

Delft University of Technology

DAMYSUS
Streamlined BFT Consensus Leveraging Trusted Components
Decouchant, Jérémie; Kozhaya, David; Rahli, Vincent; Yu, Jiangshan

DOI
10.1145/3492321.3519568
Publication date
2022
Document Version
Final published version
Published in
EuroSys 2022 - Proceedings of the 17th European Conference on Computer Systems

Citation (APA)
Decouchant, J., Kozhaya, D., Rahli, V., & Yu, J. (2022). DAMYSUS: Streamlined BFT Consensus
Leveraging Trusted Components. In EuroSys 2022 - Proceedings of the 17th European Conference on
Computer Systems (pp. 1-16). (EuroSys 2022 - Proceedings of the 17th European Conference on
Computer Systems). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3492321.3519568
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3492321.3519568

DAMYSUS: Streamlined BFT Consensus Leveraging

Trusted Components

Jérémie Decouchant
∗

j.decouchant@tudelft.nl
TU Delft

David Kozhaya
∗

david.kozhaya@ch.abb.com
ABB Research

Vincent Rahli
∗

vincent.rahli@gmail.com
University of Birmingham

Jiangshan Yu
∗

J.Yu.Research@gmail.com
Monash University

Abstract

Recently, streamlined Byzantine Fault Tolerant (BFT) con-

sensus protocols, such as HotStuff, have been proposed as

a means to circumvent the inefficient view-changes of tra-

ditional BFT protocols, such as PBFT. Several works have

detailed trusted components, and BFT protocols that leverage

them to tolerate a minority of faulty nodes and use a reduced

number of communication rounds. Inspired by these works

we identify two basic trusted services, respectively called the

Checker and Accumulator services, which can be leveraged

by streamlined protocols. Based on these services, we design

Damysus, a streamlined protocol that improves upon Hot-

Stuff’s resilience and uses less communication rounds. In ad-

dition, we show how the Checker and Accumulator services

can be adapted to develop Chained-Damysus, a chained ver-

sion of Damysuswhere operations are pipelined for efficiency.

We prove the correctness of Damysus and Chained-Damysus,
and evaluate their performance showcasing their superiority

compared to previous protocols.

CCSConcepts: •Theory of computation→Distributed

algorithms.

Keywords: Fault tolerance, Consensus, Trusted component.

ACM Reference Format:

Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiang-

shan Yu. 2022. DAMYSUS: Streamlined BFT Consensus Leverag-

ing Trusted Components. In Seventeenth European Conference on
Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES, France.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3492321.
3519568

1 Introduction

Consensus is a crucial building block of many distributed

systems including state machine replication and blockchains.

∗
Corresponding Authors

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519568

Such systems comprise multiple software and hardware com-

ponents that are bound to eventually fail, potentially caus-

ing system malfunction or unavailability. To this end, a dis-

tributed system relies on a consensus protocol to agree on

actions critical to the system’s correct operation.

In particular, Byzantine Fault Tolerant (BFT) consensus

protocols allow systems to withstand arbitrary failures [1,

2, 3]. However, being able to tolerate arbitrary (Byzantine)

component failures, induces a non-negligible system over-

head, namely in the required number of nodes that should be

present in the system as well as the communication complex-

ity. For example, traditional BFT protocols, such as PBFT [4],

typically require 3𝑓 +1 nodes to tolerate up to 𝑓 Byzantine

faulty nodes. Moreover, albeit being efficient in the normal

case, i.e., when the current leader is correct, traditional BFT

protocols use complex “view-change” operations to replace

possibly malicious (compromised) leaders and often require

the nodes to “synchronize” and transfer their states.

In order to circumvent such complex view changes, recent

“streamlined” BFT protocols [5]
1
such as PiLi [6], PaLa [7],

Tendermint [8], HotStuff [9], and Streamlet [10] rotate the

leader on each command. Instead of performing a state trans-

fer when switching to another leader, they utilize a simpler

locking mechanism combined with an additional communi-

cation phase (compared to PBFT-like protocols) to guarantee

both safety and liveness. Hence, streamlined protocols are

conceptually simpler. An advantage of such a leader rotation

mechanism, used for example in [11, 12, 13, 14, 15], is that

it can be fairer to clients by preventing a fixed leader from

favoring some clients over others for an extended period

of time. Another typical feature of streamlined protocols is

their linear message complexity as opposed to the quadratic

all-to-all communication of traditional solutions. Neverthe-

less, streamlined solutions still require at least 3𝑓 +1 nodes to
tolerate 𝑓 Byzantine nodes, and they introduce an additional

communication phase that inflicts higher system latency.

For some applications being able to tolerate more than

one-third of Byzantine faults is crucial [16]. Traditional BFT

protocols have typically relied on hybrid solutions to reduce

the number of nodes required to ensure system safety as well

as to decrease system latency. Those solutions rely on secure

elements that execute key functionalities in trusted execution

environments such as inside Intel SGX enclaves [17]. For

1
A streamlined protocol follows a unified propose-vote paradigm, and inte-

grates view-changes in the normal case operation via a rotating leader [5].

1

1

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

https://orcid.org/0000-0001-9143-3984
https://orcid.org/0000-0002-5453-656X
https://orcid.org/0000-0002-5914-8224
https://orcid.org/0000-0001-8006-7392
https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3492321.3519568
https://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

example, MinBFT [18] relies on a trusted message counter

to increase the resilience of PBFT, permitting a system of

size 𝑁 to tolerate ⌊𝑁−1
2

⌋ faulty nodes while simultaneously

reducing the number of communication rounds in normal

case operations from 3 in PBFT to 2 in MinBFT.

While hybrid solutions have been largely explored in the

context of traditional BFT protocols focusing on minimizing

the functionalities dedicated to trusted components, they

have not yet been explored to the same extent in the con-

text of streamlined protocols. To this end, this paper inves-

tigates the design of hybrid streamlined solutions focusing

on HotStuff-like protocols. Interestingly, we show that the

previous way of using trusted message counters (simplest

known trusted components used in traditional BFT proto-

cols) [18, 19, 20] is not sufficient for simultaneously making

HotStuff-like protocols more resilient and faster (see §4).
Still adhering to a minimalist approach when designing

trusted components, we introduce two simple trusted ser-

vices called checker and accumulator, which contribute

respectively to increasing a streamlined protocol’s resilience

and to decreasing its latency. Roughly speaking, our checker

service helps ensure that nodes cannot vote for conflicting

blocks, or lie about the blocks they have already voted for,

while our accumulator service guarantees that leaders can

only propose blocks that are consistent with previous votes.

We then present Damysus,2 a streamlined protocol, based on

basic HotStuff, which makes use of the checker and accu-

mulator services. Damysus requires 2𝑓 +1 nodes to tolerate

𝑓 Byzantine failures and can terminate in 2 communication

phases as opposed to 3 in basic HotStuff.

In this sense, Damysus simultaneously tolerates a minority

of Byzantine nodes and reduces the number of communica-

tion phases to its known minimum. The introduced trusted

services are simple and do not require changes to HotStuff’s

overall behavior, preserving linear view change and opti-

mistic responsiveness [9] where nodes reach consensus at

the pace of the actual (vs. maximum) network delay.

We also generalize our results showcasing how we can

seamlessly transfer Damysus to Chained-Damysus using the
exact same trusted services to also support a chained version

of HotStuff, where operations are pipelined so that multiple

blocks are concurrently processed.

In short, our contribution can be summarized as follows.

1. We introduce two simple trusted services, which when

applied to HotStuff (without changing its overall behav-

ior), result in Damysus, a streamlined consensus protocol

with improved resilience and latency. Damysus requires

2𝑓 +1 nodes and terminates in 2 phases.

2. We also introduce Chained-Damysus, a chained version
of Damysus for higher throughput.

3. We provide theoretical proofs that all protocols are safe

and live.

2Damysus was the fastest of all the Giants in the Greek mythology.

4. We show the performance superiority of our protocols

compared to baseline HotStuff-like protocols. For example,

using 256B payload messages, Damysus has an average

throughput increase of 87.5% and an average latency de-

crease of 45% compared to basic HotStuff. Chained-Damysus
has a throughput increase of 50.5% and latency decrease

of 32.1% compared to chained HotStuff.

The rest of this paper is organized as follows. §2 reviews
the related work. §3 provides background on HotStuff. §4
presents the functionality of our checker and accumula-

tor trusted services. §5 describes our system model. §6 in-
troduces Damysus and gives the intuition behind its design

principles. §7 presents Chained-Damysus. §8 provides a per-
formance evaluation. §9 concludes this paper.

2 Related Work

We summarize our analysis of the related work in Table 1

and elaborate further in the following
3
.

Hybrid BFT protocols, which leverage the use of trusted

hardware components to reinforce different aspects of BFT

protocols, ranging from reconfiguration [23, 24, 25] and

proactive recovery [26] to the fault-tolerance and perfor-

mance [27, 28, 18, 19, 20, 29], have been studied in the con-

text of leader-based BFT protocols. While few studies have

also been focusing on homogeneous or hybrid leaderless

BFT protocols [30, 31, 32, 33], the focus of this section is on

leader-based hybrid BFT protocols that aim at improving

fault-tolerance and/or performance.

Previous literature explored techniques such as trusted

logs [34, 35, 36], attested append-only memory (A2M) [27],

and trusted incrementer (TrInc) [28] where multiple trusted

monotonic counters are used to prevent equivocation and tol-

erate more faults. Later, MinBFT [18] presented an approach

that provides the same properties using a single trusted

monotonic counter while additionally reducing the number

of phases in PBFT from 3 to 2 in the normal case opera-

tion. CheapBFT [19], as well as its generalization ReBFT [37],

further improved this result by enabling the system to “opti-

mistically” operate with as little as 𝑓 +1 active replicas, while
𝑓 other replicas stay passive during the normal case oper-

ation. Hybster [20] also explored the possibility to paral-

lelize instances with TrIncX, a TrInc-like trusted monotonic

counter. FastBFT [21] is similar to CheapBFT in the sense

that it is both optimistic (making use of 𝑓 +1 active nodes

in the normal case operation) and relies on a trusted mono-

tonic counter. In addition, FastBFT relies on a TEE-based

secret sharing mechanism, which compounded with trusted

monotonic counters, allows reducing the message complex-

ity of the protocol. Recently, TBFT [29] was proposed to

improve performance by requiring backups to communicate

3
Communication steps exclude interactions with clients, which are common

to all protocols: clients send requests to replicas, and replicas send replies

to clients.

2

2

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

Table 1. Comparative analysis of Damysus and Chained-Damysus with the related work. View-change communication steps

are indicated between parentheses when applicable. Message counts include self-messages.

replicas Commun.

steps

#Msgs normal case #Msgs view

change

Optimistic

exec.?

