

Delft University of Technology

Computation-in-Memory for Modern Applications using Emerging Technologies

Shahroodi, T.

DOI
10.4233/uuid:80a31436-92dd-4d85-89c6-e8d2e0f5d666
Publication date
2024
Document Version
Final published version
Citation (APA)
Shahroodi, T. (2024). Computation-in-Memory for Modern Applications using Emerging Technologies.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:80a31436-92dd-4d85-
89c6-e8d2e0f5d666

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:80a31436-92dd-4d85-89c6-e8d2e0f5d666
https://doi.org/10.4233/uuid:80a31436-92dd-4d85-89c6-e8d2e0f5d666
https://doi.org/10.4233/uuid:80a31436-92dd-4d85-89c6-e8d2e0f5d666

COMPUTATION-IN-MEMORY FOR MODERN
APPLICATIONS

USING EMERGING TECHNOLOGIES

COMPUTATION-IN-MEMORY FOR MODERN
APPLICATIONS

USING EMERGING TECHNOLOGIES

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties

in het openbaar te verdedigen op dinsdag 12 March 2024 om 12:30 uur

door

Taha SHAHROODI

Master of Science in Informatik
Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland,

geboren te Teheran, Iran.

Dit proefschrift is goedgekeurd door de promotoren.

promotor: Prof. dr. ir. S. Hmadioui
promotor: Dr. ir. J.S.S.M. Wong

Samenstelling promotiecommissie bestaat uit:

Rector Magnificus, voorzitter
Prof. dr. ir. S. Hamdioui, Technische Universiteit Delft, promotor
Dr. ir. J.S.S.M. Wong, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Dr. ir. S. Stuijk Technische Universiteit Eindhoven, NL
Prof. dr. ir. I. O’Connor École Centrale de Lyon, France
Dr. ir. T.G.R.M. van Leuken Technische Universiteit Delft
Prof. dr. ir. W.A. Serdijn Technische Universiteit Delft
Dr. S.D. Cotofana Technische Universiteit Delft
Prof. dr. ir. P.F.A. Van Mieghem

Technische Universiteit Delft, reservelid

Keywords: Computation-in-Memory, Processing-in-Memory, Bioinformatics,
Computer Architecture, Hardware/Software Co-Design, Memristor

Printed by: Ipskamp Printing, the Netherlands

Front & Back: "buitenbeentje" by T. Shahroodi.

Copyright © 2024 by T. Shahroodi

ISBN 978-94-6384-534-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To my loving parents, Dariush and Tahere, and the best brother ever, Emad.

CONTENTS

Summary xiii

Samenvatting xv

Acknowledgements xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Limitations of Traditional Computing Systems 3
1.3 Problem Discussion. 10
1.4 Solution Direction and Research Topics. 11

1.4.1 Identify and improve Bioinformatics and Neural Network kernels
using CIM . 11

1.4.2 Exploring emerging (memory) technologies for CIM. 11
1.5 Thesis Statement . 12
1.6 Contributions . 12
1.7 Thesis Outline . 14

2 Background and State-of-the-Art 17
2.1 Computation-In-Memory (CIM) . 18

2.1.1 CIM designs classification based on computation location 19
2.1.2 Illustration of generic CIM tile . 21
2.1.3 Potential Emerging Technologies for CIM 21
2.1.4 Primitive functions in CIM classes 29
2.1.5 Abstraction of CIM Design Choices 33

2.2 Modern Applications . 35
2.2.1 Bioinformatics and genomics . 35
2.2.2 Neural Network . 41

2.3 State-of-the-Art CIM Designs and Simulators 44
2.3.1 General-Purpose State-of-the-Art CIM Designs and Simulators . . . 44
2.3.2 Specific-Purpose State-of-the-Art CIM Designs and Simulators . . . 46

3 Swordfish 49
3.1 Background and Motivation . 51

3.1.1 Genome Sequencing Pipeline . 51
3.1.2 Basecalling. 52
3.1.3 Memristor-based CIM and Associated Non-Idealities 53
3.1.4 Programmable Inference Architecture 55

vii

viii CONTENTS

3.2 Swordfish Framework . 55
3.2.1 Swordfish Overview . 55
3.2.2 Partition & Map . 56
3.2.3 VMM Model Generator . 57
3.2.4 Accuracy Enhancer . 58
3.2.5 System Evaluator. 62
3.2.6 Swordfish Evaluation Challenges. 63

3.3 Evaluation Methodology . 63
3.3.1 Implementations and Models . 63
3.3.2 Simulation Infrastructure . 64
3.3.3 Evaluation Metrics . 64
3.3.4 Datasets and Workloads . 64

3.4 Swordfish Evaluation . 65
3.4.1 Effect of Quantization on Accuracy without Accuracy Enhance-

ment . 65
3.4.2 Effect of Non-idealities on Accuracy without Accuracy Enhance-

ment . 66
3.4.3 Effect of Accuracy Enhancement on Quantized Basecallers 69
3.4.4 Effect of Accuracy Enhancement on Non-idealities 70
3.4.5 Throughput Analysis of SwordfishAccel 74
3.4.6 Area vs. Accuracy Analysis . 75
3.4.7 Verdict on Realistic-SwordfishAccel 76

3.5 Discussions and Future Works . 76
3.5.1 Applicability of Swordfish Looking forward 76
3.5.2 Other DNN-based Applications 77
3.5.3 Better Accuracy Enhancement Techniques. 77

3.6 Conclusion . 78

4 RattlesnakeJake 79
4.1 Proposal and Architecture. 81

4.1.1 RattlesnakeJake’s Algorithm . 81
4.1.2 RattlesnakeJake’s Architecture . 82
4.1.3 RattlesnakeJake Algorithm to Hardware Mapping 84

4.2 Evaluations . 84
4.2.1 Evaluation Methodology . 84
4.2.2 Accuracy Analysis . 85
4.2.3 Throughput and Execution Time. 86

4.3 Discussions and Future Works . 87
4.3.1 RattlesnakeJake for Long Sequence Alignment 87
4.3.2 Potential Design Improvements 87

4.4 Conclusion . 87

5 SieveMem 89
5.1 Motivation and Profiling . 91

5.1.1 Shared Kernels in Filters . 91
5.1.2 Data Movement in Fitlers . 93

CONTENTS ix

5.2 Proposal and Architecture. 93
5.2.1 SieveMem Architecture . 93
5.2.2 SieveMem Example Support for SHD 94
5.2.3 BandedKrait Algorithm . 96
5.2.4 BandedKrait on SieveMem (Mem-BandedKrait) 97

5.3 Evaluations . 97
5.3.1 Evaluation Methodology . 97
5.3.2 Execution Time of Supported Kernels 98
5.3.3 Filtering Accuracy . 99
5.3.4 Filtering Speed . 99
5.3.5 End-to-end Alignment Speed . 101

5.4 Discussions and Future Works . 102
5.4.1 SieveMem for Long Sequence Alignment 102
5.4.2 Potential Design Explorations . 102

5.5 Conclusion . 102

6 FilterFuse 105
6.1 Motivation . 108

6.1.1 Long Reads vs. Short Reads . 108
6.1.2 Limitations of SotA filters for long reads 108

6.2 LongGeneGuardian Algorithm . 110
6.3 FilterFuse Architecture . 111

6.3.1 FilterFuse Overview . 111
6.3.2 Tile Architecture . 112
6.3.3 Sub-Array Architecture. 113
6.3.4 Bank and Bank-Group Architecture 115
6.3.5 Rank Architecture . 115
6.3.6 Data Mapping in FilterFuse . 117
6.3.7 Long Read Compatibility. 118
6.3.8 LongGeneGuardian on Software vs. on FilterFuse 119

6.4 Evaluation Methodology . 120
6.5 Evaluation Results . 121

6.5.1 Design Space Exploration . 121
6.5.2 Filtering Accuracy . 122
6.5.3 Filtering Speed . 123
6.5.4 End-to-end Alignment Speed . 123
6.5.5 Area and Power Analysis . 125

6.6 Conclusion . 125

7 Demeter 127
7.1 Background and Motivation . 129

7.1.1 Metagenomic Profilers . 130
7.1.2 Problems of Food Profilers . 130
7.1.3 hyperdimensional computing. 130

x CONTENTS

7.2 Demeter . 134

7.2.1 Step 1: Define the HD Space . 135

7.2.2 Step 2: Build Demeter’s Reference Data Structure 135

7.2.3 Step 3: Demeter’s Read Conversion 135

7.2.4 Step 4: Multi-Species Classification per Read 136

7.2.5 Step 5: Species Level Abundance Estimation 137

7.3 Demeter’s Evaluation . 137

7.3.1 Methodology. 137

7.3.2 Demeter’s Accuracy Analysis . 138

7.3.3 Demeter’s Software Performance Analysis 139

7.3.4 Demeter’s Memory Analysis . 141

7.4 Demeter’s PIM-enabled Accelerator. 142

7.4.1 Overview of Demeter’s Accelerator 143

7.4.2 Item Memory (IM) Design . 143

7.4.3 Encoder Design . 144

7.4.4 Associate Memory (AM) Design 146

7.4.5 Similarity Check Hardware. 147

7.4.6 Controller Unit. 149

7.5 System Integration of Acc-Demeter . 149

7.5.1 Address Translation . 149

7.5.2 Coherence . 149

7.5.3 Interrupts . 149

7.5.4 ISA Extensions and Programming Interface 149

7.6 Acc-Demeter’s Evaluation. 150

7.6.1 Methodology. 150

7.6.2 Acc-Demeter’s Performance Analysis 150

7.6.3 Acc-Demeter’s Power and Area Analysis 153

7.7 Discussions and Future Works . 154

7.8 Conclusion . 154

8 KrakenOnMem 157
8.1 Motivation . 159

8.1.1 Kraken2’s Execution Breakdown 159

8.1.2 Limitation of Previous PIM-enabled Designs. 160

8.2 KrakenOnMem Design . 161

8.2.1 A High-Level Overview . 162

8.2.2 TL-PIM: Matching Mechanism. 164

8.2.3 TL-PIM: Taxonomic Retrieval . 166

8.2.4 TL-PIM: Controller . 167

8.2.5 Relation between LCA-Arrays and Key-Arrays 167

8.2.6 Optimizations . 169

8.2.7 KrakenOnMem Profiling Walk Through 169

CONTENTS xi

8.3 Discussions and Future Works . 170
8.4 Evaluation Methodology . 171
8.5 Experimental Results . 172

8.5.1 Performance Analysis . 172
8.5.2 Power and Area Analysis . 176

8.6 Conclusion . 178

9 LightSpeed 179
9.1 TacitMap for BNN. 180
9.2 Evaluations . 182

9.2.1 Networks and Datasets. 183
9.3 Conclusion . 184

10 EinsteinBarrier 185
10.1 EinsteinBarrier Architecture . 186

10.1.1 oPCM-based WDM-enabled ECore 187
10.1.2 oPCM-based ECore Overheads. 190

10.2 Evaluation Methodology . 190
10.2.1 Implementations and Models . 190
10.2.2 Designs and Baselines . 191
10.2.3 Networks and Datasets. 191

10.3 Evaluation Results . 191
10.3.1 Performance Analysis . 191
10.3.2 Energy Analysis . 192

10.4 Discussions and Future Works . 193
10.5 Conclusion . 193

11 Conclusion 195
11.1 Summary . 196
11.2 Future Research Directions . 199

11.2.1 Extending the Proposed Techniques 199
11.2.2 Leveraging and Cascading the New-Found CIM Designs in End-to-

End Pipelines . 200
11.2.3 New Bottlenecks after Exploiting the Proposed CIM Designs. 202

Epilogue 207

Bibliography 209

Curriculum Vitæ 241

List of Publications 243

SUMMARY

Modern applications like Genomics and Machine Learning (ML) hold the potential to
reshape our understanding of diseases’ genetic origins and guide machines in execut-
ing tasks and making predictions without our explicit programming. The successful,
widespread integration of these modern applications can usher in advancements in di-
agnostics, individualized medicine, and routine tasks such as language interpretation,
image analysis, and object categorization. However, our traditional computing infras-
tructures fall short when accommodating the distinct characteristics of these new appli-
cations. Specifically, (1) these applications handle an immense and ever-expanding data
working set, and (2) each succeeding version of these applications and their associated
use cases necessitates quicker and more energy-efficient analysis of these vast data sets.
This is because our traditional computing systems largely hinge on (1) the von-Neumann
architecture, a design that distinctly positions processing entities (like CPUs and GPUs)
away from storage components (like memories and flash drives), and (2) the CMOS-
based technology. While attempting to meet the performance and energy demands of
our modern applications, these fully CMOS-based systems based on von-Neumann ar-
chitecture have increasingly struggled and hit inherent roadblocks, with data movement
overhead being the predominant issue.

To alleviate the data movement bottleneck, contemporary research revisits a concept
historically known as Computation-In-Memory (CIM) or, alternatively, Processing-In-
Memory (PIM). At its core, CIM emphasizes positioning computational capabilities close
to, or within, the memory units storing the data. This placement might be within mem-
ory chips, in memory controllers, amid caches, or embedded in the logic layers of 3D-
stacked memories. As a computational model, architectures leveraging CIM (referred to
as CIM architectures) stand to tackle the issue of data movement overhead inherent in
the von-Neumann architecture by diminishing or outright eradicating the data move-
ment between computational locales and data storage areas. Moreover, from a techno-
logical perspective, emerging memory technologies, including memristive devices and
circuits, show potential to replace traditional memory systems, addressing some of the
challenges posed by CMOS-based designs.

Irrespective of the specific CIM architecture deployed to optimize performance or
energy efficiency in modern applications, there are substantial practical challenges to
address and ponder upon first. Both system designers and developers face these hur-
dles and design decisions, which are critical to surmount CIM’s widespread acceptance
across various computational areas and application domains.

In this dissertation, our focus is twofold: (1) We delve into the acceleration and
streamlined execution of various steps in two pivotal application realms: genomics
and ML; and (2) We explore several emerging memory technologies alongside circuit
and architectural strategies, that show promise in enhancing CIM designs, specifically
tailored for modern applications.

xiii

xiv SUMMARY

Therefore, in this thesis, we identify and propose strategies and designs to amelio-
rate the constrained performance of key kernels in genomics and ML. Recognizing that
applications within these realms consist of diverse functions or kernels, it is imperative
for a designer to possess a thorough understanding of them. Each function/kernel can
be characterized by distinct data and control flows, calling for varied features to be en-
abled in either a von-Neumann or a CIM architecture. To enhance the efficacy of each
function/kernel, we first profile them individually and then within a larger context of
their corresponding pipeline, followed by discerning the best avenues for their memory
mapping in a CIM architecture. We then undertake a concurrent assessment of essen-
tial adjunct components alongside the memory array, commonly referred to as the pe-
ripheries. For a designer, proficiency in the applications executable on a CIM system
leveraging emerging memory technologies is indispensable. Grasping the fundamental
characteristics of CIM and having an overarching view of its scope becomes vital prior
to its integration. We aim to aggregate critical application features, improvement oppor-
tunities, and design decisions and refine them to their core essence. Through this, we
aspire to shed light on present design options and identify kernels demanding height-
ened attention. Such insights can be instrumental in revealing prospective directions,
encompassing supported kernels along with their respective merits and trade-offs.

We exploit emerging technologies and architect state-of-the-art CIM designs that op-
timally serve the targeted kernels, keeping a holistic improvement perspective at the
forefront. Delving into emerging (memory) technologies, such as memristive devices
like PCM and STT-MRAM, is crucial. These devices provide a suite of advantages, in-
cluding non-volatility, compactness, and a natural aptitude for conducting logical oper-
ations (for instance, the logical AND). Additionally, other emerging technologies, such
as integrated photonics, have the potential to enhance the CIM paradigm further with
their capacity for high-frequency and low-latency functions. Our ambition is to integrate
multiple such technologies, harnessing their distinct attributes, to craft a CIM design
that surpasses the SotA counterparts across key benchmarks, be it in execution speed or
energy.

This thesis demonstrates that when CIM is fused with emerging (memory) technolo-
gies, there is a marked enhancement in the performance of several Genomics pipelines
and Machine Learning applications. It is our aspiration and conviction that the evalua-
tions, methodologies, and findings detailed in this dissertation will empower the broader
community to comprehend and address contemporary and upcoming challenges that
revolve around enhancing the performance and energy efficiency of modern applica-
tions through the integration of (re)emerging computing paradigms and technologies.
Additionally, our work provides insights for adapting these technologies to novel appli-
cations, ensuring they deliver optimal benefits.

SAMENVATTING

Moderne toepassingen zoals Genomics en Machine Learning (ML) hebben het poten-
tieel om ons begrip van de genetische oorsprong van ziekten te hervormen en machi-
nes te begeleiden bij het uitvoeren van taken en voorspellingen zonder expliciete pro-
grammering. De succesvolle, wijdverbreide integratie van deze moderne toepassingen
kan vooruitgang betekenen op het gebied van diagnostiek, gepersonaliseerde genees-
kunde en routinetaken zoals taalinterpretatie, beeldanalyse en objectcategorisatie. Onze
traditionele computerinfrastructuren schieten echter tekort bij het om de kenmerken
van deze nieuwe toepassingen te accommoderen. In het bijzonder behandelen deze
toepassingen een enorme en steeds uitbreidende dataset (1), en elke volgende versie
vereist snellere en energiezuinigere analyse van deze enorme datasets (2). Dit komt
doordat onze traditionele computersystemen voornamelijk afhankelijk zijn van de von-
Neumann-architectuur (1) en op CMOS-technologie (2) gebaseerd zijn. Bij het proberen
te voldoen aan de prestatie- en energie-eisen van moderne toepassingen, hebben deze
volledig CMOS gebaseerde von-Neumann-architecturen steeds meer problemen onder-
vonden en lopen ze tegen inherente obstakels, waarvan het dataverplaatsing bij gege-
vensverwerking het belangrijkste probleem is.

Om het probleem van dataverplaatsing bij gegevensbeweging aan te pak-
ken, herziet hedendaags onderzoek een concept dat historisch bekend staat als
Gegevensverwerking-In-Geheugen (GIG). In de kern benadrukt GIG het plaatsen van re-
kenkundige mogelijkheden dichtbij, of binnen, de geheugeneenheden die de gegevens
opslaan. Deze plaatsing kan in geheugenchips zijn, in geheugencontrollers, te midden
van caches of ingebed in de logische lagen van 3D-geheugens. Architecturen die gebruik
maken van GIG (aangeduid als GIG-architecturen) hebben als doel het probleem van
gegevensbeweging dat inherent is aan de von-Neumann-architectuur aan te pakken
door de gegevensbeweging tussen verwerkingslocaties en geheugens te verminderen of
volledig te elimineren. Bovendien tonen opkomende geheugentechnologieën, waaron-
der memristorcomponenten en -circuits, potentieel om traditionele geheugensystemen
te vervangen en enkele uitdagingen van op CMOS gebaseerde ontwerpen aan te pakken.

Ongeacht de specifieke GIG-architectuur die wordt ingezet om de prestaties of
energie-efficiëntie in moderne toepassingen te optimaliseren, zijn er aanzienlijke
praktische uitdagingen die aangepakt moeten worden. Zowel systeemontwerpers als
ontwikkelaars staan voor deze hindernissen en ontwerpbeslissingen, die cruciaal zijn
voor het overwinnen van de brede acceptatie van GIG in verschillende computergebie-
den en toepassingsdomeinen. In deze dissertatie ligt onze focus op twee aspecten: (1)
We duiken in de versnelling en stroomlijning van verschillende stappen in twee cruciale
toepassingsgebieden: genomics en ML; en (2) we verkennen verschillende opkomende
geheugentechnologieën naast circuit- en architectuurstrategieën, die belofte tonen om
GIG-ontwerpen te verbeteren die specifiek afgestemd zijn op moderne toepassingen.

Daarom identificeren en stellen we in dit proefschrift strategieën en ontwerpen voor

xv

xvi SAMENVATTING

om de beperkte prestaties van essentiële kernels in genomics en ML te verbeteren. Om-
dat toepassingen binnen deze gebieden bestaan uit diverse functies of kernels, is het
cruciaal voor een ontwerper om een grondig begrip hiervan te hebben. Elke functie of
kernel kan worden gekenmerkt door verschillende gegevens- en besturingsstromen, wat
vraagt om verschillende functies in zowel een von-Neumann- als een GIG-architectuur.
Om de effectiviteit van elke functie of kernel te vergroten, profileren we ze eerst indivi-
dueel en vervolgens binnen de grotere context van hun pipeline, gevolgd door het bepa-
len van de beste geheugenmapping in een GIG-architectuur. Vervolgens voeren we een
gelijktijdige beoordeling uit van essentiële aanvullende componenten naast de geheuge-
narray, vaak aangeduid als de perifere componenten. Voor een ontwerper is bekwaam-
heid in de toepassingen die kunnen worden uitgevoerd op een GIG-systeem dat gebruik
maakt van opkomende geheugentechnologieën onmisbaar. Het begrijpen van de funda-
mentele kenmerken van GIG en het hebben van een alomvattend beeld van de reikwijdte
ervan is cruciaal voorafgaand aan de integratie. We streven ernaar om kritieke toepas-
singskenmerken, verbeteringsmogelijkheden en ontwerpbeslissingen samen te brengen
en ze te verfijnen tot hun kern. Hierdoor hopen we inzicht te verschaffen in de huidige
ontwerpmogelijkheden en kernels te identificeren die meer aandacht vergen. Dergelijke
inzichten zijn instrumenteel om toekomstige richtingen te bepalen, waaronder de on-
dersteunde kernels samen met hun respectieve voordelen en afwegingen.

We maken gebruik van opkomende technologieën en ontwerpen GIG-architecturen
die optimaal de kernels implementeren, met een holistisch verbeteringsperspectief voor
ogen. Het verkennen van opkomende (geheugen)technologieën, memristorcomponen-
ten zoals PCM en STT-MRAM, is cruciaal. Deze componenten bieden een reeks voor-
delen, waaronder niet-vluchtigheid, compactheid en een inherente geschiktheid voor
het uitvoeren van logische bewerkingen (bijvoorbeeld de logische EN-operatie). Daar-
naast hebben andere opkomende technologieën, zoals geïntegreerde fotonica, het po-
tentieel om het GIG-paradigma verder te verbeteren door hun hoogfrequente en snelle
eigenschappen. Onze ambitie is om meerdere van dergelijke technologieën te integre-
ren, gebruik makend van hun unieke kenmerken, om een GIG-ontwerp te creëren dat
de tegenhangers overtreft op belangrijke benchmarks, zowel qua uitvoeringssnelheid als
energieverbruik.

Dit proefschrift toont aan dat wanneer GIG wordt samengevoegd met opkomende
(geheugen)technologieën, er een merkbare verbetering is in de prestaties van verschil-
lende genomics-pipelines en Machine Learning-toepassingen. Het is onze ambitie en
overtuiging dat de evaluaties, methodologieën en bevindingen die in dit proefschrift
worden beschreven, de bredere gemeenschap in staat zullen stellen om hedendaagse
en toekomstige uitdagingen die draaien om het verbeteren van de prestaties en energie-
efficiëntie van moderne toepassingen door de integratie van (her)opkomende rekenpa-
radigma’s en technologieën te begrijpen en aan te pakken. Bovendien biedt ons werk
inzichten voor het aanpassen van deze technologieën aan nieuwe toepassingen, zodat
ze optimale voordelen kunnen opleveren.

ACKNOWLEDGEMENTS

This thesis marks three years of my efforts throughout my graduate studies and many
individuals who, directly or indirectly, have contributed to its completion or how I expe-
rienced it. Therefore, I would like to take this moment to highlight them and express my
gratitude.

First, I thank my promoters, Said Hamdioui and Stephan Wong. In the research
group Said established at TU Delft, I have gained essential skills that will shape my ca-
reer path. Said, from the outset of my Ph.D., you placed faith in my research and my
organizational skills, even nominating me as our research group’s representative on the
department’s Ph.D. council. For that, I am thankful.

I thank Stephan Wong, my promoter, daily supervisor, and constant advocate.
Stephan, your astute feedback on my work has been pivotal in advancing my research.
Your extensive experience across research, academia, and administrative tasks and
willingness to share them have enriched my understanding of the system. Beyond
this, I also deeply appreciate the autonomy you granted me in exploring research
avenues I was passionate about. Your faith in me was evident when you entrusted me
with teaching responsibilities, shared your instructional methods and early graduation
techniques, and backed my internships. Most crucially, your unwavering presence,
shielding me from internal and external strife and uplifting my spirit during challenging
times, has been invaluable. My heartfelt thanks for everything.

I owe an immeasurable gratitude to my enduring advisor and life mentor, Onur
Mutlu. Having the privilege of being his student since 2018 has been transformative. I
am deeply thankful for his unwavering support and guidance throughout this journey.
Onur, your persistent push for grand visions, unyielding commitment to research, and
challenges to elevate my capabilities have sculpted me as a researcher standing here.
The environment you fostered within SAFARI, coupled with your unwavering trust in
me, has endowed me with the insights, tools, and perspective essential for my personal
and professional evolution. I am confident that the wisdom and skills imparted by Onur
and those gained under his supervision will remain integral to my growth in research,
science, and engineering. Cheers, Onur.

I am grateful to the committee members of this thesis, Sander Stuijk, Ian O’Connor,
Rene van Leuken, Wouter Serdijn, and Sorin Cotofana. Your insightful feedback has
been crucial in enhancing my thesis, and I eagerly anticipate witnessing the influence of
our future collaborative efforts.

I would like to extend my gratitude to my academic partners. Ian O’Connor and Al-
berto Bosio, thank you for welcoming me into your research group. The knowledge you
passed on about optical phase change memory and FeFET, the critical discussions on
my work, and the essential measurement data you provided have significantly enhanced
my research journey. The one-on-one meetings in Lyon hold particular importance to
me. I am optimistic about the continuance of our rewarding collaboration. My thanks

xvii

xviii ACKNOWLEDGEMENTS

to Asif Ali Khan for bridging our collaboration. Our technical exchanges, particularly
those centered around pre-alignment filters and racetrack memory, were enlightening. I
am also grateful for the platform you provided me to present a technical discourse on my
research at the Chair for Compiler Construction (CCC) in TU Dresden. Moreover, our ca-
sual, non-research conversations during our interactions in Germany added a pleasant
dimension to our professional relationship. My sincere thanks to each one of you.

I am grateful to researchers and members of the various departments at TU Delft,
the SAFARI research group at Eidgenössische Technische Hochschule (ETH) Zürich,
and Institut des Nanotechnologies de Lyon (INL) at École Centrale de Lyon (ECL) for
their steadfast support throughout this journey. While the path to a Ph.D. can often feel
solitary and lonely, each of you played a role in mitigating that solitude, transforming
what is typically an individual endeavor into a collective experience. Mahdi, your
presence as a sounding board and officemate has been invaluable. I also extend my
heartfelt gratitude to other members of the TU Delft family, including but not limited to,
Robert, Moritz, Christiaan, Folkert, Sumit, Amin, Abdullah, Motta, Alireza, Michael,
Guilherme, Matti, Asmae, Hanzhi, Abdulqader, Rajendra, Sicong, Pantazis, Fouwad,
Arne, Mark, Yash, Heba, Francis, and Paul. Our shared moments, from delightful
lunches and daily coffee breaks to numerous discussions, have been highlights of my
time in the office. Equally, my time at INL and SAFARI was enriched by interactions
with friends like Minesh, Haocong, Skanda, Rahul, Ataberk, Raphael, Tracy, and many
more. I cherish the moments of academic collaboration and the bonds of friendship
forged. Your support has been a cornerstone in my academic and personal growth, and
I wish each of you success and happiness in your future endeavors. Thank you all.

Throughout my life, spanning the Netherlands, Switzerland, France, Germany, and
Iran, I was fortunate to encounter many incredible souls who enriched my life beyond
the confines of my work. Mina, Danial, and Bahador, I cherish our enduring friendship,
one that defies the vast geographic distances between us. Your messages and laughs al-
ways brightened my mornings. My heartfelt gratitude extends to Shibashish, Melanie,
Sarah, Skanda, Maria, Minesh, Linus, Julius, Ninad, and Sandra, housemates, office-
mates, classmates, or clubmates, who transitioned into my dear close friends and loved
ones. Our shared moments, from our late-night discussions and explorations in the
Zürich forests and city to aimless rides and random events in Italy or the Netherlands,
have been foundational in making my journey so fulfilling. You have been the backbone
of encouragement and positivity, always ready to lend an ear, and your ever-present sup-
port, abundant encouragement, and undying positivity were all one can ask for. My
dearest friends, your consistent companionship was instrumental in helping me find
my footing in Zürich and the Netherlands. From introducing me to the city’s nuances to
crafting countless treasured memories, I am deeply appreciative. Here is to more delight-
ful evenings at the lake, in the forest, or in our fantastic hobby room and gardens. Lastly,
a big shout-out to my sports companions, Karin, Bram, Florence, Fiske, and Thomas.
Your relentless mantra of "5×/week, no excuses", our "4 more" signals, tough sparrings,
and our regular dinners and meetings marked by spirited dialogues on topics ranging
from coding in Rust and hackathons to finance to fashion have been truly exhilarating.
Every minute with you was not just about health or fitness but also about bonding and
growth. Cheers to all of you and the memories shared, and to many more in the future.

ACKNOWLEDGEMENTS xix

I am eternally grateful to my family and friends from back home or abroad. Their
deep love and enduring support have been the bedrock upon which I have built my
dreams. A special mention goes to my cousin, Eiman. Despite the whirlwind of leading
a highly successful startup, Eiman always found moments to offer me priceless advice
and wisdom. I extend my gratitude to Ali for his unwavering support in the Nether-
lands, both emotionally and physically. Our dinners at his residence were delightful and
a highlight for my weeks. To my beloved grandparents, aunts, uncles, and extended fam-
ily, your unwavering support has been a cornerstone of my endeavors. Those occasional
messages, brimming with love and buoyant words of motivation, have been my guiding
light, pushing me forward even during challenging times. Your faith in me has made all
the difference, and I remain forever indebted to your kindness and belief.

To the very foundation of my being, the pillars of my strength and determination, I
owe the deepest debt of gratitude to my parents, Dariush and Tahere, and my brother,
Emad: Every step I took in this demanding world of scientific endeavor, I found my foot-
ing on the strong base you laid down for me. Your tireless dedication, unyielding efforts,
and immeasurable love were my guiding stars. Dariush, from you, I learned the art of
resilience, even in life’s harshest moments and in the face of profound sorrow. Your wis-
dom has been the compass by which I have navigated challenges. The world could shift
under my feet, but the lessons you imparted and the love you have shown me remain
steadfast. Thank you! Tahere, in every setback and moment of self-doubt, your emo-
tional anchor and words of encouragement set me back on course. Your unwavering
belief in me and gentle encouragement have always been my saviors. Emad, my dear
brother, the bond we share is beyond words. You have been a sanctuary of patience,
an embodiment of love, and a wellspring of support. Our shared moments, be they of
joy, fights, or simply day-to-day life, are treasures in my heart. Even when I was difficult
and lost my way, you stood steadfast, echoing your belief in me. Beyond just being sib-
lings, our bond has grown into an unrivaled camaraderie. You have witnessed my peaks
and valleys, constantly extending a hand of support, love, and understanding. My heart
brims with gratitude for every gesture, word, and a lifetime of shared memories and mo-
ments with you. Emad, not just my brother, but my beacon and inspiration, thank you!

1
INTRODUCTION

The minute you get away from fundamentals
–whether its proper technique, work ethic, or mental preparation–

the bottom can fall out of your game, your schoolwork, your job, whatever you are doing.

Michael Jordan

Modern applications such as genomics and Machine Learning (ML) promise transforma-
tive advancements to human lives. However, the execution of these applications has bot-
tlenecked with traditional computing infrastructures, primarily due to data movement
overheads inherent in von-Neumann and CMOS-based designs. Recently, researchers ex-
plored the Computation-In-Memory (CIM) paradigm to reduce these overheads, placing
computation close to memory storage. When combined with emerging technologies like
memristive devices, such CIM architectures can replace traditional systems and address
data movement overhead and some other limitations inherent to fully CMOS-based tech-
nologies. However, implementing CIM brings practical challenges for system designers
and developers, impacting widespread acceptance. In this chapter, we first discuss the im-
pacts of modern applications on our lives and their unique features separating them from
traditional ones. We then discuss the limitations of traditional systems mainly based on
von-Neumann architecture and CMOS technology for high-performance and/or energy-
efficient execution of modern applications. We motivate CIM and emerging memory tech-
nologies as a potential solution for efficient, futuristic systems for modern applications.
After that, we discuss the main opportunities and challenges such CIM designs introduce.
Following, we discuss the research directions and topics this thesis explores. Finally, we
present our thesis statement and list our contributions and thesis organization.

1

1

2 1. INTRODUCTION

1.1. MOTIVATION
Genomics and Machine Learning (ML) are two examples of modern applications revolu-
tionizing our world. Genomics is a branch of genetics that investigates the interactions
between genes and non-genic genome regions and how they mold observable traits and
biological functions. Genomics brings about a remarkable increase in our comprehen-
sion of biology and illness. Genomics sheds light on the genetic foundations of diseases,
paving the way for superior diagnostics and treatment approaches. This way genomics
lays the groundwork for progress in personalized medicine, allowing for treatment meth-
ods to be customized based on a person’s genomic data. Advancing genomics stud-
ies that hold the key to unlocking the potential of precision medicine, facilitating virus
surveillance, and driving advancements in healthcare [1–17].

ML is an application domain focusing on the development of algorithms and statis-
tical models for computer systems to "learn" from experience, i.e., to perform tasks and
make decisions/predictions without being explicitly programmed to do so. Currently, we
use ML applications in many of our day-to-day tasks such as language processing [18]
object recognition [19], and image classification [20, 21]. In particular, momentous de-
velopments in Deep Neural Network (DNN) in the past decade have led to significant
improvements in the accuracy and execution time of computer vision tasks such as ob-
ject detection and recognition [22–24].

These modern applications, i.e., genomics and ML, share two main critical features:

• Their data working set size is rapidly growing. For example, one can character-
ize many of the existing genomics pipelines as simple and data-hungry sequences
of operations that require high parallelization. Fig. 1.1 depicts the significant re-
duction in the cost of data acquisition in genomics, next to Moore’s law ascending
growth, helping the exponential growth of the data working set size of its kernel.
It is estimated that the working datasets of the genomics domain scale faster than
those produced by YouTube and Twitter for Machine Learning-based (ML-based)
applications [25–27].

Figure 1.1: The nature of the reductions in DNA sequencing costs over the years against
Moore’s Law [26].

1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS

1

3

ML applications are the same. For another example, Fig. 1.1 presents the trend
in training datasets of language-based ML over the years. The growth of the data
working set is apparent from the models developed for this task. Other ML tasks
follow a similar trend (Section 2).

Figure 1.2: The growth rate of dataset size in ML for language based tasks such as text
generation and classification [28].

• The demand for faster analysis of such large data working sets is increasing. Par-
ticularly in genomics, the swift processing of genomics data plays a crucial role in
unleashing the full potential of precision medicine, bolstering virus surveillance
capabilities, and propelling advancements in healthcare. Moreover, ML applica-
tions also demand fast analysis for enhanced automation, expedited explorations,
and more efficient decision-making processes.

Unfortunately, our traditional computing systems only rely on von-Neumann archi-
tecture [29–31] and CMOS technology that fundamentally have already faced major lim-
itations while they tried to keep up with the high performance and energy-efficiency
demand of genomics and ML applications [15, 32].

1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS
Traditional computing systems adopt solely on CMOS technology and the von-
Neumann architecture: a processor-centric architecture that separates the processing
units (CPUs, GPUs, etc.) and storage units (memories, flashes, etc.) [29–31]. This choice
introduces some challenges and limitations for our modern applications that we discuss
next.

The sole reliance on CMOS technology recently introduced technological limitations
when we try to keep up with the high performance and energy-efficiency demand of
modern applications [32]. In the past decade, we have witnessed significant advance-
ments in semiconductor technology regarding the feature size of the transistors and the
number of transistors on a single chip. These advances advocate two famous laws in

1

4 1. INTRODUCTION

computer architecture: Moore’s Law and Dennard’s Law. Moore’s Law [33] and Den-
nard’s Law [34] are two closely-related observations regarding the advancement of semi-
conductor technology, focusing on different aspects. Moore’s Law states that the num-
ber of transistors on a chip will double approximately every two years. This exponential
growth leads to an increase in computational power. Dennard’s Law, on the other hand,
targets the power consumption and performance scaling of transistors as their feature
size decreases, i.e., they shrink in size. Dennard’s Law states that as transistors become
smaller, their power density remains constant. This allows for increased performance at
the same power consumption level.

Unfortunately, semiconductor advancements regarding Moore’s and Dennard’s laws
are slowly coming to an end due to three main limitations:

• Leakage Wall: The continuous scaling of transistors results in the reduction of gate
thickness and channel length between the drain and source, shrinking down to
a few atomic layers. Consequently, there is an increased likelihood of quantum
mechanical tunneling, leading to higher gate leakage current. Moreover, shorter
channels can contribute to elevated off-state drain leakage. Additionally, as supply
and threshold voltages are scaled down, the static power during the off state of the
transistor experiences an increase, forming a leakage wall.

• Reliability Wall: With the scaling down of transistor size, even minor variations
in the fabrication processes can significantly impact the functionality of the tran-
sistors, forming a reliability wall. Additionally, the continued scaling poses chal-
lenges in terms of reliable insulation and conduction due to limitations in the di-
electric and wiring materials.

• Cost Wall: As the size of transistors decreases, the cost of fabrication experiences
an exponential increase. This cost escalation is driven by various factors such as
equipment, lithography processes, masks, and testing expenses, forming a cost
wall.

These limitations motivate us to seek alternative technologies to continue our per-
formance and energy improvements with less reliance on scaling the transistors’ feature
sizes and their number on a specific chip.

To understand the architectural limitations arising from adapting von-Neumann ar-
chitecture, Fig. 1.3 depicts this architecture first.

As Fig. 1.3 shows, a von-Neumann architecture comprises three main components:
1 a processing unit (e.g., central processing unit (CPU) or graphics processing unit
(GPU)), 2 a memory, and 3 input or 4 output devices. The processing unit executes
the program instructions and performs logical or arithmetic operations on the data.
The data is loaded from the memory or the input devices, and the results are written
back into the memory or sent out to the output devices. The Von Neumann architecture
offers four advantages making it suitable for our traditional computing systems and
applications:

• Simplicity: The Von Neumann architecture is simple and straightforward, making it
easy to understand and implement. This architecture separates the computer’s mem-

1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS

1

5

Inputs

Von-Neumann Architecture

Main Memory

Processing Unit
(e.g., CPU or GPU)

Control Unit(s)

Arithmetic/Logic Unit(s)

Registers

Outputs

1

2

3 4

Figure 1.3: Von-Neumann architecture, i.e., processor-centric architecture, in traditional
computing systems.

ory into two distinct types: one for instructions and one for data. This architecture
follows the fetch-decode-execute cycle.

• Uniformity: Using a single memory space for both data and instructions simplifies the
architecture. This also brings versatility. Such a clear separation allows instructions to
be stored in the same form as data. This means that any program can be treated as
data and manipulated accordingly.

• Self-modifying code: This architecture allows a program to modify itself since data and
instructions are stored in the same memory.

• Hardware Cost: The Von Neumann architecture reduces the hardware cost by utilizing
the same memory and peripheries (e.g., buses) for both instructions and data.

• Precedent: The Von Neumann architecture is well-understood and widely used. This
establishes a precedent that advocates other advances in computer technology.

Using a single-level, large memory unit in the von-Neumann architecture histori-
cally introduced two main challenges for traditional applications: (1) high cost regard-
ing latency and energy consumption for data transactions between the CPU and main
memory and (2) requirement of very large memory unit to accommodate the large data
working set. For example, previous work [35] shows that the simple off-chip communi-
cation between the memory unit (DRAM) and CPU can take up to 200 CPU cycles. Other
works [36, 37] show that the energy consumption for moving data for a floating point
operation to the CPU consumes more than two orders of magnitude more energy than
the energy for the operation within the CPU.

1

6 1. INTRODUCTION

However, system designers overcome these challenges by proposing a hierarchy for
memory in the von-Neumann architecture [29, 31]. Fig. 1.4 depicts this memory hierar-
chy in the traditional computing systems based on von-Neumann architecture.

Memory Hierarchy

Secondary Memory (e.g., Disk)

Main Memory (e.g., DRAM)

Cache (e.g., SRAM)

Registers

Off-chip communications

Off-chip communications

On-chip communications

Central Processing Unit

In
cr

ea
si

n
g

ca
p

ac
it

y
an

d
 a

cc
es

s
ti

m
e

In
cr

ea
si

n
g

co
st

 p
er

 b
it

 a
n

d
 s

p
ee

d

Figure 1.4: Memory hierarchy in traditional von-Neumann-based systems.

The memory hierarchy tackles the high cost of data movement by exploiting the tem-
poral locality of data and having an SRAM-based cache memory located in the same chip
as the CPU. This SRAM cache reduces the access time for the data. However, due to cost
reasons (e.g., area overhead), designers keep SRAM caches smaller than the main mem-
ory and typically smaller than the data working set of even traditional applications. This
hierarchy also tackles the problem of larger than the main memory problem of tradi-
tional applications by placing secondary memory storage, also known as a disk. The
operating system (OS) manages data transfer from the disk (i.e., secondary memory) to
the main memory. Current systems use flashes or hard disk drivers for this secondary
memory. Although the secondary memory scales up easily, access time would be much
higher due to the technology limitation and architectural complexity.

The sole reliance on the aforementioned von-Neumann architecture and memory
hierarchy comes with its own architectural limitations. Beyond just technological ad-
vancements in semiconductors, the evolution of architectural design has been instru-
mental in enhancing the efficiency of computer systems over the past several decades.
Nonetheless, the potential for performance enhancement from this factor has recently
become limited due to three well-known walls:

• Power Wall: The miniaturization of transistors has also allowed a greater number
to fit within a fixed area. Table 1.1 illustrates this trend, demonstrating the in-
creased transistor count in various Intel processor generations. With this increase
in the number of transistors, processors can now support multiple cores, allowing
parallel task execution. This, however, escalates power consumption correspond-
ing to the increased core count. Nevertheless, the amount of power that a chip

1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS

1

7

can draw is finite, and dissipating heat effectively from these chips poses a signif-
icant challenge. Consequently, the ‘Dark Silicon’ phenomenon arises, evidenced
by over half of a processor chip remaining inactive at any one time due to power
constraints [38]. Fig. 1.5 depicts this phenomenon where the clock frequency, di-
rectly linked to power usage and system performance, plateaued recently. These
trends underscore that enhancements in system performance can no longer rely
solely on escalating clock frequencies and core counts.

Intel Processor Transistor Count Year
Intel 4004 2300 1971
Intel 8086 29000 1978
Intel i860 1000000 1989
Pentium 1 3100000 1993
Pentium 4 112000000 2004

Core i7 731000000 2008
Quad-core + GPU i7 1160000000 2011

Quad-core + GPU i7 Ivy Bridge 1400000000 2012
Quad-core + GPU GT2 i7 Skylake 1750000000 2015

28-core Xeon Plantinum 8180 8000000000 2017

Table 1.1: The number of transistors in different generations of Intel processors over the
years.

Figure 1.5: Maximum clock frequency achieved by a range of processors across the last
several decades [39].

• ILP Wall: Instruction Level Parallelism (ILP), which enables the simultaneous exe-
cution of multiple instructions, is another potential route for boosting system per-
formance. However, its efficiency is contingent on the innate parallelism of the ap-
plications or algorithms. Beyond this threshold, increasing hardware parallelism
does not correspondingly raise performance levels. Fig. 1.6 contrasts the predicted
performance enhancement per Moore’s Law with the actual performance boost as

1

8 1. INTRODUCTION

the transistor size is reduced. A key factor contributing to this discrepancy is the
inherent limit on application parallelism.

