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Abstract
Constraint programming is a paradigm used for
solving complex combinatorial problems with ap-
plications in logistics, healthcare, telecommunica-
tions, and many other fields. Among the many
constraints used in constraint programming is the
inverse constraint, necessary for matching items
one to one, such as the placement of containers on
ships and task scheduling. This paper presents a
novel propagator for the inverse constraint, leverag-
ing the Dulmage-Mendelsohn decomposition, im-
plemented in the Pumpkin solver, to improve the
performance of the solver. Unlike decompositions
of the constraint into other simpler constraints, our
approach utilizes the full bipartite graph structure
of the constraint, generating stronger and more
reusable explanations for unsolvable states.
Experiments were conducted on benchmark prob-
lems taken from the MiniZinc challenge, includ-
ing the Time-Dependent Traveling Salesman Prob-
lem (TDTSP) and Perfect One-Factorization (P1F).
These experiments demonstrated the effectiveness
of the propagator. Achieving up to a 35% reduction
in the time taken by the solver for some instances
of TDTSP, the method also highlights limitations in
the symmetric application of the inverse constraint
on a single array. These findings advance our un-
derstanding of the propagation of the inverse con-
straint and show the potential of graph based tech-
niques to optimize LCG solvers. Future work aims
to optimize the implementation and explore its per-
formance in relation to a broader spectrum of tech-
niques.

1 Introduction
Every day millions of containers are transported on ves-
sels around the world, using complex algorithms to opti-
mize container placement for safe and efficient transport
[10]. Constraints programming is one of the paradigms
used for solving these critical challenges [10], it does this
by breaking them down into smaller constraints and solv-
ing them efficiently. This approach is also used in fields
such as logistics, healthcare, and telecommunications [3; 6;
10].

The problem of placing containers on vessels is solved in
constraint programming by splitting it into distinct constraints
based on rules, regulations, and practical considerations [10].
For safety reasons, oxidizers cannot be placed near fuels and
toxic chemicals cannot be stored near food [9]. Furthermore,
to maximize efficiency, containers scheduled for earlier un-
loading should be placed on top of those requiring later un-
loading, while heavier containers should be placed at the bot-
tom and lighter ones on top [10]. Among all these constraints,
and perhaps most importantly, every container must be as-
signed to a single spot, and every spot must contain exactly
one container. This constraint, which involves matching one
item in one set to exactly one item in another, is commonly

referred to as the inverse constraint and is the central focus of
this paper.

In recent years, there has been a tremendous amount of
research conducted by various universities, open source com-
munities, and industry giants such as Google [7], in an at-
tempt to produce more and more efficient constraint program-
ming solvers. The two most prevalent competing types of
solvers are the satisfiability (SAT) and lazy clause generation
(LCG) solvers. SAT solvers work by transforming the con-
straints into a Boolean satisfiability problem and then using
highly optimized algorithms to solve it [12]. LCG solvers,
which are the focus of this paper, implement a layer above
the SAT solver where global constraints are propagated first
by dedicated propagators that reduce the domains of the vari-
ables using algorithms specific to the constraint, and if the
problem is unsolvable, return a no-good explaining why [12].

Despite this, LCG solvers still struggle to solve handling
the inverse constraint, which is essential to solve problems
containing a one-to-one mapping, such as the container place-
ment problem. Although some solvers provide dedicated
propagators to solve the inverse constraint, they decompose it
into other constraints [15; 14], potentially losing information
that could be learned from the graph structure in situations
where the problem is found to be unsolvable.

To address this gap, this paper presents the implementation
of an inverse propagator for the Pumpkin Solver, developed in
Rust by the ConSol lab at TU Delft [2]. The proposed prop-
agator uses Dulmage-Mendelsohn canonical decomposition,
to explain why specific states are unsolvable. The method is
tested against the standard MiniZinc decomposition of the in-
verse constraint, on problems taken from the MiniZinc chal-
lenge. Our results demonstrate the effectiveness of this ap-
proach in improving solver performance.

This method takes into account complex structures present
in the inverse constraint without decomposing it into other
constraints. This allows for potentially more useful no-goods,
which would lead to a more efficient solver.