Trusted component & Storage complex-

ity

PBFT [4] 3𝑓 +1 3 (+2) 18𝑓 2+15𝑓 +3 9𝑓 2 + 6𝑓 + 1 No -

FastBFT [21] 𝑓 +1 act. & 𝑓 pass. 5 (+3) 6𝑓 +5 8𝑓 2 + 8𝑓 + 2 Yes Secret generation - Constant

MinBFT [18] 2𝑓 + 1 2 (+3) 4𝑓 2+6𝑓 +2 8𝑓 2+6𝑓 +1 No Trusted counter - Constant

CheapBFT [19] 𝑓 +1 act. & 𝑓 pass. 3 (+3) 2𝑓 2+4𝑓 +2 8𝑓 2+6𝑓 +1 Yes Trusted counter - Constant

HotStuff [9] 3𝑓 + 1 8 24𝑓 +8 - No -

HotStuff-M [22] 2𝑓 + 1 11 (24+9𝑑) 𝑓 +(8+3𝑑) - No Append-only logs - Linear with # msgs

Damysus 2𝑓 + 1 6 12𝑓 + 6 - No Checker & Accumulator - Constant

Chained-Damysus 2𝑓 + 1 6 12𝑓 + 6 - No Checker & Accumulator - Constant

only with the leader (with complexity 𝑂 (𝑁) as in HotStuff)

rather than an all-to-all communication pattern (with com-

plexity 𝑂 (𝑁 2) as in PBFT). In addition to relying on trusted

monotonic counters, TBFT uses a trusted message sharing

mechanism to generate quorum certificates representing

messages collected from 𝑓 +1 replicas.
In the context of streamlined BFT protocols, hybrid so-

lutions were first mentioned for LibraBFT [38], a protocol

built on HotStuff, to possibly reduce the attack surface. Fast-

HotStuff [39] is a version of HotStuff with one less communi-

cation phase, which does not rely on trusted components. In-

stead, leaders send proofs that the blocks they extend are the

highest received blocks. This requires larger messages (con-

taining an aggregated vector of 2𝑓 +1 quorum certificates)

but improves latency and prevents from creating forks.

Later, HotStuff-M and VABA-M [22] proposed the use

of trusted components in the form of trusted logs to im-

prove fault tolerance without worsening the communication

complexity of the underlying BFT protocol: one trusted log

is used for each protocol phase with an additional log for

tracking views. This approach also requires changes to the

underlying BFT protocol: the protocol would need to use and

maintain expander graphs to diffuse messages. Such graphs

introduce more network traffic, extra storage overhead and

their impact on throughput/latency remains open.

A related approach consists in transforming crash fault

tolerant protocols to BFT ones using trusted components,

such as [40], which essentially works by running all state

machines inside a trusted environment, leading to large en-

claves; and [41], which relies on smaller trusted components,

that however need to sign the entire history of sent and

received messages, leading to large messages.

Simultaneously achieving improved communication com-

plexity with optimal resilience of streamlined BFT protocols

remains an open challenge. This drives us to propose the first

hybrid streamlined BFT system, which tolerates a minority

of Byzantine faults while reducing the number of commu-

nication phases to improve the latency and throughput of

the underlying algorithm. In addition, unlike HotStuff-M,

our approach does not change the overall behavior of the

underlying protocol, retaining its conceptual simplicity and

Figure 1 Communication phases in HotStuff.

does not introduce extra network traffic in any phase. It also

arguably requires minimal storage (including only a counter

representing the current view/phase and some information

regarding the locally prepared and locked blocks).

3 HotStuff in a Nutshell

HotStuff [9] is a BFT protocol whose communication com-

plexity grows linearly with the total number 𝑁 of nodes,

making it remarkably efficient. HotStuff requires 𝑁≥3𝑓 +1
nodes to tolerate 𝑓 Byzantine faults. Nodes build a chain of

blocks by voting for extensions, which are proposed by the

leaders of views (successive rounds).
HotStuff comes in two versions: (1) Basic HotStuff, where

nodes vote on a single block per view, and (2) chained (or

pipelined) HotStuff that allows pipelined votes to simultane-

ous progress on several blocks per view.

Communication phases To execute a block, HotStuff

employs several phases per view 𝑣 , which Fig. 1 illustrates.

In that figure, time progresses from left to right, and 𝐿 is the

leader of the view 𝑣 among the nodes 𝑅0, . . . , 𝑅𝑛 . HotStuff

is referred to as a 3-phase protocol, as it has 3 core phases:
prepare, pre-commit, and commit to agree on blocks, com-

plemented by 2 additional half phases: new-view to submit

latest prepared blocks, and decide to execute blocks once it

has be judged safe to do so.

(1) In the new-view phase
4
each node sends its latest pre-

pared block and view number to the leader;

(2) In the prepare phase, after having received 2𝑓 +1 pairs
of a block and a view number, the leader creates a new block

by extending the block with the largest view number among

4
HotStuff has a new-view phase, which is not explicitly referred to as such

in [9]. For presentation purposes we group new-view messages in a new-

view phase here.

3

3

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

all received pairs. The leader proposes a block by sending it

to all other nodes who will vote for it if it is correct.

(3) In the pre-commit phase, the leader gathers 2𝑓 +1 votes
for its proposal and marks the proposed block as being pre-
pared (marked in orange in Fig. 1). The collection of 2𝑓 +1
votes forms a quorum certificate indicating that the proposed

block is prepared. The leader forwards this certificate to the

other nodes, which mark the proposed block as being pre-

pared after verifying the quorum certificate. Once a node

has prepared a block, it votes for it in this phase.

(4) In the commit phase, the leader gathers a quorum certifi-

cate on a prepared block, locks it (marked in orange in Fig. 1)

and forwards the quorum certificate to the other nodes so

that they lock the same block. Once a node has locked a

block, it votes for it in this phase.

(5) In the decide phase, the leader gathers a quorum cer-

tificate of 2𝑓 +1 votes on a locked block, executes that block
(marked in orange in Fig. 1) and forwards the certificate to

the other nodes so that they also execute the locked block.

Basic HotStuff uses a different leader in each view, and

each view is in charge of proposing a single extension to the

current blockchain.

Locking scheme A new-view message only contains the

certificate of what a node believes to be the latest prepared

block, rather than all certificates for all prepare messages

since the last checkpoint as in traditional protocols such

as PBFT [4] and BFT-SMaRt [42]. While this makes view-

changes more efficient in terms of communication complex-

ity and message size, as explained in [9, §4.4], HotStuff re-

quires a “locking” phase between the prepare and execution

phase to guarantee safety and liveness, where blocks are

locked only after they are prepared (for liveness) and before

they are executed (for safety). In addition, as the messages

sent to extend a block in the prepare phase do not prove the

non-existence of a conflicting extension on the same block,

it is possible that different subsets of nodes have prepared

and locked conflicting extensions of the same block. In that

case, only one of those extensions will be accepted (safety),

and nodes that locked on a conflicting block have to be al-

lowed to replace it (liveness). To achieve this, a node accepts

a block proposed by a leader if it extends the latest block it

locked (necessary for safety), or if it extends a block that was

prepared at a view higher than the view of the latest block

it locked (necessary for liveness)—the conjunction of those

two predicates is referred to as the SafeNode predicate [9].

LivenessHotStuff guarantees liveness after GST, the Global

Stabilization Time (see §5). This is done through a mecha-

nism that allows correct nodes to eventually be in the same

view for long enough to make progress. This mechanism can,

for example, be an exponential backoff mechanism where

nodes set a timer when starting a new view; exponentially

increase their timeout when a time out occurs; and cancel the

timer and linearly decrease the timeout when views succeed.

In addition, a rotating leader election scheme ensures that

there is a single leader per view, and that a correct leader

is always eventually elected. HotStuff also guarantees re-

sponsiveness – after GST, with a correct leader, nodes make

progress by waiting for 𝑁−𝑓 messages.

4 Using Trusted Components

4.1 Traditional Use of Trusted Services

Previous efforts in the literature presented BFT protocols

that increased the resilience of PBFT using increasingly sim-

pler trust assumptions starting from tamperproof distributed

components connected through dedicated channels sepa-

rated from the payload network [16], moving to trusted

append-only logs [27], and finally reaching the minimal

trusted counters [28, 18]. In this sense, a reader might won-

der whether the simplest established trusted components,

i.e., a single trusted counter, can be used to increase the re-

silience of streamlined protocols. We answer this question

by the negative in the following.

First let us recall how these simple trusted counters are

used. On each client request the leader calls its trusted counter,

which generates a unique number along with a signed certifi-

cate that proves that the number is assigned to that request.

The other nodes go through a similar process when replying

to a message from the leader. This way, all correct replicas

can safely consider that all messages with a given identifier

are identical. Modifying PBFT to allow each node to leverage

a trusted counter increases the resilience of PBFT from ⌊𝑁−1
3

⌋
to ⌊𝑁−1

2
⌋, where 𝑁 is the total number of nodes, and reduces

the number of phases from 3 to 2. This is achieved as new-

view messages contain view-change certificates that require

even Byzantine nodes to include the history of messages

they have prepared. However, contrary to PBFT, HotStuff

does not need or use view-change certificates. It is up to the

new leader to chose which prepared block to extend. This

prepared block will have a certificate, but a Byzantine leader

could produce an old certificate, and the backups would not

have a way to verify whether the leader correctly picked the

latest prepared block. A simple trusted message counter is

therefore not sufficient to lower HotStuff’s number of repli-

cas from 3𝑓 +1 to 2𝑓 +1, i.e., to increase its resilience, let alone
to reduce its number of phases.

Let us consider a version of HotStuff with 2𝑓 +1 replicas
only and the same number of phases as basic HotStuff, where

each node is augmented with a trusted message counter. We

demonstrate the following non-safe scenario, where 𝑓 = 1,

with nodes 𝑖, 𝑗, 𝑘 . Therefore, votes from 2 nodes are enough

to execute a block. Assume that node 𝑖 is Byzantine. All

nodes initialize their counters to 0. During the first view

(view 0), helped by node 𝑖 , node 𝑗 executes some block 𝑏,

which extends the genesis block. Assume that 𝑗 is the leader

of that first view. Therefore, 𝑖’s counter is now equal to 4 be-

cause it has sent 4 messages (new-view, prepare, pre-commit,

commit), while 𝑗 ’s counter is now 5 because it has sent 5

4

4

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

messages (new-view, prepare, pre-commit, commit, decide).

