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A B S T R A C T

The topology of low-voltage distribution networks (LVDNs) is crucial for system analysis, e.g., distributed
energy resources (DERs) integration, network hosting capacity analysis, state estimation, and electric vehicle
charging management. However, it is frequently unavailable or incomplete. This paper develops a data-driven
topology identification approach for LVDNs with a high proportion of underground cables. The proposed
approach exploits the fact that underground cables usually follow the street pattern, thus relying on open
street map (OSM) and smart meter (SM) data. Three stages compose the proposed approach: In the first stage,
a hierarchical minimum spanning tree algorithm is proposed to generate the initial topology with an accurate
number of sub-branches from the pre-processed OSM data and peak demand. In the second stage, based on
the limited SM data, the location of breakpoints in mesh topology caused by circle roads is verified and
reconstructed to guarantee the radial structure of LVDNs. Finally, given multiple incomplete SM datasets, three
data-driven optimization models based on a state estimation model are constructed to mitigate the error of
cable length induced by OSM data. The feasibility of the proposed topology identification approach is verified
on three actual LVDNs in The Netherlands and multiple incomplete SM datasets. Furthermore, the minimal
amount of SM data needed to minimize the error of cable length is analyzed.
1. Introduction

Distribution network topology is fundamental for distribution sys-
tem operators (DSOs) in operation analysis, DERs hosting capacity
analysis and integration, among other applications. However, DSOs
usually do not keep full records of the updated topology due to wrong,
missed, or outdated recordings. On top of that, the increasing uncer-
tainty of DERs, including household photovoltaic (PV) systems, electric
vehicles (EVs), etc. [1,2], impacts the topology reconfiguration fre-
quency and the relationship between measurements, challenging the
identification of LVDN topology. Moreover, the low deployment rate of
SM hinders the application of the topology identification methods used
in transmission networks and MV networks [3,4], usually developed
considering assumptions not suitable for LVDNs, such as available
connection points (i.e., the location of the MV/LV transformer), straight
connection lines between transformers, etc. Although open synthetic
networks and benchmark models are available [5,6], flexible topology
identification methods for already deployed LVDNs are required.

To overcome this challenge, multiple topology identification meth-
ods are proposed, which are roughly classified into SM data-based and
open data-based methods. In SM data-based methods [7–14], topology

∗ Corresponding author.
E-mail address: P.P.VergaraBarrios@tudelft.nl (P.P. Vergara).

identification is considered a binary classification problem or regression
problem that aims to identify the stage of the edge and switches. The
complete SM data of each user is always assumed to be known and
accessible, including the time-series voltage, active power, and a part of
the connecting information of the networks. Meanwhile, the measure-
ments are used as synchronous data. Based on a state estimation model
and a regression model, a hybrid topology identification approach was
proposed to handle the impact of the uncertainty of DERs [7]. To
restrict the propagation of SM data error, a probabilistic graphical
model-based topology estimation method was developed in [8]. How-
ever, these methods only reveal the connection between buses without
estimating line parameters, which is a necessary part of modeling an
LVDN using a power flow formulation.

Based on an alternating direction method of multipliers, the work
in [9] proposed a robust topology identification method to jointly
estimate the network’s parameters and its topology, relying on 𝜇-PMUs
and SM datasets. While voltage angles are normally unavailable in
the distribution network (DN), [10] establishes a data-driven model
based on an impedance matrix to identify topology and regress the
line parameter from SM data. In [11], a hybrid data-driven approach
https://doi.org/10.1016/j.ijepes.2024.110395
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integrating a partial correlation analysis strategy and a linear regression
odel is proposed to generate topology from limited SM data. Consider-

ing the error in SM data and dynamic topology changes while collecting
measurements, a maximum-likelihood-based joint estimation approach
is established [12]. Based on multiple linear regression models, [13]
resents a comprehensive topology identification approach to simulta-

neously estimate the topology, line parameters, and phase connection
from raw SM data. Although the above methods can generate an
accurate topology, the requirements of SM data and prior topology
information (e.g., the topology candidates) make them infeasible in
practice due to the low deployment rate of SM in LVDNs and data
privacy-related problems. Moreover, the generated topology, without
using geographic information systems (GIS) data, may not accurately
depict the actual deployment of connection lines. Furthermore, the
resistance and reactance of the lines are optimized as independent
variables, which is not suitable for accurate estimation of the deployed
cable. In general, the impedance ratio of the deployed cable is fixed
nd may be slightly influenced by environmental factors, such as
emperature.

In the second category, LVDN topologies are generated making
se of open GIS data and planning rules [15], such as Open Street
aps (OSM) [16], OpenGridMap [17], etc. Well-designed physical

constraints, such as the cable routing based on street layouts and build-
ng locations, can significantly enhance the accuracy of the generated
VDN topologies [18]. To make the topology inferred from OSM data

match the actual structure of LVDNs, a simplified optimization model
for line power flow is designed and verified in [19]. A comprehen-
sive method is proposed in [20] to generate large-scale distribution
etworks with different voltage levels. Besides, based on detailed GIS
ata, some methods are introduced to generate benchmark models
r representative networks in specific countries [21–23]. However,

the characteristics of LVDNs vary among different countries, so the
generated topology based on supply tasks in one country may not be
consistent with the LVDNs in other countries [24]. Additionally, the
identification accuracy of LVDN topology is influenced by various geo-
graphic constraints specific to different regions, such as the proportion
of underground cables, the number of road loops, etc. Specifically, the
complex mesh roads in urban environments challenge the construction
of radial topologies, i.e., the identification of breakpoint locations. Al-
though these methods based on open GIS data show high performance
without relying on SM data, the generated topology is only consistent
with the topology of the initial stage of construction, which is one
of the main disadvantages. This means that the extracted topology
is still outdated without further modification based on the latest SM
data. Moreover, the error in the cable length caused by the missed
or inaccurate OSM data is not optimized in the above papers, which
assume the location of connection points on the street is correct.

To fill this research gap, this paper introduces a data-driven topol-
ogy identification approach that leverages the strengths of the afore-
mentioned two kinds of approaches. The proposed approach consists
of three stages: graph topology generation, topology reconfiguration,
and topology optimization. In the first stage, the aim is to generate
an initial topology with an accurate number of cables from OSM data
that satisfies geographic constraints, e.g., no connecting lines cross a
building or a river. To do this, this paper uses a hierarchical minimum
spanning tree (HMST) algorithm to check the number of underground
cables according to the maximum capacity of the deployed cable and
the peak demand. The traditional MST is first adopted to connect
power connecting points along the streets while ensuring the shortest
total cable length and the radial structure of the distribution networks.
Then, the number of cables under the streets with households on both
sides is verified and modified. In the second stage, the street-to-street
connection lines are verified and reconstructed based on a voltage mag-
nitude residual. Finally, in the third stage, to mitigate errors in cable
length induced by inaccurate OSM data, three data-driven optimization
models based on a power flow model [25] are constructed based on
2 
Nomenclature

𝐈𝐧𝐝𝐞𝐱∕𝐒𝐞𝐭
𝑠 Index of streets
𝐼0 Index of the non-root nodes of trees
𝐼𝐿∕𝐼𝐻 Index of nodes with negative/positive

voltage magnitude residual
𝐼𝐿1∕𝐼𝐻1 Index of 1-degree nodes of cables with

negative/positive residual
𝐼𝐿1𝐼∕𝐵𝐿 Index/set of start nodes of cables with

negative residual
𝐼𝐻1𝐼∕𝐵𝐻 Index/set of start nodes of cables with

positive residual
𝐼𝑁 𝑃 Index of the nearest upstream node

of the node in 𝐵ℎ
𝑖∕𝑖 Index of iteration and its threshold
𝑚𝑛∕∕𝑠 Index/set of mainline and service line
𝐶 Index vector of SM
𝑙𝑚𝑖 Connecting line at middle of the 𝑖th branch
𝑙𝑚𝑖,3 Connecting line in the 𝑖th sub-branch

between start point and middle point
𝑚∕ Index/set of nodes in the networks
𝑡∕ Index/set of time step
𝐷𝑛