45 32 22 16 11 8
Technology Node (nm)

0

8

16

24

32

S
pe

ed
up

Moore‘s Law
Typical CmpMR Upper Bound

(a) Conservative Scaling

45 32 22 16 11 8
Technology Node (nm)

0

8

16

24

32

S
pe

ed
up

Moore‘s Law
Typical CmpMR Upper Bound

(b) ITRS Scaling
Figure 9: Speedup across process technology nodes over all orga-
nizations and topologies with PARSEC benchmarks

7.5 Summary
Figure 9 summarizes all the speedup projections in a single scat-

ter plot. For every benchmark at each technology node, we plot the
eight possible configurations, (CPU, GPU) × (symmetric, asym-
metric, dynamic, composed). The solid curve indicates perfor-
mance Moore’s Law or doubling performance with every technol-
ogy node. As depicted, due to the power and parallelism limita-
tions, a significant gap exists between what is achievable and what
is expected by Moore’s Law. Results for ITRS scaling are slightly
better but not by much. With conservative scaling a speedup gap
of at least 22× exists at the 8 nm technology node compared to
Moore’s Law. Assuming ITRS scaling, the gap is at least 13× at
8 nm.

7.6 Limitations
Our modeling includes certain limitations, which we argue do

not significantly change the results. To simplify the discussion, we
did not consider SMT support for the processors (cores) in the CPU
multicore organization. SMT support can improve the power effi-
ciency of the cores for parallel workloads to some extent. We stud-
ied 2-way, 4-way, and 8-way SMT with no area or energy penalty,
and observed that speedup improves with 2-way SMT by 1.5× in
the best case and decreases as much as 0.6× in the worst case due to
increased cache contention; the range for 8-way SMT is 0.3-2.5×.

Our GPU methodology may over-estimate the GPU power bud-
get, so we investigated the impact of 10%-50% improved energy
efficiency for GPUs and found that total chip speedup and percent-
age of dark silicon were not impacted.

We ignore the power impact of “uncore” components such as the
memory subsystem. There is consensus that the number of these
components will increase and hence they will further eat into the
power budget, reducing speedups.

We do not consider ARM or Tilera cores in this work because
they are designed for different application domains and their SPEC-
mark scores were not available for a meaningful comparison. For
highly parallel applications, these lightweight cores may achieve
higher speedups, but similar to the GPU case, they will likely be
limited by bandwidth and available parallelism.

We acknowledge that we make a number of assumptions in this
work to build a useful model. Questions may still linger on the
model’s accuracy and whether its assumptions contribute to the per-
formance projections that fall well below the ideal 32×. First, in all
instances, we selected parameter values that would be favorable to-
wards performance. Second, our validation against real and simu-
lated systems (Section 5.2) shows the model always under-predicts
performance.

8. RELATED WORK
Hill and Marty applied Amdahl’s Law to a range of multicore

topologies, including symmetric, asymmetric, and dynamic multi-
core designs and conclude dynamic topologies are superior [15].
Their models used area as the primary constraint, using Pollack’s
rule (Performance ∝ √Area [6]), to estimate performance. Ex-
tensions have been developed for modeling ‘uncore’ components,
such as the interconnection network and last-level cache [22], com-
puting core configuration optimal for energy [9, 20], and leakage
power [28]. These studies all model power as a function of area
(neglecting frequency and voltage’s direct effect on power), mak-
ing power an area-dependent constraint.

Chakraborty considers device-scaling alone and estimates a si-
multaneous activity factor for technology nodes down to 32 nm [8].
Hempstead et al. introduce a variant of Amdahl’s Law to estimate
the amount of specialization required to maintain 1.5× performance
growth per year, assuming completely parallelizable code [14]. Us-
ing ITRS projections, Venkatesh et al. estimate technology-imposed
utilization limits and motivate energy-efficient and application- spe-
cific core designs [27]. Chung et al. study unconventional cores
including custom logic, FPGAs, or GPUs in heterogeneous single-
chip design [10]. They rely on Pollack’s rule for the area/perfor-
mance and power/performance tradeoffs. Using ITRS projections,
they report on the potential for unconventional cores, considering
parallel kernels.

Azizi et al. derive the energy/performance Pareto frontiers for
single-core architectures using statistical architectural models com-
bined with circuit-level energy-performance tradeoff functions [2].
Our core model derives these curves using measured data for real
processors. Esmaeilzadeh et al. perform a power/energy Pareto ef-
ficiency analysis at 45 nm using total chip power measurements in
the context of a retrospective workload analysis [12]. In contrast to
the total chip power measurements, we use only the power budget
allocated to the cores to derive the Pareto frontiers and combine
those with our device and chip-level models to study the future of
multicore design and the implications of technology scaling.

Previous work largely abstracts away processor organization and
application details. This study considers the implications of process
technology scaling, decouples power/area constraints, and consid-
ers multicore organizations, microarchitectural features, and real
applications and their behavior.

9. CONCLUSIONS
For decades, Dennard scaling permitted more transistors, faster

transistors, and more energy efficient transistors with each new pro-
cess node, justifying the enormous costs required to develop each
new process node. Dennard scaling’s failure led the industry to
race down the multicore path, which for some time permitted per-
formance scaling for parallel and multitasked workloads, permit-
ting the economics of process scaling to hold. But as the benefits
of multicore scaling begin to ebb, a new driver of transistor utility
must be found, or the economics of process scaling will break and
Moore’s Law will end well before we hit final manufacturing lim-
its. An essential question is how much more performance can be
extracted from the multicore path in the near future.

This paper combined technology scaling models, performance
models, and empirical results from parallel workloads to answer
that question and estimate the remaining performance available from
multicore scaling. Using PARSEC benchmarks and ITRS scaling
projections, this study predicts best-case average speedup of 7.9
times between now and 2024 at 8 nm. That result translates into
a 16% annual performance gain, for highly parallel workloads and

375
Authorized licensed use limited to: TU Delft Library. Downloaded on May 29,2023 at 07:16:11 UTC from IEEE Xplore. Restrictions apply.

Figure 1.6: Speedup across various process technology nodes, encompassing all organi-
zations and topologies of PARSEC benchmarks [38].

• Memory Wall: While processors have seen substantial improvements in energy
efficiency and performance, data transmission through I/O ports has lagged be-
hind in terms of progression. As previously mentioned, communication between
the processor and off-chip memories, including primary and secondary memory,
takes a minimum of 200 CPU cycles [35], and it consumes significantly more power
than an internal CPU floating-point operation [36, 37]. Additionally, the volume of
data transferable concurrently is capped by the chip’s I/O port count. This phe-
nomenon is known as the memory wall. The memory wall significantly influences
a system’s efficiency, both in energy consumption and performance terms.

These architectural limitations motivate us to seek alternative architectures that can
tackle power, ILP, and memory walls and enable our continual improvements regarding
performance and energy.

To make matters worse, as discussed previously, the data working set size of modern
applications such as Machine Learning or genomics is rapidly growing. The features and
requirements of modern applications, with the existing challenges of traditional com-
puting systems, push main memory to quickly become a significant bottleneck across
a wide variety of applications, such as those in Machine Learning (ML) and genomics.
This happens because such applications require continuous data movement between
the compute and memory units in such systems, making memory the system bottle-
neck. This dilemma, also known as the data movement bottleneck, only worsens as
this performance and energy consumption gap between two units grows and the sizes
of applications’ data working set increase. For example, previous works in 2013, 2014,
and 2018 [40–42] report that data movement accounts for 35%, 40%, and 62% of the total
system energy in various such workloads, respectively.

To alleviate data movement bottleneck, recent works prompt re-examining an old
idea, interchangeably called Processing-In-Memory (PIM) or Computation-In-Memory
(CIM). The key idea behind CIM is to place some form of computing capability near or
inside memory where the data is stored. This can be inside the memory chips, in the

1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS

1

9

memory controllers, within the caches, or in the logic layer of 3D-stacked memories.
CIM is a computational paradigm, and architectures that utilize CIM (i.e., CIM archi-
tectures) can potentially resolve some of the problems discussed in the von-Neumann
architecture by reducing or completely eliminating the data movement between where
the computation is performed and where the data is stored.

Note that the idea behind CIM architectures has been around in the field for more
than five decades [43–61]. Historically, prior endeavors were not widely adopted due
to three main reasons. (1) Challenges associated with combining processing units with
conventional main memories (i.e., DRAM), (2) the memory scaling issues prevalent in
contemporary technology and applications, and (3) the less significant impact of data
movement of traditional applications constraints on system expense, energy, and per-
formance.

However, as we discussed before, the new requirements of modern applications and
advancements in contemporary memory architectures, such as the 3D-stacked combi-
nation of logic and memory or emerging memory technologies such as memristors, an
array of CIM architectures have been investigated in recent studies for various applica-
tions [42, 62–99].

Moreover, looking at it from a technology viewpoint, emerging (memory) technolo-
gies, such as memristive devices and circuits based on integrated photonics, hold the
promise to supplant conventional memory systems, thereby dealing with or mitigating
the problems highlighted earlier. The primary technologies in the memristive sphere are
phase change memory (PCM), spin-transfer torque magnetic random-access memory
(STT-MRAM), and resistive random-access memory (ReRAM). Unlike traditional mem-
ories, which use the presence or absence of charge to represent data, these devices de-
note data as varying resistance levels, making them non-volatile compared to SRAM-
based cache and DRAM-based primary memory. This property lowers the memory’s
static power consumption, thereby addressing the leakage wall. Regarding physical size,
memristors are compact compared to SRAM but align with the size of DRAM or flash
memories. Yet, some types of memristive technology permit the storage of multiple bits
in a single device, which effectively increases the density. The read and write latency of
these devices aligns with that of DRAM and is notably faster than flash memory. Note
that even though these devices lag behind SRAM and DRAM regarding endurance and
programming energy, they still outperform Flash memories [100–102]. Lastly, as the fab-
rication processes are still under development, these devices are subject to various im-
perfections, which may potentially lower their reliability. Numerous research efforts are
currently underway to rectify the inconsistencies and non-idealities found in these de-
vices [103, 104].

Therefore, the importance of revisiting CIM in the current times cannot be over-
stated, using a rejuvenated viewpoint that embraces innovative methodologies and con-
cepts. This should involve the utilization of the latest memory technologies, considera-
tion of practical systems and applications, and an attitude oriented towards simplifying
its assimilation and practicality.

1

10 1. INTRODUCTION

1.3. PROBLEM DISCUSSION
No matter the strategy implemented for a CIM design for better performance and/or en-
ergy efficiency of a modern application, significant practical hurdles exist that both sys-
tem designers and developers must confront to facilitate its universal acceptance within
the computational field and across varied workload domains. Below, we list some open
questions and research opportunities at various level of the problem stack that needs to
be resolved before CIM adoption for modern applications becomes a reality.

• Circuit Level. CIM fundamentally relies on the connectivity between memory de-
vices. To date, previous works [87, 105–107] propose numerous array structures
and circuit designs that enable distinct basic operations or facilitate the execution
of the same operations in varying manners. Basic operations, such as logical ones,
serve as the foundational elements for more complex operations, and their effi-
ciency dramatically impacts the entire system. In addition to the array structure
and operations, the inclusion of various analog and digital peripheral circuits is
necessary to utilize computation within a memory array fully. However, the design
of circuits for CIM is still in its infancy, necessitating further research to discover
the most effective design solutions.

• Architecture Level. A CIM architecture also requires consideration of numerous
architectural factors due to their potentially substantial impact on the system’s
performance, energy consumption, size, and even accuracy (at the application
level). Although some previous works [69, 108–110] touch base on these matters,
more research is required to find the most optimal solutions for managing mem-
ory arrays, a potentially specific instruction set dedicated to controlling CIM op-
erations, and tailored communication networks for the system’s needs to manage
data across multiple memory arrays that might be involved in one application.

• Compiler Level. While CIM circuits and architectures can facilitate certain oper-
ations within memory arrays, there is a need for a compiler that can dissect an
application into sections that can be performed within the memory, breaking it
down into operations and instructions the memory can understand. In addition,
the manner in which data is arranged in the memory, considering the system’s re-
quirements and constraints, can have a significant effect on the system’s metrics.
Since CIM itself is still in its early developmental stages, optimized compilers for
CIM systems have only received minimal attention up to this point [111–113].

• Algorithm and Application Level. A CIM design only suits specific algorithms and
applications that are data-intensive, and their operations are supported by the un-
derlying architectures and circuits. Some previous works [108, 114, 115] already
target this research direction. However, extensive research is needed to profile the
applications, find the suitable ones for a CIM design, and then make the necessary
adjustments (e.g., changes to the algorithmic, providing support for the necessary
data flow at the architecture and circuit levels, or adjusting the application to tol-
erate the potential accuracy or performance losses due to device non-idealities) to
enable the execution.

1.4. SOLUTION DIRECTION AND RESEARCH TOPICS

1

11

A true CIM design can execute the right application or workload and achieves im-
provements in the application metrics (such as execution time, energy efficiency, etc.)
using a tailored (general or specific) algorithm, compiler, architecture, data flow, circuit,
and device.

1.4. SOLUTION DIRECTION AND RESEARCH TOPICS
In this dissertation, we seek to investigate (1) acceleration and efficient execution of two
application domains, namely genomics and ML, and (2) a few emerging memory tech-
nologies and circuit and architectural techniques that might benefit us in a CIM design,
having our genomics and ML applications in mind.

We divide the research to be done to achieve these investigations into two steps:

• Identifying and improving the bottlenecked performance of potential kernels in
genomics and ML.

• Exploiting emerging technologies to design a state-of-the-art CIM architecture
that benefits the target kernels with an end-to-end improvement goal in mind.

Through this integrated approach, we aim to drive transformative advancements in
these fields.

1.4.1. IDENTIFY AND IMPROVE BIOINFORMATICS AND NEURAL NETWORK

KERNELS USING CIM
We target two application domains: genomics and ML. The applications in these do-
mains have different functions or kernels in that a designer must be well-versed. Differ-
ent functions may involve different data and control flows and may necessitate diverse
features to be activated in a von-Neumann architecture or a CIM one. To enhance the
efficiency of each function, we first profile them separately and then investigate the op-
timal ways to map them onto the memory. We also evaluate the necessary components
needed alongside the memory array. It is important for a designer to be well-versed in
the applications that can be run on a CIM system using emerging memory technologies.
Gaining a comprehensive understanding of CIM’s principal attributes and a clear per-
spective regarding CIM’s entire breadth is crucial before embarking on its adoption. We
aim to collect pivotal data and distill them to their essence. This process could illuminate
existing design alternatives and the areas that require additional focus. This valuable in-
sight may assist in pinpointing potential future trajectories, such as supported kernels
and their benefits and overheads.

1.4.2. EXPLORING EMERGING (MEMORY) TECHNOLOGIES FOR CIM
Exploring emerging (memory) technologies, such as memristive devices (e.g., PCM and
STT-MRAM) that offer several properties such as non-volatility, compactness, and inher-
ent capability for performing logical operations (e.g., logical AND), or integrated pho-
tonics that offer high frequency and low latency operations is essential for enhancing
the CIM paradigm one step further. We aim to consider multiple of these technologies
and use their unique features to build a CIM design that can beat the SotA alternative in
one or several comparative metrics such as execution time and/or energy consumption.

1

12 1. INTRODUCTION

1.5. THESIS STATEMENT
Our approach is encompassed by the following thesis statement:

CIM can improve the performance of multiple Genomics pipelines and Ma-
chine Learning applications.

To do this, our methods require solving the aforementioned issues with traditional
systems and recent CIM works. Therefore, this dissertation addresses the following open
questions.

• What kernels or pipeline stages of genomics studies or ML applications can benefit
from CIM?

• What is the best memory technology used for such CIM designs?

• What architectures are of potential directions to consider?

• Can we efficiently deploy CIM for our applications using the best memory tech-
nologies?

• What does the term "efficiently" means for each kernel and application domain?

1.6. CONTRIBUTIONS
This dissertation makes the following contributions, addressing the discussed research
topics and embracing the thesis statement:

• Evaluation of CIM potential for accelerating basecalling. We identify an acceler-
ation opportunity for basecalling, the very first computational step in any genome
analysis study. We propose a novel hardware/software co-design framework that
can effectively accelerate the state-of-the-art Deep Neural Network-based base-
calling step on a widely accepted CIM architecture using emerging memristor de-
vices. This framework enables us to, for the first time, to the best of our knowledge,
account for the effects of existing non-idealities in the underlying memristors on
the end-to-end accuracy of an application that requires significant acceleration
but cannot tolerate accuracy loss. We publish this work in [116].

• A pre-alignment filtering algorithm for short read filtering using CIM. We first
identify that SotA pre-alignment filters for short reads are the (new) performance
bottleneck to focus on in a genome analysis pipeline that requires sequence
alignment of short reads. We then establish that even pre-alignment accelerators
on graphics processing units (GPUs) or field-programmable gate arrays (FPGAs)
still do not resolve this performance bottleneck and are themselves limited by
the rate at which the data is being fed to them. We propose a hardware/software
co-designed (HW/SW co-designed) accelerator based on CIM capable of pre-
alignment filtering for short-sequence alignment. We first propose a lightweight
and hardware-friendly filtering algorithm. We then exploit emerging non-volatile
memories as underlying devices for hardware acceleration. We publish this work
under [117].

1.6. CONTRIBUTIONS

1

13

• A CIM architecture for short-read pre-alignment filtering. We profile all the pre-
vious pre-alignment filters for short-sequence alignment and discover that they
share most of their kernels. We propose a CIM architecture capable of handling
these shared kernels. We show that our architecture can accelerate the overall pre-
alignment filtering of short reads by removing the overhead of data movement for
all the essential kernels. We extensively evaluate the architecture for previous pre-
alignment filters. Our design can also support any future filter as long as they also
require similar kernels. We show this by taking our previous filtering algorithm dis-
cussed previously, although it was not involved in our profiling study. We publish
this work in [118].

• An algorithm and CIM architecture for pre-alignment filtering of long reads. We
acknowledge the industry’s move towards sequencing long reads. We devise an
enhanced data handling and architecture to allow pre-alignment filtering for long
reads. Our architecture is based on CIM to take into account that with moving
from long reads to short reads, the data movement increases, which can negatively
affect the performance. We publish this work in [119].

• A high-performance and energy-efficient food profiler using CIM. We pinpoint
two critical sources of inefficiency in SotA profilers currently used for food moni-
toring: (1) requirements for high-end servers with large storage and memory and
(2) random accesses to large working datasets, incurring unnecessary data move-
ment. We propose an end-to-end, hardware/software co-designed food profiling
framework that efficiently profiles species of a food sample. We reduce the food
profiling problem to a multi-object (multi-species) classification problem using
hyperdimensional (HD) computing (HDC) followed by an abundance estimation
step. We propose a CIM accelerator to mitigate the costs of data movement and
shift operations in our HDC solution and simultaneously solve the second prob-
lem of profilers as well. This work has been published in [120].

• A CIM method for k-mer matching and framework for taxonomic profiling. We
build the first hardware/software co-designed framework for taxonomic profiling
that exploits real memristor (i.e., STT-MRAM) devices and the CIM paradigm. We
propose an optimized framework for accelerating Kraken21 that notably improves
execution time and energy consumption of taxonomic profiling with a negligible
area overhead. We achieve this by proposing a memristor-based substrate, called
TL-PIM , that accelerates the bottleneck of Kraken2 (and many other profilers), the
Table Lookup operation. We publish this work in [121].

• A high-performance data mapping for Binary Neural Network using CIM. We ad-
vance SotA CIM accelerators for BNNs by providing a highly parallel data map-
ping that is compatible with any CIM design capable of performing VMM, e.g.,
memristor-based crossbars such as ePCM-based or ReRAM-based ones. Our pro-
posed data mapping is designed with the conventional 1T1R memory crossbar

1Kraken2 is currently the most widely-used and one of the most promising taxonomic profilers based on recent
metagenomics challenges.

1

14 1. INTRODUCTION

structure in mind and is, therefore, compatible with many of the already evolving
crossbar architectures. We publish this in [122].

• A CIM accelerator based on optical phase change material for Binary Neural Net-
work. We propose an oPCM hardware-based CIM implementation incorporating
our discussed optimized data mapping for BNNs. Our accelerator ensures maxi-
mum parallelism through exploring the potential provided by the features of CIM
architecture and the inherent properties of oPCM (via wavelength division mul-
tiplexing (WDM). Our design realizes an order of magnitude improvement in la-
tency/throughput without losing the accuracy of the network. We publish this
in [123].

1.7. THESIS OUTLINE
- This dissertation is organized into fourteen chapters.

Chapter 2 introduces CIM and its classifications, emerging memory technologies,
genomics pipelines, and Neural Network. We first discuss the history of CIM and its
types. We then present a background on two emerging technologies: resistive memory
devices and integrated photonics. We then introduce two application domains that we
believe can benefit from these computing and technological paradigms.

Chapter 3 explores CIM for the acceleration of basecalling, an important step in ge-
nomics pipelines. We first provide a background on what basecalling is and what the
issues are with SotA basecallers. We then propose a hardware/software co-designed
framework to analyze (1) the potential of CIM for basecalling acceleration and (2) strate-
gies to mitigate the possible negative effects of non-idealities. We evaluate the SotA base-
caller on a SotA CIM architecture and provide key suggestions and recommendations for
system designers of future emerging accelerators for basecalling.

Chapter 4 targets CIM acceleration for another step in the genomics pipeline, pre-
alignment filtering. We first introduce pre-alignment filtering, where it exists, and how it
helps the general pipeline. We target pre-alignment of short genomic sequences (called
short reads), as currently, the majority of our genomic data are in the form of short reads.
We then present a lightweight algorithm that is compatible with CIM architecture.

Chapter 5 also targets pre-alignment filtering step. However, in this chapter, we first
profile the existing pre-alignment filters for short reads. We identify the existing kernels
and the ones they share. We also identify data movement as the main bottleneck of these
short-read filters. We finally propose a CIM architecture that not only supports all the
shared kernels of previous filters but also eliminates the data movement overhead. Our
architecture is capable of accelerating the pre-alignment filtering for short reads.

Chapter 6 considers the long-reads for the first time. Knowing that the industry is
moving towards obtaining long reads, this chapter presents a hardware accelerator for
pre-alignment filtering of long reads. Note that due to their size, the architecture and
algorithms discussed in Chapter 4 and Chapter 5 do not directly work for long reads.
We identify data movement as a potential contributor to the execution time of the filter-
ing. We first present a CIM-friendly algorithm to enable long-read filtering. We finally
discussed the corresponding CIM architecture.

Chapter 7 explores CIM for food profiling, one of the possible final applications in a

1.7. THESIS OUTLINE

1

15

genomic pipeline. We first introduce food profiling. We then discuss its importance and
the limitations of current profilers in the industry. We also present some background
on hyperdimensional computing (HDC), a classification method that we found suitable
for our problem. We then propose a platform-independent framework for food profiling
using hyperdimensional computing. This way, we overcome the first problem of current
profilers, which is their massive data structure. We then present a CIM accelerator using
memristors to enable food profiling faster than existing ones.

Chapter 8 introduces a CIM architecture for taxonomic profiling. We first introduce
metagenomics studies and the role taxonomic profilers play in it. We then discuss the
limitations of existing profilers by profiling the SotA taxonomic profiler. We identify data
movement and one single kernel as the key limiters. We propose a CIM design to acceler-
ate the main kernel that constitutes most of the execution time. We then present the first
HW/SW co-designed framework to accelerate taxonomic profiling using a CIM-based
system.

Chapter 9 studies the acceleration of BNNs with CIM architectures. We first present
a background on BNNs. Then, we introduce an efficient data mapping that provides
high parallelization for the required operation in a BNN on any CIM design capable of
performing VMM. Our design uses a conventional 1T1R memory crossbar structure and
requires only the VMM compatibility, which is common in many of the memristor-based
crossbars such as ReRAM-based or ePCM-based ones.

Chapter 10 remains on the topic of BNNs while advancing the CIM accelerator with
other emerging technologies. We first introduce integrated photonics with PCM, which
is commonly known as optical phase change memory (oPCM). We then present an oPCM
hardware-based CIM implementation incorporating the proposed highly parallel data
mapping with only VMM compatibility as its requirement. We exploit oPCM to ensure
maximum parallelism through exploring the potential provided by the features of CIM
architecture and the inherent properties of oPCM (via wavelength division multiplexing
(WDM).

Chapter 11 summarizes this dissertation and presents future research directions.

2
BACKGROUND AND

STATE-OF-THE-ART

This chapter presents the necessary background for our thesis in three main groups. First,
we introduce the Computation-In-Memory (CIM) paradigm, a classification of CIM de-
signs, and the architecture of a CIM tile. Subsequently, we discuss some potential emerging
memory technologies for CIM designs. Here, we present a theory of memristor devices and
a detailed comparison of three examples of emerging memories with traditional ones. We
then present the main crossbar structures for memristor-based CIM designs. We also touch
base on the fundamentals of using integrated photonics with memristors in using optical
phase change memory-based systems. After that, we discuss a few primitive functions sup-
ported by emerging memory technologies and CIM architectures. Second, we discuss two
main groups of modern applications, namely genomics and Machine Learning. We dis-
cuss different computational pipelines in genomics and the various steps and kernels that
exist in them. We also provide more motivational data for the data explosion in these
applications and some essential background for Binary Neural Networks. Third, we dis-
cuss the state-of-the-art CIM designs and simulations, from general-purpose proposals to
application-specific ones.

17

2

18 2. BACKGROUND AND STATE-OF-THE-ART

2.1. COMPUTATION-IN-MEMORY (CIM)
Presently, the prevalent von-Neumann architectural paradigm in our computational in-
frastructure contributes to performance loss and higher energy consumption because of
the excessive data transfers it necessitates. This design principle, as depicted in Fig. 1.3,
partitions the processing and memory/storage components, with the two being inter-
connected through energy-intensive links. As an upshot of this setup, data is perpetually
relayed back and forth between these units to conduct computations.

The process of manipulating data that resides in memory requires significant time
and energy. The Central Processing Unit (CPU) or an associated accelerator initiates
the sequence by dispatching a request to the memory controller. This controller sub-
sequently interacts with the memory module. Following this, data is retrieved from the
memory, routed back to the memory controller, and deposited in the CPU’s cache and
registers, and only then can the CPU perform computations on it.

Currently, only the CPU or respective accelerators possess computational capabili-
ties, leaving all other components relegated to roles of data storage and transfer, with no
computational functionality. This disparity results in a loss of performance and energy
efficiency. A recent study [42] discloses that this processor-memory split is responsible
for over 62% of the total system energy consumption across four key mobile consumer
workloads, thereby underscoring the urgency for a more holistic computational strategy
that reduces energy squandering.

At least five factors play a part in the performance and energy complications linked
to data transfers between the processor and memory, further accentuating the adverse
effects of data movement within our computational systems.

1. The narrow width of the off-chip bus between the memory controller and main
memory. This limitation reduces bandwidth and increases latency, hindering the
concurrent execution of memory requests.

2. Complex mechanisms like multi-level cache hierarchies and latency toler-
ance/hiding mechanisms that we developed to tolerate main memory data access
latency. Though efficacious for traditional applications, these approaches bear
high costs in terms of chip area, energy, and latency, further complicating the
architectural layout of the system.

3. Questionable caches regarding their efficiency. Many instances reveal unused data
in caches, resulting in wasted hardware area and memory bandwidth. Modern
workloads with their diverse access patterns often render these caches inefficient
or even redundant, thereby exacerbating the energy wastage in systems that are
centered around the processor.

4. Random memory access patterns in modern applications, such as graph process-
ing and sparse linear algebra, that struggle with inefficiency in caches, a main
memory bus, and the main memory itself. The stochastic nature of these random
accesses also undermines the effectiveness of prefetching mechanisms.

5. The interconnects between the processor and main memory are long and energy-
consuming, imposing additional latency to every data access and consuming sig-

2.1. COMPUTATION-IN-MEMORY (CIM)

2

19

nificant energy in moving data to/from the DRAM memory. Moreover, the latency
and energy consumption of these interconnects do not scale favorably with ad-
vancements in technology node generations, which only serves to compound the
cost associated with data movement.

The issues identified largely stem from the prevailing processor-centric design ap-
proach. To mitigate this ongoing cycle of performance deterioration and energy ineffi-
ciency, it is imperative to transition towards a more data-centric design principle.

The rising gap between processing and memory/communication technologies has
resulted in communication costs outstripping computation costs in terms of energy con-
sumption. The energy required for main memory access is roughly 115 times that of an
arithmetic operation [124]. Consequently, data movement is responsible for 40%, 35%,
and 62% of the total system energy in scientific, mobile, and consumer applications, res-
pectively. This excessive energy consumption significantly hampers both efficiency and
performance across various computing platforms [124, 125].

The root causes of the low performance, energy inefficiency, and heightened system
complexity can be traced back to the processor-centric or von-Neumann design model.
To counter these challenges, a fundamental change in design philosophy is needed, tran-
sitioning from a processor-centric to a data-centric approach. This includes 1) reduc-
ing data movement during computational tasks and 2) enabling computation to occur
where the data resides instead of being confined to the processor. To enact this shift,
it is crucial to dismantle the traditional divide between computing and memory units,
leading to the emergence of a novel model known as Processing-In-Memory (PIM) or
Computation-In-Memory (CIM). From now on, we only use the term CIM.

2.1.1. CIM DESIGNS CLASSIFICATION BASED ON COMPUTATION LOCATION
Fig. 2.1 demonstrates the four potential locations where a computational result can be
generated, effectively creating four classes for computing. If the result is produced out-
side of the memory core, we call the class Computation-Outside-Memory (COM). In
such scenarios, the computation can either occur within additional logic circuits inside
the memory System-in-Packages (SiP) or, akin to traditional von-Neumaan architecture,
within computational cores (CPU or GPU). These instances are categorized as COM-
Near (COM-N) or COM-Far (COM-F), respectively. An instance of COM-N is represented
by 3D-Stacked Memory, where extra logic is integrated into the memory system to facil-
itate computation. The other two classes are (1) CIM-Array (CIM-A), in which the com-
putation result is generated within the memory array, and (2) CIM-Periphery (CIM-P), in
which the result of the computation is generated within the memory periphery.

CIM-A designs typically offer a few key advantages:

• They enable maximum bandwidth for data "transfer" between the computation and
storage units.

• They enable high levels of parallelism.

• They can facilitate the logic cascading of universal functions.

However, these designs also exhibit some common limitations, such as:

2

20 2. BACKGROUND AND STATE-OF-THE-ART
Four Locations for Computations

CPU
Memory Core

Bank Group
Bank Bank

High/Max Bandwidth

Bank

Extra Logic Circuit

COM-Far (COM-F) Computational Cores

Peripheral Circuitry

FilterFuse
R-Logic Units

1 2

BankBankBankMemory Array

Peripheral Circuitry

Memory System
in Package

COM-Near (COM-N)

CIM-Periphery (CIM-P)

CIM-Array (CIM-A)

High Bandwidth

Low Bandwidth

Figure 2.1: Four locations for computation [126].

• Frequent write operations can cause endurance and energy consumption issues.

• The memory array and its controller necessitate considerable design efforts.

• Performance can be hampered due to high latency associated with device program-
ming and logic cascading needed for complex functions.

Similarly, CIM-P designs typically come with advantages of their own:

• They do not compromise the endurance of the memory array or the state of the stored
data.

• They require less redesign effort for the memory array.

• They allow high to maximum bandwidth, depending on the complexity and area of
the periphery.

However, they also present some common drawbacks:

• Performance may be hampered if due to shared peripheral resources such as sense
amplifiers (SAs).

• Cascading functions cannot be achieved without read/write operations.

Existing literature based on COM-N, CIM-P, and CIM-A are all known as works in
the CIM (PIM) paradigm. However, when we speak of CIM in this thesis, we mainly
target those that fall into the category of CIM-A and CIM-P. Therefore, to understand
the potentials of these two designs more deeply, in the following we discuss the memory
crossbar and its periphery.

2.1. COMPUTATION-IN-MEMORY (CIM)

2

21

2.1.2. ILLUSTRATION OF GENERIC CIM TILE
Here, our objective is to provide a clear delineation of the data movement in an abstract
CIM tile and its capability to generate intricate functions.

Fig. 2.2 presents a generalized overview of a CIM tile, also known as CIM array. A CIM
tile is composed of a memory crossbar, along with its digital and analog peripherals.

CIM tile is designed to accept digital data and instructions [127], alternatively re-
ferred to as control signals. Internally, a controller directs all circuit operations in line
with these instructions. Data traverses four stages: 1) Input processing fi n , 2) Crossbar
array fX bar , 3) Sensing fsens , and 4) Output processing fout . To this date, innovative cir-
cuit designs have been proposed to broaden the array of functions feasible at each stage.
When implementing an application using CIM tiles, the designer handpicks a function
and the corresponding circuit for each stage. Consequently, we end up with an acceler-
ator tailored to a particular application. So far, research on memristor-based CIM has
primarily concentrated on crafting accelerators that cater to specific applications. Yet,
to attain a design as universal as possible, there is a need to support an extensive range
of functionalities at each stage concurrently, as opposed to distinct circuits for individ-
ual functions. The forthcoming discussion will elaborate on the basic functionalities
currently available at these four stages. Recognizing these functions empowers us to
construct more elaborate functionalities within the CIM-tile.

MEMRISTOR
CROSSBAR ARRAY

OUTPUT PROCESSING

D
ig

it
al

 in
p

u
t

Analog outputs

Digital outputs

CONTROLER

In
st

ru
ct

io
n

s

IN
P

U
T

P
R

O
C

ES
SI

N
G

V fin()

fin(V)

fxbar(fin(V))

fxbar()

fsens()

fout()

fout(fsens(fxbar(fin(V))))

D2D or D2A D2A or A2A

A2D

D2D

Digital
input

fin() fxbar()

fsens()

fout()

Digital
outputs

Figure 2.2: Generalized CIM tile/array [128] for computation in four steps: (1) input pro-
cessing, (2) crossbar array processing, (3) sensing, and (4) output processing

2.1.3. POTENTIAL EMERGING TECHNOLOGIES FOR CIM
MEMRISTORS

Prior to the 1970s, the core components of circuitry were resistance (R), capacitance (C),
and inductance (L), linking the key units of electricity: charge, current, voltage, and flux.
Resistance correlates current with the rate of change in voltage, expressed mathemati-

2

22 2. BACKGROUND AND STATE-OF-THE-ART

cally as d v = Rdi . Similarly, capacitance represents the connection between charge and
voltage, depicted as d q = cd v . The third element, inductance, is a bridge between flux
and current, illustrated by dΦ = Ldi . Fig. 2.3 demonstrates these elements and their
relations to each other.

songs worked like a charm. So it seems that
the male forms of fru fine-tune these neurons
in the male to perfect his song.

Even if it is not well tuned, a song circuit is
present in females. So what makes them hide
their singing talent? The selective activation of
thoracic song circuits in males but not females
is likely to be controlled by some subset of the
fru neurons in the brain. Indeed, classic studies
of gynandromorph flies (which have a mixture
of male and female nervous tissues) indicated4
that certain brain regions must be ‘male’ to trig-
ger the song. In this context, it is interesting to
note that several pairs of neurons descending
from the brain to the thorax are fru-positive1.
These neurons are prime candidates to convey
sex-specific commands to the thoracic song
circuits.

The picture that emerges from these studies
is that the circuitry for song generation, like
that for pheromone processing9,10, is largely
shared between the sexes. The crucial sex dif-
ferences seem to lie somewhere in between
these bisexual input and output circuits, in
dimorphic ‘decision-making’ centres in the
brain. A similar design has recently been pro-
posed11 for the circuits that regulate sexual
behaviour in mice: in females unable to per-
ceive certain olfactory cues, male-like sexual
behaviour results, presumably reflecting the
activation of otherwise dormant circuits for
these male behaviours in females. This modu-
lar and bisexual design affords considerable
flexibility, which may even be exploited within
the animal’s own lifetime. Some species of fish,
for example, change their sexual behaviour in
response to social cues12. They may do this
by simply resetting a few critical switches in
the decision-making centres of an otherwise
bisexual nervous system.

There is great excitement in neuroscience
these days, as genetic tools are used to anatomi-
cally and functionally dissect the neural circuits
that mediate complex animal behaviours13.
Clyne and Miesenböck’s work1 beautifully
illustrates the essential role photoactivation
methods will have in this endeavour. As bio-
chemists and biophysicists have long appreci-
ated, surprising insights come when one can
address questions of causality as well as cor-
relation, reducing a system to its essentials and
pushing it beyond its normal operating range.
The mating behaviours of the humble fruitfly
seem to be particularly amenable to this type
of reductionist approach. ■

Jai Y. Yu and Barry J. Dickson are at the Research
Institute of Molecular Pathology, Dr.-Bohr-Gasse
7, 1030 Vienna, Austria.
e-mail: dickson@imp.ac.at

1. Clyne, J. D. & Miesenböck, G. Cell 133, 354–363
(2008).

2. Baker, B. S., Taylor, B. J. & Hall, J. C. Cell 105, 13–24
(2001).

3. Demir, E. & Dickson, B. J. Cell 121, 785–794 (2005).
4. Manoli, D. S. et al. Nature 436, 395–400 (2005).
5. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L. & Dickson,

B. J. Cell 121, 795–807 (2005).
6. Lima, S. Q. & Miesenböck, G. Cell 121, 141–152 (2005).

7. Zemelman, B. V., Lee, G. A., Ng, M. & Miesenböck, G.
Neuron 33, 15–22 (2002).

8. Popescu, I. R. & Frost, W. N. J. Neurosci. 22, 1985–1993
(2002).

9. Kurtovic, A., Widmer, A. & Dickson, B. J. Nature 446,
542–546 (2007).

10. Datta, S. R. et al. Nature 452, 473–477 (2008).
11. Kimchi, T., Xu, J. & Dulac, C. Nature 448, 1009–1014

(2007).
12. Shapiro, D. Y. Science 209, 1136–1137 (1980).
13. Luo, L., Callaway, E. M. & Svoboda, K. Neuron 57, 634–660

(2008).

ELECTRONICS

The fourth element
James M. Tour and Tao He

Almost four decades since its existence was first proposed, a fourth basic
circuit element joins the canonical three. The ‘memristor’ might herald a
step-change in the march towards ever more powerful circuitry.

We learn at school that there are three funda-
mental two-terminal elements used for circuit
building: resistors, capacitors and inductors.
These are ‘passive’ elements, capable of dissi-
pating or storing energy — but not, as active
elements are, of generating it. The behaviour
of each of these elements is described by a sim-
ple linear relationship between two of the four
basic variables describing a circuit: current,
voltage, charge and magnetic flux.

As the electrical engineer Leon Chua
pointed out1 in 1971, for the sake of the logical
completeness of circuit theory, a fourth passive
element should in fact be added to the list. He
named this hypothetical element, linking flux
and charge, the ‘memristor’ (Fig. 1). Almost 40
years later, Strukov et al.2 (page 80 of this issue)
present both a simple model system in which
memristance should arise and a first, approxi-
mate physical example.

So what? Beyond its fundamental interest,
the excitement lies in the possibility that the
memristor could markedly extend how we can
make electronic circuits work. In doing so, it
might provide us with a way to keep on expo-
nentially increasing computing power over
time — thus maintaining something approxi-
mating to Moore’s law, the rule-of-thumb to
that effect that has been valid over the past few
decades.

But before we get ahead of ourselves, some
basics. According to the theory, a memristor
is essentially a device that works under alter-
nating current (a.c.) conditions1 in which the
applied voltage varies sinusoidally with time.
As the polarity of this voltage changes, the
memristor can switch reversibly between a less
conductive OFF state and a more conductive
ON state. Crucially, the value of the current
flow through the memristor (the measure of
its resistance) does not in the second half of the
cycle retrace the exact path it took in the first.
Because of this ‘hysteresis’ effect, the memris-
tor acts as a nonlinear resistor the resistance
of which depends on the history of the voltage
across it — its name, a contraction of ‘memory
resistor’, reflects just that property.

The memristor is a special case of a more

general class of nonlinear dynamical devices
called memristive systems3. Whether physi-
cally realized or not, since memristance was
first proposed the memristor has been success-
fully used as a conceptual tool for analysing sig-
nal processing and for modelling the workings
of, for instance, electrochemical and nonlinear
semiconductor devices.

Even so, the concept has not been widely
adopted, possibly because in normal micro-
scale chips the memristance is minute. But
everything changes on the nanoscale, because

Figure 1 | Complete quartet. There are six
independent permutations of two objects from
a bank of four. Thus, six mathematical relations
might be construed to connect pairs of the four
fundamental circuit variables (current, i; voltage,
v; charge, q; magnetic flux, φ)1. Of these, five
are well known. Two arise from the definitions
of two of the variables concerned: charge and
magnetic flux are the time integrals of current
and voltage (dq = i dt and dφ = v dt), respectively.
The other three lead to the axiomatic properties
of three classic circuit elements: resistance, R,
is the rate of change of voltage with current;
capacitance, C, that of charge with voltage; and
inductance, L, that of flux with current. The sixth
relation leads to a fourth basic circuit element,
which had been missing. Strukov et al.2 have now
found it: the memristor, with memristance, M,
defined as the rate of change of flux with charge.
(Figure adapted from refs 1 and 2.)

Resistor
dv = Rdi

Capacitor
dq = Cdv

Inductor
dj = Ldi

Memristor
dj = Mdq

q

v

i

j

dj
 =

 v
dt

dq = idt

42

NATURE|Vol 453|1 May 2008NEWS & VIEWS

Figure 2.3: Four fundamental circuit elements and their relation [129].

In the pivotal year of 1971, Leon Chua proposed a new fundamental electrical com-
ponent, memristors. This unique element established a link between magnetic flux and
charge. Mathematically, this relationship is represented in Equation 2.1. Unlike the re-
sistor (R), the memristor presents a dynamic interplay between current and voltage. This
means that its current behavior depends not merely on voltage and current but also on
the memristor’s specific state.

M(q) = dΦ/d q => M(q(t)) = (dΦ/d t)/(d q/d t) =V (t)/I (t) (2.1)

Equation 2.2 presents the memristor’s behavior as state-dependent Ohm’s law, where
the resistance is an interplay of the state variable x, voltage, and current. Here, R is the
memristor’s resistance function.

M(q) = dΦ/d q => M(q(t)) = (dΦ/d t)/(d q/d t) =V (t)/I (t) (2.2)

Equation 2.3 presents the state of the memristor, where the rate of change of the state
variable over time depends on the state variable itself, voltage, and current.

d x/d t = f (x,V , I) (2.3)

The first tangible manifestation of a memristor was reported by HP labs in 2008 [130].
The memristive device, a two-terminal component, demonstrated a characteristic
‘pinched’ hysteresis loop at the origin of the current-voltage (I-V) graph. This pinched
hysteresis loop indicates a resistance shift contingent on the history of resistance and

2.1. COMPUTATION-IN-MEMORY (CIM)

2

23

the applied voltage or current. Essentially, it signifies that variations in voltage (or
current) can instigate changes in the state of resistance.

Fig. 2.4 presents an overview of switching mechanisms of bipolar and unipolar mem-
ristors. Bipolar memristors switch between low and high resistance states by applying a
positive and negative voltage, respectively. Contrarily, unipolar memristors operate in-
dependently of the polarity of the programming voltage and respond solely to its mag-
nitude.

Bipolar and Unipolar

(a) Bipolar Switching (b) Unipolar Switching

Figure 2.4: Memristor switching dynamics for (a) bipolar and (b) unipolar devices [131,
132].

Various technologies and materials are available for the construction of memristor
devices. The three leading memristors are:

• Resistive Random-Access Memory (ReRAM). Resistive random-access memory
(ReRAM or RRAM) devices are structured as a metal-insulator-metal stack. In a
bipolar ReRAM, the act of setting and resetting is governed by the shift in the polar-
ity of the programming voltage (for instance, 2V), which either forms or dissolves
the conductive filament. For non-invasive reading of the device, a lower voltage
(such as 0.2V) is used, and the current (or voltage) running through (or across) the
device is monitored. Programming the device demands a higher voltage/current
and extended latency [113]. These devices can therefore be in two states: high
resistance state (HRS) and low resistance state (LRS).

• Phase Change Memory (PCM). Phase change memory (PCM) devices date back to
the 1960s. A PCM device operates based on the attribute of certain materials, for
instance, Ge2Sb2Te5. These materials are capable of undergoing a rapid and re-
versible shift from a highly resistive amorphous phase to a conductive crystalline
phase, thanks to Joule heating. A typical PCM device features a mushroom-like
shape, wherein the lower electrode confines heat and current. This confinement
leads to a near-hemispherical form of the amorphous region when in a high re-
sistance state (HRS). The transition to a low resistance state (LRS) is achieved by
crystallizing the amorphous region [133].

• Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM). The data
storage element in spin-transfer torque magnetic random-access memory (STT-
MRAM) is the magnetic tunnel junction (MTJ), which encodes one bit of data into

2

24 2. BACKGROUND AND STATE-OF-THE-ART

two bi-stable magnetic states. The MTJ fundamentally comprises two ferromag-
netic layers separated by an ultra-thin dielectric tunnel barrier (TB). The top fer-
romagnetic layer, referred to as the free layer (FL), allows for the magnetization
to be altered by the application of a spin-polarized current. Conversely, the mag-
netization of the bottom ferromagnetic layer, or the pinned layer (PL), is rigidly
pinned in a specific direction. Consequently, the magnetization of the FL can be
either parallel (P state) or anti-parallel (AP state) to the PL [134], capturing the high
resistance state (HRS) and low resistance state (LRS) states.

Fig. 2.5 demonstrates a pictural presentation of LRS and HRS in ReRAM, PCM, and
STT-MRAM.

Device in
LRS

Device in
HRS

TiN

Oxygen
vacancies

Pt

TiN

Pt

SrTiO3

SrTiO3

Device in
LRS

Top electrode

Device in
HRS

Top electrode

Bottom
electrode

Crystalline

Amorphous

Free Layer

 Dielectric

Pinned Layer

Free Layer

 Dielectric

Pinned Layer

Device in
LRS

Device in
HRS

(a) (b) (c)

Devices in LRS:

DeviceS in HRS: SrTiO3

Top electrode

Bottom
electrode

Crystalline

Amorphous

Free Layer

 Dielectric

Pinned Layer

Free Layer

 Dielectric

Pinned Layer

(a) ReRAM (b) PCM (c) STT-MRAM

Pt

TiN

SrTiO3

Pt

TiN

Oxygen
vacancies

Top electrode

Figure 2.5: LRS and HRS of (a) ReRAM, (b) PCM, and (c) STT-MRAM.

Table 2.1 presents a comparison of memristors as emerging memory technologies
with conventional memories. Access time indicates the speed at which data can be
stored and retrieved (read and write latency). Cycling endurance denotes the count of
times a memory device can undergo programming (or switching). The access energy
quantifies the energy expended to read from or write into the device. The notation F
signifies the smallest feature size.

Conventional Memories Emerging Memories
SRAM DRAM Flash ReRAM PCM STT-MRAM

Size (F 2) 120-150 10-30 10-30 10-30 10-30 10-30
Volatality Yes Yes No No No No

Read latency ∼1 ns ∼3 ns ∼100 ns ∼10 ns ∼10 ns ∼5 ns
Write latency ∼1 ns ∼10 ns ∼1 ms ∼10 ns ∼10 ns ∼5 ns
Write energy ∼fJ ∼10 fJ ∼100 pJ ∼1 pJ ∼10 pJ ∼1 pJ
Endurance ∼ 1016 ∼ 1016 ∼ 104 −106 ∼ 107 ∼ 1012 ∼ 1015

Scalability Medium Medium Medium High High High

Table 2.1: Comparison of conventional and emerging memories [102, 135, 136].

From Table 2.1, we made three key observations. First, emerging memory technolo-
gies offer high-density storage. Assuming these technologies can support multi-bit stor-
age, their density could surpass that of conventional memory technologies. Second,

2.1. COMPUTATION-IN-MEMORY (CIM)

2

25

unlike SRAM and DRAM, emerging memory technologies are non-volatile, leading to
lower static energy consumption. They operate at lower voltage levels than flash mem-
ory, making them suitable for embedded applications. While their read and write times
are inferior to SRAM, they are comparable to DRAM and significantly better than Flash.
Third, The endurance of emerging memories trails slightly behind volatile memories but
is comparable to, and even exceeds, Flash memory.

Note that, unfortunately, emerging memories often struggle with high programming
energy. This factor is the primary reason why researchers frequently use these devices
for applications where frequent reprogramming is not required. Moreover, memristors
typically show non-ideal behaviors that pose substantial challenges in the realm of de-
pendable computing. These non-ideal behaviors primarily originate from fabrication
imperfections in the device and inaccuracies in programming. These non-idealities can
be briefly summarized below:

• Non-zero Gmi n error. In memristors, varying resistance levels are used to encode
information. For instance, the logical value ‘0’ could be assigned to either a high
or low resistance level. Regardless of the resistance level, there would be a cur-
rent that passes to the sensing circuit. This means that even when a memristor
represents a digital zero with a high resistance level, a non-zero output current is
generated when a non-zero input voltage is applied. This characteristic introduces
complexities when executing mathematical computations with memristor devices
[137].

• Conductance drift. The conductance values of memristor devices are subject to
change over time. This alteration can be triggered even by the recurring reading of
the device. As a result, to restore its initial state, the device necessitates reprogram-
ming after a certain duration. Read disturb is a notable form of conductance drift
in which a read operation can cause the real value stored in the device to change
inadvertently.

• Programming Noise. Theoretically, memristors can flip between specific conduc-
tance levels, each characterized by distinct values. However, actual scenarios ex-
hibit each level presenting a spectrum of conductance values, typically following
a Gaussian distribution. The correlation between the variability in programming
voltage (or current) and the programmed value is significant. Memristors pos-
sessing high conductance levels face diminished noise margins between the levels.
Consequently, the damaging effects of programming noise become more severe.
This implies that employing a high-resolution memristor cell poses a considerable
challenge to a system regarding its precision and functionality, making it a signifi-
cant concern.

• Endurance and Retention. Memristor devices face endurance challenges, also
known as the aging problem, arising from the damaging effects of the program-
ming process. For instance, in ReRAM devices, this aging could be attributed to
alterations in oxygen vacancies induced by oxygen diffusion. Such endurance-
related concerns limit the frequency at which these devices can be reprogrammed,

2

26 2. BACKGROUND AND STATE-OF-THE-ART

making memristors more suitable for applications not necessitating repeated re-
programming. At present, memristor devices demonstrate endurance exceeding
106. Furthermore, the data retention span for memristor devices can extend to
approximately a decade [138].

• IR-drop. IR-drop arises due to the resistance encountered by electrical wires. The
farther the memristor is from its driver, the greater the impact of this wire resis-
tance. Consequently, there is a reduction in the voltage necessary for program-
ming and reading operations, diverging from its original value. This deviation can
lead to a memristor being programmed with incorrect values (a form of program-
ming noise) or inaccurate values being extracted from the device during a reading
operation.

When memristor devices are placed within a crossbar configuration, they can serve
as storage units and provide additional in-memory functionalities and enable CIM.
Fig. 2.6 captures a few widely-used and promising crossbar structures proposed by
previous works that we briefly discuss below:

• 1R crossbar array. In a 1R crossbar array, each cell comprises a single memris-
tive device (1R). The individual cells are accessed via wordline (WL) and bitline
(BL). This specific array arrangement delivers high density relative to alternative
structures. To read a device, we initiate the designated WL with ‘Vr ead ’ while the
remaining WLs are grounded. Consequently, the values of all memristors in the ac-
tivated row are read by monitoring the current flow in the bitlines. Despite its ben-
efits, this design is hampered by the issue of sneak path current. As also demon-
strated in Fig. 2.6-(a), the current in the bitlines could potentially leak through
other memristors in the non-active rows. As a result, the current sensed by a sense
amplifier may not accurately represent the values stored in the memristors. The
programming process of a 1R crossbar array has two steps: (1) initialization and
(2) writing. During initialization, the devices in a chosen row are reset to HRS, cor-
responding to logic ‘0’, by applying V DD to the WL and grounding all the BLs. In
the writing phase, the ground is applied to the selected WL, and V DD is applied
only to those BLs intending to program their memristor to LRS, representing logic
‘1’. For the non-selected WLs, a 1/2(V DD) voltage is applied to prevent the non-
selected devices from switching. In this process, the voltage across the selected
device in the first column is V DD (i.e., V DD>Vset), while the voltage across the de-
selected device in the second column is V DD−V DD/2 (i.e., V DD−V DD/2<Vset).

• 1T1R common source-line crossbar array. To mitigate the issue of sneak path
current in the 1R crossbar array, the 1t1R structure pairs an access transistor with
each memristor device as shown in Fig. 2.6-(b). In this structure, the memristors
in a row are connected by a common source-line (SL). To read a memristor’s value,
we apply V DD to its associated wordline to activate the access transistor. Further-
more, Vr ead is applied to the source-line, and the current (or voltage) is detected on
the bitline. To simultaneously program all the memristors located in a single row,
we require two distinct voltage levels; V DD and 2V DD . The source-line is driven
by V DD , and depending on whether we aim to set the device to LRS (logic ‘1’) or

2.1. COMPUTATION-IN-MEMORY (CIM)

2

27

...

...

BL1 BL2

WL1

WL2

SL1

SL2 ...

...

.
.

.

.
.

.

.
.

.

.
.

.

...

...

BL1 BL2

WL1

WL2 ...

...

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

...

...

BL1 BL2

Vread

GND

...

...

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

SA or A/D converter

Array structure Read operation Write operation

...

...

BL1 BL2

...

...

.
.

.

.
.

.

.
.

.

.
.

.

VDD

GND

Vread

SA or A/D converter

Sneak path

...

...

BL1 BL2

WL1

WL2

SL1 SL2

...

...

.
. .

.

.
.

.
.

...

...

BL1 BL2

...

...

.
. .

.

.
.

.
.

VDD

GND

Vread Vread

SA or A/D converter

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .
...

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

...

...

BLbBL BLbBL

WL1

WL2

SL1

SL2

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .
...

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

...

...

BLbBL BLbBL

VDD

GND

Vread

SA or A/D converter

(a) 1R

(b) 1T1R
(common source-line)

(c) 1T1R
(dual bit-line)

(d) 2T2R

...

...

VDD

GND

VDD/2

...

...

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

GND

‘1’ ‘0’ ...

...

VDD

GND

VDD/2

...

...

.
.

.
.

.
.

.
.

GND

‘1’ ‘0’

...

...

...

...

.
.

.

.
.

.

.
.

.

.
.

.

VDD

VDD

2VDD GND

‘1’ ‘0’

GND

...

...

...

...

.
.

.

.
.

.

.
.

.

.
.

.

VDD

VDD

2VDD GND

‘1’ ‘0’

GND

...

...

...

...

.
. .

.

.
.

.
.

VDD

GND

VDDGND VDD GND

‘0’‘1’
...

...

...

...

.
. .

.

.
.

.
.

VDD

GND

VDDGND VDD GND

‘0’‘1’

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .
...

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

.
.

.
.

. .

...

...

VDD

GND

2VDD 2VDD

VDD

GND GND

‘1’ ‘1’‘0’ ‘0’

.
.

.
.

. .

.
.

.
.

. .
...

.
.

.
.

. .

.
.

.
.

. .

...

...

VDD

GND

2VDD 2VDD

VDD

GND GND

‘1’ ‘1’‘0’ ‘0’

Figure 2.6: Prevalent crossbar structures and their functioning during read and write
processes: (a) 1R passive array, (b) 1T1R common source-line array, (c) 1T1R dual bitline
array, and (d) 2T2R array structure.

2

28 2. BACKGROUND AND STATE-OF-THE-ART

HRS (logic ‘0’), 2V DD or GN D is imposed on the bitlines, respectively. This struc-
ture is particularly suited for Vector-Matrix-Multiplication (VMM) operations.

• 1T1R dual bitline crossbar array. In a 1T1R dual bitline crossbar array (Fig. 2.6-
(c)), an access transistor is still assigned to each memristor device. However, the
memristors collectively use the source-line within a single column of the cross-
bar. Dual bitline arrays exhibit lower latency and energy consumption due to the
reduced voltages during the write operation. This allows for a thinner oxide ac-
cess transistor and lowers the transistor’s effective resistance. However, this array
structure requires more space relative to the common source-line array due to the
parallel orientation of the bitlines (BLs) and source-lines (SLs). This structure is
well suited for ‘streaming’ logical operations.

• 2T2R crossbar array. In a 2T2R crossbar structure, each cell is composed of two
memristors (2R) and two access transistors (2T), and each cell stores the actual
data as well as its complementary value. Fig. 2.6-(d) depicts this structure. This
structure needs a differential sensing mechanism similar to the one used in tradi-
tional SRAM. The data and its complementary value traverse the bitline and bit-
line bars, with a minor difference between the voltage or current of these two lines
detected by a differential sense amplifier. This results in improved performance,
higher sensing margin, and greater resilience to variation and non-idealities. How-
ever, as alluded to, these advantages come at the expense of reduced area effi-
ciency. Furthermore, the efficacy of this structure for computational tasks, such as
VMM and XOR operations.

As mentioned above, using memristors in discussed array structures for CIM requires
considerations regarding the accuracy for memory or computational operations beyond
the non-idealities that memristors themselves impose, as discussed before. A few exam-
ples of these new potential sources of errors are (1) the effective resistive load (known
as RLoad) in their circuit [139], (2) The wire resistance and sneak paths, due to imperfect
wires (i.e., wires with different resistances) and the changes in the voltages of the internal
nodes while performing a VMM operation [140, 141], and (3) non-ideal sensing circuit
or ADCs, which happens due to rigid or hard-to-accurately-change references used for
distinguishing/sensing the end result [128, 139].

OPTICAL PHASE CHANGE MEMORY

Phase change materials (PCMs) are currently the leading alternatives for non-volatile
computation in silicon photonics-based platforms [142]. A design that combines inte-
grated photonics with PCM is commonly known optical phase change memory (oPCM).
Compared to diffractive computing in free-space optics [143], oPCM-based designs offer
CMOS-compatible manufacturing. Compared to previous photonic-based platforms,
oPCM offers higher speed and lower energy consumption for the electronics interface.
This is because conventional photonic-based platforms require large and power-hungry
phase shifters used in their calibration and reconfiguration [144]. Therefore, a design
based on non-volatile PCMs that also exploits integrated photonics can potentially re-
duce both the cost and the overall footprint of photonic cores for similar logical opera-
tions [145]. Cardoso et al. [145] show that, with a realistic noise level, using PCM devices

2.1. COMPUTATION-IN-MEMORY (CIM)

2

29

in a multi-level fashion hurts the accuracy of an oPCM-based design when performing
scalar multiplication. However, one can avoid this problem using fewer levels or states
in PCM, such as in a binary state. In other words, the binary usage of PCM provides the
easiest solution for differentiating between the states.

One can also utilize oPCM in a CIM design. Such an oPCM-based CIM design offers
three benefits compared to the same design with electronic-based PCM as the underly-
ing technology:

• Higher parallelization through wavelength division multiplexing (WDM). An oPCM-
based CIM design allows multiple vectors, which can be processed simultaneously in
different parts of the frequency space [146] by WDM.

• Higher scalability. oPCM-based CIM designs do not need to combat Joule heating,
electromagnetic crosstalk, and capacitance that custom silicon computing platforms
using electronic-based PCM require [147, 148].

• Lower design overheads and considerations. Current oPCM-based CIM designs are
unaffected by variability, resistance drift, and cyclability challenges that affect manu-
factured electronic-based CIM designs [149–151].

2.1.4. PRIMITIVE FUNCTIONS IN CIM CLASSES
Having the generic illustration of a CIM tile (Section 2.1.2), our classification of four pos-
sible computation locations (Section 2.1.1) and crossbar structures we discussed above,
one can realize many primitive functions such as NAND, XOR, VMM, AND, etc. in and
near the crossbar array. Below, we briefly discuss a few of these functions and how they
work. But we refer the enthusiastic reader to previous works to investigate other possible
functions enabled by CIM [107, 152–157].

• NAND [152]. Fig. 2.7 depicts a visual representation of how to realize the NAND us-
ing memristors. In this method, one must configure/program the output memris-
tor, where the NAND result will be stored. In Fig. 2.7, the output memristor starts
with an initial state of Ro f f , i.e., logical ‘1’. Then, the bitlines associated with the
initial two inputs are subjected to Vwh , while the output bitline receives Vω, with
the source-line remaining unconnected. With both inputs set to 1, equivalent to
Ro f f , a zero voltage passes through the horizontal line, resulting in the output de-
vice experiencing a voltage Vw , which in turn switches its resistance from Ro f f to
Ron . However, if any of the inputs is 0, represented by Ron , the horizontal line sees
a Vwh voltage. Consequently, a voltage difference of Vω−Vwh is present across the
output device, an insufficient condition for a state transition in resistance. This is
an example of functions in the crossbar (fX bar in Fig. 2.2 and CIM-A in Fig. 2.1).
Note that other methods [158], such as using a 3-input minority function with in-
crementally decreasing the Minority operation’s voltage to a point where all mem-
ristor inputs must be at RON to trigger a state transition in the output memristor,
to realize a NAND also exist.

• XOR [159]. XOR using memristors requires five memristor devices, with two
of them functioning as auxiliary elements. Fig. 2.8-(a) depicts the required

2

30 2. BACKGROUND AND STATE-OF-THE-ART

...
.

.
.

...

.
.

.
in1 out

WL=active

SL1=Z
NAND

Initialized to LRS=logic 1

BL1=V<<V0 BL2<<V0

.
.

.

BL3=0

in2

...
.

.
.

.
.

.
in2 out

WL=active

SL1=Z
NAND

BL2= BL3=

Initialized to HRS=logic 1

𝑉𝜔ℎ 𝑉𝜔

𝑅𝑔

.
.

.
in1

BL1=𝑉𝜔ℎ

(a) (b)

...
.

.
.

...

.
.

.
in1

outWL=active

SL1=Z

Initialized to LRS=logic 1

BL1=V<<V0 BL2<<V0

.
.

.

BL3=0

in2

...
.

.
.

.
.

.
in2 out

WL=active

SL1=Z

BL2=Vwh BL3=Vw

Initialized to HRS=logic 1

.
.

.
in1

BL1=Vwh

(a) NAND Design 1 (b) NAND Design 2

OLD

Rg

...
.

.
.

.
.

.
in2 out

WL=active

SL1=Z

BL2=Vwh BL3=Vw

Initialized to HRS=logic 1

.
.

.
in1

BL1=Vwh

Rg

Figure 2.7: NAND design using memristors [152].

connections and initial setup of these memristors. When both memristor de-
vices—representing input parameters—are either in the ON or OFF state, the
shared node between these devices essentially serves as ground, preserving the
initial state of the output memristor. However, when this is not the case, the
voltage at the shared node reaches V x, resulting in the transition of the output
memristor to the LRS state with the assistance of the auxiliary memristors.
Fig. 2.8-(b) presents the crossbar configuration and the respective data mapping
necessary for realizing XOR in the CIM crossbar structure. This implementation
of XOR is also an example of functions in the crossbar (fX bar in Fig. 2.2 and CIM-A
in Fig. 2.1).

. .

in1

in2

out

Vx Vx

-Vx -Vx

V=0

Auxiliary1

Auxiliary2

XOR

Initialized to HRS=logic 0

Initialized to HRS=logic 0

Initialized to HRS=logic 0

.
.

.
.

.

.

.
.

.
.

.

.

.
.

.
.

.

.

active

active

active

.
.

.
.

.

.

.
.

.

.
.

.
.

.

.

...

...

in2

in1

out

A1A2

Crossbar structure

. .

in1

in2

out

Vx Vx

-Vx -Vx

V=0

Auxiliary1

Auxiliary2

Initialized to HRS=logic 0

Initialized to HRS=logic 0

Initialized to HRS=logic 0

.
.

.
.

.

.

.
.

.
.

.

.

.
.

.
.

.

.

active

active

active

.
.

.
.

.

.

.
.

.

.
.

.
.

.

.

...

...

in2

in1

out

A1A2

Crossbar structure

OLD

(a) XOR using only memristors

(b) XOR in a crossbar

Figure 2.8: XOR function (a) using memristors only and (b) in CIM crossbar [159]

• VMM [90]. CIM crossbars are very attractive for their capability to execute Vector-
Matrix-Multiplication (VMM). These implementations of VMM are examples of

2.1. COMPUTATION-IN-MEMORY (CIM)

2

31

functions in the sensing step (fsens in Fig. 2.2 and CIM-P in Fig. 2.1). Fig. 2.9
presents an overview of how a crossbar of memristors can support Vector-Matrix-
Multiplication (VMM) operations. Take the VMM operation in Fig. 2.9-(a) as
an example. Fig. 2.9-(b) illustrates how the parameters of this VMM map to a
memristor-based crossbar.

R1

BL

IBL

CSL

ADC

D
A

C
s

ADCs

In1

In2

In3

In4

W1_1

W2_1

W4_1

W1_3

W4_3

O3O2O1

D
A

C
s

ADCs

In1

In2

In3

In4

W1_1

W2_1

W4_1

W1_3

W4_3

O3O2O1

Memristor-based Crossbar

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

In1 In2 In3 In4In1 In2 In3 In4 O1 O2 O3O1 O2 O3

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

In1 In2 In3 In4 O1 O2 O3

Input

Layer
Output

Layer
In1

In2

In3

In4

W1_1

W2_1

Inputs (In) Weights (W)

O1

O2

O3

W4_3

Input

Layer
Output

Layer
In1

In2

In3

In4

W1_1

W2_1

Inputs (In) Weights (W)

O1

O2

O3

W4_3

(a) (a) (b)

A

1 1

A1_2

A1_1

A1_2

BLCSL

ADC

I1

B1_1

B1_2

B1_1

B1_2

Popcount(A B1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)Popcount (In1 W1)Popcount (In1 W1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)Popcount (In1 W1)

(b) TacitMap

(In1 W1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)Popcount (In1 W1)Popcount (In1 W1)

Popcount (In1 W1)Popcount (In1 W1)

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

Popcount (In1 W1)

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

(a) CustBinaryMap

In1: Input vector #1 with length = 2 bits

W1: Weight vector #1 with length = 2 bits

SL

WL1

Pre-charge SAPre-charge SA

W1_1 W1_2W1_1 W1_2

In1_1
=

BL1

In1_2
=

BL2

In1_1
=

BL1

In1_1
=

BL1

In1_2
=

BL2

In1_2
=

BL2

(In1_1 W1_1)(In1_1 W1_1) (In1_2 W1_2)(In1_2 W1_2)

Digital Popcount circuitry

Popcount (In1 W1)Popcount (In1 W1)

SL

WL1

Pre-charge SAPre-charge SA

W1_1 W1_2W1_1 W1_2

In1_1
=

BL1

In1_2
=

BL2

In1_1
=

BL1

In1_2
=

BL2

(In1_1 W1_1) (In1_2 W1_2)

Digital Popcount circuitry

Popcount (In1 W1)

Figure 2.9: Memristor-based CIM support of VMMs.

For Fig. 2.9-(b) to support VMM, one first maps the weight matrix in Fig. 2.9-(a)
to conductances of the memristor devices in the crossbar. Then, we apply the
input vector of indexed Ins as voltages to the digital to analog converter (DAC)
connected to the wordlines of each row in the crossbar. Based on Kirchhoff’s and
Ohm’s law, a current equivalent to accumulated current for element-wise multi-
plication of individual and corresponding inputs and weights in a column reaches
each analog to digital converter (ADC). Thus, each column performs a Multiply-
and-Accumulate (MAC) operation in the analog domain, providing us with a VMM
operation across multiple columns. Since the columns can work simultaneously,
the VMM has an O(1) time complexity in this design. Each ADC converts the cur-
rents into digital outputs (Os) and passes them through other systems compo-
nents for further processing.

As discussed in Section 2.1.3, oPCM crossbars can also be utilized in a CIM design,
where they offer several benefits. The abstract idea of VMM on oPCM-based cross-
bar is very similar to the one on the memristor-based one. However, to understand
how an oPCM-based crossbar supports VMM, consider Fig. 2.10 depicting a 3×3
oPCM-based crossbar.

Assume that the amplitude of the electric field (E-field) in each row represents the
input data vector (Vi n). A set of optical DACs (oDACs), along with a splitter tree
structure, generates vi n_i ×ELaser /

p
N for every row. It is assumed that the input

coupling coefficients in each unit cell (ki n_ j) are equally distributed across the row,

resulting in each unit cell receiving vi n_i ×ELaser /
p

N M through its bent waveg-
uide. The output coupling coefficients (kout_i) receive light uniformly and repre-
sent the computed product for every unit cell in a specific column. Unlike [160],
this introduces an electric field loss of 1/

p
N , allowing the entire array to function

2

32 2. BACKGROUND AND STATE-OF-THE-ART

PCM

Thermal

Phase

Shifter

Ein_0

Kin_0

Kout_0

Kout_1

Ein_1

Ein_2

Kout_2

Kin_1
Kin_2

Kin_0

Kin_0

Kout_0 Kout_0

Kout_1 Kout_1

Kout_2

Optical DAC

(oDAC)

Optical DAC

(oDAC)

Optical DAC

(oDAC)

Optical DAC

(oDAC)

Optical DAC

(oDAC)

Optical DAC

(oDAC)

Eout_0
Eout_2

RecieverReciever RecieverReciever RecieverReciever

Figure 2.10: Memristor-based CIM support of VMMs.

at a single light frequency within a compact area. This feature is crucial for scaling
the arrays. The resulting E-field at the end of each column adheres to Equation 2.4.

Eout_ j = El aser

N
p

M
×

N−1∑
i=0

|Vi n−i |×wi− j (2.4)

The overall Eout vector equals VMM of the input data (vi n) and the 3×3 weights
matrix. This is converted back to the electrical domain using coherent detection by
coupling each signal with a certain part of the input laser light in a DC. The outputs
of the couplers enter balanced photodiodes (PD), with Iout_ j ∝ |ELaser ||Eout_ j |.
This method maintains coherency across the entire array, necessitating precise
optical path lengths and phase shift matchings. To compensate for potential phase
errors caused by process variations or random phase fluctuations, previous work
[161] has suggested incorporating a small thermal-phase shifter in each unit cell
throughout the column waveguides.

• AND and OR [106]. Logical operations can also be achieved within the SA of CIM
crossbar arrays. Scouting Logic is the famous example of a work that does this
and is an example of a function in the sensing step (fsens in Fig. 2.2 and CIM-P in
Fig. 2.1). For Scouting Logic, both operand vectors are first programmed into the
crossbar array, as shown in Fig. 2.11. With choosing the reference or references
of the SA, one can implement the logical OR, AND, and XOR functions. The pri-
mary benefit of this approach, as compared to integrating these functions within
the crossbar itself, is a reduction in the frequency of device programming. This is

2.1. COMPUTATION-IN-MEMORY (CIM)

2

33

particularly critical due to the endurance issues and the substantial energy con-
sumption involved in the programming of memristor devices.

.
.

.
in1 .

.

.
...

.
.

.
in2 .

.

.
...

...

.
.

.
.

.

.
...

I(in)I(ref)

SA SA

I(in)I(ref)

V(out)V(out)

active

active

deactivate

00 10/01 11

OR

0 1

Input

output

00 10/01 11

0 1

Input

output

AND

00 10/01 11

0 1

Input

output

XOR

0

Vr

Vr

Vr

2Vr

RH

2Vr

RH

Iref

Iref

Iref1 Iref2

Iin

Iin

Iin

2Vr

RH

2Vr

RH

2Vr

RH

2Vr

RH

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

.
.

.
in1 .

.

.
...

.
.

.
in2 .

.

.
...

...
.

.

.
.

.

.
...

IinIref
SA SA

IinIref

VoutVout

active

active

deactivate

00 10/01 11

OR:

0 1

Input

output

00 10/01 11

0 1

Input

output

AND:

00 10/01 11

0 1

Input

output

XOR:

0

Vr

Vr

Vr

2Vr

RH

2Vr

RH

Iref

Iref

Iref1 Iref2

Iin

Iin

Iin

2Vr

RH

2Vr

RH

2Vr

RH

2Vr

RH

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

2Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

Vr

RL

OLD

Figure 2.11: Scouting Logic [106] for AND, OR, and XOR.

2.1.5. ABSTRACTION OF CIM DESIGN CHOICES

After reviewing prior sections, it becomes evident that we can have two main strategies
for deploying CIM designs: (1) accelerators tailor-made for specific applications, and
(2) universal and general CIM design capable of handling multiple applications. In this
thesis, we explore both of these research directions.

To this date, the former approach has been the most prevalent one. Works in this
direction are geared towards predetermined data flow and controls, offering little flexi-
bility. While this direction allows for a high degree of optimization, its use is restricted
due to its rigidity - any changes at the application level may necessitate a complete re-
design of the accelerator.

The latter approach, universal CIM, has been less explored as it requires the ca-
pability of executing a variety of applications which brings with it greater complexity
and more stringent requirements. To facilitate this direction, one can think of different
strategies at various abstraction levels, some of which Fig. 2.12 captures.

Fig. 2.12-(a) depicts three potential design abstraction levels of CIM. At the nano-
level, a CIM tile might only support a rudimentary function at one of the stages, with
no significant functionalities accommodated in the remaining stages. MAGIC [107] or
Scouting [106] are two examples of this design choice. Alternatively, various functional-
ities can be supported at each tile stage, culminating in a complex function.

At the intra-tile/micro level, we have two design choices: Static or Programmable
CIM tile. In the case of Static, each stage of the tile is custom-designed to provide specific
functionality. However, in a programmable tile, multiple functions are assigned to each

2

34 2. BACKGROUND AND STATE-OF-THE-ART

R
o
uter

R
o
uter

R
o
u
ter

R
o
uter

...

...

...

...

R
o
u
ter

R
o
uter

R
o
uter

R
o
uter

...

...

...

...

(b
)

(c)

D
e

sign
 ch

o
ice

Design abstraction level

(a)

P
ro

gram
m

ab
le

 Tile

Static Tile

H
etero

gen
eo

u
s

H
o

m
o

gen
eo

u
s

In
te

r-Tile/M
acro

 le
ve

l

Static
P

ro
gram

m
ab

le

In
tra

-Tile/M
icro

 level

P
rim

itive fu
n

c
C

o
m

p
lex fu

n
c

N
an

o
 level

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()fo

u
t ()

fin
_

2 ()

fin
_

3 ()

fin
_1 ()

fxb
a

r_1 ()

fxb
a

r_2 ()

fxb
a

r_3 ()

fin ()
fxb

a
r ()

fsen
s _1 ()

fsen
s _2 ()

fo
u

t_
1 ()

fo
u

t_
2 ()

fo
u

t_
3 ()

fo
u

t_
4 ()

fo
u

t_
5 ()

fo
u

t_
6 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()fo

u
t ()

fin
_

2 ()

fin
_

3 ()

fin
_1 ()

fxb
a

r_1 ()

fxb
a

r_2 ()

fxb
a

r_3 ()

fin ()
fxb

a
r ()

fsen
s _1 ()

fsen
s _2 ()

fo
u

t_
1 ()

fo
u

t_
2 ()

fo
u

t_
3 ()

fo
u

t_
4 ()

fo
u

t_
5 ()

fo
u

t_
6 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()fo

u
t ()

fin
_

2 ()

fin
_

3 ()

fin
_1 ()

fxb
a

r_1 ()

fxb
a

r_2 ()

fxb
a

r_3 ()

fin ()
fxb

a
r ()

fsen
s _1 ()

fsen
s _2 ()

fo
u

t_
1 ()

fo
u

t_
2 ()

fo
u

t_
3 ()

fo
u

t_
4 ()

fo
u

t_
5 ()

fo
u

t_
6 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()fo

u
t ()

fin
_

2 ()

fin
_

3 ()

fin
_1 ()

fxb
a

r_1 ()

fxb
a

r_2 ()

fxb
a

r_3 ()

fin ()
fxb

a
r ()

fsen
s _1 ()

fsen
s _2 ()

fo
u

t_
1 ()

fo
u

t_
2 ()

fo
u

t_
3 ()

fo
u

t_
4 ()

fo
u

t_
5 ()

fo
u

t_
6 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()

fo
u

t ()

C
fin

_
2 ()

C
fin

_
1 ()

fin ()
fxb

a
r ()

C
fsen

s_1 ()

C
fo

u
t_

1 ()

C
fo

u
t_4 ()

fxb
a

r_1 ()

fxb
a

r_2 ()

fxb
a

r_3 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()

fo
u

t ()

C
fin

_
2 ()

C
fxb

a
r_2 ()

fin ()
fxb

a
r ()

C
fsen

s
_1 ()

C
fo

u
t_

2 ()

C
fo

u
t_

3 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()

fo
u

t ()

C
fin

_
3 ()

C
fin

_
1 ()

C
fxb

a
r_3 ()

fin ()
fxb

a
r ()

C
fsen

s
_2 ()

C
fo

u
t_

5 ()

C
fo

u
t_6 ()

M
EM

R
ISTO

R
C

R
O

SSB
A

R
 A

R
R

A
Y

O
U

TP
U

T P
R

O
C

ESSIN
G

Se
n

sin
g ste

p

C
O

N
TR

O
LER

IN
P

U
T P

R
O

C
ESSIN

G

fsen
s ()

fo
u

t ()

C
fin

_3 ()
C

fxb
a

r_4 ()

fin ()
fxb

a
r ()

C
fsen

s_1 ()

C
fo

u
t_

6 ()

F
igu

re
2.12:

(a)
C

IM
d

esign
ch

o
ices

at
sep

arate
ab

stractio
n

levels,(b
)

h
o

m
o

gen
eo

u
s

d
esign

:
each

in
d

ivid
u

altile
p

o
ssesses

su
ffi

cien
t

co
m

p
u

te
cap

ab
ility

an
d

gen
erality

to
acco

m
m

o
d

ate
a

d
iverse

ran
ge

o
f

fu
n

ctio
n

alities,
an

d
(c)

h
etero

gen
eo

u
s

d
esign

:
th

e
tiles

are
tailo

red
to

execu
te

sp
ecifi

c
kern

els
effi

cien
tly

[128].

2.2. MODERN APPLICATIONS

2

35

step of the tile.

At the highest abstraction level, inter-tile or macro level, designers can opt for a ho-
mogeneous CIM tiles system where all tiles are identical and capable of a wide range of
functionalities and requirements. On the other end of the spectrum, there is the option
for a heterogeneous design wherein each CIM tile is customized for a specific purpose,
collectively offering a comprehensive solution for the programmer. A hybrid solution
can also be considered, wherein a degree of heterogeneity is introduced, but each CIM
tile is designed to support as many functions as feasible.

Fig. 2.12-(b) and Fig. 2.12-(c) represent design choices at the inter-tile abstraction
level. If we opt for a homogeneous design, executing an application becomes easier due
to the availability of more resources, as the tiles are designed to be versatile. However,
this could result in overheads regarding area, energy, and latency. Moreover, the com-
plexity of the tile may necessitate a sophisticated controller. Alternatively, in a hetero-
geneous design, resources for a specific application may be limited, but the tiles could
potentially offer better energy, area, and performance efficiency. Yet, due to the diversity,
a more intricate task offloading scheme might be required. Moreover, inter-tile com-
munication might cause additional overhead if the tiles selected for an application are
located far apart. The decision between these options largely hinges on how adaptable
the circuit in the CIM tile will be to the functions and requirements of the applications.
Regardless of the chosen approach, having flexible control over this storage unit, both in
terms of inter- and intra-tiles for varying execution flows, is of utmost importance. This
can be managed completely at the hardware level or partially at the software level with
the aid of a compiler (or scheduler) [113]. This becomes even more crucial in heteroge-
neous designs where specific workloads must be mapped and scheduled for particular
CIM tiles.

To summarize, the path to a generalized CIM-tile design is paved by (1) expanding
the functionality of a CIM tile with a standard circuit, (2) developing a flexible interface
between CIM tiles and between the tiles and the host, and (3) designing an advanced
control system capable of effectively handling various scenarios.

2.2. MODERN APPLICATIONS

2.2.1. BIOINFORMATICS AND GENOMICS

Genomics is a branch of genetics that utilizes recombinant DNA, DNA sequencing,
and bioinformatics techniques to sequence, put together, and delve into the structure
and function of genomes, which encompasses all the DNA in a single organism’s cell.
This field investigates the interactions between genes and non-genic genome regions
and how they mold biological functions and observable traits. Genomics brings about
a remarkable increase in our comprehension of biology and illness. By offering an
all-encompassing view of gene operations and their interactions, genomics sheds light
on the genetic foundations of diseases, paving the way for superior diagnostics and
treatment approaches. Moreover, it lays the groundwork for progress in personal-
ized medicine, allowing for treatment methods to be customized based on a person’s
genomic data. Beyond the sphere of human health, genomics has broad-ranging
consequences in other domains like agriculture, where it assists in breeding crops

2

36 2. BACKGROUND AND STATE-OF-THE-ART

with coveted traits and ecology by facilitating an understanding of species and their
evolutionary processes. All in all, advancing genomics studies that hold the key to
unlocking the potential of precision medicine, facilitating virus surveillance, and driving
advancements in healthcare [1–14, 16, 17].

Bioinformatics is an interdisciplinary field aiming to understand large and complex
biological data (i.e., data in genomics) through mathematical and computational mod-
els that use computer programming. Bioinformatics studies consist of several genome
analysis pipelines designed to enrich our understanding of a particular problem in ge-
nomics. Although a complete list of pipelines and available methods is out of the scope
of this report, Fig. 2.13 presents a few famous genomic pipelines with the algorithms and
kernels that each step of them uses. Each of the rectangular boxes in Fig. 2.13 are called
a kernel or genomics step interchangeably. The names on the top or bottom of each box
represent famous example algorithms or examples of that step. We call each path from
left to right a pipeline. In the following, we briefly discuss a few of the kernels that are
most connected to this thesis.

• Basecalling. Basecalling is a computational step required to acquire strings of
DNA nucleotide bases (i.e., {A, C, G, T}) from noisy electrical signals generated by
modern sequencing machines [162–166]. Basecalling is the very first computation
step in many genome analysis studies working with these nucleotide sequences,
i.e., DNA reads [167, 168]. The accuracy of basecalling directly affects the accu-
racy and the computational effort (in terms of required algorithms) of subsequent
genome analysis steps. Moreover, the speed of basecalling also determines how
fast one can run through all computational steps of a genomic study [169]. There-
fore, accurate and fast basecalling is critical for advancing genomic studies that
hold the key to unlocking the potential of precision medicine, facilitating virus
surveillance, and driving advancements in healthcare [1–14, 16, 17].

Current SotA basecallers leverage Deep Neural Networks (DNNs) to achieve high
accuracy [170–172]. Recent works [169, 173–175] heavily investigate the use of
DNNs for basecalling as they can provide the highest accuracy compared to the
Hidden Markov Model (HMM) based procedures [176].

There are generally two approaches for improving the accuracy and/or per-
formance of a basecaller: software-based and hardware-based. Software-
based methods propose new algorithms (e.g., DNNs [174, 175, 177] instead of
HMMs [176]) or faster and/or smaller DNN architectures [177, 178]. On the other
hand, hardware-based approaches propose various hardware platforms for the
target algorithm (i.e., DNN or HMM) to improve performance with minimal to
zero impact on accuracy [179].

• Alignment/Mapping. Sequence alignment1 is a fundamental step in most ge-
nomic studies that help us with outbreaks surveillance, precision medicine, and
other medical advances [1, 3, 7]. Sequence alignment is finding the similar-
ity/closeness between a reference genome sequence (hereafter called reference)

1Also known as mapping

2.2. MODERN APPLICATIONS

2

37

B
as

e
C

al
lin

g

R
ea

d
 S

et
/S

eq
u

en
ce

s

R
ef

er
en

ce
 G

en
o

m
es

Sp
ec

ie
s:

•

H
u

m
an

•

E.
 C

o
li

•

Ye
as

t
•

Fr
u

it
 F

ly

•

M
ic

e
St

e
p

 2
2

St
e

p
 2

2

St
e

p
 3

3
St

e
p

 3
3

Sp
ec

ie
s:

•

H
u

m
an

•

E.
 C

o
li

•

Ye
as

t
•

Fr
u

it
 F

ly

•

M
ic

e

Se
q

u
en

ci
n

g
Te

ch
n

o
lo

gi
es

:
•

Ill
u

m
in

a
•

O
N

P
•

P
ac

B
io

Sp
ec

if
ic

at
io

n
s:

•
C

o
ve

ra
ge

:

o
Lo

w
: 2

x-
3

0
x

o
M

o
d

er
at

e
3

0
x-

1
0

0
x

o
H

ig
h

 >
 2

5
0

x

•
R

ea
d

 L
en

gt
h

:

o
Sh

o
rt

: 1
0

0
b

p
-2

5
0

b
p

o
Lo

n
g:

 >
2

5
0

b
p

C
o

rr
ec

to
rs

:
•

H
er

cu
le

s
•

H
A

LC

•

LS
C

•

P
ro

o
vr

ea
d

•

C
o

lo
rM

ap

R
ea

d
 C

o
rr

ec
ti

o
n

O
p

ti
o

n
al

R
ea

d
 C

o
rr

ec
ti

o
n

O
p

ti
o

n
al

A
lig

n
m

en
t

/
M

ap
p

in
g

St
e

p
 4

4
St

e
p

 4
4

St
e

p
 6

6
St

e
p

 6
6

M
ap

p
er

s:
•

M
in

im
ap

2
•

B
W

A
-M

EM
•

B
o

w
ti

e2
•

N
G

M
-L

R
A

ss
em

b
ly

St
e

p
 7

C
7

C
St

e
p

 7
C

7
C

Lo
n

g
R

ea
d

 D
e

N
o

vo
 A

ss
em

b
le

rs
:

•

C
an

u
•

M
in

ia
sm

Sh
o

rt
 R

ea
d

 D
e

N
o

vo
 A

ss
em

b
le

rs
:

•

A
b

yS
S

•

SP
A

d
es

A
ss

em
b

ly

St
e

p
 7

C
7

C

Lo
n

g
R

ea
d

 D
e

N
o

vo
 A

ss
em

b
le

rs
:

•

C
an

u
•

M
in

ia
sm

Sh
o

rt
 R

ea
d

 D
e

N
o

vo
 A

ss
em

b
le

rs
:

•

A
b

yS
S

•

SP
A

d
es

V
ar

ia
n

t
C

al
lin

g

St
e

p
 7

D
7

D
St

e
p

 7
D

7
D

V
ar

ia
n

t
C

al
le

r:

•

Lu
M

P
Y

•

V
ar

ia
ti

o
n

H
u

n
te

r
•

G
A

TK
•

SA
M

to
o

ls
•

D
EL

LY

V
ar

ia
n

t
C

al
lin

g

St
e

p
 7

D
7

D
V

ar
ia

n
t

C
al

le
r:

•

Lu
M

P
Y

•

V
ar

ia
ti

o
n

H
u

n
te

r
•

G
A

TK
•

SA
M

to
o

ls
•

D
EL

LY

P
o

lis
h

in
g

O
p

ti
o

n
al

P
o

lis
h

in
g

O
p

ti
o

n
al

St
e

p
 8

8
St

e
p

 8
8 A

ss
e

m
b

ly
 P

o
lis

h
er

s:
•

A
p

o
llo

•

R
ac

o
n

•

P
ilo

n
•

N
an

o
P

o
lis

h
 (

O
N

P

re
ad

s)
•

Q
u

iv
er

 (
P

B
 r

ea
d

s)

St
e

p
 1

1
St

e
p

 1
1O

u
r

C
o

n
tr

ib
u

ti
o

n
s

1

2

2
2

2
3

4

1

Fo
o

d
 P

ro
fi

le
rs

:
•

D
em

et
er

•

K
ra

ke
n

2
•

C
LA

R
K

•

A
FS

-M
et

aC
ac

h
e

Fo
o

d
 P

ro
fi

lin
g

St
e

p
 7

A
7

A
St

e
p

 7
A

7
A

St
e

p
 7

A
7

A

Fo
o

d
 P

ro
fi

lin
g

St
e

p
 7

A
7

A
St

e
p

 7
A

7
A

N
o

n
-A

lig
n

m
e

n
t-

b
as

ed

M
et

ag
en

o
m

ic
 P

ro
fi

le
rs

:
•

K
ra

ke
n

2
•

C
LA

R
K

Ta
xo

n
o

m
y

P
ro

fi
lin

g

St
e

p
 7

B
7

B
St

e
p

 7
B

7
B

St
e

p
 7

B
7

B

A
lig

n
m

e
n

t-
b

as
ed

 M
et

ag
en

o
m

ic

P
ro

fi
le

rs
:

•

M
et

al
ig

n
•

M
iC

o
P

Ta
xo

n
o

m
y

P
ro

fi
lin

g

St
e

p
 7

B
7

B
St

e
p

 7
B

7
B

A
lig

n
m

e
n

t-
b

as
ed

 M
et

ag
en

o
m

ic

P
ro

fi
le

rs
:

•

M
et

al
ig

n
•

M
iC

o
P

Fi
lt

er
s:

•

Sn
ea

ky
Sn

ak
e

•

SH
D

•

Sh
o

u
ji

•

M
A

G
N

ET
•

G
R

IM
 F

ilt
er

P
re

-A
lig

n
m

en
t

Fi
lt

er
in

g

O
p

ti
o

n
al

P
re

-A
lig

n
m

en
t

Fi
lt

er
in

g

O
p

ti
o

n
al

St
e

p
 5

5
St

e
p

 5
5

F
ig

u
re

2.
13

:O
ve

rv
ie

w
o

fs
ev

er
al

ge
n

o
m

e
an

al
ys

is
p

ip
el

in
es

,c
o

rr
es

p
o

n
d

in
g

to
o

ls
,a

n
d

al
go

ri
th

m
s.