Assume that 𝑘 is lagging behind and did not receive 𝑏. Its

counter is still 0. Assume that node 𝑖 is the leader of the next

view (view 1). It receives new-view messages from nodes 𝑗

and 𝑘 , and only one of those messages is necessary. It will

here use 𝑘’s vote. Node 𝑖 might decide to extend the genesis

block with some block 𝑏 ′, which conflicts with block 𝑏, in-

stead of extending 𝑏, which is unsafe. Nodes 𝑖 and 𝑘 might

then execute 𝑏 ′. Node 𝑖’s counter is then equal to 9 (i.e., 4 +

the 5 new increments), while 𝑘’s counter is now equal to 4.

The problem is that the first 4 messages sent by 𝑖 were sent

to 𝑗 (view 0’s leader) and not to 𝑘 . So 𝑘 cannot be expected

to receive those messages. Therefore, when it receives mes-

sages in view 1 from 𝑖 , starting with a counter value of 4, then

even though it has not received the messages with lower

counter values (which were meant to 𝑗 and not 𝑘), it should

still act upon them. Node 𝑘 will then not be able to detect

that block 𝑏 was locked and even executed in view 0. This is

due to the message pattern used by such protocols. We solve

this problem in our protocol by storing some information

about prepared/locked blocks in trusted components, while

the message pattern remains the same.

To this end, our approach relies on augmenting trusted

counters with additional secure storage to guarantee live-

ness and safety, which later leads to our checker service. In

order to increase the resilience, the additional secure stor-

age would need to persist both prepared and locked blocks.

The latter are needed as otherwise a Byzantine node could

lead 𝑓 correct but late nodes to lock and then further exe-

cute conflicting blocks. However, using only this simple yet

additional storage is not enough to reduce the number of

communication rounds but merely to increase resilience.

In order to also reduce the number of communication

rounds (for better latency) a leader should certify that it has

selected the block with the highest view from the new-view

messages it has received. This functionality is captured by

our accumulator service, which forces a leader to chose

the latest prepared block among the received ones. This is

valid with quorums of size 𝑓 +1, as using the checker nodes

are forced to relay the latest prepared block (as they store

it). Interestingly, when using this accumulator function,

the original suggested trusted counter with augmented stor-

age (to store prepared and locked blocks) becomes slightly

simpler: there is no need to store the locked blocks anymore,

leading to our current checker.

Therefore, our approach relies on checker and accumu-

lator as two local trusted components, which must be avail-

able at all nodes, to achieve respectively two goals: (1) in-

creased Byzantine resilience, and (2) reduced latency. Each

component is identified by a unique identifier stored with

the component. Both components perform key operations,

and produce certificates to guarantee that those operations
have been performed. These certificates are signed messages,

which are produced and verified using private/public keys

stored within the services (§5 provides further details on

signatures and §6 shows the certificates used by Damysus).
Private keys need to be kept confidential to prevent hosts of

trusted components from forging commitments.

4.2 Our Checker and Accumulator Services

4.2.1 Checker. The checker trusted service is used by

Damysus for increased Byzantine resilience, allowing to tol-

erate more Byzantine nodes. In each execution of Damysus,
all replicas interact with their local checker. The intuition

behind checker is best conveyed through the two main

purposes it serves: (1) it assigns to each message a unique

identifier thanks to a monotonic counter, which is incre-

mented each time a message is signed, to prevent nodes from

equivocating; and (2) it stores information about relevant

blocks, namely prepared and locked blocks, to guarantee that

nodes cannot lie about the blocks they have last prepared

and locked.

Thus, a Byzantine leader cannot send multiple valid pro-

posals in a given view but rather only a single valid, since

checker maintains a monotonic counter whose value is

equal to the view number and it stamps the proposal of

a leader with the signed value of that monotonic counter.

Also when prompted by the algorithm to report the last pre-

pared/locked block, Byzantine node can no longer lie about

that value, e.g., by reporting an old block, since checker

saves the values of the last prepared/locked block and a

node is forced to get that value signed from checker when

reporting it to the rest of the network.

To this end, checkermaintains the following state, which

needs to be securely stored in memory, and can only be

modified by the service:

• amonotonically increasing counter keeping track of the
current view and phase

• some information regarding the latest prepared and
locked blocks. As explained in §6.3, for the purpose of
Damysus, we store a view number and a hash value

per prepared and locked block.

Furthermore, it provides the following interface:

• TEEprepare(block, certificate): this function takes a

block 𝑏 (we see below that blocks can often be re-

placed by their hash values) and a certificate, which

includes a block 𝑏 ′, and a proof that 𝑏 ′ is the latest

prepared block according to the node that generated

the certificate. It then returns a new certificate that

contains the current value of the monotonic counter,

certifying that 𝑏 is a safe (w.r.t. SafeNode) proposal

extending 𝑏 ′, after which this counter is increased.

• TEEstore(certificate): this function takes a certificate

that some block 𝑏 extends some other block 𝑏 ′ as gen-
erated by the checker service, verifies it, stores 𝑏 as

5

5

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

the latest prepared or locked block in the state, depend-

ing on the phase, and generates a new certificate that

this operation has been executed.

• TEEsign(): this function generates a certificate for the

stored latest prepared block.

4.2.2 Accumulator. The accumulator trusted service

is used by Damysus to reduce latency by reducing the number

of communication phases. In each execution of Damysus,
only the leader interacts with its accumulator. Its goal is to

certify that some block has the highest view among a given

set of blocks. This is used in Damysus to ensure that a leader

at anytime proposes the latest prepared block in the system

(if it exists).

In a nutshell the intuition behind accumulator is as fol-

lows: In a given view, a leader in streamlined protocols typ-

ically asks replicas for their latest prepared blocks. Upon

receiving them the leader selects the block with the highest

view and disseminates it back to the rest of the network. The

purpose of accumulator is to prevent a Byzantine leader

from deviating, e.g., by not sending the prepared block with

the actual highest view. accumulator prevents this ma-

licious act by processing itself the recived messages and

generating a signed response that contains the latest pre-

pared block with the highest view. Hence replicas would

only process valid responses produced by accumulator.

Similar to checker, accumulator also generates certifi-

cates, however, the ones it generates are not tied to a mono-

tonic counter, but instead indicate how many messages have

been accumulated so far. We therefore call such a certificate

an accumulator here.
This service does not require further storage, and provides

the following interface:

• TEEstart(certificate): this function takes a certificate

that some block 𝑏 is the latest prepared block (see

above), and generates an initial accumulator, indicat-
ing that only one block, namely 𝑏, was used so far to

generate that accumulator.

• TEEaccum(accumulator, certificate): this function takes
an accumulator certifying that some block 𝑏 has the

highest view 𝑣 among 𝑘 blocks signed by 𝑘 different

nodes denoted 𝐾 here, as well as a certificate signed

by 𝑗 that some block 𝑏 ′ is the latest prepared block,

prepared in view 𝑣 ′, and generates a new accumulator

certifying that 𝑏 has the highest view 𝑣 among 𝑘+1
blocks if 𝑣 ≥ 𝑣 ′ and 𝑗 ∉ 𝐾 .

• TEEfinalize(accumulator). The accumulators con-

sidered so far have to keep track of the nodes that

have signed the certificates used to generate those ac-

cumulators. Once a given threshold has been reached,

TEEfinalize replaces the set of node ids {𝑖𝑖 , . . . , 𝑖𝑘 }
stored in such an accumulator by their number 𝑘

This service is intended to be used by leaders as follows.

(1) Before calling the service, collect 𝐶 , a list of certificates

signed by different nodes, and select from 𝐶 the certificate 𝑐

with the highest view (here the view at which the block cer-

tified by that certificate was prepared). (2) Call TEEstart(𝑐)
to create an initial accumulator. (3) Iterate TEEaccum on the

remaining certificates in 𝐶 , expanding the accumulator with

the ids of the nodes that signed those certificates. (4) Call

TEEfinalize on that accumulator.

4.2.3 On the Use of checker and accumulator. For

space limitations, we use in this paper the checker and

accumulator combined, since their combination leads to

the most efficient hybrid protocol. However, we point the

reader to the extended version of this paper [43] for the

individual hybrid protocols that are based solely on either the

checker (to increase resilience) or the accumulator service

(to decrease latency). Remark that when used in combination

with the accumulator service (§4.2.2), the checker service

does not require to store locked blocks (leading to simpler

TEEprepare and TEEstore functions) because leaders are

constrained to extend the highest latest prepared block out of

a quorum of such messages received in new-view messages.

5 System Model

Replicas and leaderWe consider a static system consisting

of 𝑁 replicas out of which at most 𝑓 can be faulty (i.e., Byzan-

tine). Depending on the protocol, 𝑁 will either be 3𝑓 +1 or
2𝑓 +1. For simplicity, we refer to a replica by using a unique

id. We assume that each view has a unique leader, which is

chosen deterministically and known to all nodes.

Trusted components Each replica executes trusted com-

ponents that provide the checker and accumulator ser-

vices, resulting in a hybrid fault model, where at each faulty

node all components can be tampered with except the ones

providing these trusted services.

CommunicationsWe assume that replicas communicate

by exchanging messages over a fully connected communi-

cation network. Communications are reliable (i.e., messages

are not lost). We adopt the partial synchrony model, where

there is a known bound Δ and an unknown Global Stabiliza-

tion Time (GST), such that after GST, all communications

arrive within time Δ [44].

Signatures Replicas and trusted components rely on an

asymmetric signature scheme. A digital signature 𝜎 is gen-

erated via the SIGN function, and verified using the VERIFY
function. We assume that a digital signature contains the

identity of the signing replica or component, which is ob-

tained using 𝜎.id.
BlocksAblock𝑏 contains transactions submitted by clients.

Our protocols work at the block level, and we therefore leave

abstract the internal details of transactions, which are mostly

application specific. We assume a cryptographic secure hash

function H that is used to hash blocks. We write ℎ for the

hash value of a block. We write 𝑏 ≻ ℎ when 𝑏 is a direct

extension of a block with hash value ℎ. We also write 𝑏1 ≻ 𝑏2
6

6

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

for 𝑏1 ≻ H(𝑏2). The relation ≻ can easily be checked if, e.g.,

blocks store the hash values of the blocks they extend. We

write ≻+
for its transitive closure, and ≻∗

for its reflexive

and transitive closure. When 𝑏2 ≻∗ 𝑏1, we say that 𝑏2 is a

descendant of 𝑏1 and that 𝑏1 is an ancestor of 𝑏2. We say that

a block 𝑏1 conflicts with a different block 𝑏2 if ¬𝑏2 ≻+ 𝑏1 and
¬𝑏1 ≻+ 𝑏2. We also assume a createLeaf function that cre-

ates a new block extending a parent block (or simply its hash

value) with client transactions. Let 𝐺 stand for the genesis

block.