The experiments show that our propagator outperformed
the MiniZinc decomposition in the time-dependent traveling
salesman problem (TDTSP), where its utilization of graph
decomposition leads to stronger explanations and improved
solver efficiency. However, it underperformed in the per-
fect one-factorization problem (P1F), where the symmetric
application of the inverse constraint to an array and itself in-
troduced unnecessary abstraction and complexity during the
Dulmage-Mendelsohn decomposition, limiting its effective-
ness.

This paper contributes a novel implementation of
an inverse constraint propagator, utilizing the Dulmage-
Mendelsohn decomposition technique to improve the strength
and reusability of explanations of unsolvable states of the
problem to improve solver efficiency. Unlike previous imple-
mentations, this propagator utilizes graph decomposition of
the whole problem without decomposition, capturing more
of its state. This is particularly impactful for problems like
TDTSP, in some cases achieving as much as a 35 percent
reduction in the time spent solving the problem, where the
decomposition accurately models the state of the problem.
However, for problems such as P1F, where the inverse is ap-



plied symmetrically to a single array, the MiniZinc decom-
position or other decompositions of the constraint are more
effective.

This paper is structured as follows. Section 2 introduces
concepts used throughout this paper. Section 3 defines the
problem that our research aims to solve. Section 4 reviews
related work. Section 5 details the proposed algorithm for
propagation of the inverse constraint. Section 6 presents the
experimental results, and Section 7 discusses ethical consid-
erations. Finally, Section 8 discusses the conclusions and rec-
ommendations for future work.

2 Preliminaries
This section introduces the main concepts used throughout
this paper, such as the inverse constraint, MiniZinc decom-
position, lazy clause generation, and Dulmage-Mendelsohn
decomposition.

2.1 Inverse Constraint
The inverse constraint commonly appears in different compu-
tational problems in various fields. For example, in logistics,
it is necessary when placing containers on a vessel to ensure
that each container receives exactly one spot and each spot
gets exactly one container [10]. It can also be used in com-
puter task scheduling problems, where each task needs ex-
actly one allocated resource or time slot and vice versa [12].
Another occurrence of the inverse constraint is in education,
where during an exam week, exams from the same course
must be in different time slots to allow students to attend all
their exams and resists, and during the same time slot exams
from different courses must be in different rooms [8].

The inverse constraint can be formally described as a con-
straint that requires the elements of two sets to be matched
exactly one to one, this is also known as a perfect matching
[4]. This can be expressed as two arrays X and Y where the
value of one matches the index of the other and vice versa,
so if X[i] = j then Y [j] = i [4]. The constraint can also be
seen as a graph containing vertices Xn and Y n with a single
edge connecting each of the vertices in X to a single vertex
in Y [4]. For example, in the following arrays, x1 is matched
with y5 because X[1] = 5 and Y [5] = 1. This also holds for
x2, x3, x4, x5 and y4, y3, y2, y1.

Figure 1: Graph satisfying the inverse constraint

This same relationship can be seen in figure 1. Here, x1 is
matched with y5, x2 with y4, x3 with y3, x4 with y2, and x5

with y1.

X = [5, 4, 3, 2, 1]

Y = [5, 4, 3, 2, 1]
(1)

2.2 MiniZinc Decomposition
MiniZinc provides an interface to communicate with various
constraints programming solvers[16]. It does so by providing
a language to describe problems and their constraints. MiniZ-
inc can also compile problems into FlatZinc files, which con-
tain exact instructions on what variables should be initialized
at and what constraints are applied to them[16]. It does this
by first checking which constraints the solver supports, and
if the solver does not support a constraint, it decomposes it
[16].

In the case of the inverse constraint, MiniZinc decomposes
it as follows, for the two arrays X and Y it states that xi

indicates where i is in the array Y and yj indicates where j
is in the array X . This constraint is then applied for each
element in X and Y [16].

2.3 Lazy Clause Generation
Lazy clause generation (LCG) solvers work by combining
Satisfiability (SAT) and Finite Domain (FD) solvers, to lazily
generate clauses throughout the FD solving process that ex-
plain the problem in Boolean logic [12]. This allows the SAT
solver to find the solution and take advantage of no-goods that
have been generated. leading to a drastic reduction in search
space and an increase in the performance of these solvers
[12].