2

38 2. BACKGROUND AND STATE-OF-THE-ART

and a DNA read sequence (hereafter called read). Unfortunately, the DNA base-
pairs (e.g., A, C, G, T) in references and reads may not always be identical at
the location the read actually comes from for two reasons: (1) errors that arise
when obtaining the sequences (a process called genome sequencing [180, 181]),
and (2) genetic differences that exist among an individual organisms’ DNA and
corresponding reference [182]. Therefore, the sequence alignment process should
be able to tolerate such differences, commonly known as edits: deletion, insertion,
or substitution. To deal with this requirement, SotA sequence alignment methods
employ computationally costly dynamic programming-based (DP) algorithms
such as Needleman-Wunsch or Smith-Waterman algorithms [183–185] to account
for edits while avoiding duplicate works. Unfortunately, these DP algorithms are
computationally costly and incur long latencies and energy inefficiencies when
applied to large DNA sequences. These limitations directly affect the medical
studies that benefit from sequence alignment.

• Pre-alignment Filtering. Pre-alignment filtering is a heuristic-based method to
mitigate the cost of sequence alignment by quickly eliminating the need for per-
forming the expensive DP given a pre-defined threshold called "edit distance."
SneakySnake [186], Shouji [187], MAGNET [188], and SHD [189] are a few widely-
used examples of such filters. SneakySnake [186] is the most recent of such filter-
ing techniques that proposes to reduce the approximate string matching (ASM)
problem to the single net routing (SNR) problem to find the optimal path with
the least routing cost. This tweak enables SneakySnake to filter most unneces-
sary alignments in a parallel and highly accurate manner. Alser, et al. [186] show
that this conversion also makes SneakySnake suitable for other high-performance
computing (HPC) architectures, e.g., GPUs.

Pre-alignment filters are typically compared based on 4 rates [95, 186, 187]: True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) rates.
TP is the ratio of pairs that filter correctly accepts/passes as they require DP-based
alignment. The higher the TP, the better. TN is the ratio of pairs that filter cor-
rectly rejects/filters as they are too far apart to be mapped and therefore do not
require DP-based alignment. TN is proportional to the FP rate, and we always
want to maximize it. FP is the ratio of pairs that filter incorrectly accepts/passes
even though they do not require DP-based alignment. The lower the FP, the bet-
ter, as we would spend less time and cost for the alignment. FN the ratio of pairs
that filter incorrectly rejects/filters even though they will be mapped and therefore
require DP-based alignment to find the final mapping. An ideal filter has a FN of
0.

• Taxonomy Profiling. Recent advances in high-throughput sequencing (HTS),
namely producing sequenced data with high-throughput and low cost, initiated
metagenomics [11, 190, 191]. In metagenomics, researchers study the behavior
of many species altogether in a sample taken directly from an environment.
The results of such a study help researchers to capture the complex relationship
between different species without cultivating or isolating them individually in a
very costly or yet impossible procedure for some species.

2.2. MODERN APPLICATIONS

2

39

Taxonomic profiling is the first step of any metagenomic study [192, 193] and it de-
termines the relative abundance of different taxonomy ranks (e.g., species, genus,
family) in a given sample. Taxonomic profiling is divided into two main cate-
gories [194]: reference-free and reference-based profilers.

Reference-free Profilers. MetaPhlAn [195, 196], PhymmBL [197], and PhyloPy-
thiaS+ [198] are a few examples of reference-free profilers. These profilers are typi-
cally slow. They also require a relatively long query sequence for their composition
feature needed for the classification. Therefore, although they are actively being
investigated, researchers and industry do not currently use them for taxonomic
profiling.

Reference-based Profilers. Reference-based taxonomic profilers can be further
divided into two main classes: alignment-based and non-alignment-based (also
known as heuristics). The alignment-based profilers are highly accurate (espe-
cially at the species rank). However, alignment-based profilers are very slow due
to the high computational cost of their alignment. A few examples of such pro-
filers are Metalign [192], MG- RASTv.4 [199], MEGAN6 [200], and Taxator-tk [201].
Non-alignment-based profilers, or heuristics, replace the time-consuming align-
ment operation with a faster Table Lookup operation. This way, taxonomic profil-
ers in this group trade the required execution time with the memory needed for
their table and lookup operation, i.e., they gain speed but require more memory.
Kraken [202], Kraken2 [193], and CLARK [203] are a few examples of such profilers.

Kraken2+Bracken2 always stands among the top taxonomic profilers and binners,
varying just a little from dataset to dataset, based on the most comprehensive
benchmark for metagenomics, Critical Assessment of Metagenome Interpretation
(CAMI) challenge [205, 206]. It is worth noting that most of the highly ranked pro-
filers in the CAMI challenge are non-alignment-based profilers.

Kraken [202] is a non-alignment-based taxonomic profiler that utilizes exact-
match database queries of small substrings from the main read, called k-mers.
Kraken, first, stores all k-mers within the sequence into a set. It then maps each
k-mer inside the set into the lowest common ancestor (LCA) taxon of all the
genomes in the reference database that have the special k-mer. This LCA texa
and its ancestors in the taxonomy tree form the classification tree used to classify
the input sequence. The classification path is defined as the maximum scoring
root-to-leaf (RTL) path in the classification tree, and the sequence S is assigned
to the label of the corresponding leaf. Kraken owns its efficiency not only to the
classification algorithm but also to its database creation, in which it uses the
notion of minimizers [207] and two tables for performing an efficient search.
Kraken groups similar k-mers using minimizers, defined as the smallest M-mers
among all M-mers in a k-mer when sorted lexicographically. Since adjacent
k-mers share the same minimizers in practice, Kraken stored the k-mers with
similar minimizers consecutively and sorted them in the lexicographical order
of their canonical representations. This enables Kraken to query a k-mer by

2Bracken [204] is an orthogonal method to Kraken2 and other profilers to re-distribute reads in the taxonomic
tree and improve the accuracy. We discuss Bracken further next.

2

40 2. BACKGROUND AND STATE-OF-THE-ART

looking up in an index position and finding the range where k-mer with the same
minimizer as the query has been stored and then perform a binary search within
the region to find the exact k-mer and corresponding taxonomy ID.

Kraken, while effective, uses a memory-intensive algorithm for assigning queries
to the lowest common ancestor (LCA) taxonomic label. Kraken2 [193] improves
performance and memory consumption of Kraken by building a more compact
reference database using probabilistic hash functions. Kraken2 significantly
reduces the memory requirement to a third while maintaining accuracy. Kraken2
also takes advantage of block-based and batch-based parsing within the critical
sections to further improve thread scaling, similar to what has been done in
Bowtie [208]. Both Kraken and Kraken2 use extensive index (hash) tables to store a
pre-built data structure to help accelerate their assignment. Therefore, they both
perform multiple Table Lookup operations to map a DNA read to an LCA.

To prevent underestimating the abundance of some species, we typically use
Bracken [204] (Bayesian Reestimation of Abundance after Classification with
KrakEN) along with Kraken2. Bracken proposes to probabilistically re-distribute
reads in the taxonomic tree so that estimating the abundance of species will be-
come possible. The re-distribution in Bracken works in both directions: 1) Reads
that are originally assigned to nodes above species levels will be re-distributed to
this level, 2) Reads that are originally assigned to nodes in the strain level will be
re-distributed to their parent species node. Bracken is orthogonal to Kraken and
Kraken2.

• Food Profiling. The urgent need for a real-time, efficient, and accurate food mon-
itoring system is apparent when one considers the economic impacts and health
risk issues due to human errors and/or intentional fraud regarding everyday food.
For example, a worldwide annual loss of $10 to $24 billion of dollars is estimated
only for the frauds happening in the fish industry [209]. The Halal meat scan-
dal [210] and the black fish scandal [211] are just a few other preventable examples
that could have been quickly prevented if we had accurately and efficiently moni-
tored all the food productions in real-time.

Food profiling is the first step and the only computationally expensive task in a
food monitoring system. The food profiling task entails the functionality of deter-
mining the existing species in a food sample and their relative abundance [212,
213]. Today’s food profilers work with sequenced data as we can capture a more
accurate profile using the sequences of a food sample. The rapid drop in the
cost of DNA sequencing in the past decades and the expectation for a continual
trend [26, 27] is expected to lead the way for profiling to become the main bottle-
neck of this pipeline.

Currently, the industry utilizes state-of-the-art (SotA) taxonomic profilers from
metagenomic studies for food profiling due to the similarity of problem state-
ments in food profiling and metagenomics profiling. However, as alluded, such
profilers are developed as the first step of metagenomic studies [11, 190, 191]: a
new, yet different, line of research that allows us to study many species that are

2.2. MODERN APPLICATIONS

2

41

taken directly from their environment altogether, as opposed to studying them in-
dividually. Due to the high cost associated with alignment and assembly for large
reference datasets, to this date, we still prefer heuristics statistical-based profil-
ers to assembly- or alignment-based ones. However, even these profilers are not
yet cheap or economical and prevent large-scale, real-time studying. Their cost is
mainly related to the required memory for profilers’ data structure and algorithms.
Such large data structures or sophisticated algorithms force us to use high-end
servers and are needed to fulfill complex goals of subsequent metagenomic analy-
sis, namely capturing complex operations between organisms and discovering in-
sights on species that can not be clonally cultured in labs. This high cost of profil-
ing in a metagenomics profiler prevents us from efficiently profiling food samples
in real-time, the end goal of a food monitoring system.

Most of the kernels in the pipelines of Fig. 2.13 work on large amounts of data. Fig. 1.1
depicts the significant reduction in the cost of data acquisition in genomics, next to
Moore’s law ascending growth, helping the exponential growth of the data working set
size of its kernel. It is expected that the available data in the field and the rate at which
they are being produced soon surpass that of giant data-intensive applications such as
YouTube and Twitter exploit and produce [25, 26]. Therefore, they require many memory
accesses, which can quickly become very costly and turn into the bottleneck of the whole
procedure. Simultaneously, we demand faster analysis for those larger data working set.
This trend worsens the data movement problem in genomic pipelines.

Moreover, sequencing machines are heterogeneous systems that already use vari-
ous memory technologies (DRAM, SDD, etc.) and computational units (CPU, GPU, and
FPGA) since their benefits justify their cost. Therefore, having new architecture and
emerging technologies installed in those machines as well is not a far-fetched idea if
we can harvest their power efficiently.

We conclude that kernels on genomics pipelines might also benefit from the CIM
computing paradigm and emerging memory technologies although such a research
direction is yet not well-studied. Note that although not all of the genomics steps in
Fig. 2.13 might be able to use CIM and emerging memory technologies, some still can.

2.2.2. NEURAL NETWORK
Neural Networks (NNs) have become essential in various applications like language pro-
cessing [18] object recognition [19], and image classification [20, 21]. In particular, mo-
mentous developments in Deep Neural Network (DNN) in the past decade have led to
significant improvements in the accuracy and execution time of computer vision tasks
such as object detection and recognition [22–24].

Hardware implementations of NNs significantly impact the performance metric
(i.e., accuracy, execution time, energy consumption, etc.) of the underlying application.
However, current DNN hardware implementations are relatively slow and costly to
run [214–216] because of their already large working dataset size, growing working
dataset size, and inefficient underlying hardware that we discuss further next.

Regarding the working dataset size, SotA NNs already work with many parameters,
e.g., BERT has 110 million parameters [217], causing the implementation to face the is-
sue widely known as the ‘memory wall’, discussed in Section 1.2.

2

42 2. BACKGROUND AND STATE-OF-THE-ART

Fig. 2.14 and Fig. 2.15 depicts the growth rate of the dataset size in NNs we use for
image classification, recommendation (i.e., collaborative filtering), speech recognition,
text-to-image generation, and gaming (e.g., Atari and Go) tasks. We observe that while
today NNs are already huge and work with many parameters, their working dataset size
is also steadily and significantly increasing as time passes by.

Figure 2.14: The growth rate of dataset size in ML for vision based tasks such as image
generation and classification [28].

Finally, conventional systems used for the execution of NNs typically use (1) von-
Neumann architecture that suffers from data movement between the processor and
memory even further [218] and (2) expensive hardware such as storing weights in 6
transistors SRAM cells [216, 219] that increases the hardware cost.

Hence, developing a high-throughput, cost-effective hardware realization of DNNs
while being accurate is critical.

A CIM architecture is suitable for mitigating the data movement overhead in many
applications. Moreover, CIM based on emerging technologies can handle simple oper-
ations such as Matrix-Matrix-Multiplication (MMM), which is the key computation in
NNs3. A CIM design can also offer the high parallelism suited for running NNs with high
speed. Hence, we conclude that CIM is a suitable candidate to be used for the hardware
acceleration of NNs.

Although many network architectures exist for NNs, here we briefly discuss the nec-
essary background for only Binary Neural Network (BNN) as the later chapters in this
thesis require a basic understanding of the features of this architecture.

A BNN works with binarized weights and activations (e.g., {-1, 1} or {0, 1}) instead
of datatypes with higher precision. This change provides the BNN with two advan-
tages [215, 221, 222]. First, it reduces the storage requirement of the NN. Second, it
changes the MAC operation from high-resolution multiplication and addition to a low-
cost and simpler XNOR followed by an Popcount operation [221, 222]. Equation 2.5 de-
picts this conversion, where ⊛ is convolution, ⊙ is XNOR, and Popcount (or population
count) of a vector or specific value is the process of finding the number of set bits (1s) in

3It is known that MMM (or VMM) is the dominant operation in NNs [220].

2.2. MODERN APPLICATIONS

2

43

Figure 2.15: The growth rate of dataset size in ML for four tasks: (top left) Recommenda-
tion, (top right) Speech, (bottom left) Drawing, and (bottom right) Games tasks [28].

2

44 2. BACKGROUND AND STATE-OF-THE-ART

that vector/value. In Equation 2.5, In and W are equally-sized input and weight vectors
of target BNN, i.e., vector length is the length of either In or W vector.

In⊛W = 2×Popcount (In
′ ⊙W

′
)−V ector Leng th (2.5)

Unfortunately, naively reducing both activations and weights to binary representa-
tions hurt the overall accuracy compared to high-precision (floating point or fixed point)
networks. Therefore, to combat this accuracy loss, previous works [215, 221] generally
follow two software-based techniques. First, tracking the updates of parameters during
training via higher resolutions (floating or fixed point) while keeping the actual weights
binarized. Second, using binarized activations and weights only for hidden layers and
keeping the input and output layers in higher resolutions.

2.3. STATE-OF-THE-ART CIM DESIGNS AND SIMULATORS

2.3.1. GENERAL-PURPOSE STATE-OF-THE-ART CIM DESIGNS AND SIMU-
LATORS

Some works aim to realize the a generalized platform based on CIM that covers more
than a single application. However, as we see next, these works been rather limited thus
far.

UPMEM
UPMEM [223, 224] stands out as the pioneering commercial generic platform for CIM.
Rather than utilizing emerging non-volatile memories, this platform is grounded on
computation proximate to DRAM memory arrays. UPMEM incorporates numerous
Data Processing Units (DPUs) located uniquely within the DRAM memory chips, close
to the data, allowing them to execute data-intensive operations while dramatically min-
imizing off-chip data movements. These DPUs are governed by a high-level application
executing on the primary CPU, which manages task orchestration.

REVAMP
ReVAMP [225] is a design that incorporates resistive memory into a pipelined processor,
using the memory to substitute both the cache and the register file. This design intro-
duces a novel instruction, known as ‘Apply’, to perform a computation operation (Major-
ity) within the memory crossbar. Note that, as previously discussed, emerging memory
technologies, such as memristors, tend to have slower performance and quicker aging
compared to SRAM. As a result, replacing cache and the register file with memristors
could potentially cause a decrease in the processing speed of the processor.

PUMA
PUMA4 is a complete set of (micro)architecture, simulator, and compiler that supports
the execution of many ML applications [108, 111, 226], using memristor crossbars en-
hanced with general-purpose execution units. In other words, PUMA design facilitates
general-purpose CIM, aided by programmability. PUMA uses a spatial architecture and

4Programmable Ultra-efficient Memristor-based Accelerator.

2.3. STATE-OF-THE-ART CIM DESIGNS AND SIMULATORS

2

45

provides the necessary programmability and generality to execute a wide range of ML-
based applications on memristor-based crossbars. PUMA architecture comprises three
pipeline stages: fetch, decode, and execute. PUMA enriches crossbars with an instruc-
tion execution pipeline and a specialized Instruction Set Architecture (ISA). The newly
defined in-memory instructions within this ISA primarily facilitate data communication
between memory units or carry out scalar operations in digital peripheries. Fig. 2.16
depicts the overall Core architecture in PUMA. PUMA places various vector and scalar
functional units in the periphery to support a wide range of operations adjacent to the
crossbar. PUMA compiler converts high-level code into PUMA ISA.

response-normalization. An implication on the architecture
is the need to support fine-grain/random access to memory,
which is not needed for MLPs and LSTMs where it is suffi-
cient to access data at the granularity of the input/output
vectors to each layer.

2.4 Other ML Workloads
Other workloads, both supervised and unsupervised, can be
represented using a combination of the patterns in the three
applications in this section. Logistic Regression [2] and Linear
Regression [81] compute weighted-sums which are passed to
activation functions to generate probabilities and continuous
values respectively. Support Vector Machine (SVM) [41] and
Recommender Systems [91] compute weighted-sums followed
by nonlinear functions. Their computations are similar to
MLP. Recurrent Neural Networks (RNNs) [75] used for se-
quence processing compute weighted-sums on input and
previous state. They are similar to LSTMs but without vector
operations. Generative Adversarial Networks (GANs) are com-
posed of two neural networks (MLP, LSTM, CNN, etc.) which
compete to reach equilibrium [44]. Restricted Boltzmann Ma-
chines (RBM) [102] and Boltzmann Machines (BM) [104] are
commonly used in unsupervised learning tasks for energy-
minimization. While RBM involves weighted-sums of previ-
ous state and inputs, BM uses inputs only. Their computa-
tions have similarities to MLPs and LSTMs as well.

3 Core Architecture
We propose a programmable architecture and ISA design that
leverage memristor crossbars for accelerating ML workloads.
PUMA is a spatial architecture organized in three-tiers: cores,
tiles, and nodes. Cores consist of analog crossbars, functional
units, and an instruction execution pipeline. Tiles consist
of multiple cores connected via a shared memory. Nodes
consist of multiple tiles connected via an on-chip network.
Subsequently, nodes can be connected together via a chip-
to-chip interconnect for large-scale execution.

While this hierarchical organization is common in related
work [20, 95], our key contributions lie in the core archi-
tecture (this section) and tile architecture (Section 4) that
bring programmability and generality to memristor cross-
bars without compromising their energy and area efficiency.
An overview of the core architecture is shown in Figure 1.
The following subsections discuss the components of the
core architecture and the insights behind their design.

3.1 Instruction Execution Pipeline
Existing memristor-based accelerators [23, 73, 95] are lim-
ited to one or two ML workloads. They use state machines
that can be configured to compose a small set of functional
blocks (e.g., convolution block, pooling block, etc.). While
this approach works well when the scope of workloads is
small, supporting a larger variety of workloads creates high

PC

Instruction
Memory

D
E
C
O
D
E

DAC
array

XbarIn
Registers

ADC

Pipelined MVMU

XbarOut
Registers

Register File
(ROM-Embedded RAM)

Operand Steer Unit

FU FU FU

VFU
MU

Data writeback

D
ec

o
d

ed
 i

n
st

ru
ct

io
n

SFU

Stall/KillControl
Unit

to/from

tile

memory

FETCH EXECUTE

MVMU

DAC

ADC

VFU

SFU

MU

Matrix vector multiplication unit

Digital to analog converter

Analog to digital converter

Vector functional unit

Scalar functional unit

Memory unit

Figure 1. Core Architecture

W[1:0]x y0

W[3:2]x y1

2×2, 4-bit
W

x y

Input Weight Output

g12

g21 g22

(a) Analog MVM

INT

Multiplexer

DAC

DAC

INT

ADC

g11v2

v1

I1 I2

INT: integrator
(Converts current

to voltage)
Shift-&-Add

𝐼𝑗 =෍

𝑖=1

𝑛

𝑉𝑖 ∗ 𝑔𝑖𝑗

(b) Bit Slicing

Figure 2.MVM with Crossbars

decoding complexity. For this reason, our core architecture
breaks functionality down to finer-grain instructions and
supplements memristor crossbars with an instruction exe-
cution pipeline. Our approach is based on the observation
in Section 2 that despite the large variety of ML workloads,
these workloads share many low-level operations.

The instruction execution pipeline is an in-order pipeline
with three stages: fetch, decode, and execute. Keeping the
pipeline simple saves area to avoid offsetting the crossbars’
area efficiency. The ISA executed by the pipeline is summa-
rized in Table 2. Instructions are seven bytes wide. The mo-
tivations for wide instructions are discussed in Sections 3.3
and 3.4.3. The ISA instruction usage is shown in Section 3.6.
More ISA details are discussed in another paper [7].
The instruction execution pipeline supports control flow

instructions (jmp and brn in Table 2), as motivated in Sec-
tion 2.3.1. It also includes a Scalar Functional Unit (SFU) that
performs scalar integer operations (ALUint in Table 2) to
support the control flow instructions.

3.2 Matrix-Vector Multiplication Unit (MVMU)
The MVMU (illustrated in Figure 1) consists of memristor
crossbars that perform analog MVM operations, and periph-
erals (DAC/ADC arrays) that interface with digital logic via
the XbarIn and XbarOut registers. XbarIn registers provide
digital inputs to the DACs which feed analog voltages to
the crossbar. ADCs convert crossbar output currents to dig-
ital values which are stored in the XbarOut registers. This
crossbar design is similar to ISAAC [95].

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

718

Figure 2.16: The Core architecture in PUMA [108].

IN-MEMORY DATA PARALLEL PROCESSOR

Daichi et al. introduce "In-memory data parallel processor" [156], new in-memory in-
structions for their CIM design. These instructions represent complete operations that
must be executed on crossbars, drawing on the Single Instruction, Multiple Data (SIMD)
execution model to exploit substantial data parallelism. In this work, the basic opera-
tions facilitated within the crossbar include multiplication, addition, and subtraction.
The communication between crossbars are modeled behaviorally where shared buses
and H-Tree networks are used without detailed reasoning.

GENERAL SIMULATORS

The design of in-memory memristor-based architectures demands consideration of a
multitude of factors. These considerations significantly influence system performance,
energy consumption, area utilization, and even the accuracy of operations. As a result,
the need for optimization and design space exploration arises, leading researchers to de-

2

46 2. BACKGROUND AND STATE-OF-THE-ART

velop high-level simulators that can achieve these tasks within a reasonable simulation
time frame.

NVSim [227] and NVMain [228] are among the first memory-oriented simulators de-
veloped specifically for non-volatile memories. These tools, inspired by CACTI [229] can
provide estimations for access time, energy consumption, and area utilization of non-
volatile memories. Similarly, MNSIM [110] presents a behavioral simulation platform for
neuromorphic accelerators, estimating design parameters through analytical equations.

Lee et al. propose a system-level simulator [230], which employs probability func-
tions to measure the accuracy of ReRAM cells, thereby allowing evaluation of an appli-
cation’s behavior in terms of accuracy.

Zahedi et al. [113] propose a cycle-accurate simulator capable of executing in-
memory instructions/operations. Their simulator enables users to monitor all control
signals and the contents of crossbars/registers, resulting in more precise results for
performance and energy consumption at the tile level.

2.3.2. SPECIFIC-PURPOSE STATE-OF-THE-ART CIM DESIGNS AND SIMU-
LATORS

SOTA CIM FOR GENOMICS

A few works improve genomic kernels using the CIM paradigm. GenASM [231] exploits
the 3D-stacked memory systems and proposes a framework to accelerate the approx-
imate string matching (ASM) problem. DARWIN [232] is a co-processor hardware ac-
celerator for sequence alignment. DARWIN uses a filtering algorithm (D-SOFT) and a
new algorithm to perform the long sequence alignment using constant memory. Gen-
Cache [233] exploits in-cache operations and proposes a fast sequence alignment accel-
erator. This way, GenCache improves the memory bandwidth demands of GenAx [234].
RADAR [235] also proposes a DNA alignment accelerator. However, unlike GenCache,
RADAR uses 3D-stacked ReRAMs to solve the data movement problem of the BLASTN al-
gorithm. PIM-Aligner [236], AlignS [237] and [238] are all similar proposals (same author)
for performing alignment operations on SOT-MRAM. GenieHD [239] and HDNA [240]
use hyperdimensional computing (HDC) for (partial) sequence alignment of a single
reference genome divided into multiple pieces5. Finder [241] and EXMA [242] propose
CIM-enabled accelerators for FM-index using ReRAM as their underlying memory tech-
nology. Helix [179] designs a basecaller on top of SOT-MRAM. Laguna et al. [243] pro-
pose an in-memory architecture using TCAMs for seed-and-vote read mapping. GRIM-
Filter [95] is the first and only pre-alignment filter implemented using the CIM paradigm.
GRIM-Filer is optimized to exploit 3D-stacked memory. Sieve [244] is a high-throughput
k-mer matching technique that uses in DRAM computation. MEDAL [245] proposes a
PIM-enabled accelerator for seeding on DIMM between DRAM modules. MEDAL uti-
lizes the memory bandwidth very efficiently and has fine-grained memory accessibility.
NEST [246] is a DIMM-based PIM-enabled architecture for k-mer counting.

Unfortunately, few studies (1) consider genomic kernels as a potential CIM candi-
date, (2) develop necessary end-to-end data mapping, execution flow, and operations
for kernels in genomic kernels, (3) provide insights into how the bottleneck shifts after

5Neither GenieHD nor HDNA is capable of producing the exact type and location of edits between their query
and the reference genome as in the typical outputs (.sam file) of a sequence aligner. Hence, the term "partial.”

2.3. STATE-OF-THE-ART CIM DESIGNS AND SIMULATORS

2

47

employing CIM-enabled accelerators, and (4) target one memory technology for all ker-
nels as a candidate memory technology to be included in next generation of sequencing
machines. Our research aims to solve these shortcomings. We hope our works enable
scientists and engineers to continue obtaining insights from the gnomic data, albeit their
ever-growing datasets using less costly (more energy efficient) and faster CIM-enabled
implementation.

SOTA CIM FOR NNS

Several previous works propose CIM designs for specific types of NNs. Most of the pro-
posed accelerators by previous works are used solely for inference, while a few also per-
form training. This is because the training phase requires frequent device programming
and captures small iterative weight changes, necessitating complex datatype and data
mapping. Also, more complex operations and data flow support are needed. Due to
these complexities, researchers often favor using CIM accelerators mainly for inference,
even though a few works target hardware acceleration for training as well [247, 248].

We classify these inference-only accelerators based on the structure of the underly-
ing NN they support into four categories (1) Convolutional Neural Network (CNN) and
Deep Neural Network (DNN), (2) Spiking Neural Network (SNN), (3) Recurrent Neural
Network (RNN), and (4) Binary Neural Network (BNN) as their hardware realization typ-
ically varies significantly from one another. We have already discussed BNNs and their
specific CIM accelerators in Section 2.2.2. We discuss the rest in the following briefly.

• For CNNs and DNNs we have PRIME [76], ISAAC [90], Pipelayer [157], and other
CIM accelerators [249]. PRIME offers a microarchitecture using ReRAM devices,
part of which serves as an accelerator for NNs, the rest as storage. ISAAC intro-
duces a pipelining mechanism for CNN using CIM architecture to reduce inter-
layer buffer size. Pipelayer and another accelerator [249], both designed for train-
ing and inference. Pipelayer exploits inter and intra-layer parallelism by analyzing
data dependency. However, Liu et al. [249] also consider the impact of memristors’
inherent variations and programming voltage errors on different networks into ac-
count.

• For SNNs, some accelerators suggest using memristors and CIM architecture as
required devices such as neurons, synapses, and neuronal circuits. Numerous
studies [250–257] model neurons with memristors to simplify circuits tradition-
ally made with many transistors through CMOS technology. Another work [257]
exploits memristor devices’ stochasticity to mimic the functionality of a spiking
neuron. Zhao et al. [258] use memristor-based inhibitory synapses to reduce the
complexity of lateral inhibition and homeostasis mechanism in SNNs. Several
works [259–263] focus on memristor-based learning, primarily supervised and un-
supervised Spike Time Dependent Plasticity (STDP) learning.

• RNNs, used in language modeling, speech recognition, and sequence classifica-
tion, have a distinct structure and data flow as the current output relies on both
the input and the previous output. Multiple works [264–270] implement RNNs
on memristor crossbars. One example [267] demonstrates an LSTM network with

2

48 2. BACKGROUND AND STATE-OF-THE-ART

memristor crossbar arrays achieving high speed-energy efficiency. Another work
[266] shows software weight-mapping and programming strategies for hardware
analog conductances that maintain accurate weight programming despite device
variability.

3
SWORDFISH: A FRAMEWORK FOR

EVALUATING DNN-BASED

BASECALLING USING

COMPUTATION-IN-MEMORY WITH

NON-IDEAL MEMRISTORS
Basecalling, an essential step in many genome analysis studies, relies on large Deep Neural
Networks (DNNs) to achieve high accuracy. Unfortunately, these DNNs are computation-
ally slow and inefficient, leading to considerable delays and resource constraints in the
sequence analysis process. A Computation-In-Memory (CIM) architecture using mem-
ristors can significantly accelerate the performance of DNNs. However, inherent device
non-idealities and architectural limitations of such designs can greatly degrade the base-
calling accuracy, which is critical for accurate genome analysis. To facilitate the adop-
tion of memristor-based CIM designs for basecalling, it is important to (1) conduct a com-
prehensive analysis of potential CIM architectures and (2) develop effective strategies for
mitigating the possible adverse effects of inherent device non-idealities and architectural
limitations. This chapter proposes Swordfish, a novel hardware/software co-design frame-
work that can effectively address the two aforementioned issues. Swordfish incorporates
seven circuit and device restrictions or non-idealities from characterized real memristor-
based chips. Swordfish leverages various hardware/software co-designed solutions to miti-
gate the basecalling accuracy loss due to such non-idealities. To demonstrate the effective-
ness of Swordfish, we take Bonito, the state-of-the-art (i.e., accurate and fast), open-source
basecaller as a case study. Our experimental results using Swordfish show that a CIM ar-
chitecture can realistically accelerate Bonito for a wide range of real datasets by an average
of 25.7×, with an accuracy loss of 6.01%.

This chapter is partially based on the candidate’s work [116, 271].

49

3

50 3. SWORDFISH

As we briefly discussed in Section 2.2.1, Basecalling is the first computational step
required to translate noisy electrical signals generated by modern sequencing machines
to strings of DNA nucleotide bases (i.e., {A, C, G, T}), also known as DNA reads or sim-
ply reads [162–168, 272, 273]. The accuracy of basecalling directly affects the overall ac-
curacy and the computational effort (in terms of required algorithms and their com-
plexity and runtimes) of subsequent genome analysis steps. The speed of basecalling
also determines how fast one can run through all computational steps of a genomic
study [169, 272, 274]. Therefore, accurate and fast basecalling is critical for advanc-
ing genomic studies that hold the key to unlocking the potential of precision medicine,
facilitating virus surveillance, and driving advancements in healthcare and science [1–
14, 16, 17, 273, 275].

Current State-of-the-Art (SotA) basecallers leverage Deep Neural Networks (DNNs)
to achieve high accuracy [170–172, 175, 177, 274]. However, SotA DNN-based basecallers
encounter different shortcomings when implemented using different approaches.
Specifically, DNN-based basecaller designs on central processing units (CPUs) and
graphics processing units (GPUs) face multiple major shortcomings: (1) they are com-
putationally intensive and slow [169, 272, 274], (2) they require extensive data movement
between the processor and memory [42, 218, 276], and (3) they are limited by the use of
costly hardware, such as expensive SRAM memories that require 6 transistors for storing
only 1 bit of information [215, 216]. When implemented on a hardware accelerator,
these DNN-based basecallers face two other limitations: (1) They rely on costly floating-
point (FP) computations, which place high demands on the required system’s memory
bandwidth and compute units with FP capability. This makes hardware acceleration
difficult due to the large number and size of neural network model parameters. (2) They
use costly Machine Learning (ML) techniques such as skip connections1 [175, 177, 277],
leading to added computation, memory, and storage overheads (e.g., to store the
activation parameters that are fed to the last layers of the NN) [274]. Therefore, over the
past decade, both industry and academia [15, 76, 90, 278–280] have explored the use of
Computation-In-Memory (CIM)2 using memristor-based devices to accelerate DNNs.

This growing interest in using CIM for resolving the shortcomings of DNNs is driven
by two main factors: (1) the potential of the CIM paradigm to process data where it
resides to reduce the large performance and energy overheads of data movement and
(2) the analog operational properties of these nanoscale emerging technologies (e.g.,
memristors) that intrinsically support efficient Vector-Matrix-Multiplication (VMM),
multiple of which are used to implement a Matrix-Matrix-Multiplication (MMM) that is
the most dominant operation in DNNs. However, the memristor-based CIM solutions
for basecalling can greatly degrade the DNN inference accuracy due to (1) the limited
quantization levels supported by memristor devices [76, 90] and (2) non-idealities of
memristive devices and circuits used to adopt memristor-based memory arrays, such
as sneak paths [282, 283] and the non-linearity of peripheral circuitry [284–286]. To
propose viable solutions for accelerating the large-scale DNN-based basecallers, these
aspects must be considered at all computing stack layers, i.e., application, architecture,

1Skip connection is an ML technique that allows skipping a few neural network layers and forwarding the
output to the input of a layer further ahead.

2Interchangeably, also referred to as Processing-In-Memory (PIM) [281].

3.1. BACKGROUND AND MOTIVATION

3

51

and device. Such considerations are only possible with a framework capable of eval-
uating the impact of the non-idealities in memristor-based CIM architecture on the
end-to-end basecalling accuracy. This framework should also be able to account for the
overhead that the solutions to overcome the accuracy loss may bring.

To this end, we propose Swordfish, a modular and extensible hardware/software co-
designed framework that allows us to (1) evaluate the impact of memristor non-idealities
and CIM limitations on the accuracy and performance of basecalling and (2) investi-
gate potential mitigation techniques and measure their effect on accuracy for each non-
ideality (Contribution #1). Swordfish is used to investigate the acceleration of basecall-
ing via emerging computing paradigms and technologies. Specifically, with Swordfish,
we comprehensively investigate the potential of accurate acceleration of a SotA base-
caller (Bonito) on a SotA CIM architecture (PUMA [108]) by accounting for the non-
idealities of the underlying devices and technologies of the underlying architecture, for
the first time (Contribution #2). Swordfish integrates real-world applications with mul-
tiple critical comparison metrics, distinct mitigation strategies to tackle the challenges
of novel hardware, and comprehensive real measurements to guide the modeling of
memristors. Our evaluations using Swordfish show that on a wide range of real genome
datasets, PUMA accelerates Bonito, a SotA basecaller, by an average of 25.7× realistically
(i.e., the average throughput improvement is 25.7× when we consider essential mitiga-
tion techniques to prevent huge accuracy loss). This performance still comes at the cost
of a 6.01% accuracy loss (Section 3.4). Our evaluations also yield several key sugges-
tions and recommendations for DNN, hardware, and system designers of future emerg-
ing accelerators with memristors for DNN-based basecallers and other applications that
have two most important metrics (e.g., accuracy and performance) to consider in their
evaluation (Contribution #3). Specifically, our investigation using Swordfish results in
multiple unique insights: (1) Our results challenge the prevalent assumption that DNN-
based applications will automatically succeed on memristor-based CIM due to inherent
redundancy in large neural networks, (2) combining mitigation techniques at only one
abstraction level (e.g., circuit or system level) does not necessarily improve the accuracy
loss as they can potentially go against each other, and (3) combining multiple mitiga-
tion techniques at the circuit and system levels can offset the accuracy loss induced by
non-idealities significantly.

3.1. BACKGROUND AND MOTIVATION
This section briefly discusses the necessary background and motivation for this work.
We refer the reader to comprehensive reviews [168, 273, 281, 287, 288] for more details.

3.1.1. GENOME SEQUENCING PIPELINE

The genome sequencing pipeline consists of computational steps we employ to acquire
genome sequences as strings of DNA characters (i.e., {A, C, G, T}) [162–168, 272, 273]
for subsequent analysis in bioinformatics, e.g., cell type identification, identification of
marker genes, and variant detection.

Although, currently, the most available data and tools in the genomics realm are for
short reads [231, 234] (mainly produced by Illumina sequencers), working with highly ac-

3

52 3. SWORDFISH

curate long genome sequences is generally favorable as they reduce the computational
cost of reconstructing the genome. For this reason, there is a large momentum towards
accurate long-read sequencing [273]. Our work focuses on finding solutions and anal-
ysis tools that target long reads while also not discarding tools (e.g., GenAx [234] and
GenASM [231]), designed for short reads. A leading method for long-read sequencing
is the nanopore sequencing technology. Nanopore sequencers [289–291] translate raw
signal squiggles into bases (A, C, G, T) using complex neural networks. Today, Oxford
Nanopore Technologies (ONT) is a company that produces the most commonly used
sequencers based on Nanopore technology.

Fig. 3.1 illustrates the nanopore genome sequencing pipeline [272] and the place-
ment and execution time breakdown of each of its steps. We use SotA tools for each step
and run the tool on the datasets described in Section 3.3.

Figure 3.1: Overview of the nanopore genome sequencing pipeline and execution time
breakdown of different steps.

We make two main observations. First, basecalling is the first computational step
in the pipeline. Second, basecalling dominates the execution time of a single run in
the pipeline. These steps make up more than 40% of the entire execution time. Our
empirical observation aligns with those in prior works [179, 272, 292].

3.1.2. BASECALLING
Basecalling is responsible for converting raw electrical signals produced by a nanopore
sequencer to digital genome symbols, i.e., [A, C, G, T] [162–165]. Recent works [169,
173–175] heavily investigate the use of DNNs for basecalling as they can provide high
accuracy than Hidden Markov Model (HMM) based techniques [176].

There are generally two approaches for improving the accuracy and/or performance
of a basecaller: 1) software-based and 2) hardware-based. Software-based methods
propose new algorithms (e.g., DNNs [174, 175, 177] instead of HMMs [176]) or faster
and/or smaller DNN architectures [177, 274]. Hardware-based approaches propose
various hardware platforms for the target algorithm (i.e., DNN or HMM) to improve
performance with (hopefully) small impact on accuracy [179, 274].

We observe four main shortcomings in SotA basecallers, which limit their execution
time and/or hardware acceleration:

• SotA basecallers are slow and energy inefficient. For example, Guppy basecalls 3 Giga
basepairs (Gbps) in ∼6 hours while a following step in the genomics pipeline, such as
read mapping using minimap2 [293] takes only ∼0.11 hours [274].

• SotA basecallers use DNN models with costly skip connections [277]. For example,
Bonito needs an additional∼21% of model parameters (along with associated memory

3.1. BACKGROUND AND MOTIVATION

3

53

and storage overheads) for skip connections and requires additional computation on
them. Note that a skip connection permits bypassing certain layers within the neural
network, transmitting the output of one layer as the input to subsequent layers [277].
These connections are costly because they (1) typically force the network to perform
additional computation, for example, to match the channel sizes, (2) incur extra mem-
ory and storage overhead, as they require storing the activation parameters that are fed
to the later layers [42, 276], and (3) incur additional off-chip data movement overhead
when these networks are run on conventional processor-centric hardware platforms,
like CPUs and GPUs.

• SotA basecallers exploit 32-bit floating point precision for their model param-
eters [169, 175, 177]. This effectively increases (1) the required bandwidth and
processing units, e.g., with FP compute capability, and (2) inefficiency in the hardware
realization of the underlying models.

• SotA basecallers incur expensive data movement between the computation units and
the memory units [179, 218, 274].

We emphasize that 40% of execution time spent on basecalling (Section 3.1.1), the
first and arguably most critical step in the pipeline, is significant and worth accelerating.
Today’s best basecallers often underperform on SotA systems, generating bottlenecks. A
potentially 40% decrease in genome analysis runtime implies a proportional reduction
in power and energy, which is critical considering the extensive data and computational
demands of modern genome analysis systems. Therefore, optimizing basecalling con-
tributes greatly to improving the efficiency and sustainability of the genomics pipeline.

3.1.3. MEMRISTOR-BASED CIM AND ASSOCIATED NON-IDEALITIES
Resistive memories or memristive devices, such as ReRAM, PCM, and STT-MRAM [279,
294–296], have recently been introduced as suitable candidates for both storage and
computation units that can efficiently perform vector-matrix multiplication [297] and
logical bulk bit-wise operations [87, 106, 117, 118, 298], as they can follow Kirchhoff’s
law inherently [299]. Therefore, many recent works [76, 90, 106, 108, 114, 122, 298, 300,
301] exploit these devices in their CIM architectures. Memristor devices also enjoy non-
volatility, high-density, and near-zero standby power [87, 106, 279].

A typical memristor-based memory crossbar capable of VMM and other logical op-
erations is shown in Fig. 3.2 [76, 90, 106, 108, 298] alongside its possible non-idealities.

This memristor-based structure can suffer from at least four types of non-idealities or
variations that can eventually affect the results of the enabled VMM operation, i.e., lead
to errors in the VMM result: (1) The non-ideal digital to analog converter (DAC), due to
the effective resistive load (known as RLoad) in its circuit [139], (2) Variation of synap-
tic conductance, which includes both imperfect programming operation (commonly
known as write variations) and the process variation that exist in memristors [141, 302–
304], (3) The wire resistance and sneak paths, due to imperfect wires (i.e., wires with
different resistances) and the changes in the voltages of the internal nodes while per-
forming a VMM operation [140, 141], and (4) non-ideal sensing circuit or analog to dig-
ital converters (ADCs), due to rigid or hard-to-accurately-change references used for

3

54 3. SWORDFISH

Figure 3.2: Overview of memristor-based crossbar arrays and possible non-idealities.

distinguishing/sensing the end result [139, 300]. Our work focuses on these specific
non-idealities inherent to memristor technologies in a CIM architecture. While we do
not explicitly address other circuit challenges and non-idealities, we acknowledge their
presence and the existing solutions developed to mitigate them in electronic systems.
For example, crosstalk [305–307], which involves interference between adjacent circuit
traces or wires, can indeed lead to data corruption and compromise information in-
tegrity. However, we focus on the specific non-idealities relevant to our hardware ar-
chitecture, not crosstalk. Note that industry-standard techniques, such as shielding and
layout design, decoupling components, ground and power distribution, signal timing
and margins, ECC and scrubbing, isolation and shielding, and crosstalk-aware clock dis-
tribution, have been extensively studied and developed to mitigate crosstalk issues. We
assume that similar techniques can be applied to address any potential crosstalk con-
cerns in memristor-based CIM systems.