𝑚𝑛 Set of lines from transformer to bus 𝑛

𝐏𝐚𝐫 𝐚𝐦𝐞𝐭 𝐞𝐫
𝑁0∕𝑁𝑡∕𝑁𝑠 Number of houses/branches/streets
𝑁𝑢𝑛 Number of unmetered houses
𝐷∕𝐷𝑠,𝑖 Shortest path matrix among all buildings/

buildings located at the 𝑖th side of street 𝑠
𝐷𝐿𝑉 Shortest path matrix between buildings

and the transformer
𝛾0 Flag parameter for street, i.e., 0/1
𝑆0 Number of streets with buildings

on two sides
𝑐𝑖 Flag parameter for SM, i.e., 0/1
𝑟𝑔 Annual growth of demand
𝐶0 Concurrency factor for households
𝑃𝑝𝑒 Average peak demand
𝑐 𝑜𝑠𝜃 Power factor of households, set as 0.95.
𝐼 Maximum capacity of the deployed cable
𝑘 Planning period
𝑟𝑚𝑛∕𝑥𝑚𝑛 Real resistance/reactance of lines
𝑙̃𝑚𝑛 Extracted cable Length from OSM data
𝑟̃𝑚𝑛∕𝑥𝑚𝑛 Resistance/reactance of the cable whose

length is extracted from OSM data
𝑇 Dimension of time-series data
𝑅𝑢𝑛𝑚 Unmetered rate in DN
𝑛 Threshold for variable 𝑛∗

𝛥𝑉 Threshold for voltage magnitude residual
PD0m,t∕Q

D0
m,t∕V

0
m,t Active/reactive power/voltage magnitude

measurement at node 𝑚 at time step 𝑡
𝛼𝑚𝑛∕𝛼𝑚𝑛 Upper/lower limit for mainline length ratio
𝛽
𝑚𝑛
∕𝛽𝑚𝑛 Upper/lower limit for service line length ratio

𝑇 ∗ Pseudo-time horizon
𝑇 𝑑 Dimension of daily sample
𝑉 ∕𝑉 Upper/lower limit for voltage magnitude
𝑉 0

𝑚,𝑡∕𝑉
0
𝑚,𝑡 Daily minimum/maximum voltage magnitude

𝑃𝐷0
𝑚,𝑡∕𝑃

𝐷0
𝑚,𝑡 Daily minimum/maximum active power

𝑄𝐷0
𝑚,𝑡

∕𝑃𝐷0
𝑚,𝑡 Daily minimum/maximum reactive power

𝑤𝑣∕𝑤𝑝∕𝑤𝑞 Weight for residual of active power/reactive
power/voltage magnitude

𝑁 𝐼 𝐻 Number of households integrated in
objective function



D. Liu et al. International Journal of Electrical Power and Energy Systems 164 (2025) 110395 
𝐕𝐚𝐫 𝐢𝐚𝐛𝐥𝐞𝐬
𝛤∕𝛤0∕𝛤𝑤 Generated minimum spanning tree/

sub-trees/Edges of trees
𝐺∕𝐺∗ Initial/Final Graph topology
𝐼𝑠 Estimated maximum load for street 𝑠
𝑛∗ Number of nodes with excessive residuals
𝛥𝑉 𝑑

𝑚𝑛,𝑡 Voltage drop on line 𝑚𝑛 at time 𝑡
𝛥𝑉 𝑑

𝑚,𝑡 Total voltage drop from the transformer
to bus 𝑚 at time 𝑡

𝛥𝑉𝑚 Voltage magnitude residual at node 𝑚
𝛥𝑉 ∗ Maximum voltage magnitude residual
𝜂 Margin for voltage magnitude residual
𝑃𝑚𝑛,𝑡∕𝑄𝑚𝑛,𝑡 Active/reactive power at line 𝑚𝑛 at time step 𝑡
𝑃 𝑠
𝑚,𝑡∕𝑄

𝑠
𝑚,𝑡 Injection active/reactive power at node 𝑚

at time step 𝑡
𝑃𝐷
𝑚,𝑡∕𝑄

𝐷
𝑚,𝑡 Active/reactive power at node 𝑚 at time step 𝑡

𝐸𝑃
𝑚∕𝐸

𝑄
𝑚 ∕𝐸𝑉

𝑚 Residual of active power/reactive power/
voltage magnitude

𝑉𝑚,𝑡 Estimated voltage magnitude at node
𝑚 at time step 𝑡

𝑙𝑚𝑛 Ratio of optimized and extracted length
of cable 𝑚𝑛

𝐀𝐜𝐫 𝐨𝐧𝐲 𝐦𝐬
𝐇𝐕∕𝐌𝐕∕𝐋𝐕 High/Medium/Low voltage
𝐋𝐕𝐃𝐍 Low-voltage distribution network
𝐃𝐍 Distribution network
𝐒𝐌 Smart meter
𝐃𝐒𝐎 Distribution system operator
𝐃𝐄𝐑𝐬 Distribution energy resources
𝐆𝐈𝐒 Geographic information systems
𝐏𝐕 Photovoltaic
𝐄𝐕 Electrical vehicles
𝐎𝐒𝐌 Open street map
𝐇𝐌𝐒𝐓 Hierarchical minimum spanning tree

multiple incomplete SM datasets. The parameters used in this paper are
summized in Table 1 and Table 2 summarizes the approaches discussed
in the aforementioned papers and the proposed approach. The cells
marked with ‘‘Y’’ or ‘‘N’’ indicate whether specific issues and data are
considered in each approach. ‘‘P/Q/V/𝜃’’ represents reactive power,
voltage magnitude, and phase, respectively. The proposed approach
is finally tested on three LVDNs in the Netherlands and incomplete
SM datasets. The main contributions of this paper are summarized as
follows:

• A HMST algorithm integrating geographic constraints and a peak
demand-based refinement strategy is proposed to generate a ra-
dial feasible topology from the pre-processed GIS data. The pro-
posed refinement strategy can identify the number of cables based
on the street layout, considering their maximum capacity.

• To ensure accurate radial structure, a power flow model-based
topology reconstruction strategy is proposed to verify and revise
street-to-street connections (i.e., the location of the breakpoints)
in graph topology when there are loops in LVDNs.

• Three data-driven optimization models are proposed to mitigate
the error in the length of the cables using multiple smart meters
datasets, including a complete SM dataset, an SM dataset with
randomly missed data, and an SM dataset composed of only daily
maximum and minimum data. The minimum amount of SM data
needed to identify the actual length of underground cables is
analyzed.
3 
Table 1
Parameter settings.

Parameter name Setting approach

𝛾0 Set based on OSM data, i.e., 0/1
𝑐𝑖 Provided by DSO, i.e., 0/1
𝑟𝑔 Set by DSO at planning period
𝐶0 Set by DSO or based on the statistical features

of electricity usage in LVDN
𝑃𝑝𝑒 Average peak demand in the LVDN,

provided by DSO or open websites
𝐼 Based on the type of cable, provided by DSO
𝑘 Planning period, provided by DSO
𝑟̃𝑚𝑛∕𝑥𝑚𝑛 Calculated based on extracted length 𝑙̃𝑚𝑛

and type of the deployed cable.
𝑛 Number of the houses located on one of the

streets in LVDN, obtained from OSM data
𝛥𝑉 Estimated from historical voltage data by DSO

or preliminary results
𝛼∕𝛽 The limits of 𝛼∕𝛽 are estimated based on OSM

data and revised by DSO according to the
available recording of cable length

𝑉 ∕𝑉 Set by DSO, normally set as 0.95–1.05 p.u.
𝑤𝑣∕𝑤𝑝∕𝑤𝑞 Obtained through cross-validation using

historical data. 𝑤𝑣 should be much larger
than 𝑤𝑝 and 𝑤𝑞 .

𝑅𝑢𝑛𝑚 Set by DSO based on the number of
the unmetered households.

𝑁 𝐼 𝐻 Set by DSO based on accuracy requirement
Note: 𝑁0 , 𝑁𝑡 , 𝑁𝑠 , 𝑁𝑢𝑛 , 𝐷∕𝐷𝑠,𝑖 , 𝐷𝐿𝑉 , 𝑆0 are extracted

from OSM by Dijkstra’s algorithm, and the
detailed information is illustrated in
Section 2.2.
𝑐 𝑜𝑠𝜃 , 𝑇 , 𝑃𝐷0

𝑚,𝑡 ∕𝑄
𝐷0
𝑚,𝑡∕𝑉

0
𝑚,𝑡 , 𝑇 ∗ , 𝑇 𝑑 , 𝑃𝐷0

𝑚,𝑡∕𝑃
𝐷0
𝑚,𝑡 ,

𝑄𝐷0
𝑚,𝑡

and 𝑃𝐷0
𝑚,𝑡 are provided by DSO,

i.e., the collected measurements.

Fig. 1. Framework of the proposed data-driven topology identification approach
for distribution networks: Stage I: graph topology generation, Stage II: topology
reconstruction and Stage III: topology optimization.