LCG solvers have separate propagators for different global
constraints. These propagators work by first decreasing the
size of the variables domains and giving a Boolean explana-
tion for why this reduction was done[12]. For example, there
is have an equality constraint between variables x and y with
the following domains:

D(x) = [1]

D(y) = [1, 2]
(2)

It is clear that y cannot be two since x and y have to be equal
and x cannot be two. This allows for the removal of two from
the domain of y with the explanation of y ̸= 2 because x ̸= 2.
In the future, this explanation allows us to remove two from
the domain of y if x is not equal to two. To be able to do this,
the explanations provided must be self-sufficient. So in any
situation where x ̸= 2 then y ̸= 2 must always hold [12].

The removal of all inconsistent values from the domains
of all of the variables is referred to as achieving hyper-arc
consistency. Or more formally: a constraint C is considered
hyper-arc consistent if, for every variable xi in the constraint,
every value in the domain of xi has a consistent combination
of values from the domains of the other variables that satisfies
the constraint[12]. Hyper-arc consistency is desirable, but not
always achievable due to high computational costs for some
constraints [12].

Additionally, propagators in an LCG solver verify if the
current domains of variables allow for a feasible solution. If
a solution can no longer exist, then the propagator returns a
no-good. This no-good is a description of what in the problem
leads to it being unsolvable [12]. For example, if we have an
equality constraint on the variables x and y with the following
domains:

x ≤ 2

y ≥ 4
(3)



With these domains a solution can clearly never exist, as x <
y so they can never be equal. One of the no-goods that could
be provided for this state is x ≤ 2 ∩ y ≥ 4. No-goods are
used to prune the search tree by stopping as soon as a known
no-good is found to be true. So in this case, if x is less than
two and y is greater than 4 then there is no need to search any
further.

2.4 Dulmage-Mendelsohn Decomposition
A Dulmage-Mendelsohn decomposition is a decomposition
of a bipartite graph into 3 sets, D: under-constrained, C:
well-constrained, and A: over-constrained [4]. The under-
constrained set is the set where there are more nodes in X
than in Y , or in Figure 2, D1 and A2. The over-constrained
set is the opposite, where there are more nodes in Y than X ,
or in Figure 2, A1 and D2 [5].

This decomposition is found by first finding a maximum
matching, which pairs the maximum number of nodes in X
with nodes in Y . This is illustrated in Figure 2 as the black
and blue edges. subsequently, a search is performed, starting
nodes not covered by the maximum matching (x1 and y6), us-
ing edges alternating between matched and unmatched ones.
Every node with an even index on the path is placed in set
D and every node with an odd index is placed in set A. This
can be seen in figure 2 where the paths starting in x1 and y6
are visible, alternating between unmatched (red) edges, and
matched (blue) edges [5].

Figure 2: Odd and even edges in a Dulmage-Mendelsohn decompo-
sition

3 Problem description
Although various algorithms for the propogation of the in-
verse constraint exist, none of them take into account the full
graph structure of the problem. Parts of the problem, such
as achieving hyper-arc consistency have been proven to be
solvable in linear time [4; 15]. Other parts, such as the gener-
ation of no-goods, are more complex, and existing solutions
decompose the constraint, potentially losing important infor-
mation [12].

in light of this, this paper aims to provide an algorithm for
the generations of explanations for insolvable states of the
problem. The challenge lies in using the full structure of the
bipartite graph that represents the inverse constraint to gener-
ate stronger and more reusable explanations. By avoiding de-
composition into other constraints, this approach would cap-
ture the complex relationships in the graph, offering insights
that would otherwise be ignored.

4 Related Work

In his PhD thesis Improving Scheduling by Learning, An-
dreas Schutt discusses the need for strong and reusable ex-
planations in LCG solvers [12]. A strong explanation is de-
fined as a more general explanation having fewer variables or
larger domains for those variables. The reusability of an ex-
planation is the probability that it will recur in future states.
Stronger and more reusable explanations decrease the size of
the domain of variables, or terminate the search early in the
case of a no-good more effectively, leading to better solver
performance [12].