Recent works [76, 90, 108, 308, 309] report impressive performance and energy im-
provements for DNN models executed on memristor-based CIM architectures, mainly
assuming idealized underlying hardware. Moreover, DNNs are known to be resilient to
some noise [310–315]. However, since memristor-based CIM architectures are indeed
non-ideal and the resiliency of DNNs has a limit, to decide whether or not these plat-
forms are indeed suitable for realizing our DNN-based basecaller, one needs to evaluate
the impact of these non-idealities on the end-to-end application accuracy and account
for the overhead that the solutions to overcome the accuracy loss may bring. Such a
framework is missing among prior works and is a contribution of our work (Section 3.2).

3.2. SWORDFISH FRAMEWORK

3

55

3.1.4. PROGRAMMABLE INFERENCE ARCHITECTURE

We briefly discussed PUMA3 in Section 2.3.1. PUMA (Programmable Ultra-efficient
Memristor-based Accelerator) [108, 111, 226] is a complete set of (micro)architecture,
simulator, and compiler that supports the execution of many ML applications, using
memristor crossbars enhanced with general-purpose execution units. PUMA uses
a spatial architecture and provides the necessary programmability and generality to
execute a wide range of ML-based applications on memristor-based crossbars. For
evaluations in Swordfish, we assume an PUMA-based architecture for two reasons.
First, PUMA supports all the necessary types of NN layers in basecallers: CNN, LSTM,
and linear. This is especially handy for our main target basecaller, Bonito. Second, the
architecture, simulator, and compiler are open-sourced [111, 226] and well-documented
for an extension, unlike many other rich architectures.

3.2. SWORDFISH FRAMEWORK

3.2.1. SWORDFISH OVERVIEW
Fig. 3.3 presents an overview of the Swordfish framework. Swordfish consists of 4 key
modules:

• 1 Partition & Map module that partitions and maps the Vector-Matrix-Multiplication
(VMM) operations of the target DNN-based basecaller to the underlying CIM plat-
form,

• 2 VMM Model Generator module that generates an end-to-end model for possible
non-idealities and errors of a VMM operation considering the underlying technology
in the CIM design,

• 3 Accuracy Enhancer module that implements online and offline mitigation tech-
niques to counter accuracy loss, and

• 4 System Evaluator module that analyzes the accuracy and throughput of basecaller
while also providing an area overhead.

SwordFish

Swordfish Overview

User Input
Basecaller
•DNN Description
• Trained Network

CIM Hardware
•Architecture Description
• Circuit/Device Parameters

Accuracy Enhancer
•Hyperparameters

Partition & Map
Layer 1

Layer N

… …

Accuracy Enhancer
•Optional
•Offline/Online Retraining

System
Evaluator

•Accuracy
• Performance
•Area

VMM Model
Generator

• Crossbar Characterization

1

2

3

4

Updated Weights

Kernel Chunks

VMM Models

•Analytical Crossbar Model
OR

Figure 3.3: Overview of Swordfish framework.

3Programmable Ultra-efficient Memristor-based Accelerator.

3

56 3. SWORDFISH

We emphasize that the accuracy analysis in the System Evaluator module is critical
and unlike evaluations of conventional platforms, e.g., field-programmable gate arrays
(FPGAs) or GPUs. Its importance stems from the abundance of the underlying non-
idealities, variations, limitations, and hardware perturbations of the emerging hardware
paradigms [316]. From now on, we refer to the proposed framework as Swordfish and
the actual implemented memristor-based CIM design for our target basecaller Bonito as
SwordfishAccel.

3.2.2. PARTITION & MAP

To run the DNN of a basecaller on a CIM architecture, one should map each of the VMM
operations in the target DNN to the analog memory arrays and the rest of the operations
to the digital peripheral circuitry. The Partition & Map module takes care of this task
in Swordfish by dividing individual functions of the basecaller into the analog or digital
components of the underlying architecture. This process is required one time for every
basecaller and has two steps.

In the first step, Swordfish decides which memory crossbars will perform each VMM
operation of each layer. For Bonito basecaller, Swordfish decides which memory cross-
bars handle the VMM of the first convolutional layer and which crossbars are responsi-
ble for the VMMs of the following LSTM and linear layers. Swordfish assumes that all the
underlying crossbars have the same size and readout peripheral circuitry (e.g., ADCs).

In the second step, Swordfish decides how it maps the weights to each crossbar.
Swordfish supports different programming/writing techniques for memristor devices,
such as write-read-verify (WRV) and Set/Reset pulse programming.

In mapping and evaluation, Swordfish makes the following widely common design
choices:

• The input streams into the first layer of DNN. Swordfish does not divide the input into
chunks and leaves this task to the host. Doing so helps Swordfish to evaluate the max-
imum throughput of a basecaller [175, 179], independently of the input size.

• The next layer starts its computation as soon as the previous layer of the basecaller
produces enough values. This is also a common assumption for evaluating the maxi-
mum possible throughput of a DNN in simulation [90, 108].

• Multiple crossbar arrays can be simultaneously active and perform the necessary op-
erations (VMM and other operations necessary for the target DNN, such as activation.
This assumption ensures that full chip utilization is not limited due to power con-
straints. One can consider this parallelism to be analogous to the concurrent activa-
tion of multiple subarrays in different banks and bank groups in traditional DRAM [91–
93].

• Swordfish optimizes its design decisions for the highest achievable accuracy, through-
put, and memory utilization in the stated order. This is a common priority order for
optimizations in basecallers [175, 179, 317].

3.2. SWORDFISH FRAMEWORK

3

57

3.2.3. VMM MODEL GENERATOR

VMM Model Generator is responsible for generating the non-ideal output per each VMM
required by the basecaller. VMM Model Generator differentiates between constraints
and non-idealities. This is essential in a CIM design where non-idealities or constraints
do not necessarily lead to a loss in the accuracy of the application. To model the ef-
fect of these constraints and non-idealities on the accuracy of an application, Swordfish
considers them at the lowest-level building block where they aggregate, i.e., where their
results merge. In a memristor-based CIM architecture for a DNN-based basecaller, such
an effective place to consider the effects of constraints and non-idealities is the VMM
operation output. Therefore, the VMM Model Generator in Swordfish focuses on assess-
ing the effects of each factor on a VMM operation, while our evaluations and analyses
assess the end-to-end basecalling metric.

This module takes three types of inputs. First, it takes the results of the previous
module (i.e., 1 Partition & Map in Fig. 3.3) to determine the size of the VMM. Second,
it takes the circuit and device description (i.e., constraints and non-idealities) that can
affect accuracy. Examples inputs in this category are (1) the level of quantization, (2)
the circuit variations (e.g., in inputs (e.g., DACs), wires, and outputs (e.g., ADCs) device),
and (3) device variations. Third, it takes the weights of the target basecaller, which can
be provided directly by the user or the Accuracy Enhancer module that applies multiple
training mechanisms (Section 3.2.4). The module outputs the non-ideal output vector
per each input vector and weight matrix (i.e., the expected vector result for a VMM).

Swordfish supports two different approaches for modeling a VMM. The first ap-
proach is to use a pre-calculated library of measurements on actual devices. The
second approach is to use an analytical model (e.g., a fast crossbar model (FCM) [139]).
Section 3.4 evaluates these approaches separately.

In the first approach, Swordfish queries a library that, for a given array size and input
vector, returns an output vector randomly chosen from many (≥ 104) possible outputs
based on measurements on an actual crossbar with the same dimensions as the length
of the active input vector. The measurements in the library already contain all the pos-
sible non-idealities in the target VMM operation, i.e., non-idealities that may arise from
DACs, ADCs, circuits, and devices in the crossbar. One can build this library by measur-
ing multiple tiles several times. For each of these measurements, one should program
the initial values of memristors within a tile with the weight values of the target DNN to
be evaluated on Swordfish. In this paper, the distinct initial resistance states are based
on the Bonito basecaller [175]. The random choice from the library aims to account
for variations and non-idealities among different memristor-based tiles, which can arise
from different initial values of each memristor device and/or manufacturing differences.
By integrating real measurements and accounting for tile-to-tile differences, we believe
our methods accurately reflect non-ideality distribution in practical settings. Although
this approach accurately represents the VMM operation considering many possible non-
idealities, it lacks the flexibility of separately studying or measuring the effects of each
possible error due to different non-idealities. This approach is also limited to the cross-
bar configurations (for example, crossbars of 64×64 and 256×256) to whose measure-
ments one has access (Section 3.3).

In the second approach, Swordfish utilizes existing analytical models that are avail-

3

58 3. SWORDFISH

able for ADCs, DACs, and variation profiles of the underlying devices in the crossbar.
Fig. 3.4 illustrates the steps Swordfish uses in its VMM Model Generator for this ap-
proach.

Non-Ideal ADC

Analytical VMM Model Generator

Non-Ideal
Memristor CrossbarNon-Ideal DAC

Input Vector
Non-Ideal

Input Voltages
Non-Ideal

Output Currents
Non-Ideal

Output Vector1 2 3

41 2 3

Figure 3.4: An overview of the VMM Model Generator’s second approach: using analyti-
cal models.

In Fig. 3.4, Swordfish applies the analytical model for a non-ideal DAC model (1) to
the input vector of the VMM operation (1) and obtains the non-ideal input voltages as
the output vector (2). Swordfish then applies this new vector to a crossbar with an up-
dated non-ideal weight matrix (2), where non-idealities have been applied to the orig-
inal weight matrix (from the VMM operation) based on the expected variations of each
cell, which are usually obtained based on generic characterization of memristor-based
crossbar arrays, i.e., without any peripheral circuitry or target weights specific to a par-
ticular DNN. The output is considered a non-ideal output current (3) that Swordfish
applies to a model of non-ideal ADC (3) and obtains the output vector (4), an output
vector that might contain some errors.

Fig. 3.5 presents an overview of how Swordfish models the crossbar non-idealities for
the second approach (i.e., the analytical model in the VMM Model Generator module) (2
in Fig. 3.4). For this, Swordfish first takes the crossbar instances (1 in Fig. 3.5) from the
Partition & Map module. Swordfish considers these crossbar instances as separate ma-
trices with digital weights (2). Then, Swordfish uses a non-linear model for the synaptic
device states (3) to map the weight matrices of digital weights into ideal corresponding
conductance matrices (4). After that, Swordfish applies to these metrics the synaptic
variations for the crossbar (5) that are determined from an analytical model based on
the estimated behavior of memristor devices within a crossbar array. The output con-
sists of the same number of matrices, but now with adjusted weights (6). Swordfish fi-
nally applies to those matrices the profile of all known circuit-level non-idealities (7) by
adding representative metrics for these non-idealities. The output consists of matrices
accounting for all variations and non-idealities (8).

3.2.4. ACCURACY ENHANCER
Since accuracy is a critical metric in basecalling, Swordfish applies several mitigation
techniques to deal with the non-idealities and their induced errors on the VMM and/or
basecalling. More specifically, Swordfish supports four different accuracy enhancement
techniques: (1) analytical variation-aware training (VAT) (offline), (2) knowledge distilla-
tion (KD) training, (3) read–verify–write (R-V-W) training, and (4) random sparse adap-
tation (RSA) retraining (online).

ANALYTICAL VARIATION-AWARE OFFLINE TRAINING

Swordfish supports variation-aware training (VAT) [318–321] during the training of a
target DNN as the simplest method to enhance the accuracy loss due to (1) quantiza-

3.2. SWORDFISH FRAMEWORK

3

59

C
ro

ss
b

ar
 N

o
n

id
ea

lit
ie

s
M

o
d

el
lin

g

W
n

×m
W

n
×m

W
n

×m

C
ro

ss
b

ar

In
st

an
ce

s

W
n

×m
=̂

D
ig

it
al

W
e

ig
h

ts
Sy

n
ap

ti
c

C
o

n
d

u
ct

an
ce

C

h
ar

ac
te

ri
st

ic
s

W
n

×
m

W
n

×
m

W
n

×
m

G
n

×m

Co
nd

uc
ta

nc
e

M
at

ric
es

(b
ef

or
e

N
on

-Id
ea

lit
ie

s)
Sy

n
ap

ti
c

V
ar

ia
ti

o
n

(V
F)

 P
ro

fi
le

W
n

×m
W

n
×

m
W

n
×m

G
’ n

×m

Co
nd

uc
ta

nc
e

M
at

ric
es

(a
ft

er
 S

yn
ap

tic
 V

ar
ia

tio
ns

)
O

th
e

r
N

o
n

-
Id

e
al

it
ie

s
P

ro
fi

le

W
n

×
m

W
n

×m
W

n
×

m
M

n
×

m

W
n

×m
W

n
×

m
W

n
×

m
G
’’ n

×
m

Co
nd

uc
ta

nc
e

M
at

ric
es

(a
fte

r A
ll V

ar
ia

tio
ns

)

G
’ ij

=
G

ij×
(1

+V
F i

j)
G
’’

ij=
 G
’ ij

+
M

ij

1
2

3
4

5
6

7
8

W
n

×m
W

n
×m

W
n

×m

C
ro

ss
b

ar

In
st

an
ce

s

W
n

×m
=̂

D
ig

it
al

W
e

ig
h

ts
Sy

n
ap

ti
c

C
o

n
d

u
ct

an
ce

C

h
ar

ac
te

ri
st

ic
s

W
n

×
m

W
n

×
m

W
n

×
m

G
n

×m

Co
nd

uc
ta

nc
e

M
at

ric
es

(b
ef

or
e

N
on

-Id
ea

lit
ie

s)
Sy

n
ap

ti
c

V
ar

ia
ti

o
n

(V
F)

 P
ro

fi
le

W
n

×
m

W
n

×
m

W
n

×m
G
’ n

×
m

Co
nd

uc
ta

nc
e

M
at

ric
es

(a
ft

er
 S

yn
ap

tic
 V

ar
ia

tio
ns

)
O

th
e

r
N

o
n

-
Id

e
al

it
ie

s
P

ro
fi

le

W
n

×m
W

n
×

m
W

n
×

m
M

n
×

m

W
n

×m
W

n
×m

W
n

×
m

G
’’ n

×
m

Co
nd

uc
ta

nc
e

M
at

ric
es

(a
fte

r A
ll V

ar
ia

tio
ns

)

G
’ ij

=
G

ij×
(1

+V
F i

j)
G
’’

ij=
 G
’ ij

+
M

ij

1
2

3
4

5
6

7
8

F
ig

u
re

3.
5:

A
n

ov
er

vi
ew

o
fm

o
d

el
in

g
cr

o
ss

b
ar

n
o

n
-i

d
ea

li
ti

es
in

Sw
o

rd
fi

sh
.

3

60 3. SWORDFISH

tion and (2) possible resistance variations per weight, which can be analytically or ex-
perimentally measured. Existing works randomly inject faults into the weights of the
DNN [322], or model the potential errors at the end of each layer [318, 322]. Similarly,
Swordfish utilizes the crossbar characterization for the errors per VMM (i.e., the error li-
brary in the first approach in VMM Model Generator) or an analytical crossbar model for
the errors per VMM (i.e., as in the second approach in VMM Model Generator). Sword-
fish injects the modeled errors in the training and considers the rest of the devices un-
altered. Swordfish repeats this process for each VMM and every layer and then retrains
the basecaller network. This way, Swordfish ensures that its retraining yields a better
estimate for the errors arising from non-idealities in the crossbar.

KNOWLEDGE DISTILLATION-BASED VARIATION-AWARE TRAINING

In addition to offline VAT based on injecting random errors or potential errors per layer
discussed in Section 3.2.4, Swordfish is capable of supporting the knowledge distillation
(KD) approach as a VAT as well, i.e., Swordfish exploits knowledge/weights that exist
in an ideal (typically a FP32-based) basecaller baseline to guide the training of Sword-
fishAccel, our memristor-based CIM design for Bonito. In KD, two models exist: (1) the
teacher (an ideal implementation using high precision data format, e.g., FP32-bit for-
mat) and (2) the student (SwordfishAccel quantized to 16-bit-width fixed-point presen-
tation for both weights and activations). The goal is to mimic the teacher’s output in the
student by minimizing a loss function where the target is the result of applying the soft-
max on the quantile function associated with the standard logistic distribution (i.e., logit)
of the teacher’s training [323]. We refer the reader to previous works on KD [323, 324] for
further detail on how a loss function can be implemented in such a system to minimize
the difference of SwordfishAccel’s output and the teacher model’s softmax output.

READ-VERIFY-WRITE (R-V-W) TRAINING

Read-Verify-Write (R-V-W) is a conventional error mitigation technique for non-ideal
memristor-based memories that provides cell-by-cell error compensation. R-V-W is
used in open-loop-off-device (OLD) [325] where R-V-W programming and sensing
loop help the actual resistance of the device to converge to the expected target resis-
tance. This method involves many read-and-write operations and feedback control for
memristors, making R-V-W a slow technique to mitigate accuracy loss. Note that to
improve the accuracy in R-V-W, we need to increase the fraction of the retrained weights
(memristor devices in our case), increasing the cost of the mitigation technique.

RANDOM SPARSE ADAPTATION ONLINE RETRAINING

Swordfish uses random sparse adaptation (RSA) [324] to map the learned DNN model
to SwordfishAccel. RSA is used to mitigate the performance overhead of R-V-W tech-
nique [325, 326]. RSA by itself prevents only some of the non-idealities from being ma-
terialized as inaccuracies and can be an offline mechanism. However, SwordfishAccel
combines it with an online training mechanism.

For its online retraining using RSA, Swordfish places a small on-chip SRAM-based
memory next to memristor-based crossbars and distributes the learned DNN model
(i.e., weights) between this SRAM and memristor-based crossbars. The key idea Sword-
fish uses is to map the weights that otherwise would map to error-prone memristor

3.2. SWORDFISH FRAMEWORK

3

61

devices to reliable SRAM cells. If one has access to the exact profile of the underlying
memristor-based memory crossbars, one can exploit the knowledge on which memris-
tors and columns are more error-prone and use this knowledge to decide which weight
to map into the crossbar and which one to the SRAM. In our evaluations of Swordfish,
we use this knowledge whenever we use the chip measurements already used in the
first approach of the VMM Model Generator. However, Swordfish can also randomly
choose memristor devices in the crossbar and map (i.e., hardwire) them to the SRAM.
Random choice is the next best option without knowledge about the exact error pattern
of a memristor-based crossbar. We used this method whenever we used the second ap-
proach (i.e., analytical model) in the VMM Model Generator (Section 3.2.3).

Fig. 3.6 presents how SwordfishAccel adopts RSA with an online retraining mecha-
nism (e.g., KD) in a three-step approach:

Error Mitigation

Memristor Array

Digital Labeled Input Squiggle

SRAM

VMM Output

Load Weights
to Memristors + SRAM

VMM/Layer Output

Inference

2

3

4

Initial Training

1

Retraining
• In Software
• e.g., using KD

Load Weights to SRAM

Memristor Array

Digital Labeled Input Squiggle

SRAM

VMM Output

Load Weights
to Memristors + SRAM

VMM/Layer Output

Inference

2

34

Initial Training
1

Retraining
• In Software
• e.g., using KD

Load Weights to SRAM

2
1

3

Figure 3.6: Swordfish’s online error mitigation via RSA.

1. In the first step (1), SwordfishAccel trains the original Bonito and loads the initial
weights from the Bonito DNN model into the assigned memristor crossbar and the
SRAM (1). SwordfishAccel considers this model as the initial model for the student
in KD.

2. In the second step (2), SwordfishAccel performs a VMM operation as usual. How-
ever, whenever one or more of the assigned weights to SRAM (i.e., error-prone mem-
ristors or randomly chosen ones in Swordfish) is involved, SwordfishAccel reads the
value from the SRAM memory instead of the memristor device. Swordfish does this
by passing the inputs of corresponding devices through the SRAM value instead of
the crossbar, zeroing the input for that particular memristor in the crossbar, and then
summing up the values of both paths (2).

3. In the third step (3), SwordfishAccel returns the results of the VMM operation of each
crossbar (3) to the retraining component (KD in our example in Fig. 3.6) and per-
forms online training on only the weights that are mapped to the SRAM memory to
improve the accuracy loss due to non-idealities. Note that SwordfishAccel considers

3

62 3. SWORDFISH

the non-ideality models of crossbars, ADCs, and DACs to the student model for every
training batch and trains the student. This includes both the initial training in Step 1
and retraining in Step 3 .

4. SwordfishAccel then loads the new weights to the SRAM near the crossbars (4) and
repeats Steps 2 and 3 .

SwordfishAccel uses KD-based variation aware training for its Step 3 in Fig. 3.6 on-
line retraining. However, any other retraining method can also replace KD in our exam-
ple. Note that all the parameters are already quantized to 16-bit fixed-point precision to
present the model in SwordfishAccel accurately. Swordfish leverages the weights from
the converged teacher model to improve the convergence of the student model.

RSA in Swordfish comes at the price of extra area overhead for the considered on-chip
SRAM memory, storage in the memory controller for mapping metadata, summation of
the output from the crossbar with on-chip memory, and some additional control logic
evaluated in Section 3.4.

3.2.5. SYSTEM EVALUATOR

The System Evaluator module puts the results of all previous modules of Swordfish to-
gether to evaluate the target DNN.

As inputs, this module takes the execution time for each VMM operation, the ac-
curacy of each VMM operation for the last layer of the DNN (as it determines the final
accuracy of the DNN), the number of active crossbars in each step of Swordfish, and
information in peripheral circuitry.

The System Evaluator module has 3 outputs:

1. Accuracy: The System Evaluator module outputs an accuracy number for the evalu-
ated DNN. In SwordfishAccel, this number shows the accuracy of the basecaller, com-
monly known as read accuracy, which is the fraction of the total number of exactly
matching bases of a read to a reference to the length of their alignment (including
insertions and deletions).

2. Basecalling throughput: The System Evaluator module outputs a number for infer-
ence throughput of the target DNN. In SwordfishAccel, this number is the basecalling

throughput, defined as kilo-basepairs generated by the basecaller per second (K bp
s).

The higher the basecalling throughput, the better. This is the most important metric
to evaluate a basecalling accelerator’s performance. Our throughput evaluations in
SwordfishAccel include the time required for read and write time for the inputs and
outputs, respectively.4

3. Area overhead. The System Evaluator module of Swordfish also reports area overhead
based on the underlying architecture to account for the overheads of a dedicated ac-
celerator, e.g., SwordfishAccel.

4We use this command line in Linux: /usr/bin/time -v.

3.3. EVALUATION METHODOLOGY

3

63

3.2.6. SWORDFISH EVALUATION CHALLENGES

Comprehensive, fair, and practical evaluation of Swordfish is challenging for two main
reasons. First, most of the SotA basecallers are either not open-source [169, 179, 327]
or support only specific reads [317]. Second, current simulators and frameworks mim-
icking memristor-based CIM designs are either not open-source, do not consider the
underlying non-idealities of the devices, or only support a very limited number of non-
idealities, emerging technologies, or neural networks [139, 328].

To evaluate Swordfish despite these challenges, we take two representative examples.
Specifically, for the first challenge, we primarily compare our method with Bonito [175],
an open-sourced, universally applicable tool currently under active development and
maintenance by ONT (Section 3.1.1). Bonito stands out for its exceptional accuracy and
performance over its predecessors like Guppy [169] and does not face the limited sup-
port for reads (e.g., Dorado [317]) or lack of open-source implementation and training
code (e.g., Helix [179], Halcyon [329], Guppy [169], and SACall [327]). For the second
challenge, we consider PUMA architecture (Section 2.3.1) as the baseline architecture
for the two reasons mentioned in Section 3.1.4.

3.3. EVALUATION METHODOLOGY
This section discusses our experimental methodology.

3.3.1. IMPLEMENTATIONS AND MODELS

For the performance and area studies, we significantly extended the PUMA simulator
and PUMA compiler to account for (1) Bonito’s DNN architecture, (2) updated configu-
rations in Core Architecture of PUMA [108] based on our memory models and the TSMC
40 nm [330] technology node used for peripheries, and (3) performance and area over-
heads introduced by non-idealities of memristors and their mitigation techniques. Note
that we use Synopsys Design Compiler [331] and synthesize the additional components
of our design in the target technology to obtain their execution time, power, and area.
We apply the prominent technology scaling rules [332] to the configuration numbers of
the PUMA architecture to ensure all of our design components are based on the same
technology node.

For accuracy analysis (in both training and inference phases), we also extensively
modified Bonito’s open-source implementation [175] to consider the device characteris-
tics and limitations of the architecture. Unfortunately, PUMA does not allow us for such
analysis as it considers the effects of only quantization and write variations on accuracy.

We utilize prototyped cross-array memristors as our memory arrays and capture the
variations in their spatiotemporal conductivity, execution time, and area overhead of
necessary operations. We project our characterization results of real memories to our
DNN evaluations. We also build a statistical model from our measurements to capture
the full picture of a larger memory model for large-scale variations, timing, and area
parameters. This model contains four types of variations: (1) input DACs, (2) synap-
tic variations, (3) wire resistance, and (4) output ADCs. The memory prototypes and
models used for evaluations and simulations are based on the results of the EU project
MNEMOSENE [333], concluded in 2020, generously provided by the involved parties.

3

64 3. SWORDFISH

The results have been tested heavily during the project and by various metrics found
in the related literature. Table 3.1 shows the main parameters of our memristor-based
crossbars.

Technology and device ReRAM H f O2/T iOx [330]
Cell configuration 1T1R (NMOS T: 460 nm/40 nm
HRS/LRS 1 MΩ/10 kΩ
nmi n /nmax 0.03, 30
Array Sizes 64×64 and 256×256
SA Vmi n 40 mV

Table 3.1: Our array and device configurations.

Our study specifically evaluates Swordfish on ReRAM memristors for three reasons.
First, the availability of actual chip measurements is essential for our non-ideality-
centered study. Second, lower energy costs for writing/programming than alternatives
like PCM. Third, ReRAM’s established status within the memristor family provides
reliable baselines and intuitions for device-level features, enhancing the credibility of
our proposal.

3.3.2. SIMULATION INFRASTRUCTURE

We ran our baseline Bonito basecaller and software implementation of Swordfish on a
128-core server with AMD EPYC 7742 CPUs [334], 500GB of DDR4 DRAM, and 8 NVIDIA
V100 [335] cards. We train and evaluate Swordfish accuracy and software results on our
NVIDIA cards (with 32-bit floating-point precision). We use the nvprof profiler [336] for
the profiling experiments on GPU.

3.3.3. EVALUATION METRICS

We use metrics output by the System Evaluator module for our comparisons. Sec-
tion 3.2.5 clarifies these metrics.

3.3.4. DATASETS AND WORKLOADS

Table 3.2 provides datasets from a MinION R9.4.1 flowcell [337, 338] we use in our eval-
uations.

Dataset (Organism) # Reads Reference Genome Size (bp)

D1
Acinetobacter pittii

16-377-0801
4,467 3,814,719

D2
Haemophilus haemolyticus

M1C132_1
8,669 2,042,591

D3
Klebsiella pneumoniae

NUH29
11,047 5,134,281

D4
Klebsiella pneumoniae

INF042
11,278 5,337,491

Table 3.2: Read and Reference Datasets for our Basecalling Evaluation.

3.4. SWORDFISH EVALUATION

3

65

3.4. SWORDFISH EVALUATION
We first use Swordfish to investigate the impact of constraints and non-idealities of a
PUMA-based architecture (Section 3.1.3) on the accuracy of the Bonito basecaller [175].
We call this design the Ideal-SwordfishAccel, as it achieves the highest performance for
our memristor-based hardware accelerator without any accuracy enhancement tech-
nique. We then explore the effect of the accuracy enhancement mechanisms in Sword-
fish applied to deal with the inaccuracies of the memristor-based accelerator as it affects
the Bonito basecaller’s accuracy. The results of this design are presented under Realistic-
SwordfishAccel.

3.4.1. EFFECT OF QUANTIZATION ON ACCURACY WITHOUT ACCURACY EN-
HANCEMENT

Since both the weights and activations in the original DNN are in FP32 format, Swordfish
can opt for quantizing one or both of them. The degree of the quantization can differ de-
pending on how much each parameter impacts the overall accuracy. Swordfish consid-
ers seven different configurations: the default configuration (DFP 32-32), where weights
and activations use the FP325 format, and 6 FPP X-Y6 formats, where X and Y denote
the fixed-point precision of weights and activations, respectively. Swordfish currently
only supports power-of-two precision levels for its quantized configurations. Table 3.3
presents the accuracy of different configurations.

DFP 32-32 FPP 16-16 FPP 8-8 FPP 8-4 FPP 4-8 FPP 4-4 FPP 4-2

D1 97.32% 97.32% 97.12% 97.12% 95.42% 95.62% 93.62%
D2 97.32% 97.32% 96.72% 96.72% 94.92% 95.42% 92.42%
D3 97.32% 97.32% 96.02% 95.82% 93.62% 95.12% 93.72%
D4 97.32% 97.32% 96.42% 96.42% 94.22% 95.32% 93.62%

Table 3.3: Accuracy evaluation after quantization.

We make two major observations. First, Bonito’s architecture can tolerate some
quantization level without accuracy loss. More specifically, across all evaluated datasets,
quantization down to 16 bits does not affect the accuracy at all, and quantization down
to 8 bits reduces the accuracy by less than 9% even in extreme cases. We conclude
that Ideal-SwordfishAccel can still reduce the precision of its network from a 32-bit
FP format to 16-bit-width fixed point precision without accuracy loss. This way, Ide-
al-SwordfishAccel can (1) accelerate the network on a platform limited to fixed point
format representation and (2) improve the energy efficiency of the network via lower
data precision. This observation is on par with similar studies [90, 274, 339] exploiting
quantization as a technique to improve the performance and energy efficiency of a DNN
with a negligible accuracy loss.

Second, tolerance to quantization varies depending on the input dataset. This makes
the effect of quantization on accuracy workload-dependent. However, the accuracy drop
for different quantization configurations follows more-or-less a similar trend irrespec-
tive of the dataset, i.e., they all follow a decreasing trend with reduced data representa-

5FP stands for floating point.
6FPP stands for fixed point precision.

3

66 3. SWORDFISH

tion. We conclude that Swordfish’s understudy network (Bonito) tolerates some quan-
tization but will offer very low accuracy for extreme quantization (i.e., lower than 4-bit
precision) irrespective of the dataset. We note that an accuracy drop of ∼5% and higher
is considered unacceptable for a future basecaller, as accuracy is the most critical metric
in SotA basecallers. This observation is consistent with prior works on smaller [139] or
different types of networks [274].

We conclude that quantization is a viable solution to tackle data representation con-
straints in hardware accelerators and, therefore, can be used in a framework such as
Swordfish. However, accuracy loss due to quantization (applied with the expectance of
accuracy loss due to variations and non-idealities) leads us to consider only down to 16
(or possibly 8) bits of precision for both weights and activations before a significant ac-
curacy drop occurs. Therefore, the following studies consider only a 16-bit integer as the
quantization level.

3.4.2. EFFECT OF NON-IDEALITIES ON ACCURACY WITHOUT ACCURACY

ENHANCEMENT
We examine the effect of four non-idealities on basecalling accuracy. The results pre-
sented in this section belong to the second approach of modeling non-idealities in the
VMM Model Generator module, i.e., using analytical modeling (see Section 3.2.3).

EFFECT OF WRITE VARIATION ON ACCURACY

Write variation can single-handedly impact the accuracy results of a VMM opera-
tion [324, 339]. Therefore, we analyze it separately.

Fig. 3.7 presents the effects of write variations on accuracy. The x-axis sweeps the
write variation rate. The error bars account for the accuracy variations on different write
variation rates over 1000 runs of the model. Since the models for write variation are
circuit-dependent and have varying probabilities of affecting the stored/programmed
data, this methodology provides us with a better insight into the effect of this non-
ideality on accuracy.

We make two main observations. First, slight write variation can lead to a significant
drop in the accuracy of end-to-end basecalling. To a great extent, this is on par with
previous works’ observation of the write variation impact on VMM accuracy [324, 339].
For example, the accuracy drops vary from 3.30% to 87.34% for D1 and from 3.24% to
85.76% for D4.

Second, the exact accuracy loss depends on the input dataset, i.e., the accuracy is
workload-dependent and varies for the same write variation among different subfigures
in Fig. 3.7. For example, for the same write variation rate of 25%, the accuracy on our two
datasets (i.e., D2 and D4) can vary by 0.93%.

We conclude that write variation in Ideal-SwordfishAccel can debilitate the basecall-
ing process significantly. In other words, write variation can eliminate all the potential
performance and energy efficiency benefits of such a memristor-based design if not mit-
igated correctly. Therefore, unlike the quantization constraint, we should closely control
the write variations in any future design for an acceptable basecaller. Fortunately, some
previous works [324, 340, 341] propose mitigation techniques that, when combined, can
provide us with reasonable (e.g., amount of ≤ 10%) write variation. From now on, we

3.4. SWORDFISH EVALUATION

3

67

Accuracy for Write Variations

0

20

40

60

80

100
A

cc
u

ra
cy

 (
%

)

Write Variation (%)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Write Variation (%)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Write Variation (%)

0

20

40

60

80

100

A
cc

u
ra

cy
Write Variation (%)

D1

D2

D3

D4

Figure 3.7: Accuracy after taking into account write variation.

consider only up to 10% write variation (as defined in Section 3.1.3) in our evaluations.

EFFECT OF COMBINED NON-IDEALITIES ON ACCURACY

Fig. 3.8 and Fig. 3.9 show the accuracy after considering all other sources of non-
idealities (see Section 3.1.3) for our four datasets on two different crossbar sizes of
64×64 and 256×256, respectively. The error bars show the distribution when consider-
ing 10% write variation over 1000 runs. For each dataset, Fig. 3.8 and Fig. 3.9 present
the accuracy results for five configurations presented as individual bars in the figures.
The first three bars from the left present the results for individual non-idealities, i.e.,
synaptic+wire resistances (Synaptic+Wires), sensing+ADC circuitry (Sense+ADC), and
DAC+driver circuitry (DAC+Driver), respectively, that Swordfish accounts for in its
second approach of modeling non-idealities in the VMM Model Generator module, i.e.,
using analytical modeling (Section 3.2.3). The fourth bar, Combined, accounts for all the
non-idealities from the same analytical model simultaneously. The fifth and last bar,
Measured, considers all the non-idealities from the library of real chip measurements
in the first approach of modeling non-idealities in the VMM Model Generator (see
Section 3.2.3).7 We make six main observations.

1. A combination of non-idealities (i.e., each of the bars labeled with "Combined" or
"Measured" or the 4th and the 5th bar per dataset in Fig. 3.8 and Fig. 3.9) leads to
a significant accuracy loss irrespective of the dataset or crossbar size. For example,
observe the accuracy loss when considering all the non-idealities in an analytical way
(bars labeled as "Combined"). The accuracy loss varies from 18.32% to 31.32% (1 in

7We leave the exploration of every possible combination of individual non-idealities to future work.

3

68 3. SWORDFISH

In
accu

racy fo
r A

ll N
o

n
id

ealities 6
4

5
0

6
0

7
0

8
0

9
0

1
0

0

Synapti…

Sense+…

DAC+D…

Combi…

Measu…

Synapti…

Sense+…

DAC+D…

Combi…

Measu…

Synapti…

Sense+…

DAC+D…

Combi…

Measu…

Synapti…

Sense+…

DAC+D…

Combi…

Measu…

1
1

2
2

3
4

4

N
o

n
-

id
ealities

6
D

1
D

2
D

3
D

4

Accuracy (%)

B
aselin

e
B

aselin
e

B
aselin

e
B

aselin
e

To
o

 tick

B
aselin

e
B

aselin
e

B
aselin

e
B

aselin
e

F
igu

re
3.8:A

ccu
racy

after
takin

g
in

to
acco

u
n

tn
o

n
-id

ealities
o

n
64×

64
cro

ssb
ars

fo
r

th
e

4
d

atasets.

In
accu

racy fo
r A

ll N
o

n
id

ealities 2
5

6

5
0

6
0

7
0

8
0

9
0

1
0

0

Synaptic+Wires

Sense+ADCs

DAC+Driver

Combined

Measured

Synaptic+Wires

Sense+ADCs

DAC+Driver

Combined

Measured

Synaptic+Wires

Sense+ADCs

DAC+Driver

Combined

Measured

Synaptic+Wires

Sense+ADCs

DAC+Driver

Combined

Measured

Accuracy (%)

5
6

N
o

n
-

id
ealities

D
1

D
2

D
3

D
4

B
aselin

e
B

aselin
e

B
aselin

e
B

aselin
e

B
aselin

e
B

aselin
e

B
aselin

e
B

aselin
e

F
igu

re
3.9:A

ccu
racy

after
takin

g
in

to
acco

u
n

tn
o

n
-id

ealities
o

n
256×

256
cro

ssb
ars

fo
r

th
e

4
d

atasets.

3.4. SWORDFISH EVALUATION

3

69

Fig. 3.8) across different datasets (i.e., D1 to D4). The same trend can be observed in
Fig. 3.9.

2. The impact of individual non-idealities (i.e., Synaptic+Wires, Sense+ADC, or
DAC+Driver) on the accuracy (loss) is different. For example, observe the ac-
curacy loss of DAC+Driver versus Synaptic+Wires in D1 (2 in Fig. 3.8). For the
same dataset, the accuracy loss varies from 13.32% for DAC+Driver to 15.34% for
Synaptic+Wires. A similar difference also exists in crossbars of size 256×256 in
Fig. 3.9.

3. The accuracy loss for combined non-idealities is non-additive. For example, in D1,
the total accuracy loss of Measured is 35.96% (3 in Fig. 3.8) yet the simple addi-
tion of numerical accuracy loss of Synaptic+Wires, Sense+ADC, and DAC+Driver totals
20.32%. We conclude that certain errors mask others.

4. Accuracy loss values follow a similar trend irrespective of the dataset. See the trend-
lines 4 in Fig. 3.8 for D2 and D3. However, absolute accuracy loss values vary from
one dataset to another.

5. The smaller the crossbar, the lower the accuracy loss. For example, for D1, we have
lower accuracy loss (of 20.32% versus 26.33%) when using a 64×64 crossbar compared
to a 256×256 crossbar (3 in Fig. 3.8 vs. 5 in Fig. 3.9 for the Measured configuration).
This is because a smaller crossbar has mostly smaller accumulative noise induced in
wires of a smaller array.

6. Different non-idealities affect the same dataset differently for different crossbar sizes.
For example, the accuracy loss due to non-idealities in DAC+Driver is more dominant
than those in Sense+ADC on a 64×64 crossbar, while this is the opposite for a 256×256
crossbar. See 6 in Fig. 3.8 and Fig. 3.9.

Even for small yet practical crossbars of size 64×64, the accuracy loss observed in
this section under both Combined and Measured configurations in Fig. 3.8 and Fig. 3.9
is still significant (e.g., from 22.19% to 24.32%) and unacceptable for a basecalling step
that affects many other steps of a genome sequencing pipeline. We conclude that non-
idealities in the memristor-based CIM designs, especially when combined, can be detri-
mental to basecalling accuracy and must be accounted for and mitigated before consid-
ering such a design useful in any other aspect.

3.4.3. EFFECT OF ACCURACY ENHANCEMENT ON QUANTIZED BASE-
CALLERS

Fig. 3.10 shows the results of applying Swordfish’s accuracy enhancement techniques to
a quantized Bonito basecaller. The x-axis presents six configurations for quantization
as defined in Section 3.4.1. For each quantization configuration, we evaluate five ac-
curacy enhancement techniques, namely VAT, KD, R-V-W, RSA+KD (see Section 3.2.4),
and a combination of all techniques labeled as All. The y-axis shows the accuracy of
each technique for the corresponding quantization configuration. The horizontal line
marked as Baseline (DFP 32-32) is the baseline accuracy as defined in Section 3.4.1.

3

70 3. SWORDFISH

90

92

94

96

98

100

FPP 16-16 FPP 8-8 FPP 8-4 FPP 4-8 FPP 4-4 FPP 4-2

A
cc

u
ra

cy
 (

%
)

VAT KD R-V-W RSA+KD All

92

93

94

95

96

97

98

int 16-16 int 8-8 int 8-4 int 4-8 int 4-4 int 4-2

A
cc

u
ra

cy

Quantization Configurations

VAT KD R-V-W RSA+KD All

Accuracy for Quantization After retraining

40

50

60

70

80

90

100

fpp 16-16 fpp 8-8 fpp 8-4 fpp 4-8 fpp 4-4 fpp 4-2

A
cc

u
ra

cy

Quantization Configurations

VAT KD R-V-W RSA+KD All
dfp 32-32

OLD

Baseline

Baseline (DFP 32-32)

50

60

70

80

90

100

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

A
cc

u
ra

cy
 (

%
)

3

Figure 3.10: Accuracy enhancement after quantization.

We observe that retraining with quantization is an effective way to mitigate the accu-
racy loss induced by quantization. Our results show that with only 150 extra retraining
epochs, accuracy improves by 5% on average, for a basecaller quantized down to 8-bit.
By applying all quantization-aware retraining methods that we discuss in Section 3.4.1,
Swordfish can retain the same accuracy as the Bonito basecaller with 32-bit floating
point precision. This result is in agreement with the prior work on different types of neu-
ral networks [139]. However, Swordfish is the first work to show this result for genomic
basecalling. From now on, we use 16-bit precision quantization for all evaluations we
show in the remainder of this paper. We conclude that the proposed mitigation mecha-
nisms effectively mitigate the accuracy loss due to a reasonable amount of quantization,
e.g., from 32-bit to 16-bit in the Bonito basecaller.

3.4.4. EFFECT OF ACCURACY ENHANCEMENT ON NON-IDEALITIES

EFFECT OF ACCURACY ENHANCEMENT ON WRITE VARIATION

Fig. 3.11 presents the effects of our accuracy enhancement techniques (see Section 3.2.4)
considering different write variation rates across our four datasets (D1-D4). The hori-
zontal dotted line shows the baseline accuracy using DFP 32-32 (see Section 3.4.1) for
the Bonito basecaller in all figures in Fig. 3.11. Fig. 3.11-(a)-(d) evaluate the effect of VAT,
KD, R-V-W, RSA+KD separately. Fig. 3.11-(e) considers all of our accuracy enhancement
mechanisms together (Combined), and Fig. 3.11-(f) averages the results of each accuracy
enhancement technique over all the datasets (Averaged).8 We make four major observa-
tions from Fig. 3.11.

First, individual accuracy enhancement mechanisms evaluated in Fig. 3.11-(a)-(d)
all improve the accuracy. However, their effectiveness reduces as the write variation rate
increases.

Second, the online mechanism (RSA+KD) in Fig. 3.11-(d) outperforms all the offline
techniques in Fig. 3.11-(a)-(c). R-V-W in Fig. 3.11-(c) comes second in terms of accuracy.
However, the difference between RSA+KD and R-V-W widens as the write variation rate

8The results in Fig. 3.11 consider the cases in which Swordfish maps only 5% of weights to the SRAM in our
RSA-based online retraining approach (see Section 3.2.4). We will revisit this number in Section 3.4.5.

3.4. SWORDFISH EVALUATION

3

71

0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

D
1

D
2

D
3

D
4

B
as

el
in

e
0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

D
1

D
2

D
3

D
4

B
as

el
in

e
0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

D
1

D
2

D
3

D
4

B
as

el
in

e

0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

D
1

D
2

D
3

D
4

B
as

el
in

e
0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

D
1

D
2

D
3

D
4

B
as

el
in

e
0

2
0

4
0

6
0

8
0

1
0

0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Accuracy (%)

W
ri

te
 V

a
ri

a
ti

o
n

 (
%

)

V
A

T
K

D
R

-V
-W

R
SA

 +
 K

D
C

o
m

b
in

e
d

B
as

el
in

e

A
cc

u
ra

cy
 f

o
r

W
ri

te
 V

ar
ia

ti
o

n
s

A
ft

er
 R

et
ra

in
in

g

(e
)

C
o

m
b

in
ed

(f
)

A
ve

ra
ge

d
(d

)
R

SA
+

K
D

(c
)

R
-V

-W
(b

)
K

D
(a

)
V

A
T

F
ig

u
re

3.
11

:A
cc

u
ra

cy
af

te
r

co
m

b
in

in
g

en
h

an
ce

m
en

tt
ec

h
n

iq
u

es
ov

er
d

if
fe

re
n

tw
ri

te
va

ri
at

io
n

s.