6 Damysus
This section presents Damysus, a 2-phase protocol5 that tol-
erates ⌊𝑁−1

2
⌋ Byzantine replicas (𝑓 out of 2𝑓 +1 replicas).

Damysus requires each node to be equipped with an instance

of each of our trusted services described in §4 to achieve re-

spectively two goals: (1) an instance of the checker service

for increased resilience against Byzantine nodes; and (2) an

instance of the accumulator service for reduced latency.

We next present an overview of Damysus and discuss how
the checker and accumulator components are used.

6.1 Overview

At the beginning of every view its leader awaits to receive

𝑓 +1 new-view messages from other processes. A new-view

message from process 𝑝 contains a quorum certificate of the

latest prepared block at 𝑝 . A leader then selects from these

new-view messages, the certificate 𝑐 for the prepared block

with the highest view (this view being the view at which the

block was prepared), and submits it to its accumulator com-

ponent, along with the other 𝑓 new-view messages. If 𝑐 was

indeed a certificate for the highest prepared blocks among

the 𝑓 +1 submitted certificates, and those 𝑓 +1 certificates

have been produced by distinct nodes, then accumulator

generates a certificate of its own (a signed message), called

an accumulator here, guaranteeing that the above has been
checked. A leader then uses this accumulator to build its

proposal. A leader’s proposal is first submitted to its local

checker component, which validates a single proposal per

view, and then it is sent out to the other replicas in a prepare

message. All other nodes only accept proposals validated by

the current leader’s checker.

Upon receiving the leader’s proposal 𝑏, every replica uses

a modified SafeNode predicate to check whether it should

accept 𝑏. This SafeNode checks that 𝑏 extends the prepared

block certified by the accumulator. If the leader’s proposal

is accepted, the replicas also use their checker components

to verify the accumulator, and in turn sign the proposal.

Those signatures are partially signed prepare votes, which

the replicas send to the leader.

5
As mentioned in §3, HotStuff is a 3-phase protocol, as it has 3 core phases.
Similarly, Damysus is referred to as a 2-phase protocol as it has 2 core phases.

When the leader receives 𝑓 +1 prepare votes for its pro-
posal, it combines them into a certificate, which it broadcasts

in the pre-commit phase. Upon receipt of a prepare certificate

for 𝑏 from the leader, the nodes use their checker compo-

nents to store the view at which 𝑏 is prepared, i.e., the cur-

rent view, and for code simplicity 𝑏’s hash value too. Storing

only views would require trusted components to perform

further computations to check the “correctness” of those

blocks, which can be omitted by simply storing the hash val-

ues of those blocks. Prepared blocks are stored in checker

to ensure that nodes (even Byzantine ones) relay their pre-

pared messages in new-view messages. Once a checker has

stored a prepared block, it emits a signature guaranteeing

that this operation has been done. Such a signature is a par-

tially signed pre-commit vote, which is sent to the leader

When the leader receives 𝑓 +1 pre-commit votes, it com-

bines them into a certificate and sends it in a decide message

to all other replicas. Upon receiving a decide message, a

replica executes the transactions, increments its view num-

ber, and starts the next view.

6.2 Definitions

In what follows, we introduce some definitions that we use

later to formally describe Damysus.
Phases Messages generated by trusted components in-

clude a tag ph ∈ {nv_p, prep_p, pcom_p} indicating the phase
in which they were generated: Those are shorthands for

new-view, prepare, and pre-commit respectively.
Steps A step (v, ph) is a pair of a view v and a phase ph.

To progress through views and phases, nodes increment

steps as follows: (𝑣, nv_p)++ = (𝑣, prep_p), (𝑣, prep_p)++ =

(𝑣, pcom_p), and (𝑣, pcom_p)++ = (𝑣+1, nv_p).
Commitments A commitment 𝜙 (generated by checker

components) is of the form ⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, ®𝜎𝑛⟩, whereℎ andℎ′
are hash values of blocks, 𝑣 and 𝑣 ′ are view numbers, ph
is a phase, and ®𝜎𝑛 = [𝜎1, . . . , 𝜎𝑛] is a list of signatures on

data (ℎ, 𝑣, ℎ′, 𝑣 ′, ph). We simply write ®𝜎 when the number of

signatures in the list is irrelevant.

We refer to ℎ, 𝑣 as the “proposed (hashed) block/view”

of the commitment, and ℎ′, 𝑣 ′ as the “justification (hashed)

block/view” of the commitment.

We sometimes refer to a commitment as an𝑛-commitment

if it contains 𝑛 signatures. In the case of a 1-commitment,

we write ⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, 𝜎⟩ for ⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, [𝜎]⟩. We de-

fine C-combine([⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, 𝜎1⟩, . . . , ⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, 𝜎𝑛⟩])
to be ⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, [𝜎1, . . . , 𝜎𝑛]⟩. This is used to create quo-

rum certificates out of partial votes. Given a list
®𝜙 of the form

[⟨ℎ1, 𝑣1, ℎ′1, 𝑣 ′1, ph1, 𝜎1⟩, . . . , ⟨ℎ𝑛, 𝑣𝑛, ℎ′𝑛, 𝑣 ′, ph𝑛, 𝜎𝑛⟩], we define
the following operation to check whether enough messages

of a certain kind have been received: let C-match(®𝜙, 𝑘, ℎ, 𝑣, ph)
be true iff: (1) 𝑛 = 𝑘 ; (2) all 𝑛 signatures have been created

by different nodes; and (3) ∀𝑖 ∈ {1, . . . , 𝑛}.ℎ = ℎ𝑖 ∧ 𝑣 = 𝑣𝑖 ∧
7

7

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

ph = ph𝑖 . Because not all fields are always necessary in com-

mitments, we use ⊥ to indicate that a field (more precisely

a hash value or view field) is not filled out. The symbol

⊥ is considered syntactically different from all hash val-

ues and view numbers. Given a commitment 𝜙 of the form

⟨ℎ, 𝑣, ℎ′, 𝑣 ′, ph, ®𝜎𝑛⟩, let 𝜙.Hprep be ℎ; 𝜙.Vprep be 𝑣 ; 𝜙.Hjust be
ℎ′; 𝜙.Vjust be 𝑣 ; 𝜙.phase be ph; and 𝜙.sign be ®𝜎𝑛 .

Accumulator An accumulator acc (generated by the ac-

cumulator service) is built out of checker-generated com-

mitments and has one of the following forms: (1) ⟨𝑣, 𝑣 ′, ℎ, ®𝑖, 𝜎⟩,
where ℎ is the hash value of a block prepared at view 𝑣 ′, and
®𝑖 is a list of node ids that have prepared blocks at most as

high as ℎ, including a node that has prepared ℎ at view 𝑣 ′;
(2) ⟨𝑣, 𝑣 ′, ℎ, 𝑛, 𝜎⟩, indicating that ℎ is the hash value of the

highest prepared block among 𝑛 (a natural number) checked

certificates used to generate the accumulator. Let ®𝑖1@®𝑖2 be the
list ®𝑖2 appended to the list ®𝑖1. Let acc.hash be ℎ. Let the size
of an accumulator be defined as follows: |⟨𝑣, 𝑣 ′, ℎ, ®𝑖, 𝜎⟩| = |®𝑖 |,
and |⟨𝑣, 𝑣 ′, ℎ, 𝑛, 𝜎⟩| = 𝑛, i.e., the size of an accumulator acc is
the number of nodes that have contributed the commitments

that were used to generate acc.
MessageMessage exchanged by nodes are of the form 𝜙

or ⟨𝑏, acc, 𝜎⟩.

6.3 Instances of the Trusted Services

We now describe the instances of our checker and accumu-

lator trusted services (presented in §4) used by Damysus.
checker instance As mentioned above Damysus’s in-

stance of the checker trusted service stores both the view

and hash value of the latest prepared block. Also, for con-

venience, the monotonic counter is split into a view and a

phase. More precisely, the checker component maintains

a state that comprises the following (where the public keys

are those of the other checker components in the system):

prepv the view of the last prepared block

preph the hash value of the last prepared block

view the current view

phase the current phase

privc the trusted component’s private key

pubs public keys

The certificates produced by the checker service are all 1-

commitments, and the ones they act upon are accumulators

for TEEprepare, and (𝑓 +1)-commitments for TEEstore.
TEEsign creates a 1-commitment using the prepared block

stored in the trusted component. Replicas are required to

use this function to generate new-view certificates so that

they cannot lie about the last block they have prepared. It

can also be used by late nodes to increase their view and

phase number without going through all the steps. As no

phase number is checked when calling TEEsign, note that
crucially, this function generates a commitment 𝜙 where the

proposed hash value 𝜙.Hprep is ⊥ so that 𝜙 can only be used

as a commitment for a nv_p phase.

TEEprepare takes the pair of the hash value ℎ of a block

proposed by a leader and an accumulator (generated by the

leader) corresponding to the justification of that block. If the

accumulator was generated by the current leader, i.e., for the

current, view then TEEprepare generates a 1-commitment,

which stands for a partially signed prepare vote.

TEEstore takes a (𝑓 +1)-commitment, and checks whether

it is for a block prepared in the current view by a quorum of

nodes, in which case a 1-commitment is generated, which

stands for a partially signed pre-commit vote.

accumulator instance The accumulator component

maintains a private key, as well as public keys, which are

shared with those of the checker component.

The TEEstart function takes a 1-commitment𝜙 , and turns

it into an accumulator acc if 𝜙 ’s signature can be verified, in

particular registering in acc the id of the node that signed

𝜙 . This initial commitment is meant to be the one for the

prepared block with the highest view number among a collec-

tion of 𝑓 +1 such 1-commitments received by the leader at the

beginning of the prepare phase. The leader then iterates over

the remaining 𝑓 commitments, each time calling TEEaccum
to check that those commitments are for lower view numbers

and signed by different nodes, and updating acc accordingly,
i.e., recording the ids of the 𝑓 signers. Finally, TEEfinalize
is called to turn acc of the form ⟨𝑣, 𝑣 ′, ℎ, [𝑖1, . . . , 𝑖 𝑓 +1], 𝜎⟩ into
an acc′ of the form ⟨𝑣, 𝑣 ′, ℎ, 𝑓 +1, 𝜎⟩.

6.4 The Damysus Algorithm

Fig. 2 presents Damysus’s pseudocode. In the prepare phase,
the leader accumulates 𝑓 +1 new-view messages by calling

accumList (see Fig. 2a, ln. 7), i.e., the leader selects the new-

view message for the block prepared at the highest view

among all 𝑓 +1 received messages, and certifies that it is

indeed the highest using its accumulator. The leader then

extends that highest prepared block with a new block 𝑏

(Fig. 2a, ln. 8), and prepares 𝑏 using TEEprepare (Fig. 2a,

ln. 9) of the checker. This guarantees that the algorithm

advances to the next step, and generates as well a signature

of the newly proposed block (its hash value), which stands

for a partially signed prepare vote.