In his paper and later in his PhD thesis, Radosaw Cymer
describes the potential use of Dulmage Mendelsohn canon-
ical decomposition, as well as other graph decomposition
techniques for the propagation of various graph constraints
in constraint programming solvers [4; 5]. Radosław proposes
to decompose the inverse constraint into two all different con-
straints on both sets of variables, then pruning the variables
domains by removing inconsistent values [4]. This is done
by removing values from the domains of variables that would
indicate a unidirectional edge. For example, if the domain of
x1 contains 2 but y2 does not contain 1 then 2 can be removed
from the domain of x1 [5].

One of the metrics for measuring clause reusability is lit-
eral block distance (LBD), this metric was proposed by Gilles
Audemard and Laurent Simon as a method to improve the ef-
ficiency of SAT solvers [1]. Literal block distance uses the de-
cision levels of the literals in a clause to predict how reusable
the clause is. LBD is calculated by counting the number of
unique decision levels of literals present in a clause, so if the
literals were assigned at the decision levels {1, 2, 1, 3, 2, 3},
then the LBD is equal to three, corresponding to the deci-
sion levels {1, 2, 3} [1]. The SAT solver developed by Gilles
Audemard and Laurent Simon aggressively removed clauses
with high LBD, leading to a significant improvement in per-
formance, especially on industrial benchmarks [1].

An implementation of the inverse propagator can be found
in the Choco-Solver [14], which is an open source Java li-
brary for Constraint Programming. This propagator achieves
hyper-arc consistency by eliminating illegal values from the
variables domains in the two arrays in the same way as pro-
posed by Radosław Cymer [4]. This propagator does not ver-
ify feasibility and instead waits for the final assignment of
variables to see if it satisfies the constraint [14].

Another implementation of the inverse propagator can be
found in the Chuffed solver [15], which is an LCG solver
written in C++ by the Department of Computing and Informa-
tion Systems University of Melbourne, Australia. This solver
implements the same algorithm as described in the paper and
thesis of Radosław Cymer [4; 5]. The propagation of the all
different constraint is done using Tarjan’s strongly connected
component algorithm [15]. This allows the propagator to find
inconsistencies and provide explanations for early termina-
tion based on leaks in the assignment of different values in
each of the arrays [4].



5 Inverse constraint propagation

In our propagator hyper-arc consistency is achieved in linear
time using the constraint that for the two sets X and Y , if
j ∈ D(xi) then i ∈ D(yj). This allows us to prune the
domains of X and Y as follows, if j is in the domain of xi

and i is not in the domain of yj , then j can be removed from
the domain of xi. Tthe inverse of this must then also be done,
if i is in the domain of yi and j is not in the domain of xi,
then i can be removed from the domain of yi. An example of
this propagation can be seen in Figure 3, where 1 ∈ D(x2)
but 2 /∈ D(y1), therefore, there can never be a match between
x2 and y1 and one can be removed from D(x2). The same
reasoning can be used to remove one from y2.

D(x1) = {1}
D(x2) = {1, 2}
D(y1) = {1}
D(y2) = {1, 2}

D(x1) = {1}
D(x2) = {2}
D(y1) = {1}
D(y2) = {2}

Figure 3: Example propagation of inverse constraint.

After achieving hyper-arc consistency, the feasibility of a
solution is determined by running a maximum matching algo-
rithm on the bipartite graph of the two sets. If this matching
contains all the nodes of the graph it is described as a per-
fect matching and a solution still exists. If not, an explana-
tion of the no-good is calculated by performing a Dulmage-
Mendelsohn decomposition of the graph and giving a descrip-
tion of the domains of the over-constrained variables (D1 or
D2) in the graph. The soundness of this no-good can be seen
in Figure 4, the variables in D1 are only connected to A2 and
since D1 has more variables than A2, there can never be a
perfect matching in the graph with the variables in D1 having
the domains they have. The same is true for the variables in
D2.