The remainder of this paper is organized as follows: Section 2 illus-
trates the framework of LVDN topology identification, OSM data pre-
processing, graph topology generation, topology reconstruction, and
topology optimization. Besides, the reorganization of daily maximum
and minimum SM data is also illustrated. Sections Section 3 describe
the case of studies and results. Section 4 presents the conclusions of
this paper.

2. LVDN topology identification framework

The proposed topology identification approach is illustrated in this
section, which is shown in Fig. 1. The proposed approach comprises
three stages: Stage I: graph topology generation, Stage II: topology
reconstruction, and Stage III: topology optimization.

Given the location of the MV/LV transformer and the boundaries
of the supply area, raw OSM data in the area are first extracted and
pre-processed. The first stage is the application of the proposed HMST
algorithm. An initial graph topology for the LVDN is generated based
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Table 2
Topology identification methods comparison.
Ref. Input Approach Topology

OSM SMs Cable Cable Sub-branch Incomplete Length error Voltage Service line
data type outline checking data mitigation level

[8] N V N N N N N MV/LV N
[9] N P/Q/V N N N N Y MV N
[10] N P/Q/V N N N N Y MV N
[11] N P/Q/V N Y Y N Y MV N
[12] N P/Q/V/𝜃 N N N N Y MV N
[13] N P/Q/V Y Y Y Y Y LV N
[16] Y N N Y N N N HV/MV Y
[17] Y N Y Y N N N LV Y
[18] Y N N Y N N N HV/MV/LV N
[19] Y P Y Y N N N LV Y
[20] Y N Y Y N N N HV/MV/LV Y
Our work Y P/Q/V Y Y Y Y Y LV Y
s
m
g
u
t
B
b
b
f
h
t
a

on pre-processed OSM data and the average peak demand. In the
econd stage, the locations of the breakpoints are verified and revised
ased on the voltage magnitude residual. The revised topology approxi-
ately reveals the connection information among the households in the

LVDN, i.e., the potential outlines of underground cables. Finally, in the
third stage, considering the data privacy and the existing unmetered
customers, the error in cable length is mitigated by the constructed
ata-driven optimization models depending on the available SM data.
he output of the proposed approach is a refined LVDN topology of
he area, which is generated only relying on the given location of the
ransformer, its supply area, the type of cables, and the available SM
ata. The generated topology is similar to the available feeder test
ases and close to the latest topology for the LVDN, which includes the
onnecting points, the impedance of each cable segment, and the root
ode index (i.e., the location of the LV transformer). Before introducing
ach stage in detail, the pre-processing applied to the OSM is described.

2.1. OSM data pre-processing

The process of OSM data extraction and pre-processing is depicted
in Fig. 2. Given the location of the transformer and supply areas in
Fig. 2(a), all related buildings and streets are first extracted as shown
n Fig. 2(b). The raw OSM dataset includes the buildings and streets

located outside the area, which is due to their interconnections with the
streets within the supply area. These redundant elements are removed.
Then, the shortest lines between streets and buildings are extracted and
aken as service lines, as depicted in Fig. 2(c). The endpoints of service

lines are defined as the connection points of buildings. The connection
points of the buildings that are aligned in a linear arrangement should
e connected to linear cables that are similarly deployed, such as the

buildings located at street 𝑠 in Fig. 2(c). Thus, the connection points are
erified and revised. Besides, the node pairs whose distance is less than
 certain threshold are merged into one node, and extra connection

nodes are added to the crosspoints of streets. Finally, the basic datasets
or generating a graph topology are obtained, including the outline

of streets, the coordinates of buildings’ centers, the connecting point
of buildings, and the number of households in each building (i.e., 𝑁0
buildings).

2.2. Stage I: Graph topology generation

Radial LVDNs with underground cables can be represented as undi-
ected graphs, where the nodes depict the connection points of each

household and the edges depict the underground cables. The outline
of streets is assumed to be the potential deployment outline of under-
round cables, which is normally correct and verified in [18–20,26].

Dijkstra’s and MST algorithms are adopted to generate a potential graph
LV topology.

Dijkstra’s algorithm calculates the shortest path matrix 𝐷𝐿𝑉 be-
ween buildings and the MV/LV transformer and the shortest path
4 
Algorithm 1: Hierarchical Minimum Spanning Tree

Input: 𝛾0, 𝐷, 𝐷𝑠, 𝐷𝑠,1, 𝐷𝑠,2, 𝐷𝐿𝑉 ,𝑁0, 𝐼
Initial tree 𝛤 ←𝑀 𝑆 𝑇 (𝐷)
if 𝛤𝑤 ∉ 𝐷𝐿𝑉 then

𝐷←adjust the weights in 𝐷
𝛤 ←𝑀 𝑆 𝑇 (𝐷)

end
if 𝛾0 = 1 then

for 𝑠 ≤ 𝑆0 do
Obtain 𝐼𝑠 by Eq (1)
if 𝐼𝑠 < 𝐼 then

Sub-tree 𝛤0 ←𝑀 𝑆 𝑇 (𝐷𝑠)
Index 𝐼0 of the non-root nodes in 𝛤0

else
Sub-tree 𝛤0 ←𝑀 𝑆 𝑇 (𝐷𝑠,1), 𝑀 𝑆 𝑇 (𝐷𝑠,2)
Index 𝐼0 of the non-root nodes in 𝛤0

end
end
𝐷1←Update 𝐷 based on 𝐼0

end
Main tree 𝛤 ←𝑀 𝑆 𝑇 (𝐷1)
Graph topology 𝐺← 𝛤 + 𝛤0
for 𝑖 ≤ 𝑁𝑡 do

Obtain 𝐼𝑠 by Eq (1)
if 𝐼𝑠 > 𝐼 then

Remove 𝑙𝑚𝑖 in the cable
Add an edge 𝑙𝑚𝑖,3 between the nearest 3 degree point
and the breakpoint

end
end
Output: Graph topology: 𝐺∗

matrix 𝐷 among buildings, which is subjected to the outline of the
treets. The matrix 𝐷𝐿𝑉 is used as the geographic constraint, and the
atrix 𝐷 is used as the weight of edges while constructing the initial

raph topology. The geographic constraints (e.g., the road segments
nder maintenance, the shortest path-related constraints) about the
opology will contribute to the accurate LVDN topology generation.
esides, there may be two cables deployed beneath the street 𝑠 with
uildings on both sides. The path matrices 𝐷𝑠, 𝐷𝑠,1 and 𝐷𝑠,2 for the
uildings located on the street 𝑠 and its two sides streets are extracted
rom the path matrix 𝐷. The flag parameter 𝛾0 is set as 1. On the other
and, when there is no street with households on both sides in LVDNs,
he extraction of the supplementary OSM data is skipped and 𝛾0 is set
s 0.

The generated topology should be radial and connect all the house-
holds in the supply area, which is the operation requirement of LVDNs.
To verify the number of cables under streets while generating a radial
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Fig. 2. Illustrative example of OSM data pre-processing: (a) is OSM with LV transformer and boundaries, (b) is raw OSM data in the LVDN and (c) is pre-processed OSM data.
Fig. 3. Illustrative example of the output in each step: (a) is the initial graph topology,
(b) is the revised topology in step 2 and (c) is the output of Algorithm 1.

topology, a hierarchical minimum spanning tree (HMST) algorithm ap-
proach is constructed by incorporating a traditional MST algorithm and
a peak demand-based refinement strategy, presented in Algorithm 1.
The proposed HMST follows network planning principles and economic
rationale: if street current does not surpass single line maximum capac-
ity, deploying one cable is more cost-effective than two parallel cables.
The input for the HMST algorithm consists of path matrices (𝐷, 𝐷𝑠,
𝐷𝑠,1, 𝐷𝑠,2, 𝐷𝐿𝑉 ), coordinates of 𝑁0 and 𝛾0. 𝑆0 is the number of streets
with buildings on both sides. The traditional MST algorithm is adopted
to generate a radial tree with the shortest length of cables, represented
by 𝑀 𝑆 𝑇 (⋅) and the edge in the generated tree is represented by 𝑇𝑤.
The peak demand-based refinement strategy is proposed to verify the
number of cables under special streets based on the maximum capacity
of underground cables and peak demand. The maximum load 𝐼𝑠 of the
street 𝑠 is estimated using (1).

𝐼𝑠 =
(𝑟𝑔)𝑘 ⋅𝑁𝑠 ⋅ 𝐶𝑜 ⋅ 𝑃𝑝𝑒

3 ⋅ 𝑐 𝑜𝑠𝜃 ⋅ 𝑉0
, (1)

where 𝑟𝑔 is the annual growth of demand and 𝑘 is the planning period.
𝐶𝑜 represents the concurrency for the 𝑁𝑠 households located at street
𝑠, representing how many households reach peak load simultaneously,
set as 0.46. 𝑃𝑝𝑒 is the average peak demand value. 𝑐 𝑜𝑠𝜃 is the power
factor of households.