The leader then sends the new proposal 𝑏, along with acc,
the accumulator it has generated and used to create 𝑏, and

the signature of its prepared commitment, to all other nodes.

Then, the other nodes check that 𝑏 extends the block con-

tained in acc (Fig. 2a, ln. 16), and also prepare the block

proposed by the leader using their checker (Fig. 2a, ln. 17).

In the next pre-commit phase, correct nodes call TEEstore
to store 𝑏 in their checker component. Nodes are forced to

store 𝑏 during this phase to generate a partially signed pre-

commit vote. This guarantees that if a block is executed, 𝑓 +1
nodes (possibly Byzantine) have stored it in their checker

components, and will relay it in their new-view messages.

Thanks to the accumulator, nodes do not need to lock

blocks as done in HotStuff: no commit phase is needed and in
8

8

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 2 Damysus (2𝑓 +1 replicas and 2 phases)

(a) Non-trusted code at replica 𝑖

1: view = 0 // current view (duplicates the one in the TEE)
2: pubs // public keys (duplicate the ones in the TEE)
3:

4: // prepare phase
5: as a leader

6: wait for
®𝜙 s.t. C-match(®𝜙, 𝑓 +1,⊥, view, nv_p)

7: acc := accumList(®𝜙)
8: 𝑏 := createLeaf(acc.hash, client transactions)
9: 𝜙prep := TEEprepare(H(𝑏), acc) // also sent to itself
10: send ⟨𝑏, acc, 𝜙prep.sign ⟩ to backups

11:

12: as a backup

13: wait for ⟨𝑏, ⟨view, 𝑣′, ℎ′, 𝑓 +1, 𝜎 ⟩, 𝜎′⟩ from the leader

14: acc := ⟨view, 𝑣′, ℎ′, 𝑓 +1, 𝜎 ⟩
15: 𝜙prep := ⟨H(𝑏), view, ℎ′, 𝑣′, prep_p, 𝜎′⟩
16: abort if ¬(VERIFY(𝜙prep)pubs ∧ 𝑏 ≻ ℎ′)
17: send 𝜙′

:= TEEprepare(H(𝑏), acc) to leader

18:

19: // pre-commit phase
20: as a leader

21: wait for
®𝜙 s.t. C-match(®𝜙, 𝑓 +1, ℎ, view, prep_p)

22: send 𝜙 := C-combine(®𝜙) to all replicas

23:

24: all replicas

25: wait for ⟨ℎ, view, ℎ′, 𝑣′, prep_p, ®𝜎 𝑓 +1 ⟩ from leader

26: send 𝜙 := TEEstore(⟨ℎ, view, ℎ′, 𝑣′, prep_p, ®𝜎 𝑓 +1 ⟩) to leader

27:

28: // decide phase
29: as a leader

30: wait for
®𝜙 s.t. C-match(®𝜙, 𝑓 +1, ℎ, view, com_p)

31: send 𝜙 := C-combine(®𝜙) to all replicas

32:

33: all replicas

34: wait for ⟨ℎ, view,⊥,⊥, pcom_p, ®𝜎 𝑓 +1 ⟩ from leader

35: abort if ¬VERIFY(⟨ℎ, view,⊥,⊥, pcom_p, ®𝜎 𝑓 +1 ⟩)pubs
36: execute 𝑏 corresponding to ℎ & reply to clients

37:

38: // new-view phase
39: all replicas

40: when executed or timeout

41: // call TEEsign until the node can generate
42: // a new-view-phase commitment for the next view
43: (𝑣, ph) := (view, prep_p) ; view++
44: while (𝑣, ph) ≠ (view, nv_p) do
45: 𝜙 := TEEsign() ; (𝑣, ph) := (𝜙.Vprep, 𝜙.phase)
46: end while

47: send 𝜙 to view’s leader
48:

49: function accumList(®𝜙)
50: 𝜙0 := commitment 𝜙 ∈ ®𝜙 with highest 𝜙.Vjust
51: acc := TEEstart(𝜙0)
52: for 𝜙 ∈ ®𝜙 \ {𝜙0 } do acc := TEEaccum(acc, 𝜙)
53: return TEEfinalize(acc)

(b) TEE code

6: (prepv, preph) = (0,H(𝐺)) // latest prepared block
7: (view, phase) = (0, nv_p) // current step
8: privc, pubs // private (confidential) and public keys
9:

10: function createUniqueSign(ℎ,ℎ′, 𝑣′)
11: 𝜙 := ⟨ℎ, view, ℎ′, 𝑣′, phase, 𝜎 ⟩ where 𝜎 := SIGN(ℎ, view, ℎ′, 𝑣′, phase)privc
12: (view, phase)++ // increased to avoid equivocation
13: return 𝜙

14:

15: function TEEsign()
16: return 𝜙 := createUniqueSign(⊥, preph, prepv)
17:

18: function TEEprepare(ℎ, acc) where acc is ⟨𝑣, 𝑣′, ℎ′, 𝑓 +1, 𝜎 ⟩
19: if VERIFY(acc)pubs ∧ view=𝑣 ∧ ℎ ≠⊥ then

20: return 𝜙 := createUniqueSign(ℎ,ℎ′, 𝑣′)
21: end if

22:

23: function TEEstore(𝜙) where 𝜙 is ⟨ℎ, 𝑣,ℎ′, 𝑣′, ph, ®𝜎 𝑓 +1 ⟩
24: if VERIFY(𝜙)pubs ∧ view = 𝑣 ∧ ph = prep_p then
25: preph := ℎ; prepv := 𝑣

26: return 𝜙′
:= createUniqueSign(ℎ,⊥,⊥)

27: end if

28:

29: function TEEstart(𝜙) where 𝜙 is ⟨⊥, 𝑣, ℎ′, 𝑣′, nv_p, 𝜎 ⟩
30: if VERIFY(𝜙)pubs then
31: 𝜎′

:= SIGN(𝑣, 𝑣′, ℎ′, [𝜎.id])privc
32: return acc := ⟨𝑣, 𝑣′, ℎ′, [𝜎.id], 𝜎′⟩)
33: end if

34:

35:

function TEEaccum(acc, 𝜙) where acc is ⟨𝑣1, 𝑣′
1
, ℎ1, ®𝑖, 𝜎 ⟩

and 𝜙 is ⟨⊥, 𝑣2, ℎ2, 𝑣′
2
, nv_p, 𝜎2 ⟩

36: if

(
𝑣1=𝑣2 ∧ v′1 ≥ v′2 ∧ 𝜎2.id ∉ ®𝑖
∧VERIFY(acc)pubs ∧ VERIFY(𝜙)pubs

)
then

37: 𝜎′
:= SIGN(𝑣1, 𝑣′

1
, ℎ1, ®𝑖@[𝜎2.id])privc

38: return acc′ := ⟨𝑣1, 𝑣′
1
, ℎ1, ®𝑖@[𝜎2.id], 𝜎′⟩

39: end if

40:

41: function TEEfinalize(acc) where acc is ⟨𝑣, 𝑣′, ℎ, ®𝑖, 𝜎 ⟩
42: if VERIFY(acc)pubs then
43: return acc′ := ⟨𝑣, 𝑣′, ℎ, |®𝑖 |, 𝜎 ⟩ where 𝜎 := SIGN(𝑣, 𝑣′, ℎ, |®𝑖 |)privc
44: end if

the next decide phase, the leader gathers 𝑓 +1 pre-commit
commitments, and sends a pre-commit (𝑓 +1)-commitment

to all nodes, which use it to execute 𝑏. No locking is needed

because the accumulator service guarantees that leaders

only propose blocks that extend the highest prepared block.

Nodes rely on timers, which they start at the beginning

of each view, to move on to the next view when the current

one does not succeed fast enough, for example, due to a

faulty leader. The new-view phase, is then executed either

once the current view has succeeded, i.e., the decide phase

has completed, or the timer started at the beginning of the

view expired. In that phase, nodes increment their view, and

submit their vote to the leader of this new view. As nodes

store the current view number both outside and within their

trusted component, during this phase nodes ensure that the

view is incremented both outside (Fig. 2a, ln. 43) and within

the trusted component (Fig. 2a, ll. 44-45).

9

9

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

6.5 Proof of Correctness - Overview

We provide our security discussion here and leave the formal

verification as future work. Existing effort to formally verify

HotStuff by using model checking (such as TLA+/TLC [45])

or automated theorem proving (such as Ivy and TLAPS [46])

can potentially be adapted to formally verify Damysus.

The intuition behind Damysus’s correctness stems from

the following two points (see [43] for a detailed proof).

(1) The proof relies on demonstrating that a Byzantine

leader cannot propose various valid proposals for a single

view, or even alter what has been proposed over the course

of the different phases within a single view. This is guaran-

teed by the checker that only certifies one proposed value

as valid per view (all messages are assigned a unique coun-

ter/step using createUniqueSign). All other nodes only ac-

cept valid messages certified by the checker. Hence any

vote in any phase of a given view is on the same proposal.

In addition, prepared blocks are also stored in checker

for both liveness and safety, otherwise leaders might only

propose blocks based on 𝑓 +1 new-viewmessages from late or

Byzantine nodes. TEEsign in particular enforces that nodes,

even Byzantine ones, send their latest prepared blocks.

(2) In basic HotStuff, every node locks a block 𝑏 locally

once it knows that it has been prepared by a quorum of nodes

so that it will later accept another block 𝑏 ′ only if it extends 𝑏
or if 𝑏 ′ extends a block that was prepared for a higher view

than 𝑏’s (possibly because 𝑏 did not get executed, but the

system still managed to make some progress on a conflicting

block). Without locking, nodes would be allowed to accept

any new block, even blocks that are in direct conflict (at the

next view, but not extending) with the ones they have exe-

cuted. Thanks to the accumulator, locking is unnecessary

because when receiving a proposal from the leader with a

valid accumulator, nodes are then guaranteed, that this pro-

posal must extend the highest prepared block, and therefore,

for example, the block that they have last executed.

7 Chained-Damysus
This section presents Chained-Damysus, which concurrently
processes blocks to further improve performance.

