
 
 

Delft University of Technology

The Actuator Disc Concept

van Kuik, G. A.M.

DOI
10.1007/978-3-030-31307-4_2
Publication date
2022
Document Version
Final published version
Published in
Handbook of Wind Energy Aerodynamics

Citation (APA)
van Kuik, G. A. M. (2022). The Actuator Disc Concept. In Handbook of Wind Energy Aerodynamics: With
678 Figures and 33 Tables (pp. 47-94). Springer. https://doi.org/10.1007/978-3-030-31307-4_2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-31307-4_2
https://doi.org/10.1007/978-3-030-31307-4_2


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



3The Actuator Disc Concept

G. A. M. van Kuik

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
The Actuator Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
From Actuator Disc to Rotor Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Force Fields in Rotor Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Force Fields: Output from or Input in the Equation of Motion? . . . . . . . . . . . . . . . . . . . . . . . 51
Equivalence of the Kinematic and Dynamic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
The Equation of Motion and the Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Non-conservative and Conservative Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

The Disc as Representation of a Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
The Actuator Disc Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Power and Thrust Expressions of Joukowsky Discs and Rotors . . . . . . . . . . . . . . . . . . . . . . . 59

Analysis of Froude Actuator Disc Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
The Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Momentum Theory Without Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Momentum Theory Including Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Numerical Assessment of Actuator Disc Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Flow and Pressure Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Properties of the Wake Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Pressure at the Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
The Velocity Distribution at the Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
The Momentum Balance Per Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
An Engineering Model for the Velocity at the Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Analysis of Joukowsky Actuator Disc Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
The Equations for a Disc with Torque and Swirl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Momentum Theory for Joukowsky Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Limit Values: λ → ∞, λ → 0, Cp,max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
The Momentum Balance Per Annulus of Joukowksy Disc Flows . . . . . . . . . . . . . . . . . . . . . 86

G. A. M. van Kuik (�)
Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
e-mail: g.a.m.vankuik@tudelft.nl

© Springer Nature Switzerland AG 2022
B. Stoevesandt et al. (eds.), Handbook of Wind Energy Aerodynamics,
https://doi.org/10.1007/978-3-030-31307-4_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31307-4_2&domain=pdf
mailto:g.a.m.vankuik@tudelft.nl
https://doi.org/10.1007/978-3-030-31307-4_2


48 G. A. M. van Kuik

The Role of Swirl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
On the Use of Actuator Disc Theory in BEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Blade and Tip Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Comparison of Actuator Disc and BEM Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Abstract

Actuator disc theory is the simplest rotor theory possible: the rotor is replaced by
a permeable disc carrying an axisymmetric force field. It is more than a century
old, with a first analytical result obtained by Froude in 1889. In 1918 Joukowsky
published the first rotor performance prediction for a helicopter rotor in hover;
in 1920 Betz and Joukowsky published the maximum efficiency of wind turbine
rotors. In modern rotor design codes, this momentum theory still forms the basis,
be it with many adaptations and engineering add-ons. This chapter treats the
actuator disc theory in two versions. Best known is the classical theory relating to
an actuator disc with thrust acting against the flow but without torque, so without
wake swirl. This theory gives the Betz-Joukowsky limit. The results deviate when
applied to a flow annulus instead of the entire stream tube, due to the role of the
pressure exerted by one annulus to the other. The momentum theory for discs
with thrust and torque is relevant for rotors operating with high torque at low
rotational speed. For increasing rotational speed, the performance increases from
zero to the Betz-Joukowsky limit. In all flow cases, with or without torque, the
velocity vector in the meridional plane appears to be constant at the disc. For
the performance per annulus and the performance with torque, the deviation
from the classical momentum theory is explained by classifying force fields as
conservative or non-conservative and investigating their impact on energy and
momentum balances.

Keywords

Actuator disc · Momentum theory · Conservative forces · Non-conservative
forces · Betz-Joukowsky · Induction · Velocity at the disc · Performance

Introduction

The Actuator Disc

Rotor aerodynamics has a history of more than a century, with the concept of the
actuator disc to represent the action of a propeller formulated by Froude (1889). In
this concept the disc carries only thrust, no torque. Based on this Joukowsky (1918)
published the first performance prediction that still holds today, for a “static” rotor
like a hovering helicopter rotor or propeller in still fluid. Two years later Joukowsky
(1920) and Betz (1920) published the optimal performance of discs representing
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wind turbines, for which reason it is called the Betz-Joukowsky maximum; see
Okulov and van Kuik (2012). The names of these pioneers are also connected with
the two concepts for actuator discs with thrust ánd torque. Betz (1919) proposed a
vortex model for rotors equivalent to Prandtl’s model of a wing with an elliptically
distributed load, giving a uniform induced velocity with minimum induced drag.
Each of the rotor blades is replaced by a lifting line releasing a free vortex sheet
with constant velocity in axial direction. Joukowsky (1912) developed the vortex
model of a propeller based on a rotating horseshoe vortex. In his vortex theory, each
of the blades is replaced by a lifting line about which the circulation, associated with
the bound vorticity, is constant.

The constant circulation model of Joukowsky and the constant velocity model
of Betz were supposed to represent the ideal rotor. At the time of these pioneers,
it was not yet possible to evaluate which model was more ideal than the other.
Both models neglected wake expansion or contraction, so were valid only for
lightly loaded rotors. Goldstein (1929) found an analytical solution for the wake
of Betz’s rotor restricted to lightly loaded propellers. Okulov et al. (2015, chapter 4)
presented an overview of the development toward a complete non-linear solution
to Betz’s problem with wake expansion, including the non-linear solution of
Okulov (2014). A similar solution was published by Wood (2015). Okulov et al.
(2015, chapter 4) showed that Joukowsky rotors perform slightly better than Betz
rotors for the same tip speed ratio. For the analyses in the next chapters, it
is relevant to know that in the limit for an infinite number of blades rotating
with infinite speed, both models converge to Froude’s actuator disc and become
identical.

Originally, the model of Betz-Goldstein is restricted to rotors with a finite number
of blades, but it was extended to an infinite number of blades by Okulov (2014)
and Wood (2015). It requires advanced vortex modelling, so the results are not
easily used in state-of-the-art rotor design methods. An exception is the use of the
Prandtl-Glauert tip correction which was derived by Prandtl based on Betz’s model;
see Glauert (1935, ch. VII-4) and section “Blade and Tip Effects.” The constant
circulation rotor model of Joukowsky is at the basis of many analysis and design
methods used today; see, e.g., Burton et al. (2011, page 70) and van Kuik et al.
(2015b). This model and the associated momentum theory will be evaluated in the
present chapter.

The Joukowsky model has been studied in van Kuik (2018b) for discs rep-
resenting wind turbine rotors as well as propellers, with emphasis on the fluid
dynamic aspects. Here the emphasis is on the performance aspects of wind turbine
actuator discs, preceded by the classification of the forces into conservative and non-
conservative forces. This distinction is introduced as this appears to be helpful in
the interpretation of the results. The main sections are sections “Analysis of Froude
Actuator Disc Flows” and “Analysis of Joukowsky Actuator Disc Flows” where
the performance of discs without torque, the Froude discs, are analyzed as well as
discs with torque, the Joukowsky discs. The Froude disc is a Joukowsky disc with
infinite rotational speed, but for analytical and historical reasons, it is treated as a
stand-alone topic.
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From Actuator Disc to Rotor Aerodynamics

The actuator disc is the basis for the industry standard rotor design method, the
Blade Element Momentum (BEM) method. There is a good reason for this, as
shown in Fig. 1. The black line gives the result of Froude’s momentum theory, with
the vertical axis showing the average velocity at the disc as a function of the non-
dimensional thrust coefficient CT . Added to this graph are results of experiments
in the 1980s of the previous century, Anderson et al. (1982) and Wilmshurst
et al. (1984); more recent experiments, Medici and Alfredsson (2006), Haans et al.
(2008), Parra et al. (2016), and Lignarolo et al. (2016a); and calculations found in
literature like Sørensen et al. (1998), Mikkelsen et al. (2009), and Madsen et al.
(2010). The correspondence between the momentum theory and the data is quite
good, except close to the maximum load on the actuator disc. Figure 1 also shows
the engineering extension of the momentum theory for the heavily loaded disc
developed by Glauert (1926) in the form presented by Hansen (2008).

The classical or Froude actuator disc momentum theory is not able to say
anything about radial or azimuthal distributions of velocity and load for real rotors.
The disc concept has been adapted by many as to make it useful for rotors with
a finite number of blades. A major contribution was delivered by Glauert (1935,
ch. III) who coupled disc loads to blade loads and introduced the torque in the
momentum theory, resulting in the Blade Element Momentum method. One of the
assumptions Glauert made to make the method executable is that the pressure in
the far wake is uniform, despite the pressure gradient necessary to maintain swirl.
Many authors have published similar adaptations with slightly different results,
reviewed by Sørensen et al. (2015). The main problems that were left after Glauert’s

0

0.5

1

0.0 0.5 1.0 1.5 2.0

AD momentum theory

Glauert (1926) correction

Madsen (2010), CFD

Mikkelsen (2009), CFD
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Andersen (1982), exp.

Parra et al. (2016) Mexico exp.

Lignarolo (2016), wt exp.

Lignarolo (2016), disc exp.

Fig. 1 Actuator disc momentum theory including an engineering extension compared with exper-
iments and calculations for wind turbine flow states. The vertical axis shows the dimensionless
velocity at the (rotor) disc, the horizontal axis the dimensionless thrust
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work were the refinement of the blade model, the effect of swirl, the tip correction,
the optimization procedure, and the adaptation of BEM to atmospheric and rotor
conditions not covered by the first versions of BEM.

Force Fields in Rotor Aerodynamics

Rotor aerodynamics is one of the few areas in aerodynamics where force fields
are used as input in flow calculations: the flow field induced by predefined forces
is solved (the dynamic method). In most other aerodynamic analyses, the force
field is the output instead of input: the flow field around a surface is solved using
surface boundary conditions, after which the pressure and so the load are known (the
kinematic method). One of the reasons why force fields as input are not used often
is twofold: usually they are not known in advance, and the kinematic method for
which Lanchester, Prandtl, and Joukowsky have laid the basis has been shown to be
very powerful. However, the use of force fields has some advantages, especially for
rotor aerodynamics since the thrust, being the integrated load, is the main parameter
defining flow states.

Force Fields: Output from or Input in the Equation of Motion?

The use of force fields as input is common practice in classical actuator disc theory,
in the momentum part of BEM methods, and in actuator line (AL) analyses. In
the AL analyses, the blade is replaced by a load carrying line in order to have a
much lower computation time compared to full computational fluid dynamic (CFD)
solutions. The load in these methods is determined either by the definition of the
problem (in actuator disc analyses, based on physical arguments a load distribution
is assumed, e.g., Sørensen et al. 1998) or by iteration with other methods (in AL and
momentum methods, for a given flow field, the load is taken from a blade element
calculation, e.g., Shen et al. 2014). Besides its modest computational effort, the force
field approach offers the advantage of a force field based interpretation of the three
processes governing disc and rotor flows: the change of momentum, the generation
or conservation of vorticity, and the conversion or conservation of energy, which are
the topics of next sections.

