Greenland.
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Extended DataFig.7| Vertical displacements at the KAGA station owing to

different components. a, For water mass changes in lakes in the pan-Arctic
region. b, For SGL mass changes within the entire GrlS. ¢, For proglacial lake
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Extended DataFig. 8| Analysis of the spatial sensitivity of GNSS loading respectively. These results are consistent with Fig.1of ref. 77.b, Detrended
signal. a, Deformations caused by aloading of discs of several radii at different SMB massanomaliesinJuly 2012, which are used as input. ¢, Cumulative
distances fromthe disc centre. The thickness of each discis definedinterms contribution tothe detrended upliftat the KAGA station owing to SMBloading,
of EWH such that the deformation atits centrereaches S mm (namely, 147 cm, dependingon the radius of the buffer zone around that station. All of the
53 cm,35cmand 28 cm for discs of 20 km, 80 km, 140 kmand 200 km radius, numbers are normalized with the loading uplift caused by the SMB signal from

respectively). The corresponding disc masses are1.8 Gt,11 Gt, 22 Gtand 35 Gt, entire Greenland.
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Extended Data Table 1| Background models applied to correct for nuisance signals in the GNSS data vertical displacements

Temporal Spatial
Signal Models sampling resolution
NCEP” 6 hours 2.5°x2.5°
Atmospheric loading
MERRA2” 6 hours 0.5°% 0.625°
(ATM)
GEOS-FPIT" 3 hours 0.5°% 0.625°
Non-tidal ocean loading ECCQO®'-#2 12 hours 1°x 1°
(NTOL) MPIOM06% 6 hours 2% 2!
84 o o
Land water storage loading GLDAS/Noah 3 hours 0.25° x 0.25
(LWS) PCR-GLOBWB?’ 1 month 0.5°x 0.5°
WGHM* 1 month 0.5° % 0.5°
Surface mass balance 1x1 km (GrIS);
5.5%5.5 km
(SMB) RACMO2.3p2% 1 day (tundra)
MAR v. 3.9% 1 month 7.5%7.5 km
Thermal elastic expansion ~ FEM from ERA-5* 24 hours 0.25° x 0.25°
(TEM) HAR from ERA-5" 24 hours 0.25° x 0.25°

Alternative background models, which were only used to quantify uncertainties of estimated mean annual cycles of vertical displacements, are presented in italics. References 78-84.



Extended Data Table 2 | Average annual scaling factors (1+¢,)

N-NE S-SE W Greenland

2010 1.16£0.11 1.2240.06 1.21£0.06 1.2040.15
2011 1.2240.12 1.10£0.08 1.08+0.07 1.13+0.17
2012 1.26£0.11 1.18+0.06 1.2940.06 1.2440.14
2013 0.3940.16 0.75+£0.09 0.68+0.10 0.60+0.22
2014 0.89+£0.14 0.984+0.08 1.01+0.09 0.96%0.19
2015 0.83+0.20 0.82+0.12 0.79£0.13 0.824+0.27

These scaling factors are to be applied to the SMB model runoff estimates to make the resulting vertical displacements best match GNET station observations. The average scaling factors are
computed for entire Greenland, as well as for three separate regions: (1) north and northeast (stations from MARG to VFDG); (2) south and southeast (stations from MIK2 to SENU); and (3) west
(stations from KAPI to SRMP). The uncertainties are computed as the standard derivations of scaling factors for GNET stations in different regions.
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Extended Data Table 3 | Estimated water storage time for each GNET station

station water ?:l(;ryasg)e time Water(zszéell(gs time distance to ice sheet (km)
MARG 12913, 18 9.143
LEFN 4613 7 3.661
GMMA 60*7 9 57.342
HMBG 70*¢ 10 6.515
DGJG 6871¢ 10 13.250
SCOR 5473 8 70.382
VFDG 8873 13 15.788
MIK2 33713 5 15.678
KSNB 52132 7 29.487
HEL2 1941 3 2.398
KULU 4013 6 67.859
TREO 2911 4 1.236
HJOR 141 2 20.712
QAQI1 4072 6 46.075
SENU 2471 3 0.549
KAPI 9374 13 36.422
KELY 5144 7 40.910
KAGA 32%2 5 5.649
ILUL 7913 11 33.137
QAAR 6273 9 69.408
RINK 6073 9 12.650
SRMP 7313 10 1.421

Water storage time uncertainties are computed as the 1st quartile (lower bound) and the 3rd quartile (upper bound) from 100 Monte Carlo runs.