Figure 4: Dulmage Mendelsohn decomposition

In the example in Figure 4 the no-goods generated from

D1 and D2 would be:

x1 = 1∩x2 = 1

or

y4 = 5 ∩ y5 ≥ 5∩y5 ≤ 6 ∩ y6 = 6

(4)

As discussed in Andreas Schutt’s PhD thesis, no-goods
should aim to be strong and reusable [5]. This requires the
domains of the variables to be as large as possible with as
few variables as possible, so that the no-good described can
apply to as many scenarios as possible. In this example, it is
clear that the first no-good is better than the second, since it
has two variables with a domain of size one, and the second
has two variables with a domain of size one and a variable
with a domain of size two. However, the decision on which
no-good to use is not always as clear. To solve this, the fol-
lowing heuristics have been tested:

1. Use the side with fewer variables.

2. Use the side with the highest average domain size.

3. Use the side with the lowest LBD.

The first heuristic minimizes the number of variables,
which generalizes and strengthens the explanation. The sec-
ond favors larger domains, also generalizing the no-good
since any domain smaller than the domains of the variables
in the no-good would also satisfy it allowing the search to
terminate. The third uses literal block distance, which has
been shown to achieve more reusable clauses in SAT solvers
[1].

6 Experimental Setup and Results
This section starts by explaining the setup of the experiments.
Then describe the metrics used to measure their success or
failure. Followed by a subsection for each of the two selected
problems, the Time-Dependent Traveling Salesman problem
(TDTSP) and the perfect one-factorization problem (P1F).
These subsections start by explaining the problem, then the
use of the inverse constraint in the problem, followed by the
results, and lastly an explanation of them.

The algorithms and heuristics described in the previous
section were implemented in Rust in the Pumpkin LCG
solver. The solver was then compiled for each of the heuris-
tics, and all instances of the problems were compiled using
MiniZinc, with our inverse propagator and a decomposition
of the inverse constraint, into FlatZinc, which provides spe-
cific instructions to the solver on how to solve the problem.
The problems were then run on a Debian PC with an AMD
Ryzen 5 5600G and 16GB of RAM, the full specs of which
can be found in Appendix A.

The two metrics selected to determine the success of the
experiments were the number of propagations and the time
spent in the solver. The number of propagations measures
the effectiveness of each propagation and, by extension, the
strength and reusability of the explanations and no-goods.
A lower number of propagations indicates that fewer steps
needed to be taken to find the solution to the problem. The
time spent in the solver shows how computationally efficient
the propagations were. When very few propagations are



required and the explanations and no-goods are incredibly
strong and reusable, but their calculation is very expensive,
the performance of the solver suffers.

6.1 Time-dependent traveling salesman problem
TDTSP is a variation of the classical traveling salesman prob-
lem (TSP). TSP is a graph optimization problem where a trav-
eling salesman must visit every city (node) by traveling on
roads (edges) between them that take a certain amount of time
(weight) and return to the starting city while taking the short-
est amount of time [13]. The time-dependent variation of this
problem makes the problem more complex by changing the
time it takes to travel a road, depending on the time of travel.
This variation of the problem is closer to real world scenar-
ios where travel times depend on various conditions such as
traffic, road closures, or time-of-day effects [13].

Inverse constraint is applied in this problem to the previous
and next arrays. This ensures that the backward and forward
orders of the nodes are the same. The previous array states,
for each city, which city is visited immediately before it. Or
if previous[j] = i, it means that before visiting node j, the
path came from node i. The next array is the inverse of this
and shows, for each city, which city is visited immediately
after it. This can be expressed as next[j] = i, which means
that after visiting node j, the path leads directly to node i.
Here, the inverse constraint ensures that there is a complete
cycle in the result.

Four instances of the TDTSP problem were selected, these
instances were selected due to their relatively low computa-
tional times and hardware and time limitations. The four in-
stances contained ten nodes and used scenarios 24 starting at
t = 10, scenario 34 starting at t = 0, and scenario 42 starting
at t = 0 and t = 10.

Figure 5: Number of propagations for TDTSP

The results in Figure 5 show an overall decrease in the
number of propagations needed to solve the problem in our
propagator over the MiniZinc decomposition. The most sig-
nificant improvements are made in Scenario 42, start time
t = 0. However, the number of propagations was higher for

all heuristics in Scenario 34, start time t = 0. While this
shows that our propagator improves upon the MiniZinc de-
composition, there is some luck involved in finding the right
solution efficiently. This luck or randomness occurs because
some set of explanations or no-goods or a combinations of
both might drastically reduce the search space and simplify
the problem throughout the search. This exact combination
cannot be known until a solution is found as these problems
are NP-Hard.