Equivalence of the Kinematic and Dynamic Methods

Prandtl (1918) showed analytically that the pressure distribution acting on a
translating lifting surface is equivalent to a distribution of normal forces acting on
the surface modelled as a bound vortex sheet γ . In van Kuik (2018b) the equivalence
of both approaches for the actuator disc and rotors is discussed in detail, including
the comparison by Martínez-Tossas et al. (2017) of the flow around a Joukowsky
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Fig. 2 Distribution of u/U∞ at the rotor plane x = 0 according to the actuator line (left) and
lifting line (right) model, for λ = 7 and CT = 8/9, from van Kuik et al. (2015a). The direction of
rotation is anti-clockwise

aerofoil modelled as a lifting surface and as a force distribution. Here a numerical
comparison is shown in Fig. 2, where the axial velocity in the rotor plane of a
three-bladed rotor with constant bound circulation is displayed, calculated by a
lifting line (LL) method and an actuator line (AL) method as reported in van Kuik
et al. (2015a). The LL method is the kinematic method: the blade is modelled as
a line with prescribed constant bound circulation �. The AL method prescribes
forces acting at the line. The force distribution is chosen such that the resulting
circulation around the lines is identical to the prescribed constant circulation in
the LL method. The load case shown is the wind turbine for tip speed ratio
λ = �R/U∞ = 7 where � is the rotational speed of the force field. The thrust

coefficient CT = T/
(
1
2ρU2∞πR2

)
= 8/9. The results of both methods agree

reasonably well except for minor differences for r < 0.1R and near the tip, due
to differences in the de-singularization of the vortices.

Sign Conventions. Figure 3 shows the coordinate systems. All vectors are
drawn in positive direction, except �axis and γϕ . 	H < 0 as energy is taken
from the flow. Consequently, power P and thrust T have a negative sign as
these quantities refer to flow properties. As it is common to define power and
thrust with respect to the disc, Pdisc = −P and Tdisc = −T are introduced.
The power and thrust coefficients Cp and CT are based on Pdisc and Tdisc, so
are positive. The same holds for the power and thrust (coefficients) of the rotor.
P , T , and all other quantities are defined as acting on the flow or as flow from
properties.
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Fig. 3 The coordinate
systems of an actuator disc
and rotor. Ψ is the Stokes
stream function, u, v, and w

are the axial, radial, and
azimuthal velocity
components. All vectors and
components are in positive
direction except �axis and γϕ

U∞

Ω

γr

x

r
Τ

n

s

γwake

ϕu

v

w

The Equation of Motion and the Coordinate Systems

The flow is assumed to be incompressible, steady, inviscid, and isentropic, so the
Euler equation:

ρ (v · ∇)v = −∇p + f (1)

is valid as well as the continuity equation:

∇ · v = 0, (2)

with v being the velocity vector, ρ the flow density, p the pressure, and f the force
density, volume force, or force field. All analyses assume steady flow, except for
section “Non-conservative and Conservative Force Fields” where the work done by
force fields is examined. The equation of motion then is ρ ∂v

∂t
+ρ(v·∇)v = −∇p+f .

Rewriting (1) with the vector identity (v · ∇)v = ∇(v · v)/2 − v × ω yields:

∇H = f + ρv × ω, (3)

whereH is the Bernoulli constant p+ 1
2ρv·v and ω the vorticity. Most textbooks pay

some attention to the force term but at some moment assume that f is conservative,
like the gravity force field ρg. Then f = ρg = −∇G where G is the potential of ρg.
The right-hand side of (1) then becomes−∇(p+G). With the potential G considered
to be part of the pressure, the conservative f disappears from the equation of motion.
Here this assumption is not made. Instead, force fields are assumed to be confined
to thin surfaces having thickness ε; see Fig. 4. Integration of f along the normal n,
becoming a Dirac delta function for ε → 0, gives the surface load F :
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Fig. 4 Properties of a bound
vortex sheet with thickness ε

and force density distribution
f : pressure jump
p− − p+ = Fn, velocity
jump |v|− − |v|+ = γ ε

F =
∫

ε

f dn. (4)

More integrations result in a line force or a discrete force, which will be named after
its function, e.g., lift or thrust.

Most analyses in this chapter use the cylindrical coordinate system (x, r, ϕ)

with the disc centerline coinciding with the positive x-axis and with e denoting the
unit vector with an appropriate index. The corresponding components of the velocity
vectors v are u, v, and w. The local coordinate system (s, n, ϕ) is also shown
in Fig. 3. The coordinates s and n are in the meridian plane tangent respectively
normal to a streamline, with velocity components vs, vn, and w. Besides these
inertial coordinate systems, also the rotating system (x, r, ϕ)rot is used, rotating
with respect to the inertial system with the angular velocity � of the force field. The
velocity and vorticity in the inertial and rotating systems are related by:

vrot = v − eϕ�r (5)

ωrot = ω − 2ex�. (6)

Batchelor (1970, eq. (3.5.20)) gives the steady Euler equation in the rotating
coordinate system, including the centrifugal force −� × (� × r) = er�

2r =
1
2∇(�r)2 and Coriolis force vrot × 2� (note that Batchelor’s equation (3.5.20) is
without f and with the centrifugal term 1

2∇(�r)2 included in ∇H ). In the notation
used here, this Euler equation becomes:

f + ρ

2
∇(�r)2 + ρvrot × 2� = ∇Hrot − ρvrot × ωrot. (7)

With ∇Hrot = ∇ (
H − ρw�r + ρ

2 (�r)2
)
and with (6), this becomes:

f = ∇(H − ρw�r) − ρvrot × ω. (8)

At those parts of the flow field where ω and f are zero, this becomes:
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∇(H − ρw�r) = 0, (9)

which has been derived previously by Thwaites (1960, p. 473) and de Vries (1979,
app. C2).

Non-conservative and Conservative Force Fields

The use of the force field f is discussed in old textbooks and papers, like Prandtl
(1918) and von Kármán (1935), without making an explicit distinction between
conservative and non-conservative components. In general, the force field can have
both components:

A non-conservative force field is defined by:

∇ × f �= 0, (10)

and is able to generate vorticity as shown by the curl of (3) (see Saffman 1992,
pp. 10–11):

1

ρ
∇ × f = Dω

Dt
− (ω ·∇) v, (11)

with the last term denoting the change of vorticity due to stretching or tilting of
already-existing vortex filaments. When f is distributed on a surface with thickness
ε as shown in Fig. 4, integration of ∇ × f and taking the limit for ε → 0 gives:

1

ρ
∇ × F = Dγ

Dt
− (γ ·∇) v. (12)

For inviscid flow around a 2-D aerofoil
∮ ∇ × Fds = 0 with s taken along the

aerofoil contour, as the integrand contains the derivative of the normal load, so
the contour integral yields 0. Consequently, the force field is conservative and no
vorticity is produced.

The force field of a 3-D lifting wing is non-conservative, producing trailing
vorticity according to (12) when integrated over a half wing. However, when
integrated over the entire surface S of a wing (or rotor blade):

∫

S

∇ × FdS = 0, (13)

since the closed contour integration of the directional derivatives of the normal load
yields 0. The force field of a lifting surface generates vorticity locally, but as an
equal amount of opposite sign is produced somewhere else at the surface, the nett
generation is zero. This is the force field based explanation of the fact that any lifting
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surface with finite dimensions produces the same amount of positive and negative
vorticity.

A conservative force field satisfies ∇ × f = 0 or, equivalently:

f = −∇F (14)

where F is the potential of f . With (14) the Euler equation (1) becomes:

ρ (v · ∇)v = −∇(p + F). (15)

When only conservative forces act, the flow is free of vorticity, so (3) becomes the
Bernoulli equation:

∇(H + F) = 0. (16)

The quantity (H + F) indicates the amount of energy per unit of mass as becomes
clear by evaluation of the work done per second by force fields.

The work done by a force field is given by f · v, according to Batchelor (1970,
p. 157)]. The unsteady Euler equation f ·v = v ·∇H +ρv ·∂v/∂t is used. Assuming
a control volume V with surface S encompassing a distribution of steady or steadily
rotating forces as shown in Fig. 7, the kinetic energy within the control volume

remains constant, so the term
∫

ρ
2

∂|v2|
∂t

dV = 0. The result is:

∫

V

f · vdV =
∫

V

v · ∇HdV =
∫

S

Hvn,SdS, (17)

where vn,S is the velocity component normal to S having radius RS and where
Gauss’s theorem is used to convert the volume integral into a surface integral. When
f is conservative, the flow is free of vorticity, so for RS → ∞, HS → H∞. Then
(17) becomes:

∫

V

f cons · vdV = H∞
∫

S

vn,SdS = 0. (18)

This shows that f cons⊥v: conservative forces cannot perform work; only non-
conservative forces can. This specific property will be used in the momentum theory
in sections “Analysis of Froude Actuator Disc Flows” and “Analysis of Joukowsky
Actuator Disc Flows”. Forces which do not appear in the energy balance while
contributing to the momentum balance are classified as conservative.
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The Disc as Representation of a Rotor

The actuator disc is the result of a limit transition of a rotor for an increasing number
of blades. The formal limit transition is shown in van (van Kuik 2018b, section 4.3),
while here the equivalence of the expressions for thrust and power is treated.
Lignarolo et al. (2016a, b) have compared the wake behind a disc and model rotor,
having the same size and measured in the same wind tunnel. The experiments have
confirmed that the disc wake is a true representation of the azimuthally averaged
wake of a wind turbine rotor

The Actuator Disc Equation

As only the pressure and azimuthal velocity will be discontinuous across the
infinitely thin disc, integration of (1) across the disc gives:

F = ex	p + eϕρu	w, (19)

where 	 denotes the jump across the disc. The Bernoulli equation p+ 1
2ρv ·v = H ,

integrated across the disc, becomes:

Fx = 	p = 	H − 1

2
ρ	w2. (20)

The power produced or absorbed by an annulus dr of the actuator disc can be
expressed in two ways: first as torque Q times rotational speed � giving �dQ =
2π�fϕr2dr and second by integration of f ·v using (3), resulting in 2πr(v ·∇)Hdr .
Comparison shows that:

f · v = �r fϕ = (v.∇)H. (21)

The expression for fϕ is derived from the ϕ-component of (1), with (v.∇)v

evaluated in the cylindrical coordinate system:

rfϕ = ρ(v · ∇)rw. (22)

Substitution in (21) gives:

f · v = ρ(v .∇)(�rw) = (v.∇)H, (23)

so:

1

ρ
∇H = ∇(�rw). (24)
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This is the same equation as (9) but now without the restriction that f and ω are
absent.

Equation (24) shows that the work done by the force field is expressed in a change
of the Bernoulli constant H . Integrated across the disc, this gives:

	H = ρ�rw. (25)

Combined with (20):

Fx = ρ�rw − 1

2
ρw2. (26)

Both terms at the right-hand side are pressure jumps: 	pH = ρ�rw converts power
so is non-conservative, while the pressure jump 	pw = − 1

2ρw2 is balanced by
an equal increase of kinetic energy, 1

2ρw2. 	pw is the change of potential energy
which, in combination with the change of kinetic energy, does not change H , so is
conservative.