Algorithm 1 can be divided into three main steps. In the first step,
the weight in 𝐷 is adjusted to ensure that all edges in the generated tree
𝛤 are in 𝐷𝐿𝑉 . The output of this step is shown in Fig. 3(a). In the second
step, for the streets with buildings on both sides, if the calculated
maximum capacity 𝐼𝑠 is larger than the rated maximum capacity 𝐼 of
the deployed cable. Two underground cables are assigned for this street
(i.e., one cable for each side), and two sub-trees 𝛤0 for the buildings
located on each side of the street are obtained. If 𝐼𝑠 < 𝐼 , one sub-tree
is generated for all buildings located on this street. The topology 𝛤 of
the main feeders is generated based on the updated path matrix 𝐷1. The
initial graph topology of the LVDN is obtained by combining the sub-
trees 𝛤0 and the main tree 𝛤 . The output of the second step is shown
in Fig. 3(b). In the third step, the maximum load of all sub-branches in
the topology is verified, and 𝑁𝑡 is the number of the sub-branch. The
degree of a node refers to the number of cables connecting the node.
If the sub-branch is overloading, the connection line in the middle of
the cable is removed, and the new connection line is placed between
5 
Fig. 4. Illustrative example for real and identification topology with inaccurate
connection lines.

the breakpoint and the nearest 3-degree point (i.e., the intersections
between the main street and the four sub-branches in Fig. 3(c)), which
means that two cables are added for the front and back half of the
street, respectively. Fig. 3(c) presents the generated graph topology 𝐺∗

of the LVDN in the supply area, which includes the length of each cable
and the connecting points.

On the other hand, the generated graph topology is close to the
topology during the construction period, while the topology may have
been updated due to component maintenance. Furthermore, the length
of cables is only estimated using OSM data, whereas the length of
deployed cables may be different from these values due to practical
deployment factors. These problems will be illustrated and mitigated
based on SM data in Sections 2.3 and 2.4.

2.3. Stage II: Topology reconstruction

The voltage drop 𝛥𝑉 𝑑
𝑚𝑛 on line 𝑚𝑛, total voltage drop 𝛥𝑉 𝑑

𝑚 from the
transformer to bus 𝑚 and voltage 𝑉𝑚 at bus 𝑚 are expressed as:

𝛥𝑉 𝑑
𝑚𝑛,𝑡 =

𝑃𝑚𝑛,𝑡 + 𝑗 𝑄𝑚𝑛,𝑡

𝑉𝑚,𝑡
(𝑟𝑚𝑛 + 𝑗 𝑥𝑚𝑛) (2)

𝛥𝑉 𝑑
𝑚,𝑡 =

∑

𝑚𝑛∈𝐷𝑛
𝐿𝑉

𝛥𝑉𝑚𝑛,𝑡 (3)

𝑉𝑚,𝑡 = 1 − 𝛥𝑉 𝑑
𝑚,𝑡 (4)

where 𝑃𝑚𝑛, 𝑄𝑚𝑛 are active and reactive power on line 𝑚𝑛. 𝑟𝑚𝑛, 𝑥𝑚𝑛 are
resistance and reactance of line 𝑚𝑛, respectively. 𝐷𝑛

𝑚𝑛 is the line set from
transformer to bus 𝑛.

When the output power of DERs is insufficient to reverse the direc-
tion of line flow (i.e., 𝑃𝑚𝑛 and 𝑄𝑚𝑛 are positive), the voltage magnitude
at node 𝑚 decreases as its load increases. Therefore, if a branch is
connected incorrectly in the identified topology, as illustrated by the
line in Fig. 4(b), the load flowing through the green line will be
reduced, leading to a diminished voltage drop. This means that the
estimated voltage magnitude of the green nodes will be larger than the
actual voltage magnitude (i.e., negative voltage magnitude residual).
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Fig. 5. Flowchart of proposed topology reconfiguration strategy. The upper part is
oltage magnitude residual calculation based on a power flow model, the lower part
s the street-to-street connection lines identification and reconstruction.

Conversely, for the yellow nodes, the estimated voltage magnitude
will be smaller than the actual voltage magnitude and the voltage

agnitude residual of these will be negative.
As previously discussed, the meshed streets in maps impact the

inal radial topology (i.e., the location of breakpoints). Thus, to obtain
he accurate breakpoints of the underground cables, it is necessary to
erify and revise the initial radial topology obtained from Stage I. A
opology reconstruction strategy is introduced to revise the street-to-
treet connection lines with the assumption that two-time step SM data
re available for each node, including voltage magnitude, net active
ower and net reactive power. The flowchart is illustrated in Fig. 5.

The 𝛥𝑉 ∗ represents the maximum voltage magnitude residual be-
ween the real topology and the extracted radial topology from Stage I.
he voltage magnitude residual of each node is formulated as in (5).

The threshold 𝛥𝑉 of systemic error is pre-set by DSO or obtained from
historical SM data. 𝑛∗ represents the number of nodes with voltage
residuals greater than 𝛥𝑉 and its upper limit is 𝑛̄. Meanwhile, to

itigate the impact of measurement errors, a margin 𝜂 is introduced.
he errors that are smaller than 𝛥𝑉 − 𝜂 are ignored.

𝛥𝑉𝑚 = 1
𝑇

∑

𝑡∈
(V0

m,t − Vm,t ), 𝑚 ∈  (5)

where 𝑚 represents the index of the nodes  , 𝑇 represents the dimen-
ion of time-series voltage data, 𝑡 is the index of time, and 𝑉 𝑐 is the

calculated voltage amplitude by the power flow model based on the
extracted graph topology obtained from Stage I.

As shown in Fig. 5, the process of topology reconfiguration consists
f voltage residual calculation and connection line modification, which

is summarized as follows:

(1) Calculate the voltage residual 𝛥𝑉 ∗ and 𝑛∗ based on the extracted
graph topology and limited SM data.

(2) Check the topology based on 𝛥𝑉 , 𝛥𝑉 ∗, 𝑛∗ and 𝑛̄. If 𝛥𝑉 ∗ is larger
than 𝛥𝑉 and 𝑛∗ is larger than 𝑛̄, the index 𝐼𝐻 and index 𝐼𝐿 of
nodes with positive nodes (e.g., the yellow points in Fig. 4(b))
and negative residuals (e.g., the green points in Fig. 4(b)) are
recognized, respectively. The nodes with positive errors indicate
that they are connected to one cable with an additional load,
6 
resulting in a lower voltage magnitude than the actual value. If
not, the extracted topology is the final topology. These two steps
are illustrated in the orange dashed box in Fig. 5.

(3) Recognize the indexes 𝐼𝐻1 and 𝐼𝐿1 of the terminal node (1-
degree node) of the cables with voltage residual and recognize
the indexes 𝐼𝐻1𝐼 and 𝐼𝐿1𝐼 of the intersection nodes nearest to
these 1-degree nodes.

(4) Identify the indexes in 𝐼𝐿1𝐼 that are the same as the indexes in
𝐼𝐻1𝐼 , and remove them from 𝐼𝐿1𝐼 . Steps 3 and 4 are shown as
the right part of the bright blue dashed box in Fig. 5.

(5) Revise connection lines. A new connection line is constructed
between the node pairs in 𝐼𝐻1𝐼 and 𝐼𝐿1𝐼 with the shortest paths,
i.e., one node 𝐵ℎ in 𝐼𝐻1𝐼 and one node 𝐵𝑙 in 𝐼𝐿1𝐼 . The connec-
tion line between node 𝐵ℎ and its upstream node is removed,
avoiding the meshed structure.

(6) If the number of iterations reaches the threshold 𝑖, exit the
reconstruction and label the extracted graph topology as final.
Otherwise, return to Step 1. The left part of the bright blue
dashed box in Fig. 5 depicts the steps 5 and 6.

After topology reconstruction, the location of the breakpoints in the
opology is defined, and the modified topology depicts the fundamental
onnection information of LVDNs.