Figure 6: Time spent in solver for TDTSP

The results in Figure 6 mostly mirror the results in Fig-
ure 5, however, they show an even greater improvement in
performance. This shows that for this problem not only were
the explanations and no-goods generated by our propagator
are stronger and more reusable, but their calculation is also
less computationally expensive. This is particularly surpris-
ing because the implementation was not fully optimized and
shows that a more optimized implementation of the algo-
rithms could provide an even greater performance increase.

To assess which heuristic performed best, the results were
also normalized across instances of the problem using the fol-
lowing formula:

Normalized Sump,s =

∑
i∈propagator p Valuei,s∑

j∈All propagators Valuej,s

This formula was used to take into account the varying dif-
ficulty of the problem instances and capture relative perfor-
mance increases. Due to both metrics showing similar results,
only the time spent in the solver is shown here in Figure 7
however, the graph for the number of propagations is avail-
able in Appendix B.2.

The normalized results in Figure 7 show a very small im-
provement in the LBD heuristic over the other two, which
would indicate that there is little difference between them.
However, the propagator using the LBD heuristic was the
only one to outperform the decomposition in all instances of
the problem, which leads to the conclusion that even if only
marginally, the LBD heuristic was most effective.



Figure 7: Normalized sum of time spent in solver for TDTSP

6.2 Perfect one-factorization
P1F is a combinatorial graph theory problem where the goal
is to decompose the edges of a complete graph into disjoint
one-factors [11]. A one-factor is a set of edges that pair up the
nodes in the graph so that each node is matched with exactly
one other node[11]. This can also be expressed as all nodes
having a degree of one. A P1F is a special case of a one-
factorization where any pair of one-factors forms a Hamilto-
nian cycle, which is a cycle in a graph that visits every node
exactly once and returns to the starting node [11].

The inverse constraint is used in this problem to ensure that
the sets that the edges get factorized into are actually one-
factors. For a complete graph of size n is done by creating
an array X of size n that for each index contains the node
with which that node is matched, so for example, the array
[1, 3, 2, 4] would show the pairs (1, 3) and (2, 4). The inverse
constraint is then applied to the array X to itself, ensuring
that if node i is matched with j, then j is matched with i.

For our experiments, the instances that were selected were
n = 6, n = 8, n = 10, n = 12. Due to the number of
propagations and time spent in solver growing exponentially
for each instance, the results were divided by the maximum
result of the instance to graph them. These results can be seen
in Figures 8 and 9.

Figure 8 clearly shows that the MiniZinc decomposition
outperforms our propagator in the number of propagations,
for all heuristics, with negligible, if any, difference between
the heuristics.

Figure 9 mirrors the results of Figure 8 however, with an
even greater decrease in performance. This can be explained
by the symmetric application of the inverse constraint to an
array and itself. As discussed in Section 2.2, MiniZinc de-
composes the problem into constraints that state that, for ar-
rays X and Y , each xi in X indicates what index in Y is
taken by i, the same constraint is applied to Y . In a prob-
lem such as TDTSP where the inverse constraint is applied
on two different arrays of length n this leads to 2n constraints
in the decomposition. However, when the inverse constraint
is applied symmetrically, as in P1F, this only leads to n con-
straints, making the decomposition much more effective.

Our propagator creates a bipartite graph with the two
sets of variables provided to it and performs a Dulmage-

Figure 8: Normalized number of propagations for P1F problem

Figure 9: Normalized time spent in solver for P1F problem

Mendelsohn decomposition of the graph. However, in this
case, since both arrays are the same, this is an unnecessary
abstraction that adds complexity to the problem. This can be
seen in Figure 10.

Figure 10: Problem in decomposition and our propagator

Figure 10 shows how our algorithm, by creating a bipartite
graph, doubles the number of nodes for which it generates
an explanation. The Dulmage-Mendelsohn decomposition is
then performed on a graph that does not exist in the prob-
lem, greatly reducing the value of information gained from
it. This shows why our proposed propagator is ineffective for
problems such as P1F where the inverse constraint is applied



symmetrically to a single array.