A combination of (24) with (8) gives:

f = −ρvrot × ω. (27)

An alternative way to derive (27) is to express (24) in ω: 1
ρ
∇H = ∇(�rw) =

eϕ�r × ω. Substitution in the Euler equation (3) using the coordinate transforma-
tions (5) and (6) results in (27). With ε denoting the thickness of the disc, integration
across the disc and taking the limit ε → 0 gives:

F = −ρ

∫

ε

vrot × ωdε = −ρv̄rot × γ d . (28)

where v̄rot is the average of vrot upstream and downstream of the disc.
Equation (28) is the equation of motion for the steady actuator disc converting

power for any radial distribution of F . The subscript rot in (28) distinguishes it from
the expression of a Kutta-Joukowsky force: the disc load is the cross product of
the velocity as experienced in the rotating system with the vorticity in the inertial
system. Since it is expressed in kinematic terms, it enables an easier physical
interpretation of the relation between loads and vorticity compared to the Euler
equation including H .

Equation (28) is comparable with the expression for the load on a rotor blade.
Figure 6 shows a blade having a cross section C at which the bound vorticity is
distributed. The sectional load on a blade is:

L = −ρ

∫

C

vrot × ωdC. (29)
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Depending on the orientation of vrot and ω, the sectional load may have a radial
component, besides the axial and azimuthal components. Figure 6 shows the load on
the radial bound vorticity but also, close to the blade tip and root, on the chordwise
bound vorticity, being able to carry an additional axial and radial load. This is treated
in detail in van Kuik (2018b). In case the blade is modelled as a lifting line, so
C → 0, only the radial bound vorticity is maintained, and:

lim
c→0

L = −ρ

∫

C

vrot × erωrdC = −ρvrot,B × �B (30)

with the blade vortex strength �B = er

∫
C

ωrdC remaining invariant for C → 0
and with vrot,B the velocity at the position of the lifting line. Equation (30) is similar
to (28), enabling a formal limit transition from rotor to disc as presented in van Kuik
(2018b).

Power and Thrust Expressions of Joukowsky Discs and Rotors

Figure 5 shows the disc model of Joukowsky, characterized by a constant circulation
� around the axis. The disc vorticity system has a centerline vortex � with core
radius δ and disc vorticity γd = −�/(2πr) for r > δ. The azimuthal velocity
w in the wake depends only on �. Inside the core, w depends on the assumed
characteristics of the core. The force field rotates with angular velocity �. A
Joukowsky rotor is characterized by the same vortex at the axis which continues

γϕ γϕ
γx , γr

γr

Γaxis
Ω

U∞ U∞

s
n

Fig. 5 The circulation distribution for the Joukowsky actuator disc with swirl, left, and the Froude
disc without swirl, right
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Fig. 6 The load on bound
radial vorticity of a wind
turbine rotor blade. Sign
conventions are shown in
Fig. 3. The number of blades
is B, and �axis = −B�B

U∞ Ω

Γ

x

r

ϕ

Γ

L

cross section C
thickness ε

in a constant blade bound circulation, as shown in Fig. 6 for a one-bladed rotor. For
a rotor with B blades �axis = −B�B .

The disc: The non-conservative force field of a steady actuator disc converts
power as given by (17):

P =
∫

V

f · vdV =
∫

S

Hvn,SdS (31)

with volume V having surface S shown in Fig. 7. At the cross section with the
far wake vn,S = u1. At the cross section with the stream tube far upstream, the
velocity is undisturbed U∞. For the part of V outside the stream tube, H = H∞ and∫

vn,SdS = 0, so the expression for the converted power becomes:

P =
∫

A1

H u1d A1 − H∞U∞A∞, (32)

where A∞ is the cross section of the stream tube far upstream and A1 the same far
downstream. For the Joukowsky disc, the azimuthal velocity is:

w = �

2πr
for r ≥ δ

= �

2πδ
C

( r

δ

)
for r < δ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(33)



3 The Actuator Disc Concept 61

x

U∞

U∞

u1ud

U∞

A∞ Ad A1

s

S

RS

Fig. 7 Half-sphere with surface S as control volume for the momentum balance, crossing the
stream tube of an actuator disc far upstream with undisturbed flow and far downstream with a fully
developed wake. Only half of the cross section is displayed

where C(1) = 1 and C(0) = 0 but otherwise unspecified. As an example, with
C(r/δ) = r/δ, the vortex core is modelled as a Rankine vortex. With (24) it follows
that:

1

ρ
(H − H∞) = ��

2π
for r ≥ δ

= ��

2π

r

δ
C

( r

δ

)
for r < δ

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(34)

Outside the core H is constant, so the power becomes:

P = ρ��

R1∫

0

u1r1dr1 = ρ
��

2
udR2 for a J-disc, δ → 0, (35)

where conservation of mass U∞A∞ = u1A1 = udAd is used to express the last
term at the right-hand side of (32) in far wake properties and to convert the integral
from plane A1 to the disc area, with ud being the disc averaged axial velocity. For
r < δ, integration of u1(H − H∞) across the vortex core cross section and letting
δ → 0 shows that the contribution of the vortex core to P vanishes. This is checked
by modelling C as a series development in (r/δ)n, showing that each term yields a
zero contribution after integration across the core cross section.

With the introduction of the non-dimensional vortex strength q = �/(2πRU∞)

and tip speed ratio λ = �R/U∞, (34) becomes for r ≥ δ:
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	H

ρU2∞
= qλ for r ≥ δ. (36)

Herewith the dimensionless power coefficient Cp becomes, with Pdisc = −P as
explained in the text box Sign Conventions at page 4:

Cp = Pdisc
1
2ρU3∞πR2

= −2qλ
ud

U∞
for a J-disc, δ → 0. (37)

The thrust T is obtained by integration of (26) on the disc area. With (33) the
contribution by the region outside the vortex core in the limit δ → 0 becomes:

T |δ≤r≤R=ρπ

R∫

δ

(2�r2w − w2r) dr = ρ
��

2
R2 − ρ

�2

4π
ln

(
R

δ

)
for a J-disc, δ→0

(38)

In the same way, the contribution to the thrust by the vortex core cross section is
found to be a constant, like −ρ π

4 ( �
2π )2 in case of the Rankine distribution C(r/δ) =

r/δ. For δ → 0 these constants vanish compared to the singular term in (38), so the
thrust is:

T = ρ
��

2
R2 − ρ

2
π

(
�

2π

)2

ln

(
R

δ

)2

for a J-disc, δ → 0. (39)

The first term at the right-hand side is the thrust converting power. The second term
is the thrust due to the swirl-induced pressure gradient. In dimensionless notation,
the thrust coefficient becomes:

CT = Tdisc
1
2ρU2∞πR2

CT,	H = −2λq

CT,	w = q2 ln

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

J-disc, δ → 0 (40)

which is independent from the choice of the vortex core model. For δ → 0,
CT,	w → ∞. The consequences of this will be discussed at the end of this section.

	H is proportional to ��, so with 	H kept constant, w vanishes like �−1 as
well as γd and � when � → ∞. The disc without swirl is the Froude actuator disc;
see Fig. 5.

The rotor with B blades: The converted power P is torque Q times �, so with
the azimuthal component of (30):
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P = Q� = −�Bρ

R∫

δ

∫

C

uωrrdrdC. (41)

In (30) the limit C → 0 was included, leading to
∫
C

uωrdC = uB�B . As before
� = −B�B , yielding:

P = ρ��

R∫

δ

uBrdr for a J-rotor, δ → 0, (42)

so the power coefficient becomes:

Cp = −2λq
uB

U∞
for a J-rotor, δ → 0. (43)

The thrust at the rotor is defined by the axial component of (30). With (5) and with
� = −B�B :

T = −ρ�

R∫

δ

wrot,Bdr = ρ
��

2
R2 − ρ�

R∫

δ

wBdr for a J-rotor, δ → 0. (44)

In the wake the azimuthally averaged value w̄ = �/(2πr), but in the rotor
plane, it is half this value: wx=0 = �/(4πr). The azimuthal distribution of w

will be approximately uniform for low values of r/R as the induction by the
root vortex dominates. However, for larger r/R values, the tip vortices will add
a harmonic distribution. With the actuator line and lifting line calculations of which
the axial velocity is shown in Fig. 2, the order of magnitude of the approximation
wB = w̄ is estimated: the deviation in CT is <0.1%, so the approximation is well
in place.

When the non-uniformity of w is neglected wB/U∞ ≈ �/(4πrU∞) for r > δ,
so the result for CT is, with again CT = CT,	H + CT,	w:

CT = Trotor
1
2ρU2∞πR2

CT,	H = −2λq

CT,	w = 4q

R∫

δ

wB

U∞R
dr

≈ q2 ln
(

R
δ

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

J-rotor, δ → 0. (45)
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The local thrust coefficient Ct is defined as BdLx/(ρU2∞πrdr), where Lx is the
axial component of (30):

Ct = −2λq + 2q
wB

U∞
R

r
, for a J-rotor, r ≥ δ, (46)

or, with Ct = Ct,	H + Ct,	w:

Ct,	H = −2λq

Ct,	w = 2q
wB

U∞
R

r

≈ q2
(

R

r

)2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
J-rotor, δ → 0. (47)

The expressions for the rotor and disc are identical, apart from the approximation
in (45) and (47) for the rotor thrust component CT,	w. For the disc as well as rotor,
the conversion of power by the force field is expressed in the increase of the amount
of wake swirl.

CT,	w becomes ∞ for δ → 0 as long as q2 is non-zero. This is the case for
finite � when 	H or qλ remains constant in this limit. With δ 	 R the singular
term is positive, so it adds up to CT,	H for a wind turbine rotor. For practical
conditions δ mimics the root cut-out radius, which is the radius below which the
nacelle and blade root connection occupy the space. A practical value is 0.15R. For
λ > 7 we find that CT,	w ≤ 0.02CT,	H , so this contribution to the thrust may be
ignored. In section “Analysis of Joukowsky Actuator Disc Flows” CT,	H will be
used as parameter defining flow states, together with λ. The unknown in the power
coefficient CP is ūd for the disc and ūB for the rotor. The determination of ūd is the
topic of the following sections.

Analysis of Froude Actuator Disc Flows

This actuator disc momentum theory for Froude discs, so discs without swirl,
is sometimes called “one-dimensional” as only the axial momentum balance is
included. It is a special case of Joukowsky discs as it results from the limit � → ∞.
However, in accordance with its place in the history of rotor aerodynamics, it is
treated first as an independent topic. The theory gives the average value of the axial
velocity at the disc, not the velocity distribution. Modern computational approaches
are able to provide flow details like the shape and strength of the vortex tube that
separates the wake from the outer flow. Using a CFD solver for the Navier-Stokes
equations, the velocity field for propeller as well as wind turbine flows states was
first published by Sørensen et al. (1998). The method to find details of the actuator
disc flow used in this chapter is based on the inviscid method of Øye (1990). The
method is described in van Kuik and Lignarolo (2016) and van Kuik (2018a).
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TheMomentum Balance

The general expression for the momentum balance is given by Batchelor (1970,
p. 138). For inviscid flow the balance in x-direction drawn on a volume V enclosed
by a surface S is:

T −
∮

S

ex · enpdS = ρ

∮

S

u(u − U∞)dS (48)

with p being the pressure acting at the boundary S. When applied to the stream
tube passing through the disc, the pressure integral becomes zero, as will be shown.
Section “Momentum Theory Including Conservative Forces” treats the balance of an
annulus instead of the entire stream tube, where the annulus-based pressure integral
will be shown to be non-zero.