3

72 3. SWORDFISH

increases.
Third, combining all the accuracy enhancement mechanisms (Combined in

Fig. 3.11-(e)) outperforms any individual technique over every single dataset and write
variation rate.

Fourth, averaged over all the datasets (Averaged in Fig. 3.11-(f)), Combined mitiga-
tion techniques always produces the highest accuracy on average as well. However, on
average, our online RSA+KD technique achieves a close accuracy (less than 0.001% dif-
ference) for low write variation rates, i.e., write variation less than 10%.)

These results suggest that even with multiple accuracy enhancement techniques,
only minor write variations (e.g., less than 10%) can be tolerated. We conclude that
a memristor-based CIM-enabeld accelerator for basecalling can be effective even with
write variations, but such variations must be kept low (e.g., up to 10%). Fortunately, the
projected write variation rate for memristor-based devices [139, 324] suggests the like-
lihood of achieving this percentage rate. For the rest of this manuscript, we assume a
write variation of 10%.

EFFECT OF ACCURACY ENHANCEMENT FOR COMBINED NON-IDEALITIES

Fig. 3.12 presents the accuracy of basecalling with different accuracy enhancement tech-
niques in crossbars of 64×64 for the modeled non-idealities. For the non-idealities, we
consider the five variations of Synaptic+Wires, Sense+ADC, DAC+Driver, Combined, and
Measured defined in Section 3.4.2. In Fig. 3.12, we evaluate five accuracy enhancement
techniques of VAT, KD, R-V-W, RSA+KD, and All (as defined in Section 3.4.4) per non-
ideality. Fig. 3.13 presents the same experiments for crossbars of 256×256. As we con-
clude in Section 3.4.4, we assume 10% write variation and 5% of the weights are mapped
to the SRAM in the online retraining approach (see Section 3.2.4). We present our accu-
racy results averaged across all the evaluated datasets. We make four main observations
from Fig. 3.12 and Fig. 3.13.

1. Combining of individual accuracy enhancement techniques does not improve the
accuracy in an additive manner. For example, each of VAT, R-V-W, and RSA+KD in
Fig. 3.12 improves accuracy due to Synaptic+Wires by 6.85%, 10.64%, 10.85%, respec-
tively. However, when we consider all non-idealities together in the All configuration,
accuracy improves by only 11.84% (1 in Fig. 3.12).

2. The effectiveness of an individual accuracy enhancement technique depends on
the underlying error and non-ideality it targets. For example, VAT is as effective as
RSA+KD for non-idealities due to DAC+Driver (94.22% vs. 94.32%). However, the
gap between the two approaches widens for non-idealities due to Synaptic+Wires
(87.32% vs. 91.32%). See 2 in Fig. 3.12.

3. Accuracy enhancement techniques improve accuracy with a similar trend over differ-
ent crossbar sizes (3 in Fig. 3.12 and Fig. 3.13). Although these results are averaged
over our datasets, we note that one can make the same observation on each dataset
as well.

4. Accuracy enhancement techniques are more effective for larger crossbars than for
smaller ones (e.g., 256×256 compared to 64×64). This is expected because there is

3.4. SWORDFISH EVALUATION

3

73

5
0

6
0

7
0

8
0

9
0

1
0

0

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

Accuracy (%)

3

A
cc

u
ra

cy
 f

o
r

A
ll

M
it

ig
at

io
n

s
an

d
 N

o
n

id
ea

lit
ie

s
6

4

1
1

1
2

2
2

2

En
h

an
ce

m
en

t
Te

ch
n

iq
u

e

4

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e
B

as
el

in
e

Sy
n

ap
ti

c+
W

ir
es

Se
n

se
+A

D
C

s
D

A
C

+D
ri

ve
r

C
o

m
b

in
ed

M
ea

su
re

d

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e

F
ig

u
re

3.
12

:A
cc

u
ra

cy
af

te
r

en
h

an
ce

m
en

tm
ec

h
an

is
m

s
fo

r
ev

al
u

at
ed

n
o

n
-i

d
ea

lit
ie

s
o

n
64

×6
4

cr
o

ss
b

ar
s.

5
0

6
0

7
0

8
0

9
0

1
0

0

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

VAT

KD

R-V-W

RSA+KD

All

Accuracy (%)

A
cc

u
ra

cy
 f

o
r

A
ll

M
it

ig
at

io
n

s
an

d
 N

o
n

id
ea

lit
ie

s
2

5
6

3
4

En
h

an
ce

m
en

t
Te

ch
n

iq
u

e

Sy
n

ap
ti

c+
W

ir
es

Se
n

se
+A

D
C

s
D

A
C

+D
ri

ve
r

C
o

m
b

in
ed

M
ea

su
re

d

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e

Th
e

o
th

er
 o

n
e

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e

F
ig

u
re

3.
13

:A
cc

u
ra

cy
af

te
r

en
h

an
ce

m
en

tm
ec

h
an

is
m

s
fo

r
ev

al
u

at
ed

n
o

n
-i

d
ea

lit
ie

s
o

n
25

6×
25

6
cr

o
ss

b
ar

s.

3

74 3. SWORDFISH

more room for accuracy improvement for these larger crossbars, as their inaccuracies
are higher. For example, we observe 22.07% improvement in accuracy for 256×256
crossbars (4 in Fig. 3.13) compared to 16.24% for 64×64 (4 in Fig. 3.12), after all of
the accuracy enhancement techniques are applied (All) over all existing non-idealities
(i.e., the Measured configuration).

We conclude that the basecalling accuracy of SwordfishAccel can match SotA lev-
els by using robust techniques that build on each other employing reasonable cross-
bar sizes (e.g., 64×64) and successfully accounting for substantial circuit variations, like
write variations.

3.4.5. THROUGHPUT ANALYSIS OF SWORDFISHACCEL
Fig. 3.14 shows the inference throughput for Bonito on a GPU (Bonito-GPU) card
discussed in Section 3.3.2, Ideal-SwordfishAccel, Realistic-SwordfishAccel-RVW, Real-
istic-SwordfishAccel-RSA, and Realistic-SwordfishAccel-RSA+KD. We show the results
for each of the four datasets and the average results over all datasets. The results are for
a crossbar of size 64×64 and a write variation rate of 10%, and assuming 5% of weights
are placed in SRAM for Realistic-SwordfishAccel-RSA and Realistic-SwordfishAccel-
RSA+KD.

Performance Realistic SwordFish

1

10

100

1000

10000

100000

1000000

10000000

100000000

T
h

ro
u

g
h

p
u

t
(K

b
p

s
/s

e
c
)

G-Bonito RNN SwordFish-Ideal SwordFish-Realistic

SwordFish-All-RVW SwordFish-All-RSA SwordFish-All-RSAKD

1

100

10000

1000000

100000000

D1 D2 D3 D4 Average

T
h

ro
u

g
h

p
u

t
(K

b
p

s/
se

c)

G-Bonito Ideal-SwordfishAccel Realistic-SwordfishAccel-RVW

Realistic-SwordfishAccel-RSA Realistic-SwordfishAccel-RSA+KD

4

2

3

1

50

60

70

80

90

100

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

V
A

T

K
D

R
-V

-W

R
S

A
+

K
D

A
ll

A
cc

u
ra

cy
 (

%
)

Figure 3.14: Throughput comparison of Swordfish variations.

We make four key observations. First, Ideal-SwordfishAccel improves the basecalling
throughput over Bonito-GPU for all datasets, by 413.6× on average (1 in Fig. 3.14). We
expect such a large improvement in throughput because SwordfishAccel is highly opti-
mized for the main dominant kernel in the underlying DNN of Bonito, namely VMM,
and avoids unnecessary data movement while harvesting the maximum parallelism.

Second, all versions of Realistic-SwordfishAccel (i.e., Realistic-SwordfishAccel-RVW,
Realistic-SwordfishAccel-RSA, and Realistic-SwordfishAccel-RSA+KD) have lower per-
formance than Ideal-SwordfishAccel, irrespective of the dataset. Performance loss
with a realistic Swordfish accelerator is expected because each realistic version adds

3.4. SWORDFISH EVALUATION

3

75

overheads to mitigate accuracy loss due to realistically-modeled non-idealities, which
directly affect the performance of a VMM operation. For example, RSA adds overheads
due to (1) the extra checks when reading some weights from the on-chip SRAM memory
and (2) additional logic for combining the results from the memristor-based crossbar
and on-chip memory readout.

Third, not all versions of Realistic-SwordfishAccel outperform Bonito-GPU. More
specifically, if we use R-V-W for mitigating non-idealities (Realistic-SwordfishAccel-RVW
in Fig. 3.14), the overhead due to additional verifications and writes significantly reduces
the performance of basecalling throughput compared to Bonito-GPU by 30% on average
(2 in Fig. 3.14).

Fourth, Realistic-SwordfishAccel-RSA and Realistic-SwordfishAccel-RSA+KD pro-
vide, on average, 5.24× and 25.7× higher throughput compared to Bonito-GPU,
respectively (3 and 4 in Fig. 3.14). Note that, for the same accuracy, Realistic-Sword-
fishAccel-RSA+KD requires fewer weights inside the SRAM than Realistic-Swordfish-
Accel-RSA due to the retraining using KD. Hence, Realistic-SwordfishAccel-RSA+KD is
faster.

We conclude that a realistic basecalling accelerator designed using Swordfish by tak-
ing into account and mitigating all non-idealities of memristor-based CIM can signifi-
cantly accelerate basecalling, yet its benefits are much lower than a corresponding ac-
celerator that does not mitigate such non-idealities and thus has much lower accuracy.

3.4.6. AREA VS. ACCURACY ANALYSIS

Fig. 3.15 shows the tradeoff between accuracy and area in Realistic-SwordfishAccel-
RSA+KD (see Section 3.4.5) for two different crossbar sizes (64×64 on the left and
256×256 on the right), with four different percentages of weights (i.e., 0%, 1%, 5%,
and 10%) assigned to the SRAM memory (see Section 3.2.4). The area numbers show
the absolute area for implementing Realistic-SwordfishAccel-RSA+KD considering the
overhead of RSA+KD discussed in Section 3.2.4. The red dashed line shows the accuracy
of the original Bonito basecaller. We make three main observations.

Accuracy vs Area 64 and 256

0

20

40

60

80

100

0 50 100 150 200 250 300 350

A
cc

u
ra

cy

Area (mm2)

0

20

40

60

80

100

0 50 100 150 200 250 300 350

A
cc

u
ra

cy

Area (mm2)

(a) 256 * 256 crossbars(a) 64 * 64 crossbars

0

20

40

60

80

100

0 50 100 150 200 250 300 350

A
cc

u
ra

cy
 (

%
)

Area (mm2)

0

20

40

60

80

100

0 50 100 150 200 250 300 350

A
cc

u
ra

cy
 (

%
)

Area (mm2)

(a) 256 * 256 crossbars

(a) 64 * 64 crossbars OLD

64x64
Crossbars

256x256
Crossbars

5%

10%

15%

0%

5%

10%

15%

0%

Figure 3.15: Accuracy vs. Area evaluation of Realistic-SwordfishAccel-RSA+KD.

3

76 3. SWORDFISH

First, the more weights are assigned to SRAM, the higher the accuracy of Real-
istic-SwordfishAccel-RSA+KD. This is expected because we effectively reduce the
non-idealities of the system by using more SRAM cells to remap non-ideal memristors.

Second, the area of extra SRAM cells used in Realistic-SwordfishAccel-RSA+KD
increases significantly with the percentage of weights assigned to SRAM. In contrast,
the accuracy improvement saturates and does not increase significantly beyond 5% of
weights assigned to SRAM.

Third, assigning only 5% of weights to SRAM is sufficient to be within 5% of Bonito-
GPU’s accuracy for the 64×64 crossbar.

We conclude that accounting for non-idealities in different ways exposes tradeoffs
between accuracy and area overhead, which our Swordfish framework enables the de-
signer to rigorously explore.

3.4.7. VERDICT ON REALISTIC-SWORDFISHACCEL

Swordfish emphasizes the potential of significant throughput improvement for base-
calling and possibly other large DNNs that require throughput acceleration while hav-
ing stringent bound for another metric, e.g., accuracy using (re-)emerging computing
paradigms and emerging technologies. Although Swordfish might not currently offer
accuracy on par with state-of-the-art methods, the impressive 25.7× enhancement in
performance marks it as an advantageous development. Note that Swordfish still main-
tains a competitive accuracy in basecalling by deploying a unique synergy of mitigation
strategies and optimally-sized crossbar designs capable of weathering substantial circuit
variations.

Swordfish’s results for Bonito, a large DNN, challenge a widely-held belief that DNN-
based applications naturally thrive on memristor-based CIM due to inherent redun-
dancy in large networks. Swordfish applicability to other applications that utilize sizable
DNNs, mandate high accuracy, and demand significant throughput requires tailored ex-
ploration. Yet nothing hinders researchers from adopting a Swordfish-like approach to
examine their application on such architecture thoroughly. The decision on whether
memristor-based CIM is the optimal acceleration technique remains case-specific.

We know there are problems with the memristors, but Swordfish still shows promise.
Our results in Section 3.4 detail this. Our assessment of mitigation strategies has already
identified promising ones and has sparked suggestions for future methods. These in-
sights can be adopted in next-generation Swordfish deployments or similar accelerators.
Given our results, we believe it is more productive to find solutions to the accuracy is-
sues, some come with memristors becoming more mature, and some come with more
potent HW/SW co-designed methods rather than discarding the approach.

3.5. DISCUSSIONS AND FUTURE WORKS

3.5.1. APPLICABILITY OF SWORDFISH LOOKING FORWARD

Swordfish emphasizes the importance of a framework for evaluating multiple metrics
when designing a memristor-based CIM accelerator targeting large DNNs that require
throughput acceleration while having stringent bound for another metric, e.g., accuracy
(in the presence of emerging technologies with many non-idealities).

3.5. DISCUSSIONS AND FUTURE WORKS

3

77

Swordfish’s realistic results, Realistic-SwordfishAccel, for Bonito, a large DNN, chal-
lenge the notion that DNN-based applications naturally thrive on memristor-based CIM
due to the inherent redundancy present in large neural networks. Although Realistic--
SwordfishAccel might not currently offer basecalling accuracy on par with state-of-the-
art methods, its large (25.7×) enhancement in performance (Section 3.4.5) at a much
higher accuracy than baseline CIM marks it as an advantageous development. Even in
the presence of memristor-based CIM non-ideality, Swordfish still shows promise, and
Realistic-SwordfishAccel still maintains a competitive accuracy in basecalling by deploy-
ing a unique synergy of mitigation strategies (against non-idealities and variations) on
moderately-large crossbar designs (e.g., 64×64 or 256×256). Our results in Section 3.4
detail this. Given our results, we believe it is productive and important to find more
solutions to the memristor-based CIM non-idealities going forward; we believe some
solutions will come with memristors becoming more mature, and some will come with
more potent accuracy enhancement techniques and HW/SW co-designed methods.

3.5.2. OTHER DNN-BASED APPLICATIONS

Our paper discusses Swordfish as a framework for accelerating basecalling using a
memristor-based CIM architecture. Our results (Section 3.4) show the unique nature
of the large DNN in Bonito, which, despite its inherent redundancy, does not quite
reach SotA accuracy on memristor-based CIM, thus presenting an exciting challenge.
This intriguing finding encourages a deeper exploration into CIM designs for large
DNNs, reminding us not to rely solely on the scalability assumptions based on small
network evaluations, such as simple CNNs for MNIST. Our results also demonstrate a
large acceleration opportunity for basecalling using SwordfishAccel if we can mitigate
the memristor-induced accuracy loss through HW/SW co-designed approaches. We
believe other DNN-based applications that use memristor-based CIM accelerators
(e.g., [139, 324, 342]) can also benefit from our approach and Swordfish. For example,
large DNN models in autonomous driving (e.g., [342–344]) that require accurate yet
high-throughout and low-latency execution can use a Swordfish-like approach to
build memristor-based CIM accelerators for their underlying large DNNs. We believe
and hope that Swordfish can aid such applications in terms of both accuracy and
performance.

3.5.3. BETTER ACCURACY ENHANCEMENT TECHNIQUES

Our results show that accuracy enhancement can pave the way toward SwordfishAccel
becoming a reliable solution. Our online retraining mechanism shows the highest po-
tential to improve the accuracy loss. We believe there needs to be more research on
better mitigation techniques for existing and future non-idealities in memristor-based
designs. Specifically, we suggest hardware/software co-designed solutions such as our
RSA+KD technique in Section 3.2.4. Hardware-based solutions to mitigate non-idealities
[345] that are orthogonal to our RSA+KD approach is also an example of possible avenues
of future work.

3

78 3. SWORDFISH

3.6. CONCLUSION
This paper introduces Swordfish, a modular and extensible framework for accelerating
the evaluation of genomic basecalling via a memristor-based Computation-In-Memory
architecture. Swordfish includes a strong evaluation methodology, mitigation strate-
gies for hardware non-idealities, and characterization results to guide the modeling
of memristors. Using Swordfish, we demonstrate the significant challenges of using
non-ideal memristor-based computations for genomic basecalling and how to solve
them by combining multiple mitigation techniques at the circuit and system levels. We
demonstrate the usefulness of our findings by developing SwordfishAccel, a concrete
memristor-based CIM design for our target basecaller Bonito that uses accuracy en-
hancement techniques guided by Swordfish. We conclude that the Swordfish framework
effectively facilitates the development and adoption of memristor-based CIM designs
for basecalling, which we hope will be leveraged by future work. We also believe that our
framework is applicable to other DNN-based applications and hope future work takes
advantage of this.

4
RATTLESNAKEJAKE: A FAST AND

ACCURATE PRE-ALIGNMENT

FILTER SUITABLE FOR

COMPUTATION-IN-MEMORY

Significant improvements in pre-alignment filter accuracy have shifted the execution
bottleneck of short-read sequence alignment to the filtering step for many genomics
datasets. Current pre-alignment filters move data from memory to the processing units,
and when rejection is determined, this results in wasted energy and time. This chapter
presents RattlesnakeJake, a hardware/software co-designed accelerator that speeds up
and reduces the energy consumption of pre-alignment filtering and, hence, sequence
alignment. RattlesnakeJake achieves this by (1) proposing a lightweight and hardware-
friendly filtering algorithm, (2) adopting the Computation-In-Memory paradigm to
avoid unnecessary data movement, and (3) exploiting resistive memories (memristors) to
perform the low-level operations required by the proposed algorithm. Our preliminary
results for RattlesnakeJake show an accuracy at the state-of-the-art (SotA) level and a
significant improvement in the execution time of sequence alignment, irrespective of the
evaluated dataset. The improvement for filtering varies from dataset to dataset and goes
up to ∼7× and ∼80×, compared to SotA accelerators on GPU and CPU, respectively.

This chapter is partially based on the candidate’s work [117].

79

4

80 4. RATTLESNAKEJAKE

As we briefly discussed in Section 2.2.1, sequence alignment of genomics data is a
fundamental step in most genomic studies that help us with virus surveillance and pre-
cision medicine [1–11]. Currently, computationally costly dynamic programming-based
(DP) algorithms are the solution of choice for sequence alignment. Pre-alignment fil-
tering1 has recently been introduced as a solution to heuristically replacing the need for
expensive DP solutions in many cases. This consequently speeds up the overall process
of sequence alignment significantly [186–188, 346]. With the achieved speedup, pre-
alignment filters become the (new) performance bottleneck to focus on [186–188], with
solutions using graphics processing units (GPUs) and field-programmable gate arrays
(FPGAs) also being proposed. Unfortunately, none of these works resolve this new per-
formance bottleneck. Moreover, despite these accelerations, there is still one bottleneck
in all these works, i.e., the (large) movement of data that most of the time turns out to
be unnecessary as the data is decided to be filtered out. This unnecessary data move-
ment results in wasted time and energy consumption. Therefore, there is a need for a
more efficient design to tackle this bottleneck in the sequence alignment pipeline and
simultaneously avoid this wasted work, time, and energy consumption caused by data
movement.

We propose RattlesnakeJake, a hardware/software (HW/SW) co-designed accelera-
tor based on Computation-In-Memory (CIM) paradigm, capable of pre-alignment fil-
tering for short-sequence alignment. RattlesnakeJake first proposes a lightweight and
hardware-friendly algorithm. It then exploits emerging non-volatile memories as its un-
derlying device for hardware acceleration. RattlesnakeJake chooses these devices since
they offer greater densities, access speeds, and non-volatility than conventional mem-
ories such as DRAM or SRAM. RattlesnakeJake’s hardware has a hierarchical design that
supports the operations required in its algorithm and maps the full algorithm to memory
units and their peripheries while also taking care of input data distribution and output
data processing.

Our results show that RattlesnakeJake improves upon SotA pre-alignment filters on
GPU and CPU by up to ∼7× and ∼80×, respectively, for the same real input datasets.
These improvements stem from (1) the underlying lightweight filtering algorithm, (2) op-
timized data flow in RattlesnakeJake, and (3) the prevention of unnecessary data move-
ment for filtering. RattlesnakeJake achieves all these benefits while neither replacing the
sequence alignment nor introducing extra false negatives into the pre-alignment filter.

The major contributions of the work described in this chapter are:

• A memory-friendly filtering algorithm with no assumption on data alignment
leading to extra penalty.

• A configurable memristor-based CIM-enabled architecture for short-read pre-
alignment filtering.

• RattlesnakeJake, a HW/SW co-designed accelerator for pre-alignment filtering in-
side the memory.

• Extensive evaluation and comparison of RattlesnakeJake using real data against
previous software and hardware pre-alignment filters.

1We use the term filter and pre-alignment filter interchangeably hereafter.

4.1. PROPOSAL AND ARCHITECTURE

4

81

4.1. PROPOSAL AND ARCHITECTURE
This section discusses RattlesnakeJake’s software and hardware design.

4.1.1. RATTLESNAKEJAKE’S ALGORITHM
SotA filters mitigate the cost of sequence alignment by approximating the difference (aka
edits) between the DNA read sequence and reference genome pair using simple opera-
tions (e.g., Hamming distance). If the approximated difference is already greater than
the threshold for an acceptable alignment, filters safely reject/filter the read sequence
and avoid costly DP. SneakySnake [186] is currently the SotA filter (i.e., fastest with the
highest accuracy).

We design RattlesnakeJake’s algorithm to account for two limitations stemming from
rigid data accessibility in a CIM-enabled design: (1) irregular bit-position of the start of
a reference sequence within memory access, and (2) rigid dimensions of memory units
such as crossbars, subarrays, etc.

Algorithm 1 RattlesnakeJake Algorithm
Input: Read, Ref, E, Length, k
Output: Accept

1: Nseg ←⌈Leng th/k⌉
2: M atches ← 0
3: for i ∈ {0..Nseg −1} do
4: M atch ← 0
5: for e ∈ {−E ..+E } do
6: ReadSeg ← Read [ki ..k(i +1)−1]
7: Re f Seg ← Re f [ki +e..k(i +1)−1+e]
8: if ReadSeg == Re f Seg then
9: M atch ← 1

10: end if
11: end for
12: M atches ← M atches +M atch
13: end for
14: Accept ← (M atches >= Nseg −E)
15: return Accept

RattlesnakeJake reduces DP to exact matches between shifted versions of smaller
sub-sequences/segments and processes their results together. Specifically, Rattlesnake-
Jake divides the read sequence into segments of k-bps, which are compared to the corre-
sponding segments of the reference. Each pair of segments is checked for an exact match
to determine whether an edit is present within that segment. To account for deletions
and insertions, RattlesnakeJake repeats this process for references shifted by −E to +E
bps. If the segment has an exact match with any of the (shifted) reference segments, it
concludes that the segment does not contain errors. RattlesnakeJake combines the re-
sults of all of the segments and exploits the pigeon-hole principle to deduct the approx-
imate number of edits of the sequence pairing. Algorithm 1 presents RattlesnakeJake
algorithm, where E is the number of permissible edits, and k is the segment size.

Fig. 4.1 illustrates an example of RattlesnakeJake algorithm for two 20bps long se-
quences with an edit threshold of 2. RattlesnakeJake splits the read into 5 segments of
4bps and compares them with the reference shifted by -2 to +2 bps. RattlesnakeJake finds
that only segments 1 and 4 have matching segments with the reference, indicating that
there are at least 3 edits. This exceeds our edit threshold (E = 2), and thus Rattlesnake-

4

82 4. RATTLESNAKEJAKE

Jake rejects the pair for alignment.

RattlesnakeJake – Algorithm Example

CPU

Memory

RattlesnakeJake

Read: ACGTTGTCTGAAACTTACGC

Ref: ..AA ACGTTGACTCGAAACTTACA CT..

Length = 20, E = 2, K = 4

Correct
Alignment

with 3 edits

Read: ACGTTGTCT -GAAACTTACGC

Ref: ..AA ACGTTGACTCGAAACTTACACT..

RattlesnakeJake
Inputs:

ACGT TGTC TGAA ACTT ACGC

AAAC GTTG ACTC GAAA CTTA

AACG TTGA CTCG AAAC TTAC

ACGT TGAC TCGA AACT TACA

CGTT GACT CGAA ACTT ACAC

GTTG ACTC GAAA CTTA CACT

Read

Shifted Ref -2

Shifted Ref -1

Ref

Shifted Ref +1

Shifted Ref +2

1 0 0 1 0Output

Matches = 2

Nseg = ceil(20/4) = 5

Nseg – Matches = 3 > E Reject

Figure 4.1: RattlesnakeJake with Length=20bps, E=2, and k=4bps.

RattlesnakeJake’s hardware-friendly algorithm flexibly exploits two key trade-offs.
First, a trade-off between accuracy and hardware-friendliness. Changing from DP (or
SNR sub-problems in SneakySnake) to finding the exact matches of short segments may
underestimate the number of edits between the read and reference. This leads to more
reads passing the filter. However, exact matching is known to be well-supported in hard-
ware. Moreover, the possibility of supporting exact matches for short strings is higher in
a CIM-enabled crossbar. Second, a trade-off between required resources and achievable
parallelism/speed. Finding the exact matches between each segment from the read and
the corresponding segment from the reference and its shifted variants are independent
problems and can be parallelized with extra resources. Our evaluations in Section 4.2
investigate these trade-offs in more detail.

4.1.2. RATTLESNAKEJAKE’S ARCHITECTURE
We envision RattlesnakeJake as a pre-alignment filtering accelerator inside the mem-
ory as shown in Fig. 4.2-(a). This way, RattlesnakeJake prevents unnecessary data ac-
cesses from memory to CPU or GPU via filtering. Due to our positioning, RattlesnakeJake
follows a conventional hierarchical design; i.e., RattlesnakeJake contains several bank
groups, banks, subarrays, and tiles. Fig. 4.2-(b) to -(e) present RattlesnakeJake and its
top-down organization.

In this hierarchical architecture, a tile is an array of cells connected together in a
conventional crossbar format of rows and columns. Each cell consists of a 1 transistor
and 1 memristor device (aka 1T1R format) and can store 1 bit of data. A tile also includes
all the necessary peripheries for read and write operations (e.g., DACs and SAs). A group
of tiles, all working in parallel, create a subarray. This separation of tiles and subarrays
is needed to (1) mitigate the overhead of the peripheries and shared components (e.g.,
TCAMS and input/output buffers) and (2) provide enough parallelism. Then, several
subarrays constitute a bank, and multiple banks come together and create bank groups.
This hierarchy is adopted to (1) fully utilize the available busses for input and output

4.1. PROPOSAL AND ARCHITECTURE

4

83

RattlesnakeJake - PreAlignMem Overview

CPU

Memory

RattlesnakeJake

(a) Concept
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(e) TCAM filled for
RattlesnakeJake

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

7

. . .

. . .

. . .

. . .

. . .

. . .

DAC

DAC

DACIn
p

u
t

P
ro

ce
ss

in
g

(R
o

w
 D

ec
o

d
er

)

SA SA SA

O
u

tp
u

t
P

ro
ce

ss
in

g

D
ig

it
al

 In
p

u
t

In
st

ru
ct

io
n

s

Act1

Act2

Actn

W11 W1m

Wnm
Wn1

Ctr

…

…

(d) Tile

7

1

SL
WL

BL

2

6

Ctrl

Bank 01

Bank Group 0 Bank Group k

Bank 0k

…
Buffers

(b) RattlesnakeJake

8

Cnt 6 Cnt

TCAMTile 0 … Tile k’

Subarray 1

Subarray k’’

… …

Ctrl

Mask

TCAMMask

TCAMMask

AccNOTs

AccNOTs

3 4

8

5
AccNOTs

(c) Bank

Figure 4.2: (a) RattlesnakeJake system placement, (b) Overview of RattlesnakeJake, (c)
banks in RattlesnakeJake, (d) Tile and peripheral logics, and (e) Example filled TCAM.

movement and (2) provide the highest possible parallelism while minimizing the buffer
overheads. A similar method is used in today’s DRAMs and other memory technologies.

To support the required kernels in Algorithm 1, RattlesnakeJake augments normal
memory units with extra hardware:

• 1 Modified SA at tile level. RattlesnakeJake utilizes SAs enhanced with Scouting
Logic [87, 106] so that they can perform XOR operation. This is the base operation
needed for the exact match required in Algorithm 1.

• 2 A series of OR gates at tile level. RattlesnakeJake utilizes these gates to account for
encoding every base pair with 2 bits. This is a genomic-specific modification needed
as DNA sequences can contain 4 types of bases encoded as two bits of data in Rat-
tlesnakeJake. Since the XOR produces a bit-wise result, RattlesnakeJake performs an
XOR on every pair of two bits to obtain a base-level result.

• 3 Logic for masking per subarray. At the bank level, the outputs of all addressed tiles
are combined to form one bit vector. Tiles do not always contribute to the final result,
for example, when the start of the reference does not line up with the start of a word
(Section 4.1.1). In these cases, RattlesnakeJake masks the non-contributing tiles using
a AND.

• 4 1 TCAM per subarray. RattlesnakeJake detects patterns of consecutive zeros in the
output of each tile using this TCAM. Each TCAM is filled with rows of k consecutive
zeros, and n - k don’t-care values, where k is the #patterns in RattlesnakeJake and n
is the dimension of the TCAM. Note that, although in principle RattlesnakeJake does
not fully uses all TCAM rows, additional rows are added so that one can configure Rat-
tlesnakeJake for the detection of more patterns. This maintains the ability to imple-
ment other current/future filtering algorithms.

• 5 A series of Not and AND gates per subarray. The output of each TCAM goes through
negation and accumulation (via AND) phases and repeats until we have the result for
all the shifted segments.

4

84 4. RATTLESNAKEJAKE

• 6 A tree-based counter per bank group at the rank level. RattlesnakeJake uses these
counters to effectively determine the minimum edit between the original read and the
reference by counting the ‘1’s in the output vector.

• 7 Input and output buffers in all levels. RattlesnakeJake places appropriate buffers at
different levels of the hierarchy to ensure seamless data flow among components with
no data loss.

• 8 Controller in all levels. RattlesnakeJake places small FSM-based controllers at each
level of its hierarchy that oversees required operations and dataflow.

It is worth noting that recently, Shahroodi et al. proposed SieveMem, an architecture
based on CIM that can support the existing kernels in pre-alignment filters [118]. In the-
ory, SieveMem supports RattlesnakeJake’s algorithm, and RattlesnakeJake is a simplified
version of SieveMem.

4.1.3. RATTLESNAKEJAKE ALGORITHM TO HARDWARE MAPPING
Before runtime, RattlesnakeJake stores multiple shifted references in consecutive rows
in the memory. RattlesnakeJake represents the bases as 2-bit values stored in 2 cells.
Then, during runtime, RattlesnakeJake writes the segments of the read to a dedicated
query row, such that the first bit of the segment sequence lines up with the first bit
of the corresponding non-shifted reference sequence. RattlesnakeJake performs exact
string matching at the tile level. To perform string matching, RattlesnakeJake performs
an XOR between the query row and a row containing one of the reference sequences. If
the segments are exact matches, this operation results in an output vector of only ze-
ros. RattlesnakeJake uses the TCAM located at the subarray level to detect this pattern.
RattlesnakeJake repeats this process for all 2E +1 shifted references. If in none of the it-
erations, it detects an exact match, RattlesnakeJake concludes that the segment contains
an error.

In RattlesnakeJake, multiple tiles operate in parallel and RattlesnakeJake accumu-
lates their results at the subarray level to create a bit-vector, which contains a ‘1’ for
every segment containing an error. RattlesnakeJake returns this vector to the rank level
where the number of ‘1’s is counted and compared to the edit threshold. Based on this
comparison, RattlesnakeJake accepts or rejects the pairing.

4.2. EVALUATIONS

4.2.1. EVALUATION METHODOLOGY
Implementation. RattlesnakeJake is evaluated using a cycle-accurate RTL-based sim-
ulation based on the proposed architecture Section 4.1. The design is verified by com-
paring the simulation results with the output of a software version of RattlesnakeJake
algorithm (RattlesnakeJake-SW). RattlesnakeJake-HW uses a memory model based on a
small RRAM chip prototype in TSMC 40 nm CMOS technology [330]. The model is from
the EU project MNEMOSENE [333], provided to us by generous partners. The additional
circuit and controller in RattlesnakeJake-HW also use TSMC 40 nm technology node in
Synopsis Design Compiler [331] to obtain the latency, power, and area numbers. Here,
we only discuss the latency results.

4.2. EVALUATIONS

4

85

We run all of our experiments on a 28-core server with 192 GB memory equipped
with Tesla-K80 and a processor operating at 2.4 GHz. We intend to open-source the im-
plementations of RattlesnakeJake upon acceptance. Our evaluations consider the same
platform and input datasets for all filters to provide a fair analysis.

Baselines. We compare RattlesnakeJake with SneakySnake (denoted with SS in the fol-
lowing figures) [186], SHD [189], Shouji [187], and GRIM-Filter [95]. These are four SotA
pre-alignment filters, three of which have acceleration on GPU or FPGA, and one on 3D-
stacked memories. We analyze the accuracy of RattlesnakeJake by comparing its output
results with only the profiling outputs of these open-sourced filters.

Datasets. We use real genome datasets (human_g 1k_v38 and ERR240727_1) for our
reference database and input queries [186, 347, 348]. Similar to previous works [186],
we create our datasets using MrFast [349] to create sets of read-reference pairs from the
.fasta and .fastq files to evaluate the (pre) alignment algorithms. RattlesnakeJake uses
Edlib [350] to create full-alignment results for accuracy, which will be used to verify the
functionality of the pre-alignment filters.

4.2.2. ACCURACY ANALYSIS

Fig. 4.3 and Fig. 4.4 compare the false positive (FP) rate of several filters. FP rate in a filter
shows the ratio between reads that wrongly pass the filter (i.e., should have been filtered)
and go through alignment (i.e., DP) over all the reads. The lower the FP, the better. Note
that RattlesnakeJake achieves the same True Positive (TP) and True Negative (TN) rate
as SneakySnake, which are currently the best filtering rates.partial_FP_ERR2407271E2

partial_FP_ERR2407271E40
Figure 4.3: FP rate comparison on ERR240727_1 dataset for E=2.

partial_FP_ERR2407271E2

partial_FP_ERR2407271E40

Figure 4.4: FP rate comparison on ERR240727_1 dataset for E=40.

4

86 4. RATTLESNAKEJAKE

partial_performance_ERR2407271E2

partial_performance_ERR2407271E40Figure 4.5: Exectution time on ERR240727_1 dataset for E=2.

partial_performance_ERR2407271E2

partial_performance_ERR2407271E40

Figure 4.6: Exectution time on ERR240727_1 dataset for E=40.

We make three key observations. First, irrespective of datasets and edit threshold,
RattlesnakeJake provides a low FP rate comparable with the SotA SneakySnake. Sec-
ond, RattlesnakeJake outperforms SHD, Shouji, and GRIM-Filter by providing 40%, 22%,
and 90%, respectively, fewer falsely-accepted sequences, on average across all of our
datasets. Third, RattlesnakeJake-HW provides a close FP rate to RattlesnakeJake-SW (less
than 1% difference). This means that the hardware limitation regarding the start point of
the reference that changes the #segments does not significantly affect the accuracy of a
hardware implementation over a software version that does not have the same limitation
(and might have different #segments). We conclude that RattlesnakeJake is an accurate
filter for alignment acceleration.

4.2.3. THROUGHPUT AND EXECUTION TIME

Fig. 4.5 and Fig. 4.6 present the execution time for filtering and alignment of different
methods in two datasets and over several edit thresholds. We limit the y-axis that shows
the execution time of filter+alignment to 1000s to better capture the trends and relative
execution time of RattlesnakeJake in the system compared to other methods. We only
present the results for our most reasonable configuration of RattlesnakeJake-HW.

We make three key observations. First, independent of the dataset and edit thresh-

4.3. DISCUSSIONS AND FUTURE WORKS

4

87

old, both RattlesnakeJake-SW in CPU and RattlesnakeJake on hardware significantly re-
duces the end-to-end execution time of sequence alignment. Second, the more dis-
similar datasets (e=9% vs. e=2%), the higher the benefits of RattlesnakeJake. The aver-
age speedup of end-to-end alignment time when using RattlesnakeJake is 30.37% more
for e=9% over e=2% for ERR240727_1 dataset. Third, RattlesnakeJake-HW improves the
filtering performance by up to ∼7× and ∼80× over currently the best-accelerated fil-
ter on GPU (SS_GPU_Filter) and CPU (SS_CPU_Filter), respectively. This improvement
translates to a 54.68% and 84.21% for end-to-end alignment compared with SotA filter
combined with SotA alignment and sheer Edlib on CPU, respectively, averaged over our
datasets. We conclude that RattlesnakeJake effectively reduces the execution time of
end-to-end alignment and takes a step towards mitigating the filtering bottleneck.

4.3. DISCUSSIONS AND FUTURE WORKS

4.3.1. RATTLESNAKEJAKE FOR LONG SEQUENCE ALIGNMENT
RattlesnakeJake algorithm is also effective for long sequence alignment, where se-
quences are a size of 100Kbp. However, when it comes to hardware implementation,
RattlesnakeJake, distributing the long reference or read sequences in the memory
hierarchies requires different buffer sizes, control unit sequences, and potentially some
additional logic. We leave the extension of RattlesnakeJake for long pre-alignment
filtering to future work.

4.3.2. POTENTIAL DESIGN IMPROVEMENTS
We evaluated RattlesnakeJake based on the measurements on a small RRAM chip proto-
type for tiles and TCAMs. However, a design space exploration is required to direct the
final configuration of RattlesnakeJake to be deployed in future genomics systems. This
exploration should consider different inputs, memory units and arrangements, and vari-
ations of device and circuit behavior (e.g., non-idealities) for different organizations. We
leave this for future work.

Moreover, we believe a small reconfiguration of TCAMs at the subarray level and the
references of SAs at the Tile level can provide more kernel support in RattlesnakeJake.
These modifications, in addition to some modifications in RattlesnakeJake FSM con-
trollers, can provide support for more pre-alignment filtering kernels and algorithms,
making RattlesnakeJake compatible with previous and future filters. We leave this explo-
ration to future work.

4.4. CONCLUSION
This chapter proposes a HW/SW co-designed accelerator, called RattlesnakeJake, based
on memristor devices and CIM paradigm to prevent unnecessary data movement for se-
quence alignment by filtering dissimilar short sequences inside the main memory. When
used in a larger genomics pipeline, RattlesnakeJake shifts the processing bottleneck back
(again) to the DP step of the remaining sequences. Hence, our work calls for even more
accurate filtering algorithms and better DP-based alignment algorithms.

5
SIEVEMEM: A

COMPUTATION-IN-MEMORY

ARCHITECTURE FOR FAST AND

ACCURATE PRE-ALIGNMENT

As discussed in Chapter 4, high DNA alignment time slows down genomic studies.
Pre-alignment filtering cuts this time but is now the new execution bottleneck in many
genomics studies. Most of the pre-alignment execution time goes into moving sequences
from memory to processors, even though many sequences get filtered out. Current
accelerators have the same issue and lack future-proofing. This chapter addresses these
shortcomings by introducing SieveMem. SieveMem is an architecture that exploits the
Computation-In-Memory paradigm with memristive-based devices to support shared
kernels of pre-alignment filters and algorithms inside the memory (i.e., preventing
data movements). SieveMem architecture also provides support for future algorithms.
SieveMem supports more than 47.6% of shared operations among all top 5 SotA filters.
Moreover, SieveMem includes a hardware-friendly pre-alignment filtering algorithm
called BandedKrait, inspired by a combination of mentioned kernels. Our evaluations
show that SieveMem provides up to 331.1× and 446.8× improvement in the execution
time of the two most common kernels. Our evaluations also show that BandedKrait
provides accuracy at the SotA level. Using BandedKrait on SieveMem, a design we
call Mem-BandedKrait, one can improve the execution time of end-to-end sequence
alignment irrespective of the dataset, which can go up to 91.4× compared to the SotA
accelerator on GPU.

This chapter is partially based on the candidate’s work [118].

89

5

90 5. SIEVEMEM

As we discussed in Section 2.2.1 and in Chapter 4, pre-alignment filtering1 was re-
cently introduced as a solution to significantly speed up the overall process of sequence
alignment by heuristically replacing the need for expensive DP solutions for many
inputs, given a pre-defined edit distance threshold between the inputs [186–188]. SotA
pre-alignment filters speed up the short-read (100-250 base-pairs or bps) sequence
alignment so much so that they themselves become the (next) bottleneck to be accel-
erated [187, 188]. Although one SotA work [186] accelerates the pre-alignment filters
on graphics processing units (GPUs) and field-programmable gate arrays (FPGAs),
this work still does not completely alleviate the bottleneck. Moreover, we find that
data movement is a major issue in SotA pre-alignment filters, i.e., these filters waste
a lot of time and energy when moving the sequences from the memory to processing
units, most of which turn out to be unnecessary as the data is decided to be filtered
out eventually [186]. Therefore, there is a need for a more efficient design to tackle the
filtering bottleneck in the sequence alignment pipeline and simultaneously avoid the
wasted work, time, and energy consumption caused by data movement in the system.

We propose SieveMem, an architecture based on Computation-In-Memory (CIM)
principles capable of handling shared kernels in pre-alignment filtering for short-
sequence alignment. We identify the shared kernels via an extensive profiling process
using the same datasets and platforms for all the pre-alignment filters for a fair compari-
son and accurate recognition of bottlenecked operations. We also propose BandedKrait,
a novel lightweight pre-alignment filter from shared kernels in previous filters (i.e.,
those supported by SieveMem) and its mapping into SieveMem architecture, a design
called Mem-BandedKrait. SieveMem adapts the CIM paradigm since it requires preven-
tion of data movement, processing a large amount of data, and performing relatively
small and/or simple computations, the main characteristics a CIM architecture em-
braces [93, 108, 128]. SieveMem’s design comprises two abstraction levels: (1) A low-level
abstraction that supports the shared kernels in filters and (2) a high-level abstraction
that supports filtering algorithms using the existing hardware in SieveMem and takes
care of input data distribution and output data processing. SieveMem is designed to
support filtering for short reads because most of the available data in the genomics
realm is still short reads (sequences of length 100 to 250 base-pairs), even though the
industry is slowly moving towards long-read sequencing. Therefore, supporting short
reads filtering and alignment will remain relevant problems in upcoming years.

Our results show that SieveMem accelerates the execution time of the identified
shared kernels by up to 331.1× and 446.8× for the two most common kernels in
pre-alignment filters. The results also show that BandedKrait achieves an accuracy on
par with SotA filter SneakySnake. When accelerated on SieveMem, Mem-BandedKrait
accelerates pre-alignment filtering by up to 95.5× and 1292× over SotA filters on GPU
and CPU, respectively, for the same real input datasets. SieveMem achieves all these
benefits, neither replacing the sequence alignment nor introducing extra false negatives
into the pre-alignment filtering process, i.e., SieveMem only affects the pre-alignment
filtering step positively. Therefore, users can still employ SieveMem with any sequence
aligner.

Our contributions are the following:

1We use the term filter and pre-alignment filter interchangeably hereafter.

5.1. MOTIVATION AND PROFILING

5

91

• An configurable memristor-based accelerator (called SieveMem) that supports the
most common shared kernels in pre-alignment filters.