7 Responsible Research
In this section, we discuss ethical considerations, the repro-
ducibility of results, and the FAIR data principles related to
this paper.

7.1 Ethical considerations
The research done in this paper does not pose ethical consid-
erations in and of itself. No personal data are used during any
of the research or experiments and experiments are performed
on fictitious and purely theoretical problems. However, there
may be some ethical considerations in the future use of the
algorithms provided. The inverse constraint can be used in
resource allocation problems, so care should be taken when
using these or similar algorithms to allocate vital resources to
human beings.

7.2 Reproducibility
The code used in this paper is all open source and is available
on GitHub. The problems used to evaluate the algorithm are
also open source and are available on the MiniZinc website.
The exact time that the algorithms take to run is dependent
on the exact hardware used, the hardware used in our exper-
iments is listed in the Appendix A. The number of decisions
and other statistics would remain the same regardless of the
hardware used.

7.3 FAIR principles
The data and methodology used in this article were performed
according to the FAIR principles as follows:

• Findable: This paper along with the results in Ap-
pendix B.1 is available in the TU Delft repository, which
provides search functionality to easily locate the data.
The code used is located on GitHub as a fork of the
Pumpkin repository, which allows it to be easily found.

• Accessible: The TU Delft repository is freely accessible
to anyone, as is the GitHub repository.

• Interoperable: The data is provided in Appendix B.1 as
a table and are available in the GitHub repository as a
CSV, allowing them to be easily interoperable between
platforms and analytical software. The code is written in
Rust, allowing it to be compiled on any operating system
and platform.

• Reusable: The data can be used to compare to other al-
gorithms for propagating the inverse constraint, as long
as they are implemented in the Pumpkin solver. The
code can also be forked, changed, or used in other ex-
periments as it is available under an Apache and MIT
license.

8 Conclusions and Future Work
This paper explored the implementation of a novel propaga-
tor for the inverse constraint in lazy clause generation (LCG)
solvers. This was done using Dulmage-Mendelsohn decom-
position, a graphical analytical technique, to provide stronger

and more reusable explanations for unsolvable states of the
problem. With the aim of addressing issues with other prop-
agators that decompose the constraint into simpler ones.

From the results of our experiments we found up to a
32% reduction in computational costs associated with solv-
ing problems such as the time-dependent traveling sales-
man problem (TDTSP). Unfortunately, our approach was
less effective in cases where the inverse constraint is ap-
plied symmetrically to a single array, like in the perfect one-
factorization (P1F) problem, where it was outperformed by
the MiniZinc decomposition.

Our research shows how graph based techniques can im-
prove the performance of inverse constraint propagation in
LCG solvers. Our findings also present opportunities for fur-
ther research, which include further optimization of the im-
plementation of our propagator in the Pumpkin solver, the
comparison of our propagator against other decompositions
of the constraint, and the use of Dulmage-Mendelsohn de-
composition for propagating other constraints. If our propa-
gator were combined with another algorithm for dealing with
the symmetric application of the inverse constraint, it would
greatly improve its ability to solve complex problems.

In conclusion, this study advances the understanding of
inverse constraint propagation, providing both practical in-
sights and a foundation for further innovation in lazy clause
generation solvers.
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A Experimental desktop specifications

Listing 1: lshw Output

1 description: Desktop Computer
2 product: System Product Name (SKU)
3 vendor: ASUS
4 version: System Version
5 serial: System Serial Number
6 width: 64 bits
7 capabilities: smbios -3.3.0 dmi-3.3.0 smp vsyscall32
8 *-core
9 description: Motherboard