Usually the stream tube passing through the actuator is used as the control
volume V . Several proofs have been published that the pressure acting at the stream
tube boundary does not contribute to the momentum balance, e.g., by Thoma (1925).
Here another control volume is used. Figure 7 shows the control volume bounded
by a sphere with radius RS , with the center of the sphere coinciding with the center
of the actuator disc, and with RS → ∞. The advantage of this control volume is
that only the flow conditions at infinite distance need to be known, not at the vortex
sheet itself. Furthermore this control volume can be used for the flow induced by a
static disc (U∞ = 0) which does not have a stream tube extending upstream.

Outside the wake of the actuator disc at a large distance from the origin, the flow
can be considered as a summation of a parallel flow and a source flow. Analogous
to Batchelor (1970, p. 351), momentum and pressure terms in (48) at the sphere
S but outside the wake vanish for RS → ∞. This is because the summation
of undisturbed U∞ and source-induced velocities vsource gives rise to momentum
flux and pressure terms containing U2∞, usourceU∞, vsourceU∞, and |v|2source. The
source velocity vanishes like R−2

S by continuity of mass, so the |v|2source term does
not contribute after integration on S for RS → ∞. The mixed terms containing
usourceU∞, vsourceU∞ do not vanish for increasing RS but do not contribute after
integration on S, due to the symmetry of the source flow with respect to the plane
x = 0. The same holds for the constant term containing U2∞. What remains for
RS → ∞ are the contributions by the disc itself and the momentum transport at
stream tube cross sections A∞ far upstream and A1 far downstream. The pressure
acting at these cross sections is undisturbed, p∞, so the pressure integral in (48)
vanishes and the momentum balance becomes:

T = ρ

∫

A1

u1(u1 − U∞)dA1. (49)

The same result is obtained when we use the stream tube as control volume and
assume that the pressure (p − p∞) at the stream tube boundary does not result



66 G. A. M. van Kuik

in an axial force acting on the control volume. In other words, the momentum
balance using the sphere as control volume confirms this assumption, so it may
be considered as an indirect proof that the stream tube pressure does not contribute.

Momentum TheoryWithout Conservative Forces

The Bernoulli equation applied to the upstream and downstream part of a streamline
(the dashed line in Fig. 7) can be coupled by the pressure jump	p, giving the energy
balance:

	p = 1

2
ρ(u21 − U2∞). (50)

As 	p is uniform for Froude discs; also the velocity in the wake u1 is uniform. With
T = 	pAd the momentum balance (49) becomes:

	pAd = ρu1(u1 − U∞)A1 = ρūd(u1 − U∞)Ad, (51)

where mass conservation udAd = u1A1 is used and where ud is the velocity
averaged on the disc area. Elimination of 	p from (50) and (51) gives the famous
result, first obtained by Froude (1889):

ud = 1

2
(u1 + U∞). (52)

The converted power P = 	pudAd , so in dimensionless form the power coefficient
is, with Pdisc = −P :

Cp = Pdisc
1
2ρU3∞Ad

= −1

2

((
u1

U∞

)2

− 2

)(
u1

U∞
+ 1

)
. (53)

The thrust coefficient follows by (50):

CT = Tdisc
1
2ρU2∞Ad

= 1 −
(

u1

U∞

)2

. (54)

Expressed in ud both coefficients become:

Cp = −4

(
ud

U∞

)2 (
ud

U∞
− 1

)
(55)

and:
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CT = −4
ud

U∞

(
ud

U∞
− 1

)
. (56)

Elimination of ud from (55) and (56) gives:

Cp = 1

2
CT

(
1 + √

1 − CT

)
, (57)

which is the solid line in Figs. 1 and 9. Differentiation of (55) to ud to find the
coefficient for maximum power extraction gives:

Cp,max = 16

27
for

ud

U∞
= 2

3
, CT = 8

9
, (58)

which was obtained by Joukowsky (1920) and Betz (1920), for which reason it is
called the Betz-Joukowsky maximum; see Okulov and van Kuik (2012).

Momentum Theory Including Conservative Forces

In the previous section, the momentum balance is applied to the entire stream tube,
with the non-conservative disc load Tnon−cons = 	pAd as the only load entering this
balance. Now it is assumed that conservative loads are present in case the pressure
integral in (48): Tcons = − ∮

S
ex · enpdS �= 0. Herewith the momentum balance

becomes:

Tnon−cons + Tcons = ρ

∮

S

u(u − U∞)dS (59)

with:

Tnon−cons = 	pA

Tcons = −
∮

S

exenpdS.

⎫⎪⎬
⎪⎭

(60)

The energy equation (50) is unaffected by Tcons so the combination of (59) with
(51) gives:

ud =
(

Tcons

Tnon−cons
+ 1

)
U∞ + u1

2
. (61)

Expression (55) for the power coefficient becomes:

Cp =
(

Tcons

Tnon−cons
+ 1

)
Cp,Tcons=0 (62)
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and for the thrust coefficient:

CT = CTcons + CTnon−cons (63)

Equations (61) and (62) have first been derived by van Holten (1981) for discs or
rotors placed in a shroud or ring wing or with tip vanes. The lift on the additional
device contributes to the momentum balance but does not convert energy, so is
conservative. The average axial velocity at the disc is then given by (61). When
both trust components have the same sign, the average velocity increases and so
does the power coefficient. Sørensen et al. (2015, section 3.4) presents a survey of
recent publications on the so-called diffuser-augmented wind turbines and discusses
the associated momentum theory in detail. This theory is outside the scope of the
present chapter.

Equation (61) has also been derived by Sørensen and Mikkelsen (2001) and is
included in Sørensen and van Kuik (2011a) although they, as well as van Holten
(1981), did not use the classification cons and non− cons. Sørensen and Mikkelsen
(2001) derived (61) for the momentum theory applied to a stream annulus instead of
stream tube. A stream annulus is a part of the stream tube, e.g., the volume bounded
by the streamline shown as a dashed line in Fig. 7 or the volume between two such
streamlines passing the disc at radii r and r +	r as shown in Fig. 8. The evaluation
of (61) for an annulus as control volume will be done in section “The Momentum
Balance Per Annulus”.

Numerical Assessment of Actuator Disc Performance

In order to supplement the results of the momentum theory with flow details like
the velocity and pressure distributions at the disc and in the wake, van Kuik and
Lignarolo (2016) developed a numerical potential flow code which calculates the
position and strength of the wake boundary for a prescribed uniform pressure jump
	p. With the wake vorticity known, all flow details can be calculated.

p

Fig. 8 The annulus as control volume for the momentum balance, including the contribution of
the pressure at the surface of the annulus
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Fig. 9 Comparison of momentum theory (–) and computed Cp as a function of CT . The data
displayed by an open square do not have the required accuracy of maximal 0.3% deviation from
momentum theory

Figure 9 shows the efficiency for wind turbine discs. The results of Froude’s
actuator disc momentum theory are reproduced accurately: for CT = 8/9, R/R1
deviates <0.1%, the induced velocity and Cp 0.25%, with the boundary conditions
satisfied within 0.1%.

The code was validated by the actuator disc experiment of (Lignarolo et al.
2016b) providing the flow field as measured by stereo particle image velocimetry.
The measured and calculated velocity vectors and wake expansion match well.

Flow and Pressure Patterns

Figure 10 shows the velocity vectors, streamlines, wake boundary, and isobars
for CT = 8/9. All other flow states show similar patterns. The isobars show a
continuous pressure at the wake boundary but a discontinuous pressure gradient.

Properties of theWake Boundary

A steady actuator disc with a uniform load ex	p creates a wake in which the
Bernoulli constant is uniform, as follows from (3) which reduces in the wake to
∇H = 0. Upstream of the disc and outside the wake also ∇H = 0. The jump 	H

across the force free wake boundary is the same as the pressure jump across the disc.
For the wake boundary 	H becomes:
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Fig. 10 For CT = 8/9: (a) shows the velocity field and wake boundary, (b) stream tube value
Ψ/Ψ1, (c) isobars (p − p∞)/|	p|, both with increments of 0.1. The isobar −0.4 almost coincides
with the actuator disc
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	H = 	

(
1

2
ρ|v|2

)
. (64)

With γ = (v− − v+) denoting the strength of the vortex sheet, v− and v+ the
velocities at the wake side and outer side of the sheet, and vs = 1

2 (v− + v+) the
velocity of the sheet, (64) becomes:

ρvsγ = 	H = constant. (65)

As γ and 	H have a negative sign, this implies that the product vsγ is constant
but < 0 along the vortex sheet. Figure 11 shows the calculated distribution γ (s).
For the flow case CT = 8/9, the maximum of γ occurs at s/R = 0.0513. The
distribution tends to become singular for s/R → 0 with dγ /ds > 0 at s = 0.
Using (65) this implies that vs increases immediately after s = 0 reaching a
maximum value at a small distance behind the disc, whereafter vs decreases until
vs,1 is reached in the far wake. The strength of the vortex sheet seems to exhibit
a singular behavior at the disc leading edge as shown in Fig. 11. For s → 0 the
strength γ → −∞, but as discussed in van Kuik (2018b), it is not possible to draw
qualitative conclusions with respect to the singular behavior.

For all flow cases, the shape of the vortex sheet close to its leading edge is
somewhat curved but does not show a particular behavior. The slope of the vortex
sheet at x = 0 is always less than 90◦, so the sheet does not turn upwind of x = 0.
For CT = 0.998 the slope is 65◦; for CT = 8/9 it is 46◦.

Pressure at the Axis

Figure 12 shows the pressure distribution at the axis for CT = 8/9. The pressure
jump across the disc is not symmetric: |(p−p∞)|upstream �= |(p−p∞)|downstream. A
symmetric jump would require, by the Bernoulli equation, that at the axis of the disc
1
2ρ(u2r=0 − U2∞)x=0 = 1

2	p, leading to ur=0/U∞ = 0.745. This differs from the
calculated value 0.685 shown in Fig. 13. Apart from this numerical disagreement,
there is no argument found in the momentum theory why the pressure jump should
be symmetric.

‐1

-0.9

-0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

/| 1|

s / R

Fig. 11 The distribution of the vortex sheet strength γ (s) as a function of the distance s/R

measured along the sheet, for CT = 8/9
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Fig. 12 The pressure distribution at the disc axis for CT = 8/9

The Velocity Distribution at the Disc

The velocity components at the disc are presented in Fig. 13, showing that |v| is
constant (with a deviation of ±0.2%) for CT = 8/9. The same behavior is found
for all other values of CT . To explain this constant velocity, the radial component of
the equation of motion (1) is helpful:

ρv
∂v

∂s
= −∂p

∂r
. (66)

As the disc force field is only axial, f is absent in (66). When following a streamline
passing the disc and observing the increase or decrease of v, it is clear that
∂v/∂s > 0 when travelling from upstream infinity to the disc as the induction
by the wake vorticity increases. After having passed the disc, the wake vorticity
in between the disc and the downstream position of observation induces a negative
v, contributing ∂v/∂s < 0 for increasing s. The vortex tube downstream of this
position of observation remains semi-infinite for increasing s. Consequently the
radial induction by the downstream tube remains constant, apart from the effect of
varying strength and radial position of the expanding part of the vortex tube. When
the effect of these variations is negligible, the result is that downstream of the disc
∂v/∂s < 0 with ∂v/∂s > 0 upstream of the disc, so at the disc ∂v/∂s = 0. Then,
by (66), the pressure at the disc is uniform and by Bernoulli’s law |vd | = uniform.
This is confirmed by the isobar pattern shown in Fig. 10 and the velocity shown in
Fig. 13. Apparently, the effect of the varying strength and expansion of the first part
of the wake boundary does not jeopardize the line of arguments used above, for
wind turbine actuator discs (in van Kuik (2018a) discs representing propellers were
discussed: now the absolute velocity at the disc is not uniform).