Extended Data Table 4 | Scaling factors (1+¢,) based on three estimation strategies per year per GNET station

Station 2010 2011 2012 2013 2014 2015
GMMA 1.07+0.12 2.16+0.43 0.93+0.09 0.54+0.14 0.47+0.18 0.82+0.39
HMBG 1.12+0.04 1.27+0.08 1.26+0.03 0.58+0.05 0.72+0.08 1.02+0.01
DGIG 1.21+0.03 1.28+0.08 1.30+0.04 0.52+0.06 0.75+0.08 0.950.02
VFDG 1.02+0.02 1.22:+0.04 1.34+0.02 0.66+0.02 0.82+0.05 0.93+0.05
MIK2 1.33+0.03 1.33+0.06 1.02+0.04 0.800.08 0.910.01 0.610.04
KAPI 1.490.20 0.79+0.20 1.37+0.06 0.81+0.08 0.93+0.07 0.61+0.05
KAGA 0.953:£0.004 1.09+0.02 1.30+0.02 1.02+0.02 0.98+0.02  0.739+0.009
MARG 1.09:£0.06 1.26+0.04 1.17+0.04 0.64+0.13 1.08+0.08 0.70£0.04
LEFN 1.08+0.07 1.15+0.05 1.21+0.04 0.53+0.07 1.07+0.03 0.76+0.10
SCOR 1.05+0.09 1.22+0.04 1.49+0.03 0.64+0.08 0.64+0.14 1.01+0.08
KSNB 1.089+0.009 1.44+0.07 1.26+0.03 0.66:0.04 0.86+0.08 0.85+0.13
HEL2 1.15+0.03 0.61+0.02 0.93+0.12 0.900.10 0.66+0.12 1.53+0.03
KULU 1.12+0.03 1.15+0.02 1.28+0.04 0.26+0.17 0.790.03 0.96+0.10
TREO 1.29+0.03 1.17+0.04 1.04+0.07 0.70+0.05 0.94+0.06 0.78+0.05
HIJOR 1.33£0.02  0.980+0.001 1.29+0.02 0.53+0.09 0.85+0.06 0.84+0.06
QAQI 1.27+0.02 1.1940.04  1.328+0.005 0.86+0.05 1.13+0.02 0.45+0.07
SENU 1.12+0.02 1.01+0.02 1.08+0.01 0.97+0.10 0.95+0.06 0.96+0.02
KELY 0.91+0.08  1.194+0.009 1.29+0.02 0.83+0.04 1.04+0.04 0.86+0.06
ILUL 1.02+0.13 1.12+0.14 1.25+0.03 0.91+0.07 1.19+0.06 0.82+0.06
QAAR 0.98+0.13 1.42+0.12 1.3740.13 0.45+0.21 0.95+0.07 1.02+0.13
RINK 1.18+0.05 1.27+0.04 1.17+0.05 0.43+0.06 0.86+0.07 0.82+0.06
SRMP 1.26+0.06 1.28+0.03 1.12+0.02 0.55+0.02 0.89+0.06 0.940.06

Each of the scaling factors under consideration is estimated in three different ways: (1) using equation (17); (2) using equation (19), while limiting the input data time series to 6 months per year
(November-April); and (3) also using equation (19) but after limiting the input data time series to only 4months per year (December-March). The mean of the three estimates and the associated
standard deviation is reported. The values with standard deviations larger than 0.15 and 0.30 are highlighted in yellow and red, respectively.
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