10 product: PRIME B550M-K
11 vendor: ASUSTeK COMPUTER INC.
12 physical id: 0
13 version: Rev X.0x
14 serial: 210280933501759
15 slot: Default string
16 *-memory
17 description: System Memory
18 physical id: 2b
19 slot: System board or motherboard
20 size: 16GiB
21 *-bank:0
22 description: DIMM DDR4 Synchronous Unbuffered (Unregistered) 3200 MHz (0.3 ns)
23 product: CT16G4DFRA32A.M16FR
24 vendor: CRUCIAL
25 physical id: 1
26 serial: E572949B
27 slot: DIMM_A2
28 size: 16GiB
29 width: 64 bits
30 clock: 3200MHz (0.3ns)
31 *-cache:0
32 description: L1 cache
33 physical id: 2d
34 slot: L1 - Cache
35 size: 384KiB
36 capacity: 384KiB
37 clock: 1GHz (1.0ns)
38 capabilities: pipeline-burst internal write-back unified
39 configuration: level=1
40 *-cache:1
41 description: L2 cache
42 physical id: 2e
43 slot: L2 - Cache
44 size: 3MiB
45 capacity: 3MiB
46 clock: 1GHz (1.0ns)
47 capabilities: pipeline-burst internal write-back unified
48 configuration: level=2
49 *-cache:2
50 description: L3 cache
51 physical id: 2f
52 slot: L3 - Cache
53 size: 16MiB
54 capacity: 16MiB
55 clock: 1GHz (1.0ns)
56 capabilities: pipeline-burst internal write-back unified
57 configuration: level=3
58 *-cpu
59 description: CPU
60 product: AMD Ryzen 5 5600G with Radeon Graphics
61 vendor: Advanced Micro Devices [AMD]



62 physical id: 30
63 bus info: cpu@0
64 version: 25.80.0
65 serial: Unknown
66 slot: AM4
67 size: 3552MHz
68 capacity: 4463MHz
69 width: 64 bits
70 clock: 100MHz
71 configuration: cores=6 enabledcores=6 microcode=173015051 threads=12

B Experimental results
B.1 Raw results

Table 1: Experimental results

type problem instance NumDecisions NumConflicts NumRestarts NumPropagations TimeSpentInSolver

avgdominv p1f 10 175206 30848 6 21475349 39236
avgdominv p1f 12 11715188 10255366 35 8416269559 15634823
avgdominv p1f 6 356 91 0 9109 4
avgdominv p1f 8 14966 749 0 249781 209
avgdominv tdtsp 10 24 10 7362925 1143847 49 2832527362 4288757
avgdominv tdtsp 10 34 00 3337660 581574 25 894740329 1405079
avgdominv tdtsp 10 42 00 6217129 932087 59 2067303830 3170728
avgdominv tdtsp 10 42 10 6186379 1041249 22 2186286848 3299496

ctrl p1f 10 196242 24244 4 16589544 14375
ctrl p1f 12 11612622 9882832 102 6979120007 11173866
ctrl p1f 6 308 79 0 8628 3
ctrl p1f 8 14270 670 0 231437 173
ctrl tdtsp 10 24 10 7709638 1156351 45 2932894917 5297278
ctrl tdtsp 10 34 00 2777004 480196 41 487365941 1079534
ctrl tdtsp 10 42 00 6866050 1022243 59 2485503909 4037964
ctrl tdtsp 10 42 10 6625821 1051905 36 2442589236 4291880

lbdinv p1f 10 175206 30848 6 21475349 36599
lbdinv p1f 12 11715188 10255366 35 8416269559 15443345
lbdinv p1f 6 356 91 0 9109 4
lbdinv p1f 8 14966 749 0 249781 208
lbdinv tdtsp 10 24 10 7654440 1198115 53 2836838133 4570620
lbdinv tdtsp 10 34 00 2846730 627950 15 533195000 917656
lbdinv tdtsp 10 42 00 5703024 868249 49 1789854975 2650816
lbdinv tdtsp 10 42 10 6503984 1070720 54 2492666601 3680679

minleninv p1f 10 175206 30848 6 21475349 44482
minleninv p1f 12 11715188 10255366 35 8416269559 14868888
minleninv p1f 6 356 91 0 9109 4
minleninv p1f 8 14966 749 0 249781 207
minleninv tdtsp 10 24 10 7654440 1198115 53 2836838133 4547447
minleninv tdtsp 10 34 00 2985776 552182 18 698816547 1228525
minleninv tdtsp 10 42 00 5591312 862345 48 1788949450 2670443
minleninv tdtsp 10 42 10 6444058 1050404 43 2358202916 3437833



B.2 Normalized number of propogations TDTSP

Figure 11: Normalized sum of number of propagations for TDTSP
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