The conclusion is that the absolute velocity at the disc is uniform, while the
axial velocity is non-uniform. These results differ from the results of vortex models
without wake expansion. By neglecting wake expansion, analytical treatments
become into reach; see Branlard (2017) for a comprehensive treatment of this
topic. These vortex models reproduce the result of momentum theory that the
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averaged induced velocity at the disc is the average of the velocities far up- and
downstream. However, the present analysis reveals an essential difference between
the two approaches:

• For the semi-infinite, straight vortex tube: ud is uniform; |vd | is non-uniform,
• For the actuator disc with wake expansion: ud is non-uniform; |vd | is uniform.

As long as expansion may be neglected, the vortex tube offers elegant analytical
treatments providing physical insights. However, modern wind turbines operate at
thrust coefficients CT > 0.5 at which the expansion is significant, so the non-
uniformity in ud has to be taken into account.

TheMomentum Balance Per Annulus

Applying the momentum balance to an annulus can only be done with the volume
of the annulus as control volume, by which (48) becomes:

	pAd,ann −
∫

ann

ex · enpdSann = ρ

∫

A1

u1(u1 − U∞)dA1,ann, (67)

where Sann is the surface of the annulus, Ad,ann and A1,ann the cross sections of
the annulus with the disc and far wake, and en the unit vector normal to Sann. With
Tnon cons = Td = 	pAd,ann and Tcons = Tann = − ∫

ex · enpdSann, (61) becomes:

ud =
(

Tann

Td

+ 1

)
U∞ + u1

2
. (68)

Tann is known only after flow and pressure field calculations. In the Blade Element
Momentum theory, the implicit assumption is made that Tann = 0 by which the
results of the actuator disc theory are assumed to be valid per annulus. Consequently,
each annulus is considered to be independent of the other annuli. It is known that this
assumption is invalid, as shown theoretically by Goorjian (1972) and numerically
by Sørensen and Mikkelsen (2001), but the consequences of this assumption were
assumed to be modest.

Here the ratio Tann/Td has been calculated for the annuli defined by � = n
10�d

with n from 0 to 10 for flow state CT = 8/9. The pressure integral is calculated
with x/R = ±21 as up- and downstream limits.

Figure 14 shows the calculated distribution of ud , the calculated average value
in the respective annulus, the result of the annulus momentum theory (68) with
calculated Tann/Td , and the disc averaged value (U∞ + u1)/2. The results show a
very good match of the calculated average per annulus and the momentum theory
value, except close to the disc edge where the steep change of ud requires a finer
resolution of annuli to capture the distribution accurately.
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Fig. 14 ud/U∞ at the disc
for CT = 8/9: the calculated
distribution, the calculated
average per annulus, the
result from the momentum
balance per annulus, and the
average. The two annuli lines
coincide except in the
outboard annulus
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One of the remarkable results is that in the center of the disc, u is higher than
(U∞ + u1)/2, so for an actuator disc, the local power coefficient exceeds the Betz-
Joukowsky limit.

Sørensen and Mikkelsen (2001) have done the same analysis by viscous CFD
calculations, with approximately the same result. Similar distributions of the axial
velocity have been calculated by several others, e.g., Madsen (1996), Crawford
(2006), Madsen et al. (2007, 2010), and Mikkelsen et al. (2009). The authors
suggest several mechanisms to explain the non-uniformity of the induction, but the
conclusion is that this is due to the pressure at the annuli, acting as a conservative
contribution to the momentum balance.

An EngineeringModel for the Velocity at the Disc

With the distribution of ud calculated for all CT values shown in Fig. 9, a surface fit
to ud has been made, showing the non-uniformity as defined by the ratio Tann/Td in
(68). This is presented as a distribution function G(r, CT ). Surface fitting gives the
following engineering approximation:

G(r, CT )0.5<CT <1.0 =
1 + a1

(
1 − 1.00076

(
1 −

( r

R

)a2
)0.0015)

a1 = 62.05(1 − CT )0.42 − 47.56
a2 = 5 − 2.5(CT − 0.8)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(69)

G(r, CT )0<CT <0.5 = 1 (70)

The surface fit matches the calculated data with a difference less than <1% for
CT ≤ 0.995 and r/R < 0.95 and <1.4% for CT ≥ 0.995 and r/R < 0.99.
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Fig. 15 The function G(r, CT ) defined in (69) accounting for the non-uniformity of ud

With the average velocity ud at the disc determined by stream tube momentum
theory, the distribution ud(r, CT ) becomes:

ud

U∞
= G

U∞ + u1

2
u1

U∞
= √

1 − CT

⎫
⎪⎪⎬
⎪⎪⎭

(71)

with G given by (69) and (70) and shown in Fig. 15.

Analysis of Joukowsky Actuator Disc Flows

The Joukowsky distribution is described in section “Power and Thrust Expressions
of Joukowsky Discs and Rotors” and shown in Fig. 5. The wake flow is characterized
by a constant circulation induced by a free potential flow vortex � at the axis of the
wake. The vortex has a core radius δ(x). The azimuthal velocity in the wake is:

w = �

2πr
for r ≥ δ(x)

= �

2πδ(x)
C

(
r

δ(x)

)
r for < δ(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(72)
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Fig. 16 Pressure distributions acting in the momentum balance sketched for an energy extracting
disc flow (up) and energy adding disc (down). The arrows give the direction of the pressure fields
acting on the flow. The meaning of a, b, c, d , and e is given in section “Momentum Theory for
Joukowsky Discs”

The functions δ(x) and C(r/δ(x)) remain unspecified apart from C = 0 for r = 0
and C = 1 for r = δ(x). The core radius at the disc is indicated as δ = δ(0) and
the radius in the far wake as δ1 = δ(∞). Figure 16 shows (half of) the cross section
through the stream tube in the meridian plane, with the disc and fully developed
wake indicated. The vortex core has an increasing radius toward the far wake due
to the flow deceleration. The analysis starts with δ being non-zero after which the
limit of δ → 0 is taken. The only assumption made is that:

δ1 → 0 when δ → 0. (73)

The Equations for a Disc with Torque and Swirl

The disc load: Equation (25) applies in the vortex core so with (72):

1

ρ
	H = ��

2π
for r ≥ δ(x)

= ��

2π

r

δ(x)
C

(
r

δ(x)

)
for r < δ(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(74)

The pressure jump across the disc is given by (20) combined with (72):

1

ρ
	p = ��

2π
− 1

2

(
�

2πr

)2

for r ≤ δ (75)

At the disc δ(0) = δ, so the thrust coefficient is given by (40).
The far wake outside the vortex core: For r ≥ δ1 the Bernoulli equation is written

as, using (74):
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1

ρ
(p1 − p∞) = −1

2
(u21 − U2∞ + w2) + ��

2π
. (76)

Differentiation with respect to r yields ∂p1/∂r1 = ρ(w2/r1 − u1∂u1/∂r). Com-
parison with the expression for radial pressure equilibrium obtained from the radial
component of (1) with v = 0:

∂p1

∂r1
= ρ

w2

r1
(77)

shows that u1 is constant. By this (76) can be written as:

p1 − p∞ = −1

2
ρw2 + C, with C = constant = −1

2
ρ(u21 − U2∞) + ρ

��

2π
. (78)

At the wake boundary, the pressure has to be undisturbed (p∞), so C =
1
2ρw2

wake boundary = 1
2ρ(�/(2πR1))

2, with which (76) becomes:

p1 − p∞ = −1

2
ρw2 + 1

2
ρ

(
�

2πR1

)2

. (79)

This shows that the pressure variation in the far wake is caused only by the swirl.
By substitution of (79) in (76), the second term on the right-hand side appears as a
loss in H due to swirl:

	H = 1

2
ρ(u21 − U2∞) + 1

2
ρ

(
�

2πR1

)2

. (80)

This is consistent with the optimization of rotors according to Glauert’s theory
which involves minimization of the swirl; see e.g. Sørensen et al. (2015).

The vortex core: The momentum theory results are very sensitive to the choice of
δ and δ1. This is caused by the logarithmic singularity resulting from the integration

of the pressure due to the azimuthal velocity: at the disc−ρπ
∫ δ

R
w2rdr= − ρ �2

4π

ln R
δ
and in the far wake− ρ �2

4π ln R1
δ1
. Several authors, e.g., de Vries (1979), Sharpe

(2004), Xiros and Xiros (2007), Wood (2007), and Sørensen and van Kuik (2011b),
have derived solutions of the Joukowsky momentum theory using the vortex core
boundary as lower limit in the integration of velocity and pressure. This implies
that the vortex core is excluded, motivated by its vanishing dimension in the limit
δ, δ1 → 0. Several solutions gave the intriguing but physically infeasible result that
Cp → ∞ for λ → 0. Here, in accordance with van Kuik (2017), the vortex core
will be included in the momentum theory.

With δ(x) denoting the local core radius, the equivalent of the Bernoulli equation
(76) in the vortex core region becomes:
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(p∞ − p) = ρ

2

(
v2s − U2∞ +

(
�

2πδ(x)
C

(
r

δ(x)

))2
)

− ��

2π

r

δ(x)
C

(
r

δ(x)

)
,

(81)

where vs = √
u2 + v2 is the velocity in the meridian plane. The terms vs , U∞ and

the last term on the right-hand side remain finite when δ(x) → 0. The remaining
contribution becomes infinite in this limit, so dominates the pressure:

lim
δ(x)→0

1

ρ
(p∞ − p) = 1

2

(
�

2πδ(x)
C

(
r

δ(x)

))2

. (82)

Now the vortex core itself is taken as control volume for the axial momentum
balance. Given the assumption of inviscid, isentropic Euler flow, the vortex core
boundary is a stream surface, where C = 1. With vs remaining finite, the momentum
flux through the control volume boundary becomes 0 for δ(x) → 0, so the
momentum balance reduces to a balance of pressures acting on the control volume
boundary, integrated as a load in x direction:

δ∫

0

(p−p∞)2πrdr −
δ1∫

0

(p1−p∞)2πrdr+
δ1∫

δ

(p(x, δ(x))−p∞)2πδ(x)dδ(x) = 0,

(83)

where the path of integration of the third integral is the core boundary δ(x) with
0 ≤ x ≤ x1. The third integral is evaluated with (82), so:

lim
δ(x)→0

⎡
⎣

δ1∫

δ

(p(x, δ(x)) − p∞)2πδ(x)dδ(x)

⎤
⎦ = −1

2
ρ

δ1∫

δ

�2

2πδ(x)
dδ(x)

= −ρ
�2

4π
ln

δ1

δ
. (84)

The combination of (83) and (84) gives:

lim
δ(x)→0

⎡
⎣

δ∫

0

(p − p∞)2πrdr −
δ1∫

0

(p1 − p∞)2πrdr

⎤
⎦ = ρ

�2

4π
ln

δ1

δ
, (85)

irrespective of the choice of core model δ, C. This result will be used in sec-
tion “Momentum Theory for Joukowsky Discs” where the momentum balance for
the entire stream tube is studied.
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Momentum Theory for Joukowsky Discs

The momentum balance (48) with the stream tube as control volume (see Fig. 16) is
written as:

T −
∫

A1

(p1 − p∞)2πrdr = ρ

∫

A1

u1(u1 − U∞)dA1. (86)

The boundaries of the momentum balance volume are the stream tube boundary and
the cross sections A∞ and A1 far up- and downstream. The pressure at the stream
tube boundary does not contribute to the momentum balance (see section “The
Momentum Balance”) so is not included in (86).