2.4. Stage III: Topology optimization

Although the network topology obtained from Stage I and II is a
easible one, the length of deployed LV cables may be different from the
ctual length due to practical deployment factors, such as the crossing-
treet lines at crossroads. Moreover, the network topology may have
een updated due to component maintenance. To address this issue,
ost traditional topology identification approaches are developed with

he assumption that the time series measurements of each household
re available [27,28], such as the regression-based topology identifica-

tion. However, there may be a large number of unmetered households,
or the deployed SMs fail to provide data for a short period. In this
situation, only incomplete and sparse SM datasets are available, and
the traditional power flow formulation based on the obtained topology
is infeasible. Thus, to optimize the length of cables based on incomplete
SM data, three data-driven optimization models are constructed based
on the SM datasets with different incomplete rates as illustrated in
Fig. 6. In Fig. 6, the blue blocks represent the available SM data, and the
red blocks represent the unavailable or missed SM data. The complete
SM data contains the voltage magnitude and demand profiles of each
household at each time step, as shown in Fig. 6(a), while the incomplete
SM data only consists of the partial profiles or the daily maximum and
minimum measurements, as depicted in Fig. 6(b) and (c), respectively.
Compared to the incomplete SM dataset in Fig. 6(b), the incomplete
SM dataset in Fig. 6(c) is not only sparser but also asynchronous,
eading to extra challenges for the proposed topology optimization pro-

cedure, which is based on a mathematical programming formulation,
as presented next.

The topology optimization problem aims to define the length of
cables, and it is formulated as a power-flow-based mathematical for-

ulation based on the model in [25]. The LVDN is assumed to be
balanced and is modeled as a single-phase network. Based on the three
SM datasets with different incomplete rates in Fig. 6, three data-driven
optimization models are stated as:

• Case I: a mathematical formulation that considers complete time-
series SM data (i.e., Fig. 6(a)) is constructed. In this formula-
tion, the net active and net reactive power of households are
considered as input parameters.

• Case II: given the sparse SM dataset in Fig. 6(b), a mathematical
formulation is developed to deal with the unavailable SM data,
which takes net reactive and net active power as variables rather
than parameters.
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Fig. 6. Diagram of SM dataset with different incomplete rates: (a) complete dataset, (b) dataset with unmetered houses and (c) dataset with daily maximum and minimum values.
T
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• Case III: when given the sparse and asynchronous SM dataset
(i.e., the incomplete SM data in Fig. 6(c)), a mathematical formu-
lation is stated by combining Case I and Case II. In this case, the
daily SM data are utilized as the boundary for decision variables
rather than variables.

2.4.1. Case I
To optimize the extracted topology from Section 2.3, we first assume

that time series voltage magnitude and load profiles are accessible,
nd then the optimization problem is simplified into a single-level
ptimization model, given by formulation (6)–(14). The mathematical
ormulation for Case I aims to optimize the length of underground
ables by minimizing the total voltage residuals of 𝑁 nodes for the time
orizon 𝑇 . The voltage residual is defined as the square of the differ-
nce between the measured voltage magnitude V0

m,t and the estimated
oltage magnitude 𝑉𝑚,𝑡. The objective function is depicted in (6).

min
̂

∑

𝑡∈

∑

𝑚∈
(𝑉𝑚,𝑡 − V0

m,t )
2 (6)

subject to:
∑

𝑘𝑚∈
𝑃𝑘𝑚,𝑡 + 𝑃 𝑠

𝑚,𝑡 −
∑

𝑚𝑛∈
𝑃𝑚𝑛,𝑡

−
∑

𝑚𝑛∈

1
𝑉 2
𝑚,𝑡

(𝑃 2
𝑚𝑛,𝑡 +𝑄2

𝑚𝑛,𝑡)𝑙𝑚𝑛 r̃mn = PD0m,t

∀𝑚 ∈  ,∀𝑡 ∈  (7)
∑

𝑘𝑚∈
𝑄𝑘𝑚,𝑡 +𝑄𝑠

𝑚,𝑡 −
∑

𝑚𝑛∈
𝑄𝑚𝑛,𝑡

−
∑

𝑚𝑛∈

1
𝑉 2
𝑚,𝑡

(𝑃 2
𝑚𝑛,𝑡 +𝑄2

𝑚𝑛,𝑡)𝑙𝑚𝑛x̃mn = QD0
m,t

∀𝑚 ∈  ,∀𝑡 ∈  (8)
𝑉 2
𝑚,𝑡 − 𝑉 2

𝑛,𝑡 = 2(𝑙𝑚𝑛 r̃mn𝑃𝑚𝑛,𝑡 + 𝑙𝑚𝑛x̃mn𝑄𝑚𝑛,𝑡)

− 1
𝑉 2
𝑚,𝑡

(𝑃 2
𝑚𝑛,𝑡 +𝑄2

𝑚𝑛,𝑡)((𝑙𝑚𝑛 r̃mn)2 + (𝑙𝑚𝑛x̃mn)2)

∀𝑚, 𝑛 ∈  ,∀𝑚𝑛 ∈ ,∀𝑡 ∈  (9)

𝑉 ≤ 𝑉𝑚,𝑡 ≤ 𝑉 ∀𝑚 ∈  ,∀𝑡 ∈  (10)

𝛼𝑚𝑛 ≤ 𝑙𝑚𝑛 ≤ 𝛼𝑚𝑛 ∀𝑚𝑛 ∈  (11)

where 𝑚 and 𝑛 represent the index of node  , 𝑚𝑛 and 𝑘𝑚 are the index
of lines .

In Case I, the constant parameters (i.e., input data) are the SM data,
ncluding the historical voltage magnitude Vm,t0 , net active power Pm,tD0

nd net reactive power Qm,tD0 at node 𝑚 at time 𝑡. The decision variables
re the length rate of cable 𝑙𝑚𝑛, and the variables in the power flow
odel (i.e., (7)–(10)), including line power flow 𝑃𝑚𝑛,𝑡, nodal voltage
𝑚,𝑡, active power 𝑃 𝑠

𝑚,𝑡 and reactive power 𝑄𝑠
𝑚,𝑡 injected into the DNs.

e assume that the LV transformer can provide sufficient active power
nd reactive power at the root node. Therefore, except for the root
ode, the active power 𝑃 𝑠

𝑚,𝑡 and reactive power 𝑄𝑠
𝑚,𝑡 at other nodes

re set as 0. The power balance is ensured by constraints (7) and (8).
Expression (9) models the voltage magnitude drop in the lines. The
arameters r̃mn and x̃mn represent the impedance of the cable whose
ength is extracted from OSM data. The fourth item in constraints (7)
nd (8) represents the active power loss and reactive power loss. The

variables 𝑃 and 𝑃 represent the power flowing into and out of
𝑘𝑚,𝑡 𝑚𝑛,𝑡

7 
node 𝑚 at time 𝑡, respectively. The voltage magnitude is limited by
constraint (10).

The decision variables 𝑙𝑚𝑛 represent the ratio of optimized cable
length and extracted length 𝑙̃𝑚𝑛 (i.e., the estimated cable length from
OSM data), which is limited by constraint (11). The optimal solution
is the ratio between the actual cable length and the extracted length.

he parameters 𝛼𝑚𝑛 and 𝛼𝑚𝑛 are pre-set based on the quality of OSM
ata. Specifically, more accurate OSM data will provide more accurate

information to estimate the length of underground cables, which means
that the |𝛼𝑚𝑛 − 𝛼𝑚𝑛| can be set to a smaller value. Meanwhile, a smaller
value of |𝛼𝑚𝑛 − 𝛼𝑚𝑛| means a smaller solution space, reducing the
olving time of the before-presented mathematical formulation.

2.4.2. Case II
When there are several unmetered households, the formulation for

Case II can be stated based on a state estimation model [29,30].
Compared to traditional methods in [31], the main advantage of the
proposed mathematical formulation is that it does not need to check the
location of the unmetered nodes and does not require that the parent
or grandparent nodes of unmetered nodes are known. Compared to
Case I, four additional variables are added to represent the unknown
data of the unmetered households, including net active power 𝑃𝐷

𝑚,𝑡, net
reactive power 𝑄𝐷

𝑚,𝑡, the residuals of active power 𝐸𝑃
𝑚 and the residual

of reactive power 𝐸𝑄
𝑚 . The active power residuals and reactive power

esiduals are calculated by using expressions (14) and (15). Meanwhile,
𝐸𝑃
𝑚 and 𝐸𝑄

𝑚 are added to the objective function, as shown in expression
(12). The parameters 𝑤𝑣, 𝑤𝑝, and 𝑤𝑞 are the weights for the three
residuals, respectively. Besides, constraints (7) and (8) are revised as
constraints (16) and (17). The complete mathematical formulation for
Case II is then:

min
𝑙𝑚𝑛

∑

𝑚∈𝑁 ,𝑡∈𝑇
(𝑤𝑣𝐸

𝑉
𝑚 +𝑤𝑝𝐸

𝑃
𝑚 +𝑤𝑞𝐸

𝑄
𝑚 ) (12)

subject to: (9)–(11) and (13)–(17).