• A memory-friendly filtering algorithm, called BandedKrait, accounting for the in-
flexibility of having the starting point access aligned with the memory units in
memory/hardware. BandedKrait uses the same shared kernels and corresponding
hardware of previous filters. BandedKrait is in essence the same algorithm as Rat-
tlesnakeJake in Chapter 4. However, due to the tight integration of RattlesnakeJake
with its hardware, we separate them in this chapter to evaluate SieveMem fairly.

• A CIM-enabled realization of BandedKrait on SieveMem, called Mem-BandedKrait,
for short-read pre-alignment filtering.

• An extensive evaluation of SieveMem’s supported kernels, BandedKrait, and
Mem-BandedKrait using real data against previous software and hardware
pre-alignment filters.

5.1. MOTIVATION AND PROFILING
This section (1) identifies the shared kernels in filters and (2) motivates the CIM-enabled
acceleration of filters. We refer to Section 5.3.1 for detail on our setup and datasets.

5.1.1. SHARED KERNELS IN FILTERS

We profile three SotA (i.e., accurate and fast) pre-alignment filters over different percent-
ages of edit distances. Fig. 5.1, Fig. 5.2, and Fig. 5.3 present a breakdown of the execution
time for each non-overlapping kernel in MAGNET, Shouji, and SHD, respectively, over
our representative dataset.

We make three key observations. First, across all filters and edit distances, two op-
erations, namely Hamming mask creation (HMC) and detecting short patterns (called
Short Pattern Detect or SPD), make up most of the execution time. Note that we cate-
gorized checking hamming distance, leading zero counts, and SRS, in MAGNET, Shouji,
and SHD, respectively, into SPD, as they are all essentially detecting short patterns. For
example, HMC accounts for up to 66%, 84%, and 88% in end-to-end execution time of
MAGNET, Shouji, and SHD, respectively. Moreover, up to 72% and 68% of the end-to-end
execution time in MAGNET and Shouji, respectively, is spent on SPD.

Second, the relative percentage of these two operations varies per filter, edit distance,
and dataset (and, therefore, is data dependent). However, the combined HMC and SPD
account for a minimum 47.6% of filter’s execution time, going up to 97.5%.

Third, apart from HMC and SPD, these filters also share other operations of the same
nature. For example, kernels for counting edits, pre- and post-processing inputs and
outputs, and extra reads and writes of intermediate results.

We conclude that HMC and SPD comprise most of the execution time in SotA filters.
Acceleration of these two kernels can resolve the bottleneck in filters and simultaneously
provide some assurance for future compatibility of filters that utilize the same kernels.

5

92 5. SIEVEMEM

Performance Breakdowns

MAGNET

ShoujiFigure 5.1: MAGNET’s breakdown.

Performance Breakdowns

MAGNET

Shouji

Figure 5.2: Shouji’s breakdown.

Performance Breakdowns

SHD

Figure 5.3: SHD’s breakdown.

5.2. PROPOSAL AND ARCHITECTURE

5

93

5.1.2. DATA MOVEMENT IN FITLERS

Fig. 5.4 presents the breakdown of execution time for a SotA accelerated filter, SneakyS-
nake on GPU (Snake-on-GPU), on two very different datasets of short reads labeled as
D1 and D2.

Data Movement Bottleneck – SneakySnake GPU

SneakySnake GPU

Figure 5.4: Data movement bottleneck in accelerated filters.

We observe that over both datasets, Snake-on-GPU spends a minimum of 60% of its
execution time just transferring data from memory to GPU. This portion can go up to
98%, depending on the dataset and edit threshold. We conclude that data movement is
the bottleneck of the overall performance in SotA accelerators for filtering.

The results presented in this section call for an acceleration of pre-alignment filters
with an emphasis on eliminating data movement and supporting commonly shared ker-
nels such as HMC and SPD.

5.2. PROPOSAL AND ARCHITECTURE
This section discusses (1) SieveMem and how it supports HMC and SPD and mitigate
data movement, (2) BandedKrait, our new lightweight pre-alignment filtering algorithm,
and (3) Mem-BandedKrait, hardware realization of BandedKrait on SieveMem.

5.2.1. SIEVEMEM ARCHITECTURE

Fig. 5.5-(a) presents the placement of SieveMem in a real system, i.e., part of the mem-
ory. Due to this placement, SieveMem follows a hierarchical structure similar to conven-
tional memories, i.e., SieveMem consists of ranks, bank groups, banks, subarrays, and
tiles (Fig. 5.5-(b), -(c), and -(d)).

However, to support the target shared kernels for filtering, SieveMem augments the
substrate as we will discuss below:

Tile level changes: SieveMem enhances the SAs (1) and adds a series of OR gates (2).
The modified SAs [87, 106] enable SieveMem to perform logical operations such as XOR,
AND, etc., with a minimal area overhead on data in an entire row of a tile. This design is
possible due to the nature of memristor devices that inherently follow Kirschof’s law. The
subsequent series of OR gates relates to the nature of our working datasets and encoding.
We want SieveMem to enable filtering for DNA short-reads of {A, C, G, T}. This means we
can encode each character with 2 bits in a hardware realization. Since our enhanced SAs

5

94 5. SIEVEMEM
SieveMem - PreAlignMem Overview

C
P

U
M

em
o

ry

Si
ev

eM
em

(a
)

C
o

n
ce

p
t

. . .

. . .

. . .

. . .

. . .

. . .
DAC

DAC

DACIn
p

u
t

P
ro

ce
ss

in
g

(R
o

w
 D

ec
o

d
er

)

SA SA SA

O
u

tp
u

t
P

ro
ce

ss
in

g

D
ig

it
al

 In
p

u
t

In
st

ru
ct

io
n

s

Act1

Act2

Actn

W11 W1m

Wnm
Wn1

Ctr

…

…

(d) Tile

7

1

SL
WL

BL

2

Ctrl

Bank 01

Bank Group 0 Bank Group k

Bank 0k

…
Buffers

(b) Rank

7

Count-TCAM Count-TCAM
6

TCAMTile 0 … Tile k’

Subarray 1

Subarray k’’

… …

Ctrl

Mask

TCAMsMask

TCAMsMask

Acc

Acc

3 4

7

5
Acc

(c) Bank

Figure 5.5: (a) SieveMem system placement, (b) to (d) An overview of SieveMem hierar-
chy and its additional components at different levels.

perform bitwise operations, SieveMem needs this series of OR to obtain a result based
on base-pairs. Our walk-through example in Section 5.2.2 details this further.
Bank level changes: SieveMem adds a series of AND gates for masking 3 , 2 TCAMs 4 ,
and a series of AND gates 5 . SieveMem uses AND gates to select any section of the out-
puts from tiles. The masking gates are necessary for a true CIM-enabled design where
we cannot guarantee our target data is aligned perfectly with crossbars. A limitation that
previous CIM-enabled designs typically face [115]. SieveMem uses the two memristor-
based TCAMs (called Pattern-detect and Output-select) for all the necessary pattern de-
tection in different kernels of pre-alignment filters. The AND gates are used to accu-
mulate the results over several related checks in the SieveMem, for example, checks for
the same read sequence over shifted versions of the reference. Section 5.2.2 details how
one can use different masks, pre-filled TCAMs, and bitwise gates to perform different
operations and pre-alignment filtering algorithms.
Rank level changes: SieveMem includes a TCAM called Count-TCAM (6) at the rank
level per each bank group. SieveMem uses this TCAM to effectively calculate the mini-
mum edit between the sequences.
Overall modifications: SieveMem adds a small FSM to control each hierarchy level’s
logic and memory operations (7). SieveMem also includes some input and output
buffers in different levels. Each level’s FSM oversees the operations of the components
in that level of SieveMem. These controllers are hierarchical, i.e., smaller FSMs control
the operations at bank, subarray, and tile levels, all managed by a controller at the higher
level. The buffers ensure seamless dataflow among different levels with no data loss.

5.2.2. SIEVEMEM EXAMPLE SUPPORT FOR SHD
SHD requires removing sequences of 1 to 2 zeros from the bit vector produced by the
tile after the similarity checks via XOR. The original algorithm [189] performs this by
detecting patterns of “101” and “1001”. Here, SieveMem opts for an inverse detection,

5.2. PROPOSAL AND ARCHITECTURE

5

95

i.e., SieveMem detects sequences of zeros that are 3-bits or longer. Therefore, the out-
put vector should be the same as the input vector but with the removal of the short ‘0’
sequences.

SieveMem provides support for this via the TCAMs at the bank level. To implement
the required pattern detection and selection, the output should always be a ‘1’, except
for those bits which are part of a sequence of 3 zeros or more. This is the case when a
pattern of 000, 000 or 000 is detected, where the bold character indicates the position of
the bit in the original bit vector at the input of the Pattern-detect TCAM. Therefore, the
Output-select TCAM essentially performs a NOR operation on the Pattern-detect output
corresponding to those 3 patterns. If any of the three patterns is detected, it will result in
a ‘1’ in the intermediate signal. The Output-select TCAM will, therefore, not output a ‘1’
but a ‘0’. Conversely, if none of the patterns is detected, then SieveMem can be sure that
the bit is not part of a sequence of 3 or more zeros. The intermediate result will contain
only 3 zeros for these patterns, and the Output-select TCAM will output a ‘1’ for that bit
position in the XOR result.

Since the 2 base-pairs to the left and rightmost extremities of the TCAM input require
information about the base-pairs to the left and right, respectively, these positions will
always be left ‘0’, done by the left and rightmost columns of the Output-select TCAM.
Since the output of the bottom two rows of the Pattern-detect TCAM is always ‘1’ due to
it being filled with don’t-cares, the output of the Output-select TCAM, which looks for ‘0’,
will always be ‘0’.

Fig. 5.6 presents how one can pre-fill the two TCAMs of our SieveMem to support the
detection pattern required by SHD. Note that the blank TCAM entries stand for don’t-
cares. Here, there is a ‘0’ between the two ‘1’s in the 6th bit counting from the left. We
observe that the patterns surrounding this bit are “010”, “101”, and “010”. None of these
are “000”. Therefore, the Output-select TCAM will activate the row in green.

Example TCAMs SHD-proposal_and_architecture

0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

(a) Pattern-detect TCAM

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

…

…

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

(b) Output-select TCAM

Figure 5.6: TCAMs values in SieveMem to support SHD.

At the rank level, SieveMem collects all bank group results and counts the number of
edits in a word set of the read sequence. SieveMem uses Count-TCAM to detect patterns

5

96 5. SIEVEMEM

and to assign a number for the edits of the detected patterns. Count-TCAM is a 4-bit
wide TCAM used in algorithms where we need to split the final bit-vector into segments
of k bits, e.g., SHD with k=4. Fig. 5.7 presents an example programming for Count-TCAM
to support SHD.

Example Count TCAM SHD-proposal_and_architecture

1 0 1 X

1 0 1 X

X 1 0 1

X 1 0 1

1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0

1 1 1 X

0 1 1 1

0 0 1 X

0 0 0 1

1 X 0 0

0 1 0 0

X X X X

X X X X

(a) Pattern-detect TCAM

1 1 1 0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1 0 1 X

1 0 1 X

X 1 0 1

X 1 0 1

1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0

1 1 1 X

0 1 1 1

0 0 1 X

0 0 0 1

1 X 0 0

0 1 0 0

X X X X

X X X X

1
1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Count-TCAM
input

Count-TCAM

Output
Mask

Masked Output

0 1

1

1

0

1

0

1

X

1

0

1

X

X

1

0

1

X

1

0

1

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

1

1

1

X

0

1

1

1

0

0

1

X

0

0

0

1

1

X

0

0

0

1

0

0

X

X

X

X

X

X

X

X

1

0

1

0

1

0

1

0

X

1

0

0

x

1

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

0

1

1

1

1

0

1

1

0

0

0

1

0

0

0

0

0

1

x

0

0

0

1

0

0

0

1

0

1

x

x

x

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Count-TCAM
input

C
o

u
n

t-TC
A

M

Mask

Output

Masked Output

Figure 5.7: Filled Count-TCAM for SHD.

For the segment of "0000", SHD counts no edits, while it counts two edits for "0101",
"0110", "1001", "1010", "1011" and, "1101". The rest of the cases are counted as single
edits. Therefore, SieveMem compresses these into 14 entries with don’t care cells, where
the patterns that count for two edits have double entries. Note that SieveMem relays the
inputs to the output without additional mutations. Therefore, a mask might be required
for the output to ignore the unused entries.

5.2.3. BANDEDKRAIT ALGORITHM

SieveMem is capable of supporting simple, shared kernels in pre-alignment filters.
Therefore, SieveMem can support any future algorithm that uses similar kernels
with different control sequences. To show this, we devise a simple algorithm called
BandedKrait2,3.

BandedKrait reduces costly DP problem to a simpler exact matching problem be-
tween (shifted versions of) smaller segments of read and reference. To this end, Band-
edKrait divides the read sequence into segments of k-bps and compares them to the
corresponding segments of the reference and its shifted versions. BandedKrait checks
each pair for an exact match, and the results determine whether an edit is present within
that segment. The repetition of this process for references shifted by −E to +E ensures
that BandedKrait supports up to E deletions and/or insertions. BandedKrait uses the
pigeon-hole principle on the combined results of segments to approximate the #edits in

2The banded krait (Bungarus fasciatus) is a species of elapid snake easily identified by its alternate black and
yellow crossbands, all of which encircle the body.

3Recently, Shahroodi et al. [117] propose RattlesnakeJake, a hardware/software (HW/SW) co-designed ac-
celerator based on Computation-In-Memory (CIM) paradigm, capable of pre-alignment filtering for short-
sequence alignment. The software algorithm behind RattlesnakeJake is similar to BandedKrait. However, the
hardware design of RattlesnakeJake and SieveMem differ. Since RattlesnakeJake is tightly integrated with its
hardware, we separate BandedKrait and RattlesnakeJake to be able to evaluate the algorithm on SieveMem
later on fairly

5.3. EVALUATIONS

5

97

the sequence pairing. Algorithm 2 summarizes BandedKrait, where k is the segment size
and E is the number of permissible edits between input read and the reference sequence.

Algorithm 2 BandedKrait Algorithm
Input: Read, Reference, E, ReadLength, k
Output: Accept

1: Nseg ment ←⌈ReadLeng th/k⌉
2: M atches ← 0
3: for i ∈ {0 : Nseg ment −1} do
4: M atch ← 0
5: for e ∈ {−E : +E } do
6: ReadSeg ment ← Read [i ×k : (i +1)×k −1]
7: Re f er enceSeg ment ← Re f [i ×k +e : (i +1)×k −1+e]
8: if ReadSeg ment == Re f er enceSeg ment then
9: M atch ← 1

10: end if
11: end for
12: M atches ← M atches +M atch
13: end for
14: Accept ← (M atches >= Nseg ment −E)
15: return Accept

BandedKrait flexibly explores two trade-offs: (1) accuracy vs. hardware-friendliness
and (2) required resources vs. achievable parallelism or performance. Exact matching
is known to be well-supported in hardware and specifically in a CIM-enabled cross-
bar. However, using exact matches as proximity to existing errors (compared to alter-
natives such as DP or SNR sub-problems in SneakySnake, for example) underestimates
the number of edits. Therefore, more reads can pass BandedKrait, making it inaccurate.
Moreover, finding the exact matches between each segment pair and the shifted variants
are independent, parallelizable problems. However, exploiting that demands higher re-
sources.

5.2.4. BANDEDKRAIT ON SIEVEMEM (MEM-BANDEDKRAIT)
BandedKrait is completely supported by SieveMem. If implemented on SieveMem, we
call the design Mem-BandedKrait. Fig. 5.8 presents an example of how the two TCAMs in
SieveMem are filled so that it can support the pattern required by BandedKrait algorithm.
Mem-BandedKrait repeats this process for all 2E + 1 shifted reference segments. If no
exact match is detected in any of the iterations, Mem-BandedKrait counts an error for
that segment.

5.3. EVALUATIONS

5.3.1. EVALUATION METHODOLOGY
Implementation & setup. We implemented SieveMem in a cycle-accurate RTL-based
simulation platform. We verify the design by comparing the simulation results with
SieveMem’s software outputs. We use the same implementation for the evaluation of
Mem-BandedKrait. SieveMem hardware uses memory models from a small RRAM cross-
bar in TSMC 40 nm CMOS technology [330, 333]. These memories are provided to us by
generous partners from the EU project MNEMOSENE [333]. The additional components
of SieveMem discussed in Section 5.2.1 are also designed using TSMC 40 nm technology
node in Synopsis Design Compiler [331]. We integrated the latency numbers into the

5

98 5. SIEVEMEM

Example TCAMs BandedKrait-proposal_and_architecture

0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

…

…

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

(b) Output-select TCAM(a) Pattern-detect TCAM

Figure 5.8: TCAMs values in SieveMem to support BandedKrait.

simulation platform. We run our experiments on a 12-core server with 16 GB memory,
Tesla-K80 GPUs, and a Intel® Xeon® CPU E5-2680 operating at 2.4 GHz. Our evaluations
consider the same platform and input datasets for all filters for a fair analysis.
Baselines. We compare different kernels supported in SieveMem with their acceler-
ated version in literature. We also compare Mem-BandedKrait and BandedKrait with
SneakySnake (SS) [186], Shouji [187], SHD [189], and GRIM-Filter [95], as SotA pre-
alignment filters. We use open-sourced implementations of these filters. We consider
SneakySnake on both CPU and GPU, Shouji and SHD on FPGA, and GRIM-Filter on
3D-stacked memories.
Datasets. We use real genome datasets, i.e., human_g 1k_v38. Since SieveMem is
designed for supporting filters (and their kernels) for short-reads, we use two sample
sets [186] of ERR240727_1 and SRR826471_1 from Illumina reads [351] with read
lengths varying from 100bps to 250bps, respectively. For end-to-end evaluation of align-
ment (in the case of comparing Mem-BandedKrait with other filters), we use Edlib [350]
to create full-alignment results for accuracy. Edlib results also verify the functionality of
filters.

5.3.2. EXECUTION TIME OF SUPPORTED KERNELS
Fig. 5.9 and Fig. 5.10 compare the execution time of performing the same number of
HMC and SPD operations on CPU and SieveMem, over our two datasets for different edit
distances. We choose SHD as the reference filter to align with the example we provided
over SieveMem supporting SHD in Section 5.2.2. The results consider the necessary data
movement. The y-axis has been limited to a low number (30 and 50) for improving read-
ability. Since no approximation is used for these kernels, no accuracy loss occurs due to
the underlying platform, and all three versions produce the same result.

We observe that SieveMem accelerates both HMC and SPD irrespective of the
dataset. This improvement goes up to 331.1× and 446.8× for HMC and SPD, respec-
tively, over the datasets. This is expected for two reasons: (1) fewer data movement

5.3. EVALUATIONS

5

99

Shared Kernels – SHD-CPU and Banded-SieveMem

ERR2407271E40

SRR8264711E100Figure 5.9: HMC and SPD on ERR240727_1 with E=40.

Shared Kernels – SHD-CPU and Banded-SieveMem

ERR2407271E40

SRR8264711E100

Figure 5.10: HMC and SPD on SRR826471_1 with E=100.

in SieveMem and (2) parallel computation of target operation with a reasonably high
clock cycle. We conclude that not only SieveMem supports the shared kernels of
pre-alignment filters, but also it significantly accelerates them.

5.3.3. FILTERING ACCURACY

Fig. 5.11 and Fig. 5.12 compare the false positive (FP) rate of several filters. FP rate in
a filter shows the ratio between reads that wrongly pass the filter (i.e., could have been
filtered) and go through alignment (i.e., DP) over all the reads. The lower the FP, the
better. Note that in terms of True Positive (TP) and True Negative (TN) rates (the other
two important metrics for the accuracy of a filter), BandedKrait and Mem-BandedKrait
achieve the same rate as SneakySnake, which currently results in the best filtering rates.

We make three key observations. First, BandedKrait and Mem-BandedKrait provide
low FP rates irrespective of edit threshold and dataset. In fact, their FP rates are on par
with the SotA SneakySnake. Second, the FP rate of Mem-BandedKrait and BandedKrait
is less than 1% apart; i.e., the hardware limitation regarding the reference’s start point,
which affects #segments, does not affect the accuracy significantly. Third, BandedKrait
outperforms Shouji, SHD, and GRIM-Filter by providing, on average, 22%, 40%, and 90%,
respectively, fewer number of falsely-accepted sequences. We conclude that Banded-
Krait is an effective and accurate filter on both CPU and SieveMem architecture.

5.3.4. FILTERING SPEED

Fig. 5.13 and Fig. 5.14 present the execution time for different filtering methods over
different edit threshold. The y-axis uses a logarithmic scale.

We make two key observations. First, although BandedKrait requires more time than

5

100 5. SIEVEMEM
Filters Accuracy

ERR2407271E40

SRR8264711E100Figure 5.11: FP rate on ERR240727_1 with E=40.

Filters Accuracy

ERR2407271E40

SRR8264711E100

Figure 5.12: FP rate on SRR826471_1 with E=100.

Filters Speed
ERR2407271E40

SRR8264711E100Figure 5.13: Filtering speed on ERR240727_1 with E=40.

Filters Speed
ERR2407271E40

SRR8264711E100

Figure 5.14: Filtering speed on SRR826471_1 with E=100.

5.3. EVALUATIONS

5

101

End to End Speed

ERR2407271E40

Figure 5.15: End-to-End speed on ERR240727_1 with E=40.

End to End Speed

SRR8264711E100

Figure 5.16: End-to-End speed on SRR826471_1 with E=100.

some SotA filters, Mem-BandedKrait significantly outperforms the fastest SotA filters on
CPU (SS_CPU) and on GPU (SS_GPU) by up to 1292× and 95.5×, respectively, when pro-
cessing the same amount of sequences. Note that SS_CPU and SS_GPU outperform all
previous existing filters, independent of the dataset and edit threshold.

Second, Mem-BandedKrait provides better scalability for larger short reads
(SRR826471 vs. ERR240727) than other methods. For example, the average speedup of
Mem-BandedKrait over SS_CPU is 2.93× more on SRR826471 than on ERR240727 for the
same edit threshold of E=5. This is because the performance on Mem-BandedKrait is
only slightly affected by the length of inputs and target edit threshold, while, in original
SS_CPU this change is more significant.

We conclude that BandedKrait and Mem-BandedKrait effectively reduce the execu-
tion time of filtering for the same #processed read and reference sequences.

5.3.5. END-TO-END ALIGNMENT SPEED

Fig. 5.15 and Fig. 5.16 present the execution time for end-to-end alignment for a combi-
nation of filters with Edlib for alignment over several edit thresholds. We limit the y-axis
that shows the execution time of filter+alignmnet to 1000s to capture better the trends
and relative execution time of in the system compared to other methods. The y-axis is in
logarithmic scale.

We make two key observations. First, Mem-BandedKrait significantly reduces the
end-to-end execution time of sequence alignment irrespective of the dataset or edit
threshold. The improvements are so profound that they are hard to capture, even on the
logarithmic scale. Particularly, the improvement in filtering translates to a 254.6× and

5

102 5. SIEVEMEM

91.4× improvement in end-to-end alignment time compared with SotA filter combined
with SotA alignment and sheer Edlib on CPU, respectively, averaged over our datasets.

Second, similar to the comparison of filters in Section 5.3.4, the speedup in the end-
to-end alignment is higher for SRR826471 compared to that on ERR240727. For example,
the average speedup of alignment using Mem-BandedKrait is 9.86× more on SRR826471
compared to on ERR240727 for edit threshold of E=5. This is due to the effect of filtering
being even more effective on the SRR826471 dataset compared to the ERR240727 dataset
as discussed in Section 5.3.4.

We conclude that Mem-BandedKrait is a fast pre-alignment filter and effectively re-
duces the execution time of end-to-end alignment such that it takes a step towards mit-
igating the filtering bottleneck.

5.4. DISCUSSIONS AND FUTURE WORKS

5.4.1. SIEVEMEM FOR LONG SEQUENCE ALIGNMENT
From the conceptual point of view, the BandedKrait algorithm is also effective for long
sequence alignment, where sequences are a size of 100Kbp. However, when it comes to
mapping to SieveMem, distributing the long reference or read sequences in the mem-
ory hierarchies requires complex bookkeeping, different buffer sizes, control unit se-
quences, and potentially some additional logic. However, to the best of our knowledge,
pre-alignment filters are not currently deployed for long-read sequence alignment accel-
eration. We leave the exploration of BandedKrait on SieveMem for long pre-alignment
filtering to future work.

5.4.2. POTENTIAL DESIGN EXPLORATIONS
SieveMem’s best configuration. Current evaluations of SieveMem are based on the mea-
surements on a small ReRAM chip prototype for tiles and TCAMs. However, a complete
design space exploration is required to direct the final configuration of SieveMem before
deploying it in future genomics systems. Such exploration should consider different in-
puts, memory units and arrangements, variations of devices, and circuit behavior (e.g.,
non-idealities) for different organizations. We leave this to an extended report.

Other memory technologies. We design SieveMem assuming memristors as the un-
derlying technology due to the benefits they offer in terms of density, low power, and
support for logical vector operations (please see Section 2.1 for more details). However,
independent and separate works [93, 352, 353] propose supporting the same operations
(XNOR, associate search, etc.) in other technologies as well. Having a complete compar-
ison of SieveMem’s versions with different technologies is an interesting work we leave
for the future.

5.5. CONCLUSION
This chapter proposes a memristor-based CIM-enabled architecture for pre-alignment
filters called SieveMem to (1) accelerate shared kernels in pre-alignment filters and (2)
prevent unnecessary data movement for sequence alignment by filtering dissimilar short
sequences inside the main memory. The chapter also discusses a CIM-friendly algo-
rithm for pre-alignment filtering called BandedKrait that is suitable for implementa-

5.5. CONCLUSION

5

103

tion on SieveMem. Considering a larger genomics pipeline, accelerated BandedKrait on
SieveMem is fast enough to shift the processing bottleneck back (again) to the DP step of
the remaining sequences. Hence, our work demands even more accurate pre-alignment
filtering and/or better DP-based alignment algorithms.

6
FILTERFUSE

With the industry moving towards sequencing of long reads (as they favor accurate and
more efficient reconstruction of DNA), finding solutions that support efficient analysis of
long reads becomes more necessary. The long execution time required for sequence align-
ment of long reads negatively affects genomic studies relying on sequence alignment. Al-
though pre-alignment filtering as an extra step before alignment was recently introduced
to mitigate sequence alignment for short reads, these filters do not work as efficiently for
long reads. Moreover, even with efficient pre-alignment filters, the overall end-to-end (i.e.,
filtering + original alignment) execution time of alignment for long reads remains high,
while the filtering step is now a major portion of the end-to-end execution time.

This chapter makes three contributions. First, it identifies data movement of sequences
between memory units and computing units as the main source of inefficiency for pre-
alignment filters of long reads. This is because although filters reject many of these long se-
quencing pairs before they get to the alignment stage, they still require to pay a huge cost re-
garding time and energy consumption for the large data transferred between memory and
processor. Second, this chapter introduces an adaptation of a short-read pre-alignment
filtering algorithm suitable for long reads. We call this LongGeneGuardian. Finally, it
presents FilterFuse as an architecture that supports LongGeneGuardian inside the mem-
ory. FilterFuse exploits the Computation-In-Memory computing paradigm, eliminating
the cost of data movement in LongGeneGuardian.

Our evaluations show that FilterFuse improves the execution time of filtering by 120.47×
for long reads compared to state-of-the-art (SotA) filter, SneakySnake. FilterFuse also im-
proves the end-to-end execution time of sequence alignment by up to 49.14× and 5207.63×
compared to SneakySnake with SotA aligner and only SotA aligner, respectively.

This chapter is partially based on the candidate’s works [119, 354].

105

6

106 6. FILTERFUSE

As discussed in Section 2.2.1, sequence alignment is a pivotal process in genomics
studies identifying similarities and differences in DNA, RNA, or protein sequences. By
highlighting conserved regions and mutations, sequence alignment provides profound
insights into the molecular function and evolution [184, 185]. SotA sequence aligners
employ dynamic programming-based (DP) algorithms to achieve high accuracy with
the cost of long latencies and energy inefficiencies, particularly when applied to large
DNA sequences. These limitations directly affect the medical studies that benefit from
sequence alignment.

Long reads and short reads are two types of sequencing reads used as inputs in the
sequence alignment and are produced by different sequencing technologies [355–361].
These two types of reads differ in their length, error rate (random errors due to tech-
nology used in obtaining them) or accuracy, application, usability, and cost. Overall,
both long and short reads have their strengths and weaknesses, and the choice of se-
quencing technology depends on the specific research question and experimental de-
sign. However, although long-read sequence alignment faces several challenges (e.g.,
high error rates in long-read technologies, computational complexity due to longer read
lengths, and issues with reference genome bias and uniqueness), currently, the industry
is moving towards long reads [360, 362–364]. This is because of the ability of long-read
sequence alignment to resolve complex genomic regions, identify structural variations,
and aid in epigenetic studies. Therefore, devising algorithms and/or hardware that can
accelerate long-read sequence alignment while accurately mapping long reads to refer-
ence genomes and handling the unique characteristics of long-read datasets is of utmost
importance in the coming years.

Previous works typically took two directions to address the inefficiency in sequence
alignment for long reads [293, 362–367]. First, some works simplified the process using
better sketching or chaining algorithms or heuristics for dynamic programming (DP)
part of the general alignment algorithms [293, 366, 367]. This backtracking step in-
volves irregular memory access patterns that are challenging for hardware implemen-
tation. Second, some works [95, 186] propose a filtering step before alignment, called
pre-alignment filtering1, to significantly speed up the end-to-end sequence alignment of
(long) reads by heuristically replacing the need for expensive DP solutions for many in-
puts in the first place. These filters use a pre-defined edit distance threshold between the
inputs and quickly determine whether or not an alignment (i.e., DP) should be granted.
SotA pre-alignment filters [186] speed up the sequence alignment so much so that they
themselves become the (next) bottleneck in the end-to-end sequence alignment proce-
dure. Therefore, there is a need for a more efficient design to tackle the filtering bottle-
neck in the sequence alignment pipeline of long reads.

Unfortunately, we identify three shortcomings in pre-alignment filtering for
target long reads by the industry. First, there is currently only one single filter, SneakyS-
nake [186], that supports pre-alignment filtering for long reads. SneakySnake accelerates
the pre-alignment filters for short reads on central processing units (CPUs), graphics
processing units (GPUs), and field-programmable gate arrays (FPGAs). However, only
the CPU version supports long reads due to strict assumptions on data and heuristics
on the GPU and FPGA versions. Second, on both types of reads, even a SotA filter, e.g.,

1We use the term filter and pre-alignment filter interchangeably hereafter.

6

107

SneakySnake, becomes the new computational bottleneck when considering the end-
to-end alignment process (i.e., filtering step + sequence alignment step) [95, 186]. Third,
data movement bottlenecks the performance of SotA pre-alignment filters, particularly
for long reads. This means that filters spend more time on moving sequencings from
memory units to processing units compared to the time they spend on performing the
computations necessary for the filtering. This shortcoming is important because most
of the sequence pairs that go to the pre-alignment filters turn out to be unnecessary
and will be filtered out eventually [186]. Therefore, there is a need for a design that can
overcome these shortcomings and resolve the bottleneck by avoiding wasted work (i.e.,
time and energy consumption) caused by data movement in the system.

We propose LongGeneGuardian, a lightweight and memory-friendly pre-alignment
filtering algorithm that supports long reads and performs on par with SotA pre-
alignment filters regarding accuracy metrics. We then present FilterFuse, which
is a hardware/software co-designed (HW/SW co-designed) accelerator based on
Computation-In-Memory (CIM) that supports LongGeneGuardian for long reads. The
simplicity of LongGeneGuardian and its minimum assumptions on data placement
inside a typical memory array makes it compatible with a restricted yet realistic CIM
design. FilterFuse architecture is memory/technology independent, i.e., the memory
arrays can be of any memory technology, such as dynamic random access memory
(DRAM) or resistive random-access memory (ReRAM), as long as they support a few key
operations such as logical XOR and associative search.

Our results show that LongGeneGuardian achieves an accuracy on par with SneakyS-
nake, the SotA filter, for the long-read filtering. LongGeneGuardian does not introduce
any extra false negatives in the filtering process and does not replace the sequence
alignment. Therefore, one can still employ LongGeneGuardian with any sequence
aligner. When accelerated with memristor-based memory components, FilterFuse
accelerates the filtering step by up to 120.47× over SneakySnake, for the same read
long-read dataset. Our evaluations show that the using FilterFuse for pre-alignment
filtering accelerates the end-to-end alignment by up to 49.14× and 5207.63×, compared
to the case of SneakySnake+long-read aligner and a standalone long-read aligner,
respectively.

We make the following contributions in this chapter:

• LongGeneGuardian: A lightweight filtering algorithm with no assumption on data
arrangement in a memory crossbar, making it suitable for a CIM design.

• FilterFuse: A configurable CIM realization of LongGeneGuardian for long-read
pre-alignment filtering inside the memory. FilterFuse is compatible with any
memory technology that can inherently support logical vector XOR operation and
associative search.

• An extensive evaluation of LongGeneGuardian and FilterFuse regarding the accu-
racy, execution time, and power consumption on different memory technologies
using real data against previous SotA pre-alignment filters.

6

108 6. FILTERFUSE

6.1. MOTIVATION

6.1.1. LONG READS VS. SHORT READS
Different sequencing technologies produce reads with various features regarding accu-
racy and read length. The accuracy of a sequencing machine is described as the per-
centage of base pairs it has correctly extracted from a DNA sample. The read length is
the number of base pairs that constitute it. These two metrics determine the alignment
threshold (Section 2.2.1) and the edit margin, also known as the region of interest (ROI),
in the evaluation of pre-alignment filters2.

The read accuracy matters as sequencing aims to compare samples of DNA to find
differences/similarities between them. For this, we need to be able to differentiate be-
tween actual differences between the samples and sequencing errors. Sequencing errors
are defined as differences between the extracted read and the DNA sample. These errors
originate from deficiencies in sequencing technologies. Having highly accurate reads is
favorable.

For two main reasons, it is favored to have long reads as long as the length does not
(significantly) hurt the accuracy. First, long reads simplify the reconstruction of the orig-
inal DNA compared to separate shorter reads. Like fitting pieces of a puzzle together, it
is easier to do this with fewer long reads than many short reads. Second, the probability
of a short read aligning with multiple parts of a reference genome is much higher than is
the case with long reads. Consequently, finding the source of a mutation in the DNA is
much harder with short reads.

Therefore, although short reads remain popular due to their availability in genomics
libraries, the industry is moving towards accurate, long-read sequencing.

6.1.2. LIMITATIONS OF SOTA FILTERS FOR LONG READS
Support for long reads. Although previous works [95, 186–189] propose various meth-
ods of pre-alignment filters, their methods rarely work on both types of reads due to un-
derlying assumptions on input data or how to determine the (approximate) similarity of
two sub-strings. Specifically, among all the proposed filters, only SneakySnake supports
long reads.
Filter is the new bottleneck. We profile SneakySnake as the filter and Parasail as a se-
quence aligner over different percentages of edit distances and datasets. We refer to Sec-
tion 6.4 for detail on our evaluation methodology.

Fig. 6.1 presents the execution time for end-to-end alignment for our two represen-
tative long-read datasets. Note that the bar for "Aligner+CPU-Filter" is always 0, while
the other three bars exist depending on the inputs and the filter’s effectiveness. For bet-
ter readability, we limit the results to the edit thresholds that benefit the most from a
filtering step, as stated in the original SneakySnake [186]. The y-axis is in logarithmic
scale.

We make two main observations. First, a pre-alignment filter improves the end-to-
end execution time by up to 158.76×. This shows that this filtering is effective for long
reads. Second, the majority of the new end-to-end execution time is spent on filtering
rather than alignment. This majority is high enough to the extent that the alignment

2For long reads, the ROI is 2-7% of the read length [187, 188, 349].

6.1. MOTIVATION

6

109

(1) Contribution of SneakySnake to the end-to-end
execution time for long reads.

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

(b) PacBio_100K(a) PacBio_10K

OLD

Figure 6.1: Contribution of SneakySnake to the end-to-end execution time for long reads.

time is almost invisible compared to the filtering time, even with a logarithmic scale.
This shows that to improve the end-to-end execution time, the filtering step is the new
bottleneck to focus on.
Data movement limits accelerated filters. Fig. 6.2 presents the breakdown of execution
time for a SotA accelerated filter, SneakySnake on GPU (Snake-on-GPU). Since Snake-
on-GPU does not support long read filtering, we broke down the sequences into smaller
non-overlapping chunks (with some post-processings on the host side) to achieve a
rough estimation of the contribution of data movement to the total execution time in a
hardware accelerator.

(2) Data movement bottleneck in accelerated filters.

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

Figure 6.2: Contribution of filter to the end-to-end execution time for long reads.

We observe that Snake-on-GPU spends a minimum of 60% and up to 98% of its exe-
cution time just transferring data from memory to GPU. This shows that data movement
constitutes the major part of the execution time for an accelerated filter.
No hardware acceleration support for long reads. SneakySnake [186] currently holds
the highest accuracy and lowest execution time among all the existing pre-alignment
filters. It supports both GPUs and FPGAs, designs called Snake-on-GPU and Snake-
on-Chip, respectively. However, the open-sourced implementations of Snake-on-GPU
and Snake-on-Chip only support short reads due to some heuristics and hard-coded
assumptions in their implementations. Therefore, to this day, there is no hardware ac-

6

110 6. FILTERFUSE

celerator for long-read pre-alignment filtering.
Why not SneakySnake (SotA filter) on CIM? Unfortunately, the SneakySnake is not CIM
friendly for two reasons: (1) it requires support for leading zero count (LCZ) or at least
flexible #shifts in data, which is costly in memory arrays, and (2) it requires perfect posi-
tioning of data inside memory units in respect to the boundaries of memory tiles.

Note that even the most hardware-friendly implementation of SneakySnake, Snake-
on-Chip, introduces two main challenges for a CIM implementation:

• Snake-on-Chip requires the computation of an entire chip-maze of each sub-problem.
The horizontal dimension of this chip maze is dependent on the number of bases of
each sub-problem, and the vertical dimension is dependent on the examined edit dis-
tance. While the maze size is manageable for short reads, the resources required to
store the chip maze for long reads would be too large to implement in a memory tile
(the granularity we can expect a CIM design work with). For example, for long reads
that reach up to 100Kbps and have edit-distance thresholds of up to 25%, required to
process PacBio CLR reads, the chip maze would have to store up to 50 thousand rows
of data per tile.

• Snake-on-Chip takes several iterations to find the optimal path through the chip maze.
This process is time-consuming and requires a relatively large number of lookup tables
to be implemented inside memory.

Takeaway

We need efficient accelerators for pre-alignment filters of long reads with an emphasis
on eliminating data movement.

6.2. LONGGENEGUARDIAN ALGORITHM
We propose reconstructing a recent and less accurate algorithm, RattlesnakeJake [117],
designed for short-read pre-alignment filtering. We call our variation LongGene-
Guardian to clear the distinction in the following explanations. LongGeneGuardian
draws inspiration from converting the problem into sub-problems of Snake-on-Chip
but does not require the generation of the chip maze. LongGeneGuardian also simpli-
fies the traversal of the chip maze, reducing the need for additional resources. Unlike
RattlesnakeJake, LongGeneGuardian creates the shifted sub-sequences by shifting both
read and reference segments to left and right, rather than keeping the read untouched
and only shifting the reference.

LongGeneGuardian is based on three key observations:

1. If two strings differ by e edits, then all non-erroneous characters of the strings can be
aligned in at most e shifts.

2. If two strings differ by e edits, then they share at most e +1 identical sections.

3. When you are interested in comparing two strings where you can shift one to the left
by up to etot al shifts while keeping the other one fixed, you can achieve the same
results by shifting the first one to the left by el e f t and the second string to the right by
er i g ht = etot al −ele f t .

6.3. FILTERFUSE ARCHITECTURE

6

111

LongGeneGuardian exploits these observations and creates 2e +1 shifted Hamming
masks to account for e shifts to the left and right. Similar to Snake-on-Chip, LongGene-
Guardian divides the problem of performing Hamming masks on these shifted versions
into the simpler sub-problems of length T , called segments hereafter.

However, LongGeneGuardian differs from Snake-on-Chip in that it does not count
the number of edits in each segment but detects any edit’s presence. In doing so, the
results of the two algorithms only differ if multiple errors occur in the same segment
of the read. This leads to inaccuracy in LongGeneGuardian due to the abstraction of
actual #edits in segments. However, our evaluations using real datasets in Section 6.5
show that it is unlikely that two edits exist in the same segment when the segments are
small. Moreover, each read contains a small #edits relative to its read length. Therefore,
the decrease in accuracy is still acceptable as LongGeneGuardian can still distinguish
true mappings (similar) from obviously false mappings (dissimilar) and provide enough
speed-up (Section 6.5).

LongGeneGuardian detects edits in the segments using this intuition: if the section of
the read that is processed in one sub-problem contains no edits, at least one of the Ham-
ming masks of that segment must be free of errors. This means that LongGeneGuardian
can check whether any of the Hamming masks belonging to the segment contains only
‘0’s. This allows the detection of #segments without edits. By subtracting this from the
total #segments, LongGeneGuardian finds #segments that do contain errors.

A key advantage of LongGeneGuardian’s approach is that every Hamming mask cor-
responding to the different shifts can be efficiently processed independently. This re-
moves the need to collect all Hamming masks to create the chip-maze and removes the
iterative nature of the chip-maze traversal step. This and the segmentation into sub-
problems make LongGeneGuardian particularly suitable for CIM.

6.3. FILTERFUSE ARCHITECTURE
We implement LongGeneGuardian using CIM, called FilterFuse. While FilterFuse is de-
signed to support long reads, it remains flexible and supports a wide range of data sets,
edit-distance thresholds, and even short-reads filtering algorithms.

6.3.1. FILTERFUSE OVERVIEW

Fig. 6.3 presents an overview of the FilterFuse.

Figure 6.3: Overview of FilterFuse.

FilterFuse follows the typical memory hierarchies (i.e., bank groups, banks, sub-

6

112 6. FILTERFUSE

arrays, and tiles) found in conventional memories to improve resource utilization.
However, FilterFuse augments various hierarchy levels with small specialized con-
trollers 1 and logic units 2 to enable the required operations. The controller at each
level is implemented as an finite-state machine (FSM). It controls all the logic units and
the lower-level controllers.

6.3.2. TILE ARCHITECTURE
Tiles are the lowest and one of the most critical architectural levels in FilterFuse. Fig. 6.4
presents the architecture of a tile.

Figure 6.4: Overview of the tile architecture.

Each tile is an array of memory cells forming a crossbar structure 1 . FilterFuse sup-
ports any memory technology for its cell as long as it can support logical vector oper-
ation in the SA. Peripheral circuits include multiple write drivers, sense amplifiers (SAs
2), row/column decoders, and multiplexers. The SAs are modified for the required logi-
cal vector operation, e.g., for DRAM or memristor-based crossbars, the SAs are based on
Ambit [93] and Scouting Logic [87, 106], respectively.

Each tile has an n-bit data output (3) and three inputs provided by the sub-array
controller (besides the clock and reset signal):

• The ‘data-in’ 4 : n binary bits to be written to the crossbar.

• The instruction signal 5 : to determine the behavior of the tile controller, selecting
whether the tile should be idle, read, write, or perform an XOR operation.

• The address signal 6 : to index the correct rows and columns of the crossbar to/from
which the data should be written/read.

To execute LongGeneGuardian, FilterFuse first writes the read sequence to the ap-
propriate memory locations. It then performs an XOR between n-bits of the read and

6.3. FILTERFUSE ARCHITECTURE

6

113

n-bits of the reference sequence (which is already written in the memory), where n indi-
cates the number of SAs in the tile.

The peripheral components interface between the digital architecture and the (ana-
log) crossbar. They also act as intermediate storage of input data to overcome the differ-
ence in timing between the read/write time of the crossbar and the clock period of other
digital components.

If needed, in the case of memristor-based crossbars, for example, FilterFuse imple-
ments interleaving within the column multiplexing logic. The tile architecture indexes a
series of de-multiplexers at the output of the sample-and-hold circuit (7 in Fig. 6.4) to
select the correct memory rows. This way, the correct digital output of the SAs is placed
in an output register and can be accessed by the sub-array controller.