7.1 Algorithm

Chained-Damysus improves on Damysus by allowing nodes

to pre-commit the predecessor block 𝑏0 of a block 𝑏 when

preparing 𝑏, while at the same time deciding the predecessor

𝑏1 of 𝑏0 (Damysus does not have a commit phase). Fig. 3 il-

lustrates Chained-Damysus’s communication pattern, while

Fig. 5 provides its pseudocode. The leader 𝑅0 of view 1 ex-

tends the genesis block with a new block 𝑏, which is pro-

posed to all nodes in this view 1. All nodes vote for 𝑏 by

sending their votes to the leader 𝑅1 of view 2. 𝑓 +1 votes (pre-
pare messages) for 𝑏 form a new certificate for block 𝑏 from

view 1. The leader 𝑅1 of view 2 can then use this certificate

Figure 3 Communication pattern in Chained-Damysus.

Figure 4 Example of a chain of blocks with a blank block.

when creating a new block 𝑏 ′. In that case, 𝑅1 does not need

to call its trusted accumulator (the condition ln. 8 in Fig. 5a is

then false) as it has a certificate from the previous view, and

does not need to justify that choice of certificate. However,

in case 𝑅1 does not receive 𝑓 +1 votes for 𝑏, it needs to obtain
the latest prepare certificate. To achieve this, nodes always

send new-view messages along with their prepare messages

(ll. 18, 19, 32, and 33 in Fig. 5a).
6
Once 𝑅1 has collected 𝑓 +1

new-view messages, it selects the latest prepare certificate,

and calls its trusted accumulator to certify that the latest pre-

pare certificate was indeed selected. Once again, 𝑅1 makes

use of this certificate when creating a new block 𝑏 ′. In both

cases, 𝑅1 sends its new block to the other nodes. This process

is then reiterated in the subsequent views.

In this chained (or pipelined) version, while some other

block 𝑏 ′ is being proposed in view 2, 𝑏 is being prepared,

and while some other block is being proposed in view 3, 𝑏 is

executed and 𝑏 ′ is being prepared. Chained-Damysus, like
Damysus, requires one phase less than chained HotStuff and

has a better resilience: it tolerates less that half of the system

being corrupt (compared to one-third).

We now detail how we adapt some of the concepts intro-

duced previously to handle a chained version.

Blocks As in chained HotStuff [9, §5], we now replace

createLeaf by createChain, which generates blank blocks

to fill gaps in the chain. Precisely, the leader of view 𝑣 that

builds a proposal extending a block proposed in view 𝑣 ′

invokes createChain to create blank blocks for all views in

[𝑣 ′+1, 𝑣−1]. We assume that a block stores: (1) as before, a

pointer to its parent block (a hash value), accessible using

𝑏.parent; (2) its justification accessible using 𝑏.just, which is

a certificate as defined below.

Fig. 4 depicts a chain with one blank block between 𝑏2
and 𝑏3, where the top blue arrows capture 𝑏.just, while the
bottom orange arrows capture 𝑏.parent.
In chained HotStuff, the oldest block in a chain of 4 con-

secutive blocks without blanks is executed. In the above

example, 𝑏3 is executed in view 7, when 𝑏6 is proposed. As

6
In the pseudo-code, nodes send two messages for simplicity, while in

practice those two messages can be combined.

10

10

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

Chained-Damysus requires one phase less, only 3 consecu-

tive blocks are necessary for a block to be executed. There-

fore, 𝑏3 is executed in view 6, when 𝑏5 is proposed. This

derives from the fact that 2 phases, namely prepare and

pre-commit, are required in Damysus for a block to be exe-

cuted in the decide phase (i.e., 3 consecutive phases).
Certificates Certificates (stored within blocks and acces-

sible via 𝑏.just) are required to be of size 𝑓 +1, and nodes

reject blocks such that |𝑏.just | ≠ 𝑓 +1. A certificate is ei-

ther a quorum certificate or an accumulator. For simplicity,

we write qc for both. A quorum certificate qc is of the form
⟨𝑣, ℎ, ®𝜎⟩, where ℎ is the hash value of a block prepared in

view 𝑣 , and ®𝜎 is a list of partial signatures on the prepared

block at view 𝑣 . If a certificate qc is of the form ⟨view, ℎ, ®𝜎𝑛⟩,
then let qc.cview = qc.view = view, qc.hash = ℎ, and |qc | = 𝑛.
If qc is an accumulator of the form ⟨view, 𝑣, ℎ, 𝑛, 𝜎⟩, then let

qc.cview = view, qc.view = 𝑣 , qc.hash = ℎ, and |qc | = 𝑛.

Given a certificate qc, qc.view refers to the view at which the

certificate was created, while qc.cview refers to the view at

which qc.hash was certified. For example, an accumulator of

the form ⟨𝑣+1, 𝑣, ℎ, 𝑛, 𝜎⟩ certifies in view 𝑣+1 that ℎ was the

hash value of the highest block elected in view 𝑣 .

Nodes store a certificate qcprep , which, when acting as lead-
ers, they update once they obtain a quorum of votes at the

end of the previous view, which act as new-view messages.

The certificate qcprep is initialized with ⊥, which is a special

certificate for view 0, that does not contain any signature.

Steps Our chained version has only two types of phases:

prepare and view-change identified by the tag nv_p and

prep_p, respectively. Consequently, the increment function

is now defined by (𝑣, prep_p)++ = (𝑣, nv_p) and (𝑣, nv_p)++ =

(𝑣+1, prep_p). Steps are incremented in a way that guaran-

tees that a commitment generated at a view 𝑣 is tagged with

𝑣−1, regardless of the origin of the commitment, i.e., whether

it came from prepare votes or from new-view messages. Due

to this step reordering, nodes now start at view 1.

Commitments A commitment 𝜙 is either a new-view

commitment ⟨⊥, view, ℎ, 𝑣, nv_p, 𝜎⟩ used by nodes to relay

their latest prepared block (its hash value), where view is the

current view, and ℎ is the hash value of the latest prepared

block at view 𝑣 ; or it is a prepare commitment of the form

⟨ℎ, view,⊥,⊥, prep_p, ®𝜎𝑛⟩ used by nodes to vote on blocks

in the prepare phase, where ℎ is the hash value of the block

currently being prepared in view view. In both cases, we

write 𝜙.view for view. In the first case we write 𝜙.Hcomm for ℎ
and 𝜙.Vcomm for 𝑣 ; and in the second case we write 𝜙.Hcomm for
ℎ and 𝜙.Vcomm for view. Note that 𝜙.Hcomm is the hash value of

a block that received 𝑓 +1 votes in view 𝜙.Vcomm, while 𝜙.view
is the view in which this information is signed and sent.

7.2 Proof of Correctness - Overview

We prove Chained-Damysus’s safety and liveness in [43],

and provide here a high-level view of the safety proof, i.e.,

that correct nodes do not execute conflicting blocks. A block

is executed if it is the oldest in a chain of 3 consecutive blocks,

i.e., if it is certified in 3 consecutive views. For safety, we

prove that the executed oldest block 𝑏2 of any such chain

𝐶2 extends the executed oldest block 𝑏1 of any other such

chain 𝐶1 (assuming 𝑏2’s view is higher than 𝑏1’s). If the two

chains overlap, then they cannot be inconsistent because

at most one block can be certified per view, as nodes can

only vote once per view. If the two chains do not overlap,

then 𝑏2’s view is higher than the views of 𝐶1’s blocks. We

then derive that 𝑏2 is a descendant of the middle block 𝑏 ′
1
of

𝐶1, and therefore that 𝑏2 ≻∗ 𝑏 ′
1
≻ 𝑏1. We differentiate two

cases: (1) the leaders of the views between𝐶1 and𝐶2 created

certificates out of the prepare messages they received, and

therefore did not need to call their trusted accumulator, in

which case 𝑏2 ≻∗ 𝑏 ′
1
; and (2) a leader 𝐿 of a view between 𝐶1

and 𝐶2 extended a different certificate than the one created

at the end of the previous view. In that case, because leaders

(even Byzantine ones) have to justify that they have selected

the latest prepare certificate using their trusted accumulators,

and because nodes (even Byzantine ones) must relay their

latest prepare certificates in new-view messages, we are

again guaranteed that 𝐿 will only be able to accumulate 𝑓 +1
votes for its proposal if it extends 𝑏 ′

1
.

8 Evaluation

Implemented protocolsWe evaluate the performance of

Damysus (§6) and Chained-Damysus (§7) and compare them

to those of basic and chainedHotStuff. In order to better quan-

tify the impact of the checker and accumulator trusted

services on performancewe also implement two non-chained

additional versions of Damysus. One where nodes are only
equipped with a checker, but not an accumulator, called

Damysus-C, and one where nodes are only equipped with an

accumulator, but not a checker, called Damysus-A. We re-

call from §4.2.3 that by using a single component, Damysus-C
merely improves the resilience while Damysus-A only re-

duces the communication phases. We summarize in what

follows the protocols we evaluate (C. stands for checker

and A. for accumulator).

name nodes phases trusted comp.

basic HotStuff 3𝑓 + 1 3 none

Damysus-C 2𝑓 + 1 3 C.

Damysus-A 3𝑓 + 1 2 A.

Damysus 2𝑓 + 1 2 C. & A.

chained HotStuff 3𝑓 + 1 3 none

Chained-Damysus 2𝑓 + 1 2 C. & A.

Development environment All 6 protocols are imple-

mented in C++
7
, and whenever applicable use Intel SGX en-

claves [17] to run trusted services. We use SGX because of

its Linux SDK that provides a convenient development envi-

ronment. Although our trusted services are generic enough

7
The code can be found at https://github.com/vrahli/damysus.

11

11

https://github.com/vrahli/damysus

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

Figure 5 Chained-Damysus (2𝑓 +1 replicas and 2 phases).