𝐸𝑉
𝑚 = 𝑐𝑚(𝑉𝑚,𝑡 − V0

m,t )
2 ∀𝑚 ∈  ,∀𝑡 ∈  (13)

𝐸𝑃
𝑚 = 𝑐𝑚(𝑃𝐷

𝑚,𝑡 − PD0m,t )
2 ∀𝑚 ∈  ,∀𝑡 ∈  (14)

𝐸𝑄
𝑚 = 𝑐𝑚(𝑄𝐷

𝑚,𝑡 − QD0
m,t )

2 ∀𝑚 ∈  ,∀𝑡 ∈  (15)
∑

𝑘𝑚∈
𝑃𝑘𝑚,𝑡 + 𝑃 𝑠

𝑚,𝑡 −
∑

𝑚𝑛∈
𝑃𝑚𝑛,𝑡

−
∑

𝑚𝑛∈

1
𝑉 2
𝑚,𝑡

(𝑃 2
𝑚𝑛,𝑡 +𝑄2

𝑚𝑛,𝑡)𝑙𝑚𝑛 r̃mn = 𝑃𝐷
𝑚,𝑡

∀𝑚 ∈  ,∀𝑡 ∈  (16)

∑

𝑘𝑚∈
𝑄𝑘𝑚,𝑡 +𝑄𝑠

𝑚,𝑡 −
∑

𝑚𝑛∈
𝑄𝑚𝑛,𝑡

−
∑

𝑚𝑛∈

1
𝑉 2
𝑚,𝑡

(𝑃 2
𝑚𝑛,𝑡 +𝑄2

𝑚𝑛,𝑡)𝑙𝑚𝑛x̃mn = 𝑄𝐷
𝑚,𝑡

∀𝑚 ∈  ,∀𝑡 ∈  (17)

where 𝐶 is an index vector of the metered nodes, i.e., [𝑐1, . . . , 𝑐𝑚,
. . . , 𝑐𝑁 ]. When node 𝑚 is equipped with a smart meter, 𝑐𝑚 is set as
1. Otherwise, 𝑐𝑚 is set as 0, and the variables 𝐸𝑉

𝑚 , 𝐸𝑃
𝑚 and 𝐸𝑃

𝑚 all equal
0, which means that the residual of this household contributes nothing
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Fig. 7. Illustrative example of incomplete SM data reorganization: the sparse asyn-
chronous dataset in (a) is converted into a stepped diagonal matrix in (b) with NIH
set to 4.

to the objective function. Besides, it is flexible to pre-set parameters 𝑐𝑚
according to the situation in LVDNs.

On the other hand, the error in the service line length is normally
less than the error in the main feeder length. Thus, extra constraints
for service lines may tighten the solution space for service lines. The
constraint (18) is added to Case II. The limits for 𝛼 and 𝛽 are set
according to the quality of OSM data, while the range of 𝛼 should be
set as larger than that of 𝛽.

𝛽
𝑚𝑛

≤ 𝑙𝑚𝑛 ≤ 𝛽𝑚𝑛 ∀𝑚𝑛 ∈ 𝑠 (18)

where 𝑚𝑛 is the index of service line 𝑠.

2.4.3. Case III
If only the daily maximum and minimum SM data (i.e., voltage

magnitude and load profiles) are available, the input data for the
mathematical formulation is sparse. As the maximum and minimum
voltage magnitude do not occur simultaneously, the sparse SM data
is also asynchronous, as shown in Fig. 6(c). To manage the impact
of asynchronous data on the mathematical formulation, the SM data
is reorganized into a stepped diagonal matrix, including the voltage
magnitude and load profiles, as shown in Fig. 7. The pseudo-time
horizon 𝑇 ∗ is introduced as the 𝑥-axis for the reorganized SM data,
which is defined as in (19).

𝑇 ∗ = 2𝑁 ⋅ 𝑇
𝑇𝑑

, (19)

where 𝑇𝑑 represents the dimension of the daily sample in Case-I.
The data point of each house is taken as the only known data in

each sample (i.e., the blue block at each moment 𝑡∗) since the time of
the daily maximum and minimum value is unknown. The remaining
dimensions at each time 𝑡∗ (i.e., the orange block) are then regarded
as variables in the proposed mathematical formulation, constrained by
the maximum and minimum values on the same day.

Constraint (10) in Case I is reformulated as constraint (21) in
Case III. The active power and reactive power of each house are limited
by constraints (22) and (23). The objective function of Case III is the
same as that of Case I, but an additional weight (i.e., 𝑤𝑣) is introduced,
as shown in the expression (20). The parameter 𝑐𝑚 here represents
whether the reorganized SM data of the house 𝑚 is incorporated into
the objective function. If the reorganized SM data of the houses 1−4
are integrated into the objective function (i.e., the blocks located in the
green dashed box in Fig. 7(b)) then 𝑐1,2,3,4 = 1. Thus, as more nodes are
integrated into the objective function, the reorganized SM data becomes
more sparse. Additionally, a longer time horizon results in wider steps,
consequently leading to sparser data. The number of integrated houses
(NIH) is the sum of vector 𝐶, as in expression (24). Thus, a smaller time
horizon 𝑇 is adopted to decrease the sparseness of incomplete data.

The complete mathematical formulation for Case III is as follows:

min
̂

∑

𝑡∈
𝑤𝑣

∑

𝑚∈
𝑐𝑚(𝑉𝑚,𝑡 − V0

m,t )
2 (20)

subject to: (9), (11), (16)–(17) and (21)–(23).

𝑉 0
𝑚,𝑡 ≤ 𝑉𝑚,𝑡 ≤ 𝑉 0

𝑚,𝑡 ∀𝑚 ∈  ,∀𝑡 ∈  ∗ (21)

𝑃𝐷0 ≤ 𝑃𝐷 ≤ 𝑃𝐷0 ∀𝑚 ∈  ,∀𝑡 ∈  ∗ (22)
𝑚,𝑡 𝑚,𝑡 𝑚,𝑡

8 
𝑄𝐷0
𝑚,𝑡

≤ 𝑄𝐷
𝑚,𝑡 ≤ 𝑄𝐷0

𝑚,𝑡 ∀𝑚 ∈  ,∀𝑡 ∈  ∗ (23)

𝑁 𝐼 𝐻 =
∑

𝑚∈𝑁
𝑐𝑚 (24)

where 𝑉 0
𝑚,𝑡, 𝑉

0
𝑚,𝑡, 𝑃

𝐷0
𝑚,𝑡 , 𝑃

𝐷0
𝑚,𝑡 , 𝑄

𝐷0
𝑚,𝑡

and 𝑃𝐷0
𝑚,𝑡 are the daily maximum and

minimum SM data.

3. Case of study

In this section, the feasibility of the proposed topology generation
approach is verified on three actual LVDNs in the Netherlands. The real
topologies are illustrated in Fig. 8(a), (b), and (c), respectively, which
are obtained from [32]. The base three-phase voltage is 0.4 kV. The
extraction and pre-processing of raw OSM data is conducted in QGIS
3.28.1. The proposed hierarchical minimum spanning tree algorithm
and all mathematical formulations are implemented in Python and
Pyomo. All mathematical formulations are solved using the IPOPT
solver. The time-series load profiles for each household are selected
and scaled from reference [33], and the 𝑐 𝑜𝑠𝜃 is set at 0.95 for each
household. The voltage magnitude profiles are generated by using a PF
model [25] and the real topologies. The voltage amplitude is limited
to [0.90, 1.05] p.u., and the cable length is restricted to be within the
range [0.2 ⋅ 𝑙̃𝑚𝑛, 4 ⋅ 𝑙̃𝑚𝑛] (i.e., 𝛼𝑚𝑛 and 𝛼̄𝑚𝑛 are set at 0.2 and 4). For
service lines, 𝛽

𝑚𝑛
and 𝛽𝑚𝑛 are set as 0.7 and 1.3, respectively. Based

on the preliminary results, the voltage residuals contribute more to
the optimization problem, so 𝑤𝑣 should be set much larger than the
other two weights. The weights 𝑤𝑣, 𝑤𝑝 and 𝑤𝑞 in the objective function
in (12) are set as 100, 1, and 1, respectively.

3.1. Graph topology generation

Different assumptions and data requirements make it challenging
to directly compare the proposed approach with existing methods. The
primary objective of the proposed approach is to generate a feasible
near-real topology for low-voltage distribution networks. Therefore,
this sub-section focuses on comparing the topology extracted by the
proposed method with the actual topology for a number of case studies
in The Netherlands.