6.3.3. SUB-ARRAY ARCHITECTURE
Fig. 6.5 presents an overview of FilterFuse’s sub-array architecture.

Sub-Array Architecture

FilterFuse
Sub-Array
Controller

Pairwise OR

XOR-Result

Sub-Array Mask

TCAM Input

Pattern Detect (PD) TCAM

TCAM Input

Output Select (OS) TCAMBitwise AND

Output Buffer

Data in

Instruction

Address

Mask

ID in

Sub-Array
FIFO Buffer

Data in

Instruction
Tile 0 Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7

Address

Index

Index

Mask

Data in

Buffer Req.

Ack

ID Register

Data out

ID out

Partial Result

1

2

3

5

5

7

4

8

9

10

6

Figure 6.5: Overview of the sub-array architecture.

The sub-arrays in FilterFuse are the second main computational units, where mul-
tiple tiles (1) are grouped together to execute the complete logic. Sub-arrays contain
input and output buffers (2 and 10) required to reduce the stalling of the pipeline when
the sub-array or output bus is occupied. Three main tasks of a sub-array are:

• Translating the results of bitwise XOR from tiles (3) into base pair results (4).

• Performing masking on tile results that are not part of the read/reference pairings (5).

• Tracking what read/reference pairing is being processed using an ID signal (6).

A sub-array takes seven steps to perform the necessary computation for a final bit-
vector:

6

114 6. FILTERFUSE

1. Passing the XOR instruction to the tiles to perform the operation between the read
sequence and one of the shifted reference sequences (7).

2. Retrieving the results from the output buffers of the selected tiles by indexing a series
of multiplexers.

3. Combining the results into an XOR-result register (3).

4. Performing a series of OR to convert a bit-level XOR result to a bit vector of base pair
level result (4).

5. Masking parts of the OR result that are not part of the actual read-reference pairing
by AND with a sub-array mask (5).

6. Querying a ternary content addressable memory (TCAM), called Pattern-Detect
TCAM (PD-TCAM), with the masked results of the previous step (8).

7. Querying a second TCAM, called Output-Select TCAM (OS-TCAM), with the results of
PD-TCAM (9).

Note that the length of the operands at the sub-array level is determined by the min-
imum sub-problem size, i.e., 2∗T (where T is the segment size in LongGeneGuardian)
to account for the common 2-bit encoding scheme commonly used in genomics accel-
erators [234, 368–370].

FilterFuse uses PD-TCAM and OS-TCAM to detect patterns of ‘1’s and ‘0’ in its in-
put and construct one iteration of the final bit-vector based on patterns detected by the
PD-TCAM, respectively. This is necessary for LongGeneGuardian and many previous
pre-alignment filters. We refer the reader to the discussion over these components in
Chapter 5.

FilterFuse boosts filtering throughput by activating multiple sub-arrays in parallel to
compute different read-reference pairings independently. To enable this parallel execu-
tion, FilterFuse stores a different part of the reference on each sub-array and uses the
input dataset to determine which sub-arrays are required for the computation.

It is possible that a read-reference pairing requires a sub-array that is still busy com-
puting a different pairing which creates contention over the sub-array, i.e., it stalls Fil-
terFuse until the sub-array is freed up. To combat this contention, each sub-array con-
tains a first in first out (FIFO) buffer (10 in Fig. 6.5) that stores all the input signals for
the computation of a read-reference pairing until the sub-array finishes computing its
current pairing. This eliminates the need to stall the rest of the pipeline until the FIFO
buffer is full. Note that having a FIFO buffer, the order in which the computation of pair-
ings finishes might differ from how they are supplied to the tiles. To prevent any issue,
FilterFuse assigns an ID to each pairing, which is also presented alongside the sub-array
output (2). To prevent the potential contention over the output bus, which occurs when
multiple sub-arrays finish their computation simultaneously, FilterFuse uses a request-
acknowledgment scheme, ensuring that outputs are read one after another.

6.3. FILTERFUSE ARCHITECTURE

6

115

6.3.4. BANK AND BANK-GROUP ARCHITECTURE
FilterFuse groups several sub-arrays as banks and then groups multiple banks into a
bank group. This type of hierarchical structure is often found in conventional DRAM-
based technologies [371]. Although these two levels in FilterFuse have similar function-
ality, FilterFuse adapts it for two main reasons. First, splitting the two levels reduces the
fan-out of the required busses of each stage, which reduces the clock period required.
Second, the multi-level approach improves the contention over the lower-level resources
without adding excessive amounts of buffer overheads. These levels implement an ac-
knowledgment scheme to determine the need for a stall due to the contention. Because
the architecture consists of several layers, communication between the top level and the
sub-array level happens over several clock cycles. The input buffers reduce this latency
by providing an acknowledgment signal after only a single clock cycle.

6.3.5. RANK ARCHITECTURE
The rank level is the highest level of FilterFuse that interfaces between the host device
and FilterFuse. Fig. 6.6 provides a high-level overview of the rank-level architecture.

ID
 o

u
t

ID
 M

SB N
 W

ord Sets
ID out
Ready

Accept?

Programming

Data in

Index

Instruction

Address

Index

ID LSB in

Data in
Instruction

Address
ID in

Bank Group 0 Bank Group 1 Bank Group 2 Bank Group 3

Sub-Array Mask

TCAM Input

Count
TCAM

Count
TCAM

Count
TCAM

Count
TCAM

TCAM Mask TCAM Mask

Multi-Operand Adder

ID MSB Buffer

Word Set Count

Sum Buffer

R
ea

d
y

Ed
it

s

FilterFuse
Rank Controller

TCAM Mask
TCAM
Masks

TCAM InputTCAM Input TCAM Input

TCAM Mask

ID LSB out

Rank Architecture

4

1

2

3

56

7

Figure 6.6: Overview of the rank architecture in FilterFuse.

FilterFuse performs three key tasks at the rank level:

• Processing inputs from the host device in the correct format and sending them to the
appropriate memory locations.

• Providing instructions, addresses, data, IDs, and masks to control the lower levels,
stalls, and the results.

• Tracking read/reference pairings and implementing the edit-counting, summation,
and comparison to the edit-distance threshold.

At the rank level, FilterFuse uses multiple Count-TCAMs (1) to collect the results of
bank groups and calculate/count #edits in a word set of the input read. A Count-TCAM

6

116 6. FILTERFUSE

detects the pattern and assigns the edit number of the detected patterns. Currently, Fil-
terFuse uses a 4-bit wide TCAM for each Count-TCAM. This is also compatible with pat-
terns in previous filters such as SHD, which required splitting the final bit-vector into
segments of k=4 bits. Final masking on the output of Count-TCAMs (2) and a multi-
operand adder (3) finalize the discovery of edits in the input read via FilterFuse based
on LongGeneGuardian.

At the rank level, FilterFuse divides a word over the bank groups such that each part
goes to a different tile, as is the case in DRAM [371] (4). This writing scheme ensures
that different parts of the read/reference are written to different sub-arrays. In filtering
algorithms, this means each processing element only has access to a small part of the
read/reference. Therefore, algorithms such as LongGeneGuardian that require larger
segments to be examined by a single processing element require multiple words to be
written before starting the algorithm. We call the number of required words words-per-
bank (WPB) hereafter. To support a WPB of larger than 1, FilterFuse implements a series
of input buffers. These input buffers require the host device to provide read/reference
sequences in the correct order without the need for excessive pre-processing. To fill the
buffers, consecutive words belonging to a read-reference pairing are loaded into the in-
put buffer sequentially. Once the buffer is filled with a single word set (i.e., 4 words),
FilterFuse empties them in parallel. Fig. 6.7 demonstrates an example of this scheme
where FilterFuse writes 1 word-set to 4 bank-groups. Note that each block represents a
number of bits equal to the number of SAs per tile.

7 66 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Filling Input-buffer Emptying Input-buffer

t = 0

t = 1

t = 2

t = 3

Bank-groups

Bank-groups

Bank-groups

Bank-groups

Word 0

Word 1

Word 2

Word 3

Figure 6.7: Filling (left) and emptying (right) the input buffer.

Since in a true CIM architecture, such as FilterFuse, the first base pair of the read
does not always coincide with the start of a word-set, FilterFuse masks off the part that
does not belong to the read-reference pairing. FilterFuse receives this mask through the
address bus and passes this mask to the sub-arrays alongside the read-sequence data
(5). FilterFuse does not use the mask when filling the input buffers.

The rank level controller (6) also handles the parallelism of new word sets via IDs,
result-ready signals, and conservative buffering. For example, the rank-input-controller
can load in a new word set during the computation of the previous word set as the sub-
arrays can operate independently. Depending on the length of the read/reference pair,

6.3. FILTERFUSE ARCHITECTURE

6

117

this can either be the next word set belonging to the same pairing or the first word of
the next pairing. The least significant bits (LSBs) of the ID of pairs are passed along with
the input data to the sub-arrays, while the most significant bits (MSBs) are stored at the
rank level in the ID MSB buffer, which is indexed by the LSB of the ID. This helps us to
reduce the width of the ID busses. When the computation is completed, the results are
returned, and the LSBs of the ID are matched up with the MSB again.

6.3.6. DATA MAPPING IN FILTERFUSE
FilterFuse assumes the reference sequence is already stored in memory after being split
up into word-sets. This is a reasonable, common assumption that can also be achieved
easily as a pre-processing step if it is not the case.

FilterFuse spreads the contents of the input buffer over the bank groups, writing the
values to a set of tiles in a single sub-array per bank. FilterFuse writes consecutive word-
sets to different banks to avoid contention as much as possible. Fig. 6.8 presents a high-
level overview of this sub-division of two consecutive word-sets for the reference. We
assume a hardware configuration with 32-bit words, 4 bank groups, tiles with 8 SAs, and
a 4-WPB writing scheme.

Words-set 1 0127
3 2 1 0
X X X X
Y Y Y Y

Word-set 2 128255
3 2 1 0

X+1 X+1 X+1 X+1
Y Y Y Y

Bank-group
Bank

Sub-array
Tile

Bank-group
Bank

Sub-array
Tile

4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z

4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z 4Z+14Z+3 4Z+2 4Z4Z+14Z+3 4Z+2 4Z

Figure 6.8: Writing scheme for two consecutive parts of the reference.

Within each tile, FilterFuse writes a part of a word-set to a single row in the memory,
with shifted versions of the word-set being in its adjacent crossbar rows. FilterFuse re-
serves the first row of each tile for the read sequence, hereafter referred to as the ‘query
row.’ Fig. 6.9 demonstrates this mapping, where we assume a 16×16 crossbar, contain-
ing parts of 6 word-sets for evaluating an edit distance of 2. The zoomed-in version of
one word-set highlights how FilterFuse stores the (shifted) references. Note that Fig. 6.9
does not account for interleaving for the sake of clarity.

We define the offset as the position of the reference segment with respect to the first
base pair in the evaluated reference genome. The controller uses simple equations to
find this offset.

Fig. 6.10 illustrates an example of the subdivision of an input read sequence into
words and word-sets alongside the masking process. Here, we assume a 100 bps read
encoded in 200 bits.

FilterFuse divides the read over two word-sets of 128 bits. It then finds the address

6

118 6. FILTERFUSE

0
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0
0 1 1 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

1 1Reference (ACGT)
Ref << 1 (CGTT)

Reference: ..AA ACGT TG..

Ref << 2 (GTTG)

Ref >> 1 (AACG)
Ref >> 2 (AAAC)

1 0 1 1 1 1 1 0
0 1 1 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

1 1Reference (ACGT)
Ref << 1 (CGTT)

Reference: ..AA ACGT TG..

Ref << 2 (GTTG)

Ref >> 1 (AACG)
Ref >> 2 (AAAC)

Query row

Word-set CWord-set A

Word-set DWord-set B

Figure 6.9: Reference mapping on a small crossbar.

ACGTA… …TTATA
0001101100… …1111001100

Read (100 bps)
Encoded read (200 bits)
Word-sets (2 x 128 bits)

Masks (2 x 64 bits) 1s 0s 1s 0s 1s 0s 1s 0s

Words (2 x 4 x 32 bits)

0001101100…0001101100… …1111001100…1111001100

Figure 6.10: Reads subdivision into word-sets with masking.

of the word-set containing the first bit of the read sequence using the mentioned fixed
equations. Note that since the start of the read does not necessarily coincide with the
start of a word-set, FilterFuse masks the first part of the first and last part of the second
word-set. FilterFuse determines this mask by subtracting the offset of the first base pair
of the word-set from the offset of the read (seeding location). It then uses this local offset
to find the length of the leading mask. FilterFuse always writes the read to the query
row of the tiles such that the columns line up with the addressed part of the reference
sequence.

6.3.7. LONG READ COMPATIBILITY

Read 0 to 7 Read 8 to 15 Read 16 to 23

Ref -16 to -9
…

Ref -9 to -2

Ref 0 to 7
…

Ref 7 to 14

Ref -8 to -1
…

Ref -1 to 6

Ref 0 to 7
…

Ref 7 to 14

Ref -8 to -1
…

Ref -1 to 6

Ref 8 to 15
…

Ref 15 to 22

Ref 0 to 7
…

Ref 7 to 14

Ref 16 to 23
…

Ref 23 to 30

Ref 8 to 15
…

Ref 15 to 22

...

...

...

...Read 0 to 7 Read 8 to 15 Read 16 to 23

Ref -16 to -9
…

Ref -9 to -2

Ref 0 to 7
…

Ref 7 to 14

Ref -8 to -1
…

Ref -1 to 6

Ref 0 to 7
…

Ref 7 to 14

Ref -8 to -1
…

Ref -1 to 6

Ref 8 to 15
…

Ref 15 to 22

Ref 0 to 7
…

Ref 7 to 14

Ref 16 to 23
…

Ref 23 to 30

Ref 8 to 15
…

Ref 15 to 22

...

...

...

...

Ref -16 to -9

…

Ref 7 to 14

Read 0 to 7 Read 8 to 15 Read 16 to 23

Ref -8 to -1

…

Ref 15 to 22

Ref 0 to 7

…

Ref 23 to 30

...

...

Ref -16 to -9

…

Ref 7 to 14

Read 0 to 7 Read 8 to 15 Read 16 to 23

Ref -8 to -1

…

Ref 15 to 22

Ref 0 to 7

…

Ref 23 to 30

...

...
Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15

Ref -16 to -9
…

Ref -9 to -2

Ref -8 to -1
…

Ref -1 to 6

Ref 0 to 7
…

Ref 7 to 14

Ref 8 to 15
…

Ref 15 to 22
...

Ref 16 to 23
…

Ref 23 to 30

...

...

...

...

Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15 Read 16 to 23

Read 0 to 7 Read 8 to 15

Ref -16 to -9
…

Ref -9 to -2

Ref -8 to -1
…

Ref -1 to 6

Ref 0 to 7
…

Ref 7 to 14

Ref 8 to 15
…

Ref 15 to 22
...

Ref 16 to 23
…

Ref 23 to 30

...

...

...

...

(a)(a) (b)(b) (c)(c)

Figure 6.11: (a) High-level read mapping in FilterFuse, (b) split reads into shift-sets., and
(c) the memory-optimized configuration for FilterFuse.

In previous sections, we assumed all shifted references are written to the same tile
for ease of explanation. However, this assumption has two limitations for long reads.
First, it limits the maximum edit distance FilterFuse can support to the rows within each

6.3. FILTERFUSE ARCHITECTURE

6

119

of its tiles. Since crossbars have limited dimensions (due to factors such as increasing
read/write current requirements and leakage currents as the dimensions are scaled-up),
the maximum supported edit distance becomes limited. Second, it demands an unrea-
sonable memory capacity as the number of shifted references required for long reads
exceeds 50 thousand shifts.

To enable processing long reads, FilterFuse splits up the evaluation of the different
shifts into parts and processes them in different sub-arrays and over multiple iterations
of LongGeneGuardian. FilterFuse can then aggregate the results at the rank level before
calculating the edits. This requires FilterFuse to adopt two types of changes on top of
the simplified examples of previous sections: (1) hardware changes at the sub-array and
rank levels and (2) software changes at the input level.

Having the third observation in LongGeneGuardian in mind (Section 6.2), FilterFuse
exploits the trade-off between the required memory capacity and the endurance of or the
necessary write operations in the system, by splitting up read-sequences into segments
of base pairs as we are splitting up the shifts. Fig. 6.11 presents an example of this trade-
off, where the numbers indicate the ranges of bits that are evaluated in each shift set.

Fig. 6.11-(a) represents a case where the segments of the read sequence are compared
to the entire set of shifted references in the same tile. The read sequence is split up into
segments, as well as in sections of 8 shifts, which are evaluated separately. We refer to
these partitions as shift sets. We observe that shift sets that share a diagonal evaluate
the same sections of the reference sequence. Therefore, in Fig. 6.11-(c), FilterFuse only
stores one of each shift-set, while the reads shifted with respect to the shift-sets.

The host device handles the shift of reads for FilterFuse and prevents incorrect results
from the shifted outputs of sub-array results by passing the shift value alongside the pair-
ing ID. FilterFuse saves the sub-array result for each shift-set in an AND buffer, which is
placed alongside the sum buffer of discussed implementation (7). This way, FilterFuse
accumulates the partial bit-vector results of all shift sets in this buffer by performing
a bitwise AND-operation between its stored value and the incoming result. When all
shift sets of the read segment have been evaluated, FilterFuse uses contents of the AND-
buffer as input to the Count-TCAM (1). The rest of the procedure is identical to what
was discussed previously. To prevent incorrect results from the shifted outputs of sub-
array results (happening as the read sequence is shifted with respect to the start of each
word set), we pass the shift value alongside the pairing ID.

6.3.8. LONGGENEGUARDIAN ON SOFTWARE VS. ON FILTERFUSE

Unlike the software implementation of LongGeneGuardian, where segments always
start at the start of the read sequence, it is possible for the read sequence to start in
the middle of a segment in FilterFuse, as a true CIM accelerator where references have
already stored in a fixed position in the memory elements. Fig. 6.12 demonstrates an
example for this scenario.

Consequently, LongGeneGuardian on Software always contains the minimum num-
ber of segments for a given reads sequence, while the implementation on FilterFuse
can contain additional segments. On the one hand, this allows the FilterFuse to detect
more edits than its software counterpart. On the other hand, this increases the likeli-
hood of random matches occurring since the number of evaluated base pairs remains

6

120 6. FILTERFUSE

Filters Accuracy

ERR2407271E40

Read: ACGTTGTCTGAAACTTACGC
Ref: ..AA ACGTTTTCTGAA TCTTACGT GC..

Length = 20, E = 2, K = 4 Correct Alignment with 3 edits

Read: ACGTTGTCTGAAACTTACGC

Ref: ..AAACGTTTTCTGAA TCTTACGTGC..

Matches = 2

Nseg = ceil(20/4) = 5

Nseg – Matches = 3 > E Reject

Matches = 4

Nseg = ceil(20/4) +1 = 6

Nseg – Matches = 6 – 4 = 2 = E Accept

TCTT

CTTA

TTAC

TACG

AC

AA

AA

AC

CG

GT

TCTG AAAC TTAC GC

TTTC TGAA AC

TTCT GAAT CG

TCTG AATC GT

CTGA ATCT TG

TGAA TCTT ACGT GC

0 1 0 1 11

ACGT

CGTT

TTTT

TTTC

GTTG

GTTT

FilterFuse

ACGT TGTC TGAA ACTT ACGC

AAAC GTTT TCTG AATC TTAC

AACG TTTT CTGA ATCT TACG

ACGT TTTC TGAA TCTT ACGT

CGTT TTCT GAAT CTTA CGTG

GTTT TCTG AATC TTAC GTGC

Read

Shifted Ref -2

Shifted Ref -1

Ref

Shifted Ref +1

Shifted Ref +2

1 0 1 0 0Output

LongGeneGuardian

Figure 6.12: LongGeneGuardian on Software vs. on FilterFuse at the tile level.

the same, making the first/last segments shorter than the intended segment length. We
verify the impact of the differences between the two implementations experimentally in
Section 6.5.

6.4. EVALUATION METHODOLOGY
Implementations & Models. We implement LongGeneGuardian on software (C++) for
its accuracy evaluations. We use a cycle-accurate RTL-based implementation to verify
the functionality of FilterFuse. The analog components (i.e., ReRAM-based crossbars
and TCAMs) are memory models from actual ReRAM crossbars in TSMC 40 nm CMOS
technology [330], from the EU project MNEMOSENE [333]. The DRAM-based crossbars
are from SIMDRAM [93, 372]. The additional components are also designed using TSMC
40 nm technology node in Synopsis Design Compiler [331]. We run all our experiments
on a 12-core server with 16 GB memory, Tesla-K80 GPUs, and a Intel® Xeon® CPU E5-
2680 operating at 2.4 GHz.
Baselines. We use Edlib [350] for the golden standard results of alignment for accuracy
evaluations. For end-to-end evaluations, we feed the output of each filter to Edlib. We
compare LongGeneGuardian and FilterFuse with open-sourced SneakySnake (SS) [186]
on CPU, as the only SotA pre-alignment filter for long-reads3. We used two versions
of FilterFuse: (1) FilterFuse-CMOS, where the tiles are SotA DRAM-based and TCAMs
are SotA SRAM-based ones, and (2) FilterFuse-ReRAM, where both tiles and TCAMs are
ReRAM-based ones. Note that as discussed in Section 6.2, FilterFuse can support short

3Neither the FPGA implementation nor the GPU one supports long reads.

6.5. EVALUATION RESULTS

6

121

reads as well. In that case, FilterFuse is quite similar to SieveMem discussed in Chapter 5.
Datasets. We use PBSIM3 [373, 374] to produce two datasets of long read-reference pairs
from real datasets. We then feed these reads to Minimap2 [375], a SotA read mapper
supporting long reads. We use the output to retrieve seed locations, by which we can
retrieve the reference sequences corresponding to the read with SAM-tools [376]. We call
these datasets PacBio_10K and PacBio_100K, with reads of length 10Kbp and 100Kbp,
respectively.

6.5. EVALUATION RESULTS

6.5.1. DESIGN SPACE EXPLORATION
Fig. 6.13-(a) and -(b) present the Pareto optimal design space exploration of FilterFuse
for average execution time against total die area of FilterFuse and its maximum total
power, respectively. We mark most attractive designs that strike a sweet spot in the trade-
off between execution time and the corresponding metric with red circles in Fig. 6.13 and
call them area-optimized and power-optimized designs. Numbers label the Pareto op-
timal configurations, each of which is a different hardware configuration we tested for
FilterFuse, but the full list is not presented for better readability.

(10) Pareto Optimals

PowerArea

(a) Area (b) Power

Figure 6.13: Pareto plots for performance per (a) area and (b) power.

From Fig. 6.13-(a) we make two observations. First, all of the area-optimized config-
urations have a smaller area than that of our GPU. Second, configuration #81 strikes a
great balance of power while still optimizing for the area. More investigations also re-
veal that for the area-optimized designs, the configurations with large tile dimensions
are favored. This is expected due to their smaller tile and control logic area.

From Fig. 6.13-(b) we make two observations. First, the power consumption is much
lower for power-optimized configurations compared to that of the baseline GPU. Sec-
ond, configuration #39 provides a prominent balance between area and power for the
power-optimized Pareto optimal configurations. From further investigations, we also
find that this optimization criterion favors configurations with large numbers of tiles per
sub-array. We expect this as these configurations have fewer active tiles at a given mo-
ment, as each sub-array only uses part of its available tiles at a time.

6

122 6. FILTERFUSE

6.5.2. FILTERING ACCURACY

Fig. 6.14 comapres the TP rate of SneakySnake with FilterFuse using different segment
lengths for our datasets.

(8) FP Rate

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

Figure 6.14: TP rate of filtering with different segment lengths.

We observe that the best accuracy varies with the edit distance, with a segment size
of 8 bps being close to the optimal rate in our ROI. For this reason, in the upcoming
sections, we will only present the results of this segment length.

Fig. 6.15 presents the positive rate (P-rate = FP-rate + TP-rate) of optimal FilterFuse,
i.e., an indication of evaluated pairs that require alignment.

(7) Positive (P) Rate

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

Figure 6.15: Positive rate of filtering with the best segment.

We observe that FilterFuse achieves the same or a maximum of 1% higher P-rate
compared to SneakySnake and Edlib.

Fig. 6.16 presents the FP rate of FilterFuse and SneakySnake for various edit distances
and datasets.

We observe that FilterFuse retains a low FP rate of < 2% compared to SneakySnake,
which achieves the lowest FP rate among all previous filters.

From these results, we conclude that FilterFuse is an effective and accurate filter for
long reads, achieving an accuracy as close as the SotA pre-alignment filter, SneakySnake.

6.5. EVALUATION RESULTS

6

123

(8) FP Rate

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

Figure 6.16: FP rate of long reads filtering with the best segment.

6.5.3. FILTERING SPEED

Fig. 6.17 presents the execution time of FilterFuse and SneakySnake over different edit
thresholds and datasets.

(3) Filtering Speed – Long Reads

PacBio98100KPacBio9810K

OLD

(b) PacBio_100K(a) PacBio_10K

1
7

5
.7

0

2
5

8
.4

3

3
4

9
.4

8

5
3

5
.6

3

9
3

.3
5

3
9

.9
9

5
4

.2
1

2
7

.8
5

Figure 6.17: Speed of long reads filtering.

We make two observations. First, FilterFuse always outperforms SneakySnake irre-
spective of the read length, edit threshold, and underlying technology. This improve-
ment can go up to 120.47×. Second, FilterFuse-ReRAM outperforms FilterFuse-CMOS.
Further investigations show that this is because of the copy overhead used for XOR in the
underlying tile of DRAM, even though the SRAM-based TCAMs offset some of the perfor-
mance overhead. We conclude that FilterFuse is much faster than SneakySnake mainly
due to exploiting CIM to eliminate the data movement overhead and its lightweight al-
gorithm.

6.5.4. END-TO-END ALIGNMENT SPEED

A filter that is faster than the other but has lower accuracy (higher FP rate) might end up
with higher end-to-end execution time when one also considers the time required for
the alignment of the pairs that pass each filter. Therefore, it is necessary to compare the
end-to-end execution, i.e., filtering and alignment for a given dataset, when comparing
the effectiveness of a filter.

6

124 6. FILTERFUSE

Fig. 6.18 presents the end-to-end execution time for a filter (FilterFuse or SneakyS-
nake with Edlib) followed by alignment over several edit thresholds and datasets. To
better capture the trends (and relative execution time), we limit the y-axis to 1000s. The
y-axis uses a logarithmic scale.

(4) End-to-End Speed – Long Reads

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

(b) PacBio_100K(a) PacBio_10K

OLD

Figure 6.18: End-to-end speed of long reads filtering and alignment.

We make two observations. First, for all datasets, edit-distance thresholds, and mem-
ory technologies, FilterFuse shows an improvement of end-to-end execution time over
the baseline SneakySnake solution in the ROI. This improvement goes up to 49.14× over
SneakySnake. Second, as expected, FilterFuse-ReRAM improves the end-to-end time
further than FilterFuse-CMOS, while the difference is less than 28.93%. We conclude
that even with the decrease in the accuracy (Section 6.5.2), FilterFuse improves the per-
formance of alignment significantly.

To determine whether FilterFuse resolves the filtering bottleneck, we also examine
the new distribution of filtering time and alignment time. Fig. 6.19 presents this relative
distribution over various edit distance thresholds and datasets.

(5) Relative contribution of FilterFuse and alignment in
end-to-end execution time

PacBio98100KPacBio9810K

(b) PacBio_100K(a) PacBio_10K

Figure 6.19: Filtering and alignment contribution in end-to-end execution time when
using FilterFuse.

We observe that alignment constitutes a minimum of 59.67% of the end-to-end ex-
ecution time, going as high as 90.10% of the end-to-end execution time. This means
that FilterFuse improves the filtering step enough to move the bottleneck back to the

6.6. CONCLUSION

6

125

long read alignment step, making the alignment the next computational step to focus on
again.

6.5.5. AREA AND POWER ANALYSIS
Table 6.1 presents the chip area and power consumption breakdown of the optimal con-
figurations of FilterFuse.

Logic Unit Area[mm2] Power[mW]

Crossbars 130582105.29 3.93
TCAMs 615813.12 0.00986

Control Logics 98032937.56 27.57

Total for FilterFuse 229230855.97 31.51

Table 6.1: Area and power breakdown of FilterFuse.

We make three main observations. First, most chip area is attributed to the crossbars
and the tile-level control logic. The contributions of the higher-level components are
negligible compared to the total chip area. Second, the largest contributor to the power is
the power of the tile-level control logic. Three, TCAMs add insignificant area and power
consumption overheads.

Table 6.2 compare the chip area and power consumption of FilterFuse with SotA de-
sign on our GPU, where the maximum GPU power is measured using nvidia-smi while
running Snake-on-GPU. Note that area and power estimations of FilterFuse components
that were scaled down to the evaluation technology node are scaled pessimistically, lead-
ing to conservative estimates.

Hardware Area[mm2] Power[W]
NVIDIA Tesla K80 561 149

FilterFuse 229 31.5

Table 6.2: Area and power of FilterFuse vs. Snake-on-GPU.

We make two observations. First, FilterFuse has a smaller overall chip area than our
Tesla-K80 GPUs. Second, FilterFuse shows a lower maximum power consumption than
Snake-on-GPU, i.e., a reduction of 79.7%.

We conclude that FilterFuse also has area and power advantages over a typical GPU
implementation.

6.6. CONCLUSION
This chapter proposes the first CIM architecture for pre-alignment filters of long reads, a
major performance bottleneck in today’s genome analysis of long reads. We call this Fil-
terFuse. FilterFuse operates on a hardware-friendly algorithm, LongGeneGuardian, that
is also compatible with the requirements of a true CIM architecture: simple operations
and no assumption on the data placement. Considering the larger genomics pipeline
and industrial move towards long-read sequencing, FilterFuse takes a large step in ac-
celerating long-read genome analysis.

7
DEMETER: A FAST AND

ENERGY-EFFICIENT FOOD

PROFILER USING

HYPERDIMENSIONAL COMPUTING

IN MEMORY

Food profiling is crucial in any food monitoring system for health and fraud prevention
but faces computational challenges. In this chapter, we aim to fix two key issues of current
state-of-the-art (SotA) food profilers: (1) handling large data and (2) reducing data move-
ment. We introduce Demeter, the first platform-independent framework for food profil-
ing. Demeter overcomes the first limitation through the use of hyperdimensional comput-
ing (HDC) and efficiently performs the accurate few-species classification required in food
profiling. We overcome the second limitation by the use of an in-memory hardware ac-
celerator for Demeter (named Acc-Demeter) based on memristor devices. Acc-Demeter ac-
tualizes several domain-specific optimizations and exploits the inherent characteristics of
memristors to improve the overall performance and energy consumption of Acc-Demeter.
We compare Demeter’s accuracy with other industrial food profilers using detailed soft-
ware modeling. We synthesize Acc-Demeter’s required hardware using UMC’s 65nm li-
brary by considering an accurate PCM model based on silicon-based prototypes. Our eval-
uations demonstrate that Acc-Demeter achieves a (1) throughput improvement of 192×
and 724× and (2) memory reduction of 36× and 33× compared to Kraken2 and Meta-
Cache (2 SotA profilers), respectively, on typical food-related databases. Demeter main-
tains an acceptable profiling accuracy (within 2% of existing tools) and incurs a very low
area overhead.

This chapter is partially based on the candidate’s work [120].

127

7

128 7. DEMETER

As discussed in Section 2.2.1, the industry uses SotA taxonomic profilers from
metagenomic studies for today’s food profiling as food profiling and metagenomics
profiling share a close problem statement. Unfortunately, these profilers are overkill
for simply profiling a given food sample and, therefore, costly since those taxonomic
profilers have been designed for different, more complex goals such as (1) capturing
complex operations between organisms or (2) finding insights on species that cannot
be clonally cultured in labs. Such profilers are also designed for working on larger, more
complex, and randomly mixed genome sequences and demand a significant amount of
resources that simply impede real-time monitoring of all food samples after production,
shipment, or distribution; the ultimate goal of a food monitoring system. Therefore, a
new solution must be sought after specifically for food profiling that is cheaper, faster,
more energy-efficient, and yet accurate.

In particular, we pinpoint two critical sources of inefficiency in SotA profilers cur-
rently used for food monitoring, collectively called food profilers or profilers hereafter.
First, all current (food) profilers work with significantly large working data structures,
e.g., humongous hash tables or sorted lists, that require high-end servers with exten-
sive storage and memory capabilities to be handled. This fundamentally limits perfor-
mance scaling on par with that in sequencing technologies. Second, current profiling
techniques incur a significant number of random accesses to large working datasets,
and as a result, unnecessary data movement between their storage and memory plus
their memory and compute units which cannot be otherwise done where the data re-
sides due to (1) the size of the final data structures and (2) the required operations for
tasks in hand. This directly translates to massive energy consumption and latency. For
example, as shown in our evaluations Sections 7.3, 7.6, a widely used SotA profiler takes
∼1 minute to profile one high-coverage sequenced food sample. However, it requires
a super machine or cluster with at least 300 GB of memory and proportionally scaled-
up compute power. These costs add up to an unbearable amount of required time and
equipment for real-time monitoring of all existing and produced food samples. There-
fore, a healthy economy regarding the food industry cannot keep using these profilers
and demands cheaper, faster, more energy-efficient, and more accurate food profilers
for the years to come.

Our goal in this chapter is to solve both limitations of previous profilers, namely (1)
reliance on high-end servers and scaling problems due to required massive data struc-
tures and (2) incurring unnecessary data movement. To this end, we propose Demeter,
an end-to-end, hardware/software co-designed food profiling framework that efficiently
profiles species of a food sample. The key idea of Demeter is to reduce the food pro-
filing problem to a multi-object (multi-species) classification problem using hyperdi-
mensional (HD) computing (HDC) followed by an abundance estimation step. Demeter
is a platform-independent framework and produces accurate results on any hardware
platform such as a central processing unit (CPU), graphics processing unit (GPU), or
application-specific integrated circuit (ASIC).

Our experiments show that although the accuracy of Demeter is comparable with
existing SotA profilers, typical processing units (CPUs) are not exploiting the full paral-
lelism offered by our HDC-based approach, prohibiting those platforms from outper-
forming SotA profilers. Moreover, we find two more optimization opportunities that can

7.1. BACKGROUND AND MOTIVATION

7

129

be achieved with a wisely-chosen platform: (1) eliminating the cost of existing shift op-
erations and (2) mitigating the significant amount of data movement involved in our
HDC-based solution. Therefore, we propose an in-memory hardware accelerator for
Demeter, Acc-Demeter, to mitigate the costs mentioned above and simultaneously solve
the second problem of profilers as well. Acc-Demeter achieves these by (1) the physi-
cal attributes of nanoscale memristive-based devices1, (2) Processing-In-Memory (PIM),
where the data resides, and (3) zero-overhead shift operation in hardware. It is worth
noting that, with the advent of portable sequencing machines, a move from cloud com-
puting with sophisticated infrastructure towards an in-build profiler (or other genomics-
related kernels) inside the sequencer is finally in the foreseeable future.

We make the following main contributions in this chapter:

• To our knowledge, Demeter is the first framework that enables food profiling via
HDC. Demeter provides a five-step approach to determine the relative abundance
of a set of the food read sequences at species-level. We design Demeter to (1) ad-
dress the key problems of food profiling rather than accelerating regular metage-
nomic profilers and (2) be platform-independent (Section 7.2).

• We propose a PIM-enabled hardware accelerator for Demeter using memristor de-
vices (Acc-Demeter) to extract Demeter’s full potentials and solve the data move-
ment problem in Demeter and previous profilers. We propose several optimiza-
tion techniques for Acc-Demeter based on domain-specific knowledge of food
profiling and our background on PCM cells characteristics and HDC operations.
To our knowledge, Acc-Demeter is the first (in-memory) hardware accelerator for
a food profiler (Section 7.4).

• We rigorously compared Demeter and Acc-Demeter to four SotA food profilers. We
show that Demeter provides an accuracy level comparable with previous food pro-
filers and within the accepted level of food monitoring systems. The default setting
of Acc-Demeter enables a (1) throughput improvement of ∼192× and 724× and (2)
reduction in the required memory of ∼36× and 33× compared to Kraken2 [193]
and MetaCache [212], respectively, when querying on a typical food-related refer-
ence genome database, i.e., AFS20 [212]. Our design requires only ∼8.9 mm2 die
area and can process ∼9.45 Mbp per joule for our largest food-related database
AFS31 [212] (Section 7.6).

7.1. BACKGROUND AND MOTIVATION
This section discusses the necessary background and introduction to (1) the current tax-
onomic profilers and their shortcomings when used for food profiling, (2) HDC. We de-
vote the materials mainly to those closely related to or used by Demeter and not dis-
cussed in Chapter 2. For more detailed background information, we refer the reader to
comprehensive reviews on these topics [126, 194, 288, 377–380].

1We choose phase change memory (PCM) devices as members of memristor families due to our accessibility
to accurate measurements and models. However, in principle, our proposed techniques can be applied to
any memristor-based memory technology, such as ReRAM or STT-MRAM.

7

130 7. DEMETER

7.1.1. METAGENOMIC PROFILERS
Constantly increasing the performance of sequencing technologies and the fast drop in
the cost of DNA sequencing [26, 27] catalyzed the metagenomic studies [11, 190, 191].
These studies enable us to capture the big picture of the environment without isolating
or cultivating individual organisms. For this purpose, one needs to perform taxonomic
profiling: determining the relative abundances of species in a sample directly taken from
the environment. Due to the high cost associated with alignment and assembly for large
reference datasets, to this date, we still prefer heuristics statistical-based profilers to
assembly- or alignment-based ones. However, even these profilers are not yet cheap
or economical and prevent large-scale, real-time studying. Their cost is mainly related
to the required memory for profilers’ data structure and algorithms. Such large data
structures or sophisticated algorithms force us to use high-end servers and are needed
to fulfill complex goals of subsequent metagenomic analysis, namely capturing complex
operations between organisms and discovering insights on species that can not be clon-
ally cultured in labs. This high cost of profiling in a metagenomics profiler prevents us
from efficiently profiling food samples in real-time, the end goal of a food monitoring
system.

7.1.2. PROBLEMS OF FOOD PROFILERS
We use VTune [381] and profile three SotA profilers that are currently used for food sam-
ples as well, namely Kraken2, CLARK, and MetaCache, using their default datasets and
parameters on the original platforms for which they have been designed. We make two
main observations, which follow a similar trend reported in previous studies in genomics
as well [193, 244, 382].
Observation 1. All these profilers induce large memory requirements for their data
structures. For example, Kraken2 requires a minimum of 300 GB memory for its ref-
erence data structure. Even for smaller and less complex reference data bases such as
those in food industry, Kraken2 still requires more than 50 GB of memory (Section 7.3.4).
Observation 2. All profilers induce high miss rates in L2 and L3 (∼68 to 90%). The nature
of their underlying algorithms causes this inefficiency because they always query a small
fraction of keys in a large hash table and/or sorted list, leading to random memory access
patterns. In other words, the arithmetic intensity of the profilers is too small to the extent
that even increasing the number of threads does not help resolve the CPU stall cycles
caused by memory accesses required by these misses.

Overall, current food profilers’ large working data structure and their low arithmetic
intensity lead to high storage cost, low performance, and high energy consumption.
It also demands high-end servers. This motivates designs (such as Demeter and Acc-
Demeter) that provide reduced working data structures, eliminate unnecessary data
movements, and can liberate us from dependency on the clusters.

7.1.3. HYPERDIMENSIONAL COMPUTING.
Hyperdimensional (HD) computing [383], also called vector symbolic architecture (VSA)
[384], is a brain-inspired computing paradigm which has been demonstrated to be ef-
fective in 1) solving cognitive tasks, such as analogical reasoning [385–387], 2) learning
domains, such as text classification [388–391], gesture recognition [392], and latent se-

7.1. BACKGROUND AND MOTIVATION

7

131

mantic analysis [393] and 3) privacy and security problems [394]. The name hyperdi-
mensional comes from the fact that in the HD Computing realm, we deal with spaces
and vectors, which mimic a large number of neurons and synapses existing in the brain’s
circuits.

The main difference between traditional computing and HD computing paradigm is
their element representation and interpretation. In the traditional computing paradigm,
the elements, such as a single bit or small group of them, can be interpreted without
referring to the other elements. This is called localist representation. In the HD com-
puting paradigm, on the other hand, a total set of bits interpret together and individual
elements in representation do not have a specific meaning. To express this paradigm, we
represent elements using high-dimensional vectors, hereafter called HD vectors. There-
fore, each HD vector represents an element in a distributed manner, as opposed to the
localist representation, and can be composed of real numbers [395–398], binary num-
bers [383, 399], bipolar [392, 396], or complex numbers [400]. The difference in repre-
sentation introduces a few new properties which turn out to be highly powerful in some
domains, which we discuss next.

HYPERDIMENSIONAL COMPUTING PROPERTIES

HD vectors in the HD computing paradigm have several features and properties that
make them suitable for the tasks in which are being currently employed.

• Robustness. The HD computing-based architectures (or VSAs) are tolerant against
failure due to random errors. The primary reason for this robustness comes from
the redundancy in the representation of each element, or in other words, the fact
that the set should be interpreted as a whole, and not as individual elements/bits.
It is worth noting that the robustness increases as the dimensionality of the space
(or similarity put, the size of the HD vectors) increases.

• Holisic Representation. Holistic representation of HD computing-based archi-
tectures brings them fault tolerance independent from the error’s position. This
means that the information degradation caused by an error, bit flip in an HD vec-
tor, is irrespective of the position of the error in HD computing.

• Randomness. To incorporate the seeming arbitrariness of brain structure, mean-
ing that no two brains are identical, in HD computing, one should start with HD
vectors which are randomly drawn from the hyperspace. Building on top of these
randomly chosen initial vectors and recursively creating the next elements brings
HD vectors the property of randomness.

HYPERDIMENSIONAL REPRESENTATIONS AND CONSTRUCTIONS

As alluded before, HD vectors can be in forms of binary, real, complex, and bipolar num-
bers [383, 392, 395, 396, 396–400]. Binary representations of HD vectors have been shown
more practical and efficient, than the others, when it comes to the classification prob-
lems or one-shot reinforcement learning. Therefore, we also decided to proceed with
binary HD representations in this thesis.

For determining the distribution in the binary representation, in the context of su-
pervised learning, we should determine two major hyperparameters: 1) density of HD

7

132 7. DEMETER

vectors and 2) mapping function. For the density, we have two choices of sparse and
dense representations. In the dense representation, the number of “1”s and “0”s in vec-
tor elements are equiprobable. This means that if we define the density of an HD vector
as the hamming weight of the vector |V | divided by the dimensionality of HD vector (N),
p = |V |

N , then for dense representation we have p ≈ 1
2 This is not the case for the sparse

binary representation. The mapping functions categorize based on their ability to map
the features with similarity preservation of the origin or without it. Based on these two
hyperparameters, we summarize the major operations on widely-used sparse and dense
HD representations below.
Binary Sparse HD Representations. Sparse Distributed Representations (SDRs) are the
closest representation to neurons in a biological brain as in any given time, only a small
proportion of neurons is active. In the following, we describe the fundamentals of SDR
and explain their common hyperparameters. We, however, refer the reader to prior
work [399, 401] for a more detailed discussion on aspects of SDRs.

In SDR, the number of “1”s in the HD vector is much fewer than that of “0”s and can
be realized easily when a large dimension HD vector is used. The similarity, shortened to
“sim” hereafter, of two HD vectors V1 and V2 in SDR is estimated based on the number of
overlapped “1”s which can be calculated using the elementwise conjunction of the two
HD vectors:

si m = |V1 ∧V2| (7.1)

In the binary representation, this is equivalent to the dot products of these two vec-
tors. The main reason behind this mapping is that since we treat “1”s and “0”s asym-
metrically in the SDR, the geometric vectors will have an origin of 0N and will be placed
in the same hyperquadrant in our high dimensional space and their similarity will be
non-negative.

HD vectors in SDR that represent unrelated entities, atomic SDR vectors, can be com-
bined, or bundled, by elementwise