Figure 16 shows the pressure distributions appearing on the left-hand side of (86)
including the thrust:

a constant pressure jump across the disc giving the jump in Bernoulli parameter
H , according to the first term on the right-hand side of (75).

b pressure distribution due to jump in w for r ≥ δ according to the second term on
the right-hand side of (75). This term conserves H .

c apart from correction by (d), the pressure distribution in the far wake due to the
w distribution is identical to (b) for r ≥ δ1, according to the first term at the
right-hand side of (79), conserving H .

d a correction to (c) to achieve p1 − p∞ = 0, according to the second term on the
right-hand side of (79).

e the contribution by the vortex core cross sections, (85).

When all contributions are expressed in � by (72) and (74), integrated, subjected to
lim δ → 0, substituted in (86), and divided by the disc surface πR2, the result is:

a d b c e

��

2π
− 1

2

(
�

2πR

)2

−
(

�

2πR

)2 [
ln

R

δ
− ln

R1

δ1
− ln

δ1

δ

]
=u1(u1 − U∞)

(
R1

R

)2

(87)

where the terms on the left-hand side have been named (a) to (e) in accordance with
Fig. 16. The logarithmic terms reduce to ln(R/R1), so only the wake expansion area
(cexpansion) contributes to this term. This contribution is shown as a gray area in
Fig. 16. The mass balance is:

ud

u1
=

(
R1

R

)2

(88)

with the bar above ud indicating that it is the average value. The energy balance
follows from (80):
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��

2π
− 1

2

(
�

2πR1

)2

= 1

2
(u21 − U2∞). (89)

Mixing (87) and (88) simplifies the momentum balance, yielding:

��

2π
− 1

2

(
�

2πR

)2

−
(

�

2πR

)2

ln
R

R1
= ud(u1 − U∞). (90)

As in section “Power and Thrust Expressions of Joukowsky Discs and Rotors” the
non-dimensional vortex q = �/(2πRU∞) is introduced. Herewith (74) becomes:

1

ρ

	Hd

U2∞
= λq, (91)

and the momentum balance:

−2λq + q2

(
1 + ln

(
R

R1

)2
)

= 2
ud

U∞

(
1 − u1

U∞

)
, (92)

as well as the energy balance:

−2λq + q2
(

R

R1

)2

=
(
1 −

(
u1

U∞

)2
)

. (93)

By mixing (92) and (93), the velocity at the disc can be written as:

ud

U∞
= 1

2

(
u1

U∞
+ 1

) 2λq − q2
(
1 + ln

(
R
R1

)2)

2λq − q2
(

R
R1

)2 . (94)

This equation is equivalent to (61), indicating that the ratio contains conservative
and non-conservative contributions. This will be discussed in section “The Role of
Swirl”.

An analytical solution of (92) and (93) is not found. An implicit expression
of u1/U∞ in the independent variables λ, q is obtained by writing (93) as an
expression for u1 with the help of (88) and substituting this in (92):

(
1 − u1

U∞

)
u1
U∞ q2

1 − 2λq −
(

u1
U∞

)2 =
(

−qλ − 1

2
q2

(
1 − ln

(
q2

1 − 2λq − ( u1
U∞ )2

)))
. (95)
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Fig. 17 The axial velocity ud at the disc for 0 ≤ CT,	H ≤ 1, 0 ≤ λ ≤ 5

This can be solved numerically for u1/U∞. The wake expansion or contraction
follows by (93) and the velocity at the disc by (92). The power coefficient is given
by (37) and the thrust coefficient by (40).

Figures 17 and 18 show the solutions of (95) and (37) for 0 ≤ λ ≤ 5 and 0 <

CT,	H ≤ 1. Several particularities can be observed, to be addressed in the next
sections:

• A minimum λ exists at which the velocity at the disc is 0. For a given CT,	H , a
lower λ is not possible.

• The maximum efficiency Cp of energy extracting discs decreases to 0 for
decreasing λ.

Limit Values: λ → ∞, λ → 0, Cp,max

Results for λ → ∞, λ → 0 : For large values of λ, the angular momentum should
go to 0, and the momentum theory should become the one-dimensional theory,
recovering the well-known Betz-Joukowsky maximum value for Cp. According to
(91) q is inversely proportional to λ for constant 	H . In the balances (92) and
(93), the q2 terms vanish for λ → ∞, so 	H becomes 	p with which the Froude
momentum theory equations (50) and (51) are indeed recovered.

For the limit λ → 0, the energy balance (93) shows that the highest value for
q2(R/R1)

2 is obtained for u1/U∞ = 0:
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Fig. 18 The power coefficient Cp for 0 ≤ CT,	H ≤ 1, 0 ≤ λ ≤ 5

−2λq + q2
(

R

R1

)2

= 1. (96)

With u1/U∞ = 0 the right-hand side of the momentum balance is 0 as is clear from
(87), by which it becomes:

−2λq + q2

(
1 − ln

(
R1

R

)2
)

= 0. (97)

Elimination of q2 from (96) and (97) gives the wake expansion for the highest q,
lowest λ with u1 = 0:

(
R1

R

)2
(
1 − ln

(
R1

R

)2
)

= 2λq

2λq + 1
. (98)

As an example, 2λq = 	H/( 12ρU2∞) = −8/9 results inR1/R = 2.77, q = −0.924
from (96) and λ = 0.48. Both ud and u1 are 0, but the ratio of ud/u1 → 7.69.
This flow state is characterized by a full blockage by the disc, creating a wake with
azimuthal flow only, so there is no change in axial momentum. A lower value of λ is
not possible for this value of λq. For λq = 0 with λ = 0, (98) gives ln(R1/R)2 = 1
or R/R1 = √

e, with which (96) gives R1/R = −q = √
e = 1.648 although ud =

u1 = 0. In the wake only the azimuthal velocity is non-zero, reaching qR/R1 = −1
at the far wake boundary r = R1. The wake expansion is close to the experimental
value ≈ 1.6 of the wake expansion behind a solid disc reported in Craze (1977).
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Fig. 19 The Joukowsky momentum theory results (black lines), calculated values (τ , see sec-
tion “Numerical Results”), and the maximum wind turbine Cp (red line)

The maximum efficiency: Figure 19 shows the maximal attainable Cp and the
Cp − λ curves for some values of CT,	H . For λ → 0 the efficiency Cp → 0, and
for λ → ∞ Cp increases to the Betz-Joukowsky maximum 16/27. The Cp,max − λ

curve resembles the performance curve of discs with the Betz-Goldstein distribution
of circulation as published by Okulov (2014) and Wood (2015). These performance
curves have been compared in van Kuik (2017), showing that the Joukowsky
distribution gives a slightly higher Cp than the Betz-Goldstein-based distributions,
with the difference vanishing for higher λ. Okulov and Sørensen (2010) have
compared rotors having a Joukowsky- and Betz-Goldstein-based distribution. The
same conclusion is drawn: Joukowsky rotors perform slightly better than Betz-
Goldstein-based rotors.

Numerical Results

The numerical model: The numerical method described in section “Numerical
Assessment of Actuator Disc Performance” has been adapted to include wakes with
swirl by defining the force free condition for the wake boundary. Equivalent to (76),
with p1 replaced by p and u1 by vs = √

u2 + v2, this gives:
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Fig. 20 for CT = 8/9, λ = 1: (a) shows the velocity field and wake boundary, (b) stream tube
value Ψ/Ψ1, (c) isobars (p − p∞)/|	p|, both with increments of 0.1. Isobars close to the wake
axis are not plotted
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Fig. 21 The distribution of the vortex sheet strength γ (s) as a function of the distance s/R

measured along the sheet, for CT = 8/9, λ = 1

	wake boundary

(
1

2

(
v2s + w2

))
= ��

2π
(99)

Figure 19 shows the calculated Cp(λ) for fixed values of 2λq = 	H/ 1
2ρU2∞ and

the momentum theory values. The data match very well. For λ = 5 the difference in
Cp compared with the values for λ → ∞, so with the one-dimensional momentum
theory, is less than 0.7%. Consequently, swirl may be ignored for λ > 5.

Flow details at λ = 1 compared with λ = ∞:
Figure 20 shows the streamlines and isobars of the disc flow with λ = 1 for

CT,	H = 8/9. The isobars in the wake show the pressure gradient due to the swirl.
The distribution of the vortex sheet strength γ is shown in Fig. 21, and the absolute,
axial, and radial velocity at the upstream side of the disc in Fig. 22. The figures can
be compared with the equivalent Figs. 10, 11, and 13 for the Froude disc flow, so for
infinite λ.

The velocity at the disc: Figure 22 shows the velocity components at the upstream
side of the disc for λ = 1, with constant |v| (with a deviation of 2%).

For all load cases with λ > 5, the same is found: the absolute velocity in the
meridian plane,

√
u2 + v2, is constant, irrespective ofCT,	H or λ, (with a maximum

deviation of 1%).
In section “The Velocity Distribution at the Disc” an explanation is given for the

absolute velocity at the Froude disc to be uniform. The same explanation holds for
the constant meridian velocity at the Joukowsky disc, as the azimuthal component
w has no impact at the line of arguments in section “The Velocity Distribution at the
Disc”.

TheMomentum Balance Per Annulus of Joukowksy Disc Flows

The balance for the stream tube is defined by (86). In this equation the pressure
acting at the stream tube boundary is absent as discussed in section “TheMomentum
Balance”. When applying the momentum balance to an annulus instead of the entire
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stream tube, the same procedure is applied as in section “The Momentum Balance
Per Annulus”. Figure 23 shows the distribution of ud resulting from the flow field
calculation, the associated average value per annulus, and the value resulting from
(68). As in Fig. 14, the calculated average per annulus coincides everywhere except
at the disc edge with the momentum theory value. This confirms the results from the
Froude discs in section “Analysis of Froude Actuator Disc Flows”: the annuli cannot
be assumed as independent, as the pressure field contributes to the axial momentum
exchange leading to the non-uniform distribution of ud .
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The Role of Swirl

The ratio in (94) is the ratio between the left-hand sides of the momentum balance
(92) and energy balance (93) or, in other words, between the total load exerted on
the flow in the stream tube control volume and the non-conservative load which
is the load performing work. By this, (94) is equivalent to (61) which shows how
conservative forces affect the momentum balance: the induced velocity at the disc
deviates from Froude’s result. Inspection of the pressure distributions contributing
to the momentum balance as shown in Fig. 16 and listed in section “Momentum
Theory for Joukowsky Discs” shows that:

• all distributions appear in the momentum balance (87) or (92) with (b), (c), and
(e) cancelling each other apart from (cexpansion)

• distributions (a) and (d) appear in the energy balance (89) or (93), so are non-
conservative

• distributions (b), (c), and (e) do not appear in the energy balance, so are
conservative.