Two residential LVDNs and one urban LVDN are selected to test the
proposed HMST approach. The residential LVDN in Fig. 8(a) consists
of 54 households and 52 nodes on the main feeders, which is named
LV-52. The residential LVDN in Fig. 8(b) consists of 59 households and
62 nodes on the main feeders, which is named LV-62. The LVDN in
Fig. 8(c) comprises 93 households and 95 nodes on the main feeders,
which is named LV-95. The parameter 𝛾0 is set as 0 for LV-62 and LV-95,
while it is set as 1 for LV-52. There are two streets with households on
both sides in LV-52. The OSM data pre-processing for LV-52 is depicted
in Fig. 9. Compared to the other two LVDNs, six sub-matrices (i.e., 𝐷1,
𝐷1,1, 𝐷1,2, 𝐷2, 𝐷2,1, and 𝐷2,2) are extracted from matrix 𝐷0. Moreover,
there is a circular road in LV-95 and LV-52, so the connection lines
among households are not only subjected to the outline of streets but
also limited by the physical constraint (i.e., the path matrix 𝐷𝐿𝑉 ).

The generated graph topologies of the three LVDNs are shown in
Fig. 8(d), (e), and (f). The generated topologies of LV-62 and LV-
95 are very close to the actual topologies. However, compared to
Fig. 8(a), there is an inaccurate connection line at the 39th node in
the generated topology of LV-52 (i.e., Fig. 8(d)), which is caused by
GIS data. Specifically, the path between the 39th node and the 31st
node is smaller than the path between the 39th node and the 27th node.
However, in the actual network, the 39th node is connected to the 27th
node. This inaccurate connection line 𝑙39−31 should be revised by the
suggested topology reconstruction strategy in the second stage.

Table 3 presents the total length of the main feeders and the number
of nodes with different degrees. There is a difference between the
estimated and real lengths of cables in the LV-52 and LV-62 networks,
which is induced by missing OSM data (e.g., the missed houses and
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Fig. 8. Topology for (a) actual LV-52, (b) actual LV-62, (c) actual LV-95, (d) extracted LV-52, (e) extracted LV-62 and (f) extracted LV-95.
Fig. 9. Pre-processing of raw OSM data in LV-52: the yellow blocks represent buildings,
the green lines are the outline of streets, and the straight blue lines represent the service
lines.

the missed data of streets). The generated urban topology of the LV-
95 network has higher accuracy due to the complete and precise OSM
data. The shortest lines between buildings and main feeders are taken
as service lines, which are directly extracted from OSM data. The
extracted service lines are assumed to be connected accurately. The
error in the main feeder length and service line length induced by
inaccurate OSM data and deployment-related factors will be mitigated
by making use of the proposed mathematical formulations for Cases I,
II, and III.

3.2. Topology reconstruction

Based on preliminary results, the threshold 𝛥𝑉 for these three sys-
tems is set as 0.005 p.u. and 𝑛 is set as the number of the houses located
at one of the sub-branches in the network. For the LV-62 and LV-95,
the voltage magnitude residuals are 0.0029 p.u. and 0.0053 p.u. and
𝑛∗ is 0 and 2, respectively, meaning that the connection information in
these two systems is correct. However, the voltage magnitude residual
9 
Table 3
Parameters of real topology and generated topology.

Network Topology Total length/m Node degree

1 2 3

LV-52 Actual 796.91 7 41 5
Generated 710.09 5 43 4

LV-62 Actual 730.81 12 45 11
Generated 660.31 6 51 5

LV-95 Actual 1035.53 8 79 6
Generated 1021.36 8 79 6

in LV-52 is 0.0108 p.u. and 𝑛∗ is 20, indicating a connection error,
which can be seen from the extracted graph topology in Fig. 8(d).
The 39th household should be connected to the 27th household but
is wrongly connected to the 31st household, which leads to a larger
error. The LV-52 network and three modified LVDNs are used to
test the proposed topology reconstruction strategy in this section and
illustrated in Table 4. The parameter 𝑛̄ in LV-52 is 7. The modified
topology is used to analyze the impact of the number of sub-branches
around the breakpoint on the topology reconstruction, i.e., relocating
the breakpoints. The network LV-52 represents the network with one
sub-branch located far away from the breakpoint, while the network
LV-52-I and the network LV-52-II represent the network with one sub-
branch located near the breakpoint. The network LV-52-III represents
the network with two wrongly connected sub-branches around the
breakpoint. Besides, the length of line 𝑙40−31 in the network LV-52-III is
added 40 meters to make it close to the length of line 𝑙39−31 since the
40th household is next to the 39th household.

After applying the proposed topology reconstruction strategy, the
revised topology and the voltage magnitude residual in each iteration
are shown in Table 5. Given the pre-set voltage magnitude threshold,
the extracted LVDN topology with only one wrongly connected sub-
branch is revised to the correct one after one iteration. The voltage
magnitude residual and parameter 𝑛∗ in LV-52-III decreases with iter-
ations, indicating that the extracted LVDN topology with two wrongly
connected sub-branches is revised to the accurate topology after two
iterations. Table 6 shows that the proposed topology reconstruction
strategy efficiently identifies the location the of breakpoint and revises
the wrongly connected sub-branches using data with errors. Compared
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Table 4
Modified topology and extracted topology.

Network True Modified Modified Extracted
topology topology length/m topology

LV-52
𝑙9–27 0 𝑙9–27
𝑙40–39 0 𝑙40–39
𝑙39–27 0 𝑙39–31

LV-52-I
𝑙9–27 𝑙9–27 −100 𝑙9–27
𝑙40–39 0 𝑙40–39
𝑙39–27 0 𝑙39–31

LV-52-II
𝑙9–27 0 𝑙9–27
𝑙40–39 𝑙40–31 +40 𝑙40–31
𝑙39–27 0 𝑙39–31

LV-52-III
𝑙9–27 0 𝑙9–27
𝑙40–39 𝑙40–27 +100 𝑙40–31
𝑙39–27 0 𝑙39–31

Table 5
Topology reconfiguration results.

Network Iteration Voltage 𝑛∗ Extracted Revised
residual/p.u. topology topology

LV-52 0 0.0108 20 𝑙39–31
1 0.0001 0 𝑙39–27

LV-52-I 0 0.0108 9 𝑙39–31
1 0.0001 0 𝑙39–27

LV-52-II
0 0.0054 13 𝑙40–31

𝑙39–31

1 0.0001 0 𝑙40–31
𝑙39–27

LV-52-III

0 0.0108 20 𝑙40–31
𝑙39–31

1 0.0089 15 𝑙40–31
𝑙39–27

2 0.0024 0 𝑙40–27
𝑙39–27

Table 6
Topology reconfiguration for LV-52 under measurement error.

Error Iteration Voltage 𝑛∗ Feasibility
percentage residual/p.u. flag

0.2% 0 0.0112 19∼23 11 0.0016 0

0.5% 0 0.0119 22∼29 11 0.0031 0

1% 0 0.0142 26∼31 11 0.0063 1∼4

2% 0 0.0184 34∼38 0

to the traditional topology reconfiguration approaches, the proposed
strategy focuses on modifying the street-to-street connection lines in
the graph topology instead of optimizing the grid structure based on
SM data.

The impact of measurement errors in voltage magnitude impacts the
feasibility of the proposed topology reconstruction strategy. According
to the IEC 62053-21 standard [34], we considered four classes of SM,
including 0.2%, 0.5%, 1% and 2%, which represent the maximum
relative error compared to real data. The margin 𝜂 is set as 0.2%.
The experiments were executed five times, and the averaged voltage
magnitude residual and the range of parameter 𝑛∗ are summarized
in Table 4. As the magnitude of error increases, both the averaged
voltage magnitude residual and 𝑛∗ show an upward trend, indicating
that measurement errors affect the reconstruction process. For highly
precise SMs (0.2%, 0.5%, and 1%), the proposed strategy remains
feasible. However, it becomes infeasible when the error magnitude
reaches 2% due to two main reasons: (1) Larger errors make it unable to
identify the real potential connection points for inaccurate connection
lines, resulting in IL and IH containing too many duplicated nodes. (2)
10 
Fig. 10. Extracted graph topology with service lines of LV-62.

Larger errors may lead to the identification of incorrect potential con-
nection points, triggering the method termination upon reaching the
maximum iteration limit. Nevertheless, the proposed strategy ensures
the accuracy of topology reconstruction when applied to datasets with
smaller error magnitudes.

However, the length of the underground cables in the revised topol-
ogy may be incorrect due to the cable replacement and inaccurate OSM
data. In the next section, these errors will be mitigated in the topology
optimization stage. Meanwhile, the service lines between houses and
main feeders are integrated into the topology, while the above two
stages only focus on the main feeders. The LV-62 with service lines is
shown in Fig. 10.