(a) Non-trusted code at replica 𝑖

1: view = 1 // current view (duplicates the one in the TEE)
2: pubs // public keys (duplicate the ones in the TEE)
3: qcprep :=⊥ // latest prepared certificate

4: blocks // mapping from views to proposed blocks
5:

6: // prepare phase
7: as a leader

8: if qcprep.cview≠view−1 then
9: // we don’t have the latest certificate
10: wait for

®𝜙 s.t. C-match(®𝜙, 𝑓 +1,⊥, view−1, nv_p)
11: qcprep := accumList(®𝜙)
12: end if

13: 𝑏 := createChain(qcprep, client transactions)
14: blocks [view] := 𝑏

15: 𝑏0 := blocks [𝑏.just.view] if it is defined, else abort
16: abort if H(blocks [𝑏.just.view]) ≠ 𝑏.just.hash
17: 𝜙prep := TEEprepare(𝑏,𝑏0)
18: send ⟨𝑏,𝜙prep.sign ⟩ to backups

19: send 𝜙nv := TEEsign() to leader of view view+1
20:

21: all replicas

22: wait for ⟨𝑏, 𝜎′⟩ from the leader

23: abort if view ≠ 𝑏.just.cview+1
24: 𝑏0 := blocks [𝑏.just.view] if it is defined, else abort
25: abort if H(blocks [𝑏.just.view]) ≠ 𝑏.just.hash
26: 𝑏1 := blocks [𝑏0.just.view] if it is defined, else abort
27: abort if H(blocks [𝑏0.just.view]) ≠ 𝑏0.just.hash
28: if ¬ leader of view then

29: 𝜙prep := ⟨H(𝑏), view,⊥,⊥, prep_p, 𝜎′⟩
30: abort if ¬(VERIFY(𝜙prep)pubs ∧ 𝑏 ≻+ 𝑏.just.hash)
31: blocks [view] := 𝑏

32: send 𝜙′
:= TEEprepare(𝑏,𝑏0) to leader of view view+1

33: send 𝜙nv := TEEsign() to leader of view view+1
34: end if

35: if 𝑏.parent = H(𝑏0) ∧ 𝑏0.parent = H(𝑏1) then
36: execute 𝑏1 (and previous blocks) & reply to clients

37: end if

38: if ¬ leader of view+1 then view++
39:

40: as a leader of next view view+1
41: wait for

®𝜙 s.t. C-match(®𝜙, 𝑓 +1, ℎ, view, prep_p)
42: ⟨ℎ, view,⊥,⊥, prep_p, ®𝜎 𝑓 +1 ⟩ := C-combine(®𝜙)
43: qcprep := ⟨view, ℎ, ®𝜎 𝑓 +1 ⟩; view++
44:

45: // new-view phase
46: upon timeout// executed by all replicas
47: (𝑣, ph) := (0, prep_p) ; view++
48: while (𝑣, ph) ≠ (view, nv_p) do
49: 𝜙 := TEEsign() ; (𝑣, ph) := (𝜙.view, 𝜙.phase)
50: end while

51: send 𝜙 to view’s leader
52:

53: function accumList(®𝜙)
54: 𝜙0 := message 𝜙 ∈ ®𝜙 with highest 𝜙.Vcomm
55: acc := TEEstart(𝜙0)
56: for 𝜙 ∈ ®𝜙 \ {𝜙0 } do acc := TEEaccum(acc, 𝜙)
57: return TEEfinalize(acc)

(b) TEE code

1: (prepv, preph) = (0,H(𝐺)) // latest prepared block
2: (view, phase) = (0, nv_p) // current step
3: privc , pubs // private (confidential) and public keys
4:

5: functions createUniqueSign(ℎ,ℎ′, 𝑣′) , TEEsign()
6: // Same as in Fig. 2b
7:

8: function TEEprepare(𝑏,𝑏0)
9: qc := 𝑏.just

10: if

(
VERIFY(qc)pubs ∧ view=qc.cview+1
∧qc.hash = H(𝑏0)

)
then

11: if 𝑏.parent=H(𝑏0) then
12: preph := qc.hash; prepv := qc.view
13: end if

14: return 𝜙′
:= createUniqueSign(H(𝑏),⊥,⊥)

15: end if

16:

17: functions TEEstart(𝜙) , TEEaccum(acc, 𝜙) , TEEfinalize(acc)
18: // Same as in Fig. 2b

to be potentially implemented in any trusted execution en-

vironment, we acknowledge that SGX security vulnerabili-

ties have been described in the literature [47]. Replicas use

ECDSA signatures with prime256v1 elliptic curves (available

in OpenSSL [48]), and are connected using Salticidae [49].

Note that basic and chained HotStuff do not rely on trusted

components, while all the other protocols do and make use

of SGX to implement them.

Deployment settings We deploy our protocols on AWS

EC2 machines with one t2.micro instance per node. Each

figure presents the average of 100 repetitions with 30 views

each. We vary the fault threshold 𝑓 ∈{1, 2, 4, 10, 20, 30, 40} (i.e.
up to 121 nodes) with blocks of 400 transactions, and use pay-

loads of 0B and 256B. In addition to the payload, a transaction

contains 2 × 4B for metadata (a client id, and a transaction

id), as well as the hash value of the previous block of size

32B, thereby adding 40B to each transaction in addition to its

payload. For example, the experiments with payloads of 0B

involve blocks of size 400 × 40B=15.6KB. Payloads of 0B are

used to evaluate the protocols’ overhead, while payloads of

256B have been selected to observe the trend when increas-

ing the size of blocks. With 256B payloads, blocks are then

of size 400 × (256 + 40)B=115.6KB, which as shown below

allows observing a significant latency increase: about one

order of magnitude for our world-wide deployment.

Regional deployment Fig. 6a and 6b show experiment

with nodes deployed across 4 regions in Europe (Ireland,

London, Paris, and Frankfurt), comparing the throughput

and latency (measured by the replicas) of the 6 protocols

listed above. For the experiments reported in Fig. 6a, pay-

loads are of size 256B. As we see there, compared to basic

HotStuff, Damysus-C has an average throughput increase

of 59.7%, Damysus-A of 19.3%, and Damysus of 87.5%. More-

over, Damysus-C has an average latency decrease of 35.9%,

12

12

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 6 Throughput (top Figs., in Kops/s with log scale) and latency (bottom Figs., ms) EU regions, varying the payloads.

(a) EU regs. & 256B pl. (AWS) (b) EU regs. & 0B pl. (AWS)

Figure 7 Throughput (top Figs., in Kops/s with log scale) and latency (bottom Figs., ms) World regions, varying the payloads.

(a) World regs. & 256B pl. (AWS) (b) World regs. & 0B pl. (AWS)

Damysus-A of 16.6%, and Damysus of 45%. In addition, com-

pared to chained HotStuff, Chained-Damysus has a through-
put increase of 50.5% and latency decrease of 32.1%. For the

experiments reported in Fig. 6b, payloads are of size 0B. As

we see there, compared to basic HotStuff, Damysus-C has an

average throughput increase of 54.6%, Damysus-A of 36.7%,
and Damysus of 107.1%. Moreover, Damysus-C has an av-

erage latency decrease of 31.8%, Damysus-A of 27.4%, and

Damysus of 50.6%. In addition, compared to chained HotStuff,

Chained-Damysus has a throughput increase of 57.4% and la-

tency decrease of 33.1%. We observe from those experiments

that each of the trusted components has a substantial effect

on increasing the throughput and decreasing the latency.

Figure 8 Comparison for 𝑁 = 61 of the throughput/latency

improvement over HotStuff and chained HotStuff

Damysus-C Damysus-A Damysus Chained-Damysus

Fig. 6a 1.9%/0.8% 28.0%/-37.8% 9.9%/8.1% -11.0%/-18.4%

Fig. 6b 20.6%/17.0% -4.7%/-7.3% 58.0%/33.7% 40.9%/29.8%

Fig. 7a 31.6%/23.4% 31.3%/18.7% 52.3%/34.3% 27.4%/21.5%

Fig. 7b 27.7%/21.7% 35.6%/26.3% 73.8%/42.4% 29.7%/22.9%

Cross continent deployment Fig. 7a and 7b show ex-

periments with nodes deployed across 11 regions across the

world (4 in the US in North Virginia, Ohio, North California,

13

13

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

Figure 9Max. throughput (Kops/s) vs. latency (ms).

and Oregon; 4 in Europe in Ireland, London, Paris, and Frank-

furt; 2 in Asia in Singapore, and Sydney; and 1 in Canada

Central), comparing the 6 protocols’ throughput and latency

(measured by the replicas). For the experiments reported in

Fig. 7a, payloads of size 256B. We observe that compared

to basic HotStuff Damysus-C has an average throughput in-

crease of 35.1%, Damysus-A of 18.4%, and Damysus of 61.6%.
Note that Damysus performs better than a simple combina-

tion of checker (as in Damysus-C) and accumulator (as

in Damysus-A), as it eliminates the need of checker storing

locked blocks, as explained in §4. Moreover, Damysus-C has

an average latency decrease of 24.2%, Damysus-A of 14.0%,

and Damysus of 36.6%. In addition, compared to chained Hot-

Stuff, Chained-Damysus has a throughput increase of 35.2%

and latency decrease of 24.8%. For the experiments reported

in Fig. 7b, payloads are of size 0B. As we see there, compared

to basic HotStuff, Damysus-C has an average throughput in-

crease of 33.1%, Damysus-A of 38.2%, and Damysus of 78.6%.
Moreover, Damysus-C has an average latency decrease of

23.3%, Damysus-A of 27.0%, and Damysus of 43.0%. In addi-

tion, compared to chained HotStuff, Chained-Damysus has a
throughput increase of 32.2% and latency decrease of 23.7%.

In all cases, the hybrid protocols have a higher throughput

and lower latency than the corresponding non-hybrid proto-

cols. The most efficient protocol is always Damysus, which
combines the advantages of Damysus-C and Damysus-A. The
same conclusions apply to the chained versions.

Comparison with a given 𝑁 In addition to comparing

the protocols for a given number of faults 𝑓 , we also compare

them depending on the number of nodes 𝑁 . The only com-

parable values are 𝑓1 = 20 for the non-hybrid protocols and

𝑓2 = 30 for the hybrid protocols, in which case 3𝑓1 + 1 = 61 =

2𝑓2 + 1. As one can observe in the above experiments, for a

system of size 𝑁 = 61, Damysus and Chained-Damysus toler-
ate more faults than basic and chained HotStuff (⌊𝑁−1

2
⌋ = 30

compared to ⌊𝑁−1
3

⌋ = 20), and also perform better overall.

For example, for 𝑁 = 61, Chained-Damysus and chained

HotStuff have comparable throughput and latency in Fig. 6a,

while Chained-Damysus has a 23Kops/sec throughput and
a 17ms latency compared to chained HotStuff’s 16Kops/sec

throughput and 24ms latency in Fig. 6b. Fig. 8 summarizes

the improvement of the throughput (left value) and latency

(right value) of Damysus-C, Damysus-A, and Damysus over

HotStuff, and of Chained-Damysus over chained HotStuff.

Throughput vs. latency Fig. 9 evaluates all protocols

while increasing the throughput until system saturation. For

this experiment, we configure the protocols using 𝑓 = 1,

blocks of 400 transactions, 0B payloads, and 4 regions in

Europe. We increase the rate at which clients submit trans-

actions, until we saturate the systems. The throughput and

latency are here measured by the clients. In the left figure,

we evaluate the chained protocols using 10 clients, which

send a total of 250K transactions each at the following rates

(going left to right in the figure): 700, 500, 100, 50, 10, 5, and

0𝜇𝑠 . In the right figure, we evaluate the basic protocols us-

ing 6 clients, which send a total of 50K transactions each

at the following rates (going left to right in the figure):

900, 700, 500, 100, 50, 10, 5, and 0𝜇𝑠 . Note that to the right of

the figures the lines move left to right because of small vari-

ations resulting from the unstable nature of such systems.