Evaluation of (a + d + cexpansion) for the counter of the ratio Ttotal/Tcons in (61) and
(a + d) for the denominator returns (94). The difference between the momentum
theory results for Froude and Joukowsky discs is caused by the swirl-related
pressure in the far wake: the conservative (cexpansion) and the non-conservative (d).

The swirl-related pressure distributions (b) and (c) are conservative as the
gradient of the pressure and azimuthal velocity results in a conservation of potential
and kinetic energy: ∂(	pw + 1

2ρw2/∂r = 0, as discussed right after (26). Still swirl
has an impact on the energy balance by distribution (d). The change of H from
undisturbed to its value in the far wake is given by (80) with the first term at the
right-hand side expressing the change in kinetic energy and the second term, being
the pressure (d), the change in potential energy.

On the Use of Actuator Disc Theory in BEM

Blade and Tip Effects

BEM uses the Froude or Joukowsky actuator disc momentum theory per annulus
without taking the pressure at the boundary of the annuli into account, unlike the
balance in section “The Momentum Balance Per Annulus”. In case of straightfor-
ward optimization of a rotor in straight, uniform flow, all annuli will give the same
result leading to a radially uniform ud . Furthermore, the resulting velocity is also
azimuthally uniform as the momentum theory treats the rotor as a disc. To remove
these deficiencies, BEM is always used with corrections or engineering additions to
the momentum balance. The most important correction to the momentum balance
in uniform flow is the correction for the finite number of blades, usually the one of
Prandtl-Glauert. Prandtl has derived it as a correction for a finite number of blades
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to the disc model of Betz (1919), in an appendix to Betz’s paper. The model of
Betz is briefly described in section “The Actuator Disc”. Glauert (1935, ch. VII-4)
has adapted Prandtl’s correction as to apply it at the blade position instead of the
azimuthally averaged disc. Neither Prandtl nor Glauert has called the correction
a tip correction, although this is the commonly used name instead of “number of
blade correction.” The reason is that the correction, in which the number of blades
is a major parameter, modifies the induction near the blade tip and, by doing so, also
the blade loading.

The two most important limitations of the actuator disc theory, being the
treatment of a rotor as a disc and the inability to provide a radial distribution of
the velocity, are eliminated by the Prandt-Glauert correction. This is a remarkable
achievement, as the present application is far away from the origin of the correction:
Prandtl derived it as a 2-D correction for the 3-D optimal Betz circulation distribu-
tion for lightly loaded discs, but it is applied to BEM which optimizes for a heavily
loaded Joukowsky distribution.

After Glauert the correction has been modified by many, as can be read in
Sørensen et al. (2015, chapter 8) and Branlard (2017, chapter 13), by fine-tuning
and validating it with experiments and CFD calculations. The modification by Shen
et al. (2005, 2014) to account for the geometry of the blade tip will be used in the
next section.

Comparison of Actuator Disc and BEM Induction

At the time Prandtl published his correction, the velocity distribution at the Froude
disc was not yet known. In section “Analysis of Froude Actuator Disc Flows” this
distribution has been calculated for a range of thrust coefficients, so it is worthwhile
to compare this distribution with the results of annulus-based momentum theory
with the Prandtl-Glauert-Shen (PGS) tip correction as used in BEM.

The PGS correction is used in the momentum balance to solve aB :

CtF1 = 4aBF(1 − aBF), (100)

where F is the Prandtl-Glauert correction and F1 the Shen correction:

F = 2

π
cos−1

[
exp

(
−B

2

(
R

r
− 1

)
1

sin(θ)

)]
, (101)

where θ is the local inflow angle, with sin(θ) = uB/

√
(�r − wB)2 + u2B and with

subscript B indicating the velocity at the blade position, and:
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F1 = 2

π
cos−1

[
exp

(
−g

B

2

(
R

r
− 1

)n 1

sin(θ)

)]

g = exp

[
0.125(Bλ − 21)

1 − 2k

]
+ 0.1

n = 1 + 0.5k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(102)

where k is the minimum value of chord-to-radius derivative at the tip. The value
k = −0.45, used by Shen, is used here unmodified. When B, λ are given, F and F1
are known except for uB or the induction aB = (1− uB/U∞). In BEM Ct depends
on uB and on local aerofoil characteristics, so (100) has to be solved iteratively.
For a given CtF1, the quantity aBF is solved as the azimuthally averaged induction
resulting from the momentum theory without any radial dependency of the results.
The local induction aB follows after division by F , after which Ct can be renewed
until convergence is reached.

For the actuator disc, Ct is predefined, given by (47). Here we use Ct without the
q2 term, as discussed in section “Power and Thrust Expressions of Joukowsky Discs
and Rotors”. The momentum theory solution of (100) obtained with this Ct will be
compared with the calculated actuator disc results obtained in section “Analysis of
Froude Actuator Disc Flows”, for the same Ct . The radial distribution of the axial
velocity is given by the function G, described by (69) and (70) and shown in Fig. 15.
It is used in combination with the local momentum equation:

Ct = 4a(1 − a)

1 − aB = G(1 − a)

}
(103)

The first equation gives the induction a as if the local and disc-averaged momentum
equations are the same, the second equation gives the local value.

In van Kuik et al. (2015a) the comparison of both methods, (100) and (103),
is done for the load cases representing an optimal rotor with CT = 8/9, λ = 7,
a heavily loaded rotor with CT = 0.97, λ = 7, and a very fast running rotor with
CT = 8/9, λ = 20. For all rotorsB = 3. The results are shown in Fig. 24, presenting
uB as resulting from the PGS correction and G function. The PGS correction has
little effect for r < 0.8R, so the axial velocity is lower than the G function for
r/R < 0.8. For r/R > 0.8 the actuator disc line G corresponds reasonably well
with the PGS corrected results.

The reasonable correspondence between the induction function G and the PGS
corrected induction is confirmed by a similar correspondence between the induction
function G and the induction at the blade position of a three-bladed rotor, calculated
by a lifting line and actuator line method; see van Kuik et al. (2015a). Given this,
one might consider to use the G function in BEM instead of the PGS correction.
However only a few loadcases in straight uniform flow have been examined for
one specific (constant) blade circulation. Much more load cases and off-design
conditions have to be tested to fine-tune and validate the G function.



3 The Actuator Disc Concept 91

r/R
0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

r/R
0.2 0.4 0.6 0.8 1

r/R
0.2 0.4 0.6 0.8 1

u/U∞

Fig. 24 The axial velocity distribution obtained from the momentum theory + PGS correction
(dash line) and actuator disc function G (solid line). Left CT = 8/9, λ = 7, middle CT = 0.97,
λ = 7, right CT = 8/9, λ = 20

Cross-References

�History of Aerodynamic Modelling
� Pragmatic Models: BEM with Engineering Add-Ons
�Rotor Blade Design, Number of Blades, Performance Characteristics

References

Anderson HB, Milborrow DJ, Ross JN (1982) Performance and wake measurements on a 3m
diameter horizontal axis wind turbine rotor. In: Proceedings of 4th international symposium on
wind energy systems. Stockholm, BHRA (1982)

Batchelor GK (1970) An introduction to fluid dynamics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9805II800955

Betz A (1919) Schraubenpropeller mit geringstem Energieverlust. Reprint of 4 famous papers by
Universitatsverlag Gottingen

Betz A (1920) Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmo-
toren. Zeitschrift für das gesamte Turbinenwesen 26:307–309

Branlard E (2017) Wind turbine aerodynamics and vorticity-based methods. Springer International
Publishing. ISBN 9783319551630. https://doi.org/10.1007/978-3-319-55164-7

Burton T, Jenkins N, Sharpe DJ, Bossanyi E (2011) Wind energy handbook. Wiley. ISBN
9780471489979. https://doi.org/10.1002/0470846062

Crawford C (2006) Re-examination of the precepts of the blade element momentum theory for
coning rotors. Wind Energy 9:457–478. https://doi.org/10.1002/we/197

Craze DJ (1977) On the near wake behind a circular disc. In: 6th Australasian hydraulics and fluid
mechanics conference, pp 282–286

de Vries O (1979) Fluid dynamic aspects of wind energy conversion, AGARD-AG-243. AGARD,
Amsterdam. ISBN 9283513266, 9789283513261

Froude RE (1889) On the part played in propulsion by differences of fluid pressure. In: 13th session
of the institution of naval architects, vol 30, pp 390–405

Glauert H (1926) The analysis of experimental results in the windmill brake and vortex ring state
of an airscrew. Aeronautical Research Council R&M 1026, London

https://doi.org/10.1007/978-3-030-31307-4_9
https://doi.org/10.1007/978-3-030-31307-4_19
https://doi.org/10.1007/978-3-030-31307-4_4
https://doi.org/10.1017/CBO9805II800955
https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1002/0470846062
https://doi.org/10.1002/we/197


92 G. A. M. van Kuik

Glauert H (1935) The general momentum theory. In: Aerodynamic theory volume IV division L.
Springer, Berlin, reprinted as Dover Edition

Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond A 123:440–465
Goorjian PM (1972) An invalid equation in the general momentum theory of the actuator disk.

AIAA J 10(4):543–544
Haans W, Sant T, Van Kuik GAM, van Bussel GJW (2008) HAWT near-wake aerodynamics, Part

I: axial flow conditions. Wind Energy 11:245–264. https://doi.org/10.1002/we.262
Hansen MOL (2008) Aerodynamics of wind turbines. Earthscan. ISBN 9781844074389
Joukowsky JN (1912) Vortex theory of the screw Propeller I. Trudy Avia Raschetno-Ispytatelnogo

Byuro (in Russian) Also published in Gauthier-Villars et Cie.(eds) Theéorie Tourbillonnaire de
l’Hélice Propulsive, Quatrième Mémoire. 1929; 1:1–47, 16(1):1–31

Joukowsky JN (1918) Vortex theory of the screw propeller IV. Trudy Avia Raschetno-Ispy-
tatelnogo Byuro (in Russian] Also published in Gauthier-Villars et Cie.(eds Théorie Tourbil-
lonnaire de l’Hélice Propulsive, Quatrième Mémoire. 1929; 4:123–198, 3:1–97

Joukowsky JN (1920) Joukowsky windmills of the NEJ type. In: Transactions of the central
institute for aero-hydrodynamics of Moscow, pp 405–430

Lignarolo LEM, Ferreira CS, van Bussel GJW (2016a) Experimental comparison of a wind turbine
and of an actuator disc wake. J Renew Sustain Energy 8(023301):1–26. ISSN 1941-7012.
https://doi.org/10.1063/1.4941926

Lignarolo LEM, Mehta D, Stevens RJAM, Yilmaz AE, Meyers J, Andersen SJ, van Kuik GAM,
Meneveau C, Holierhoek J, Simão Ferreira CJ, Ragni D, van Bussel GJW (2016b) Validation
of four LES and a vortex model against PIV measurements of the near wake of an actuator
disk and a wind turbine. Renew Energy 94:510–523. ISSN 09601481. https://doi.org/10.1016/
j.renene.2016.03.070

Madsen HA (1996) A CFD analysis of the actuator disc flow compared with momentum theory
results. In: 10th IEA aerodynamic expert meeting, pp 109–124