3.3. Topology optimization

3.3.1. Case I
To analyze the impact of the amount of SM data, SM datasets with

different time horizons (i.e., 𝑇 ) are taken as the input for the Case I
mathematical formulation. The mean and maximum relative errors of
length rate 𝑙𝑚𝑛 in three LVDNs are illustrated in Fig. 11. The mean
relative error of estimated cable length is less than 0.2%, indicating
that the proposed mathematical formulation effectively obtains the real
length of cables based on complete SM data. As expected, the maximum
relative errors for the LV-52, LV-62, and LV-95 networks are larger
than 10%, 30% and 7%, respectively, if only SM datasets with shorter
horizons are available. The maximum relative error of estimated cable
length decreases by less than 6% when more SM data is accessible,
such as one-day SM data with a 15-minute resolution. Meanwhile, high-
dimension SM data increases the complexity of the Case-I, making it
time-consuming to solve the proposed optimization model, which is
depicted in Fig. 11(d). Nevertheless, when given a one-day SM dataset
with a 15-minute resolution, the solving time is less than 1 min.

3.3.2. Case-II
An incomplete SM dataset with missing data from five unmetered

households is taken as an example for Case II. The number of un-
metered households with missing SM data in the LV-52, LV-62, and
LV-95 networks are [72, 76, 80, 89, 102], [75, 78, 98, 101, 113], and
[141, 153, 174, 176, 187], respectively. Fig. 12 illustrates the error
in length ratio 𝑙𝑚𝑛 of all lines when using the proposed mathematical
formulation for Case II, solved without and with constraint (18). Fig. 12
shows that including constraint (18) in the proposed mathematical
formulation improves the general accuracy. Specifically, the maximum
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Fig. 11. Relative error of 𝑙𝑚𝑛 and calculation time in Case I. As shown in (a), (b) and
(c), cable lengths are correctly estimated from complete data and the calculation time
is less than 30 s (d).

Fig. 12. Relative error of 𝑙𝑚𝑛 of each cable in Case-II. The red bars illustrate that
constraint (18) for the service lines enhanced the accuracy.

relative error in the service lines in the LV-52 and LV-62 networks
is below 4%, and that in the LV-95 network is below 6%. Thus, as
expected, specific constraints for each type of cable tighten the solution
space, increasing the accuracy of the estimation of underground cable
length.

To analyze the impact of the unmetered houses on the performance
of Case II, the time horizon  is set as 50 and 90, which means that
there are 50 or 90 data samples (i.e., V, P, and Q) for each available
household. Meanwhile, different unmetered rates 𝑅𝑢𝑛𝑚 in the LVDNs
are set for the three LVDNs, defined as:

𝑁𝑢𝑛
𝑅𝑢𝑛𝑚 =
𝑁0

× 100% (25)

11 
Fig. 13. Distribution of relative error of 𝑙𝑚𝑛 in Case-II under multiple unmetered rates
and different time horizons The relative error experiences a rapid increase when 𝑅𝑢𝑛𝑚
exceeds 30%.

Fig. 14. Mean relative error of 𝑙𝑚𝑛 and calculation time in Case-III under multiple NIH
and different time horizons. The intersection of the two curves falls within the 𝑁 𝐼 𝐻
range of 20 to 60.

Here, 𝑅𝑢𝑛𝑚 represents the ratio of the 𝑁𝑢𝑛 houses without available
smart meters to the total 𝑁0 houses in the LVDNs. The higher the ratio
of unmetered nodes, the fewer available SM data, resulting in a sparse
input SM dataset.

Fig. 13 shows the relative error of 𝑙𝑚𝑛 under different unmetered
rates and time horizons. Only the relative errors that are lower than
100% are shown in this paper. The points represent the larger error,
and the boxes depict the interval of the rest of the relative error.
Compared to the LV-95 network, the cable length in the LV-52 and
LV-62 networks is accurately identified when using less sparse input
SM data. Specifically, when 𝑇 is set as 90 and 𝑅𝑢𝑛𝑚 is up to 40%,
the relative error in cable length for the LV-52 network remains below
10%, and below 20% for the LV-62 network. For the LV-95 network,
the relative error in the cable length is less than 20% with 𝑇 set as 90
and 𝑅𝑢𝑛𝑚 as 20%. These errors are located in the acceptable interval,
according to [35]. However, the relative error increases rapidly as the
unmetered rate increases, especially for networks LV-62 and LV-95.
Given the same unmetered ratio 𝑅𝑢𝑛𝑚, more SM data (i.e., a larger time
horizon) improves the accuracy of the proposed mathematical formu-
lation in Case II. In conclusion, the location of the unmetered houses
also impacts the feasibility of the proposed mathematical formulation
and its accuracy.

3.3.3. Case III
For Case III, the proposed mathematical formulation is tested on the

LV-62 network. The time horizon  is set as 2 and 7. A larger  leads
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Fig. 15. Distribution of relative error of 𝑙𝑚𝑛 in Case-III under multiple HIN and different
time horizon. The relative error experiences a rapid decrease when 𝑁 𝐼 𝐻 exceeds 10%.

to a wider ladder in the reorganized data format, which also affects
he accuracy of the proposed mathematical formulation. Meanwhile,
o analyze the impact of 𝑁 𝐼 𝐻 , this is set at [1, 5, 10, 20, 40, 60, 80,
00, 121]. The mean relative error of 𝑙𝑚𝑛 and the average calculation
ime are depicted in Fig. 14, which depicts that the solving time of

the model increases with the increase of NIH. The complexity of the
optimization model concerning NIH is approximately between O(𝑛) and
O (𝑛2). The intersection of the two lines represents the local optimal
point, meaning that the actual lengths are identified with lower relative
rrors and less computational time is required. In Fig. 14, the local
ptimal 𝑁 𝐼 𝐻 is located between 20 and 60, where the mean relative
rror of cable length remains below 10% and the computation time
s below ten minutes. On the other hand, solving time is influenced
ot only by the complexity of the model but also by factors such
s the location of nodes whose voltage residuals are integrated into
he objective function, hardware limitations, long-term computational
rocesses on a single laptop, and other factors. Thus, the intersection
ould be used by DSO to set a proper 𝑁 𝐼 𝐻 value according to the
ccuracy requirements. The relative error distribution under the above
cenarios is illustrated in Fig. 15. The red points represent the larger

error, and the boxes depict the interval of the rest of the relative error.
When 𝑁 𝐼 𝐻 is set between 20 and 60, the relative errors predominantly
distribute within 0%–10%, with a few falling within the 10% to 80%
interval. Thus, the proposed mathematical formulation in Case III is
feasible, given the well-designed parameters 𝑁 𝐼 𝐻 and 𝑇 .

Compared to Case I, the datasets used in Case II and III are more
sparse and asynchronous, which leads to the error magnitude increases,
as expected. Based on Figs. 11, 13 and 15, the longer the period of
the available SM data and the more households with SM installed, the
closer the estimated cable length is to the true value, i.e., the smaller
length error. The ideal situation is that all households are assumed
to have smart meters and can provide more than one month of high-
esolution SM data, which is the assumption of most papers. Moreover,
n case III, the longer period of the available SM data will lead to
parser transformed data (as shown in Fig. 7), which will increase the

calculation burden, as shown in Fig. 14. Thus, the models in cases I to I
an be selected and the parameters in the models can be set according

to the period of the available data and the number of available SM, to
nsure that the estimated cable length is close to the true value.

4. Conclusion

The network topology is significant for the efficient operation and
lanning of distribution networks, while it is challenging to obtain

accurate topologies due to missing recordings, high-frequency mainte-
ance, and user phase shifting. This paper proposes a topology iden-

tification approach for LVDNs with high-proportion underground ca-
les based on graph topology generation, topology reconstruction,
12 
and topology optimization. The proposed approach is tested in three
actual LVDNs in the Netherlands and multiple incomplete SM datasets.

ccording to the obtained results, the proposed HMST algorithm can
enerate a graph topology with an accurate number of cables for each
treet. However, inaccurate street-to-street connections in the graph
opology can be found, induced by mesh streets. These inaccuracies
re then successfully revised by the topology reconstruction strategy.
he generation of graph topology only relies on open map data and

SM data, which makes it more flexible than existing approaches. Nev-
ertheless, the inaccurate OSM data and the deployment environment
lead to inaccurate cable length. Considering that only metered houses
or daily maximum and minimum SM data are available, three data-
driven optimization models were stated. The results showed that the
proposed mathematical formulations successfully decreased the error in
cable length. Moreover, the results also illustrated the minimal amount
f SM data needed to minimize the error of cable length under multiple
ncomplete SM datasets.
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