We observe that Chained-Damysus has a lower latency

than HotStuff, and a higher maximum throughput. Also, all

basic hybrid versions have a lower latency and higher max-

imum throughput than HotStuff. Damysus performs better

than Damysus-C, which performs better than Damysus-A.

9 Conclusion

This paper explored the design space of hybrid solutions that

leverage arguably minimalist trusted components to improve

the performance and resilience of HotStuff-like protocols.

We showcased that the simplest known trusted components

in hybrid solutions for traditional BFT protocols are not suf-

ficient to deliver the same guarantees for streamlined BFT

protocols. To this end, we introduced two simple trusted com-

ponents whose services are locally required by every node

in the system. Using these trusted components, which we

called checker and accumulator, we introduced Damysus
a hybrid variant of basic HotStuff. Damysus simultaneously

improved resilience, reduced communication complexity and

latency, and over-performed HotStuff in terms of through-

put. Damysus preserves HotStuff’s overall behavior to retain

linear view change and optimistic responsiveness. We ex-

tended Damysus to Chained-Damysus to support chained

operations.

Acknowledgement

Jiangshan Yu was partially supported by the Australian Re-

search Council (ARC) under project DE210100019.

References

[1] L. Lamport, R. E. Shostak, and M. C. Pease. 1982. The byzan-

tine generals problem. ACM Trans. Program. Lang. Syst., 4, 3,
382–401.

[2] C. Cachin and M. Vukolic. 2017. Blockchain consensus pro-

tocols in the wild (keynote talk). In DISC (LIPIcs). Volume 91.

Schloss Dagstuhl - Leibniz-Zentrum fur Informatik.

14

14

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components EuroSys ’22, April 5–8, 2022, RENNES, France

[3] C. Natoli, J. Yu, V. Gramoli, and P. J. E. Verissimo. 2019. De-

constructing blockchains: A comprehensive survey on con-

sensus, membership and structure. CoRR, abs/1908.08316.
arXiv: 1908.08316.

[4] M. Castro and B. Liskov. 1999. Practical byzantine fault tol-

erance. In OSDI. USENIX Association.

[5] E. Shi. 2019. Streamlined blockchains: a simple and elegant

approach (a tutorial and survey). In ASIACRYPT (LNCS).

Volume 11921. Springer.

[6] T.-H. H. Chan, R. Pass, and E. Shi. 2018. Pili: an extremely

simple synchronous blockchain. IACR Cryptol. ePrint Arch.,
980.

[7] T.-H. H. Chan, R. Pass, and E. Shi. 2018. Pala: A simple par-

tially synchronous blockchain. IACR Cryptol. ePrint Arch.,
981.

[8] E. Buchman, J. Kwon, and Z. Milosevic. 2018. The latest

gossip on BFT consensus. CoRR, abs/1807.04938. arXiv: 1807.
04938.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abra-

ham. 2019. Hotstuff: BFT consensus with linearity and re-

sponsiveness. In PODC. ACM.

[10] B. Y. Chan and E. Shi. 2020. Streamlet: textbook streamlined

blockchains. In AFT. ACM.

[11] T. D. Chandra and S. Toueg. 1996. Unreliable failure detectors

for reliable distributed systems. J. ACM, 43, 2, 225–267.

[12] Y. Mao, F. P. Junqueira, and K. Marzullo. 2008. Mencius:

building efficient replicated state machine for wans. In OSDI.
USENIX Association.

[13] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.

2009. Spin one’s wheels? byzantine fault tolerance with a

spinning primary. In SRDS. IEEE Computer Society.

[14] A. Clement, E. L.Wong, L. Alvisi, M. Dahlin, andM.Marchetti.

2009. Making byzantine fault tolerant systems tolerate byzan-

tine faults. In NSDI. USENIX Association.

[15] G. S. Veronese. 2010. Intrusion Tolerance in Large Scale Net-
works. PhD thesis. Universidade de Lisboa.

[16] M. Correia, N. F. Neves, and P. Veríssimo. 2004. How to

tolerate half less one byzantine nodes in practical distributed

systems. In SRDS. IEEE Computer Society.

[17] [n. d.] SGX. https://software.intel.com/en-us/sgx.
[18] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and

P. Veríssimo. 2013. Efficient byzantine fault-tolerance. IEEE
Trans. Computers, 62, 1, 16–30.

[19] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.

Mohammadi, W. Schröder-Preikschat, and K. Stengel. 2012.

Cheapbft: resource-efficient byzantine fault tolerance. In

EuroSys. ACM.

[20] J. Behl, T. Distler, and R. Kapitza. 2017. Hybrids on steroids:

SGX-based high performance BFT. In EuroSys. ACM.

[21] J. Liu, W. Li, G. O. Karame, and N. Asokan. 2019. Scalable

byzantine consensus via hardware-assisted secret sharing.

IEEE Trans. Computers, 68, 1, 139–151.
[22] S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter. 2021.

Brief announcement: communication-efficient BFT using

small trusted hardware to tolerate minority corruption. In

DISC (LIPIcs). Volume 209. Schloss Dagstuhl - Leibniz-Zentrum

fur Informatik.

[23] R. Rodrigues, B. Liskov, K. Chen, M. Liskov, and D. A. Schultz.

2012. Automatic reconfiguration for large-scale reliable stor-

age systems. IEEE Trans. Dependable Sec. Comput., 9, 2, 145–
158.

[24] D. S. Silva, R. Graczyk, J. Decouchant, M. Völp, and P. Esteves-

Verissimo. 2021. Threat adaptive byzantine fault tolerant

state-machine replication. In SRDS. IEEE.
[25] P. Kuznetsov and A. Tonkikh. 2022. Asynchronous recon-

figuration with byzantine failures. Distributed Computing,
1–26.

[26] M. Castro. 2001. Practical Byzantine Fault Tolerance. Ph.D.
MIT, (January 2001). Also as Technical Report MIT-LCS-TR-

817.

[27] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. 2007.

Attested append-only memory: making adversaries stick to

their word. In SOSP. ACM.

[28] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. 2009.

TrInc: small trusted hardware for large distributed systems.

In NSDI. USENIX Association.

[29] J. Zhang, J. Gao, K. Wang, Z. Wu, Y. Lan, Z. Guan, and Z.

Chen. 2021. TBFT: understandable and efficient byzantine

fault tolerance using trusted execution environment. CoRR,
abs/2102.01970. arXiv: 2102.01970.

[30] M. Correia, N. F. Neves, L. C. Lung, and P. Veríssimo. 2005.

Low complexity byzantine-resilient consensus. Distributed
Computing, 17, 3, 237–249.

[31] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. 2018. Dbft:

efficient leaderless byzantine consensus and its application

to blockchains. In NCA. IEEE.
[32] B. Arun. 2019. Revamping Byzantine Fault Tolerant State Ma-

chine Replicationwith Decentralization, Trusted Execution, and
PracticalTransformations. PhD thesis. Blacksburg, Virginia.

[33] T. Crain, C. Natoli, and V. Gramoli. 2021. Red belly: a secure,

fair and scalable open blockchain. In S&P. IEEE.
[34] A. Haeberlen, P. Kouznetsov, and P. Druschel. 2007. Peerre-

view: practical accountability for distributed systems. ACM
SIGOPS operating systems review, 41, 6, 175–188.

[35] S. B. Mokhtar, J. Decouchant, and V. Quéma. 2014. Acting:

accurate freerider tracking in gossip. In SRDS. IEEE.
[36] A. Diarra, S. B. Mokhtar, P.-L. Aublin, and V. Quéma. 2014.

Fullreview: practical accountability in presence of selfish

nodes. In SRDS. IEEE.
[37] T. Distler, C. Cachin, and R. Kapitza. 2016. Resource-efficient

Byzantine fault tolerance. IEEE Trans. Computers, 65, 9, 2807–
2819.

[38] S. Bano, M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Gar-

illot, Z. Li, D. Malkhi, O. Naor, D. Perelman, and A. Sonnino.

State machine replication in the libra blockchain. (2019).

[39] M. M. Jalalzai, J. Niu, and C. Feng. 2020. Fast-HotStuff: A fast

and resilient HotStuff protocol. CoRR, abs/2010.11454. arXiv:
2010.11454.

[40] M. F. Madsen, M. Gaub, M. E. Kirkbro, and S. Debois. 2019.

Transforming byzantine faults using a trusted execution

environment. In EDCC. IEEE.
[41] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. 2012.

On the (limited) power of non-equivocation. In PODC. ACM.

[42] A. N. Bessani, J. Sousa, and E. A. P. Alchieri. 2014. State

machine replication for the masses with BFT-SMART. In

DSN. IEEE.
15

15

https://arxiv.org/abs/1908.08316
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://software.intel.com/en-us/sgx
https://arxiv.org/abs/2102.01970
https://arxiv.org/abs/2010.11454

EuroSys ’22, April 5–8, 2022, RENNES, France Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu

[43] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. [n. d.] Damy-

sus: Streamlined BFT Consensus Using Trusted Components

(Technical Report). Technical report. https://github.com/
vrahli/damysus/blob/main/doc/damysus-extended.pdf.

[44] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. 1988. Con-

sensus in the presence of partial synchrony. J. ACM, 35, 2,

288–323.

[45] V. Kukharenko, K. Ziborov, R. Sadykov, and R. Rezin. 2021.

Verification of hotstuff bft consensus protocol with TLA+/TLC

in an industrial setting. International Scientific Conference on
New Industrialization and Digitalization (NID 2020), 93.

[46] L. Jehl. 2021. Formal verification of hotstuff. In FORTE (LNCS).
Volume 12719. Springer.

[47] K. Murdock, D. F. Oswald, F. D. Garcia, J. V. Bulck, D. Gruss,

and F. Piessens. 2020. Plundervolt: software-based fault in-

jection attacks against intel SGX. In SP. IEEE.
[48] [n. d.] Openssl. Retrieved 02/25/2020 from https : / /www.

openssl.org/.
[49] [n. d.] Salticidae. Retrieved 03/31/2021 from https://github.

com/Determinant/salticidae.

16

16

https://github.com/vrahli/damysus/blob/main/doc/damysus-extended.pdf
https://github.com/vrahli/damysus/blob/main/doc/damysus-extended.pdf
https://www.openssl.org/
https://www.openssl.org/
https://github.com/Determinant/salticidae
https://github.com/Determinant/salticidae