Madsen HA, Mikkelsen RF, Øye S, Bak C, Johansen J (2007) A detailed investigation of the blade
element momentum (BEM) model based on analytical and numerical results and proposal for
modifications of the BEM model. J Phys Conf Ser 75:012016. ISSN 1742-6596. https://doi.org/
10.1088/1742-6596/75/1/012016

Madsen HA, Bak C, Døssing M, Mikkelsen RF, Øye S (2010) Validation and modification of the
blade element momentum theory based on comparisons with actuator disc simulations. Wind
Energy 13:373–389. https://doi.org/10.1002/we359

Martínez-Tossas LA, Churchfield MJ, Meneveau C (2017) Optimal smoothing length scale for
actuator line models of wind turbine blades based on Gaussian body force distribution. Wind
Energy 20(6):1083–1106. https://doi.org/10.1002/we.2081

Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body
vortex shedding. Wind Energy 9:219–236. https://doi.org/10.1002/we/156

Mikkelsen RF, Øye S, Sørensen JN, Madsen HA, Shen WZ (2009) Analysis of wake expansion
and induction near tip. In: Proceedings EWEC2009, Marseille

Okulov VL (2014) Limit cases for rotor theories with Betz optimization. J Phys Conf Ser
524:012129. ISSN 1742-6596. https://doi.org/10.1088/1742-6596/524/1/012129

Okulov VL, Sørensen JN (2010) Maximum efficiency of wind turbine rotors using Joukowsky
and Betz approaches. J Fluid Mech 649:497–508. ISSN 0022-2120. https://doi.org/10.1017/
S0022112010000509

Okulov VL, van Kuik GAM (2012) The Betz – Joukowsky limit: on the contribution to rotor
aerodynamics by the British, German and Russian scientific schools. Wind Energy 15:335–344.
https://doi.org/10.1002/we/464

Okulov VL, Sørensen JN, Wood DH (2015) Rotor theories by Professor Joukowsky: vortex
theories. Prog Aerosp Sci 73:19–46. ISSN 03760421. https://doi.org/10.1016/j.paerosci.2014.
10.002

Øye S (1990) A simple vortex model. In: McAnulty KF (ed) Third IEA symposium on the
aerodynamics of wind turbine, pp 1–15, Harwell. ETSU

https://doi.org/10.1002/we.262
https://doi.org/10.1063/1.4941926
https://doi.org/10.1016/j.renene.2016.03.070
https://doi.org/10.1016/j.renene.2016.03.070
https://doi.org/10.1088/1742-6596/75/1/012016
https://doi.org/10.1088/1742-6596/75/1/012016
https://doi.org/10.1002/we359
https://doi.org/10.1002/we.2081
https://doi.org/10.1002/we/156
https://doi.org/10.1088/1742-6596/524/1/012129
https://doi.org/10.1017/S0022112010000509
https://doi.org/10.1017/S0022112010000509
https://doi.org/10.1002/we/464
https://doi.org/10.1016/j.paerosci.2014.10.002
https://doi.org/10.1016/j.paerosci.2014.10.002


3 The Actuator Disc Concept 93

Parra EA, Boorsma K, Schepers JG, Snel H (2016) Momentum considerations on the New
MEXICO experiment. J Phys Conf Ser 753:072001. ISSN 1742-6588. https://doi.org/10.1088/
1742-6596/753/7/072001

Prandtl L (1918) Tragflügeltheorie I. Mitteilung. Nachrichten der Königlichem Gesellschaft der
Wissenschaften zü Göttingen, Mathematisch-physikalische Klasse, pp 451–477

Saffman PG (1992) Vortex dynamics, monographs edition. University Press, Cambridge. ISBN
052142058X, 9780521420587

Sharpe DJ (2004) A general momentum theory applied to an energy-extracting actuator disc. Wind
Energy 7(3):177–188. ISSN 1095-4244. https://doi.org/10.1002/we.118

Shen WZ, Mikkelsen RF, Sørensen JN, Bak C (2005) Tip loss corrections for wind turbine
computations. Wind Energy 8(4):457–475. ISSN 1095-4244. https://doi.org/10.1002/we.153

Shen WZ, Zhu WJ, Sørensen JN (2014) Study of tip loss corrections using CFD rotor computa-
tions. J Phys Conf Ser 555:012094. ISSN 1742-6588. https://doi.org/10.1088/1742-6596/555/
1/012094

Sørensen JN (2015) General momentum theory for horizontal axis wind turbines. Springer
International Publishing, Heidelberg. ISBN 978-3-319-22113-7. https://doi.org/10.1007/978-3-
319-22114-4

Sørensen JN, Mikkelsen RF (2001) On the validity of the blade element momentum method. In:
EWEC2001, Copenhagen, pp 362–366

Sørensen JN, van Kuik GAM (2011a) Aerodynamic aspects of wind energy conversion. Annu Rev
Fluid Mech 43(1):427–448. ISSN 0066-4189. https://doi.org/10.1146/annurev-fluid-l22l09-
l6080l

Sørensen JN, van Kuik GAM (2011b) General momentum theory for wind turbines at low tip speed
ratios. Wind Energy 14:821–839. https://doi.org/10.1002/we.423

Sørensen JN, Shen WZ, Munduate X (1998) Analysis of wake states by a full field actuator disc
model. Wind Energy 88:73–88. https://doi.org/10.1002/(SICI)1099--1824(199812)1:2<73::
AID--WEI2>3.0.CO;2-L

Sørensen JN, Dag KO, Ramos-García N (2014) A new tip correction based on the decambering
approach. J Phys Conf Ser 524(Torque2014):012097. ISSN 1742-6596. https://doi.org/10.1088/
1742-6596/524/1/012097

Sørensen JN, Dag KO, Ramos-García N (2015) A refined tip correction based on decambering.
Wind Energy 19(5):787–802. https://doi.org/10.1002/we/1865

Thoma D (1925) Grundsatzliches zur einfachen Strahltheorie der Schraube. Zeitschrift für
Flugtechnik und Motorluftschiffahrt 16(10):206–208

Thwaites B (1960) Incompressible aerodynamics. Clarendon Press, Oxford. ISBN 978-
0486654652

van Holten T (1981) Concentrator systems for wind energy, with emphasis on tip-vanes. Wind Eng
5(1):29–45

van Kuik GAM (2017) Joukowsky actuator disc momentum theory. Wind Energy Sci 2:307–316.
ISSN 2366-7621. https://doi.org/10.5194/wes-20l6-55

van Kuik GAM (2018a) Comparison of actuator disc flows representing wind turbines and
propellers. J Phys Conf Ser 1037(Torque2018):1–10

van Kuik GAM (2018b) The fluid dynamic basis for actuator disc and rotor theories, open
acces edition. IOS Press, Amsterdam. ISBN 978-1-61499-865-2. https://doi.org/10.3233/978-
1-61499-866-2-i

van Kuik GAM, Lignarolo LEM (2016) Potential flow solutions for energy extracting actuator disc
flow. Wind Energy 19:1391–1406. https://doi.org/10.1002/we1902

van Kuik GAM, Yu W, Sarmast S, Ivanell S (2015a) Comparison of actuator disc and Joukowsky
rotor flows, to explore the need for a tip correction. J Phys Conf Ser 625:012013. https://doi.
org/10.1088/1742-6596/625/1/012013

van Kuik GAM, Sørensen JN, Okulov VL (2015b) Rotor theories by Professor Joukowsky:
momentum theories. Progress Aerospace Sci 73:1–18. ISSN 03760421. https://doi.org/10.1016/
j.paerosci.2014.10.001

https://doi.org/10.1088/1742-6596/753/7/072001
https://doi.org/10.1088/1742-6596/753/7/072001
https://doi.org/10.1002/we.118
https://doi.org/10.1002/we.153
https://doi.org/10.1088/1742-6596/555/1/012094
https://doi.org/10.1088/1742-6596/555/1/012094
https://doi.org/10.1007/978-3-319-22114-4
https://doi.org/10.1007/978-3-319-22114-4
https://doi.org/10.1146/annurev-fluid-l22l09-l6080l
https://doi.org/10.1146/annurev-fluid-l22l09-l6080l
https://doi.org/10.1002/we.423
https://doi.org/10.1002/(SICI)1099--1824(199812)1:2<73::AID--WEI2>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099--1824(199812)1:2<73::AID--WEI2>3.0.CO;2-L
https://doi.org/10.1088/1742-6596/524/1/012097
https://doi.org/10.1088/1742-6596/524/1/012097
https://doi.org/10.1002/we/1865
https://doi.org/10.5194/wes-20l6-55
https://doi.org/10.3233/978-1-61499-866-2-i
https://doi.org/10.3233/978-1-61499-866-2-i
https://doi.org/10.1002/we1902
https://doi.org/10.1088/1742-6596/625/1/012013
https://doi.org/10.1088/1742-6596/625/1/012013
https://doi.org/10.1016/j.paerosci.2014.10.001
https://doi.org/10.1016/j.paerosci.2014.10.001


94 G. A. M. van Kuik

von Kármán T, Burgers TM (1935) Motion of a perfect fluid produced by external forces. In:
Aerodynamic theory, vol Π Division E Chapt. IIIA. Springer, Berlin

Wilmshurst S, Metherell AJF, Wilson DMA, Milborrow DJ, Ross JN (1984) Wind turbine rotor
performance in the high thrust region. In: Sixth BWEA conference, 1984

Wood DH (2007) Including swirl in the actuator disk analysis of wind turbines. Wind Eng
31(5):317–323.

Wood DH (2015) Maximum wind turbine performance at low tip speed ratio. J Renew Sustain
Energy 7:053126. https://doi.org/10.1063/1.4934895

Xiros MI, Xiros NI (2007) Remarks on wind turbine power absorption increase by including the
axial force due to the radial pressure gradient in the general momentum theory. Wind Energy
10(1):99–102. ISSN 10954244. https://doi.org/10.1002/we203

https://doi.org/10.1063/1.4934895
https://doi.org/10.1002/we203

	3 The Actuator Disc Concept
	Contents
	Introduction
	The Actuator Disc
	From Actuator Disc to Rotor Aerodynamics

	Force Fields in Rotor Aerodynamics
	Force Fields: Output from or Input in the Equation of Motion?
	Equivalence of the Kinematic and Dynamic Methods
	The Equation of Motion and the Coordinate Systems
	Non-conservative and Conservative Force Fields

	The Disc as Representation of a Rotor
	The Actuator Disc Equation
	Power and Thrust Expressions of Joukowsky Discs and Rotors

	Analysis of Froude Actuator Disc Flows
	The Momentum Balance
	Momentum Theory Without Conservative Forces
	Momentum Theory Including Conservative Forces
	Numerical Assessment of Actuator Disc Performance
	Flow and Pressure Patterns
	Properties of the Wake Boundary
	Pressure at the Axis
	The Velocity Distribution at the Disc
	The Momentum Balance Per Annulus
	An Engineering Model for the Velocity at the Disc

	Analysis of Joukowsky Actuator Disc Flows
	The Equations for a Disc with Torque and Swirl
	Momentum Theory for Joukowsky Discs
	Limit Values: λ→∞, λ→0,Cp,max 
	Numerical Results
	The Momentum Balance Per Annulus of Joukowksy Disc Flows
	The Role of Swirl

	On the Use of Actuator Disc Theory in BEM
	Blade and Tip Effects
	Comparison of Actuator Disc and BEM Induction

	Cross-References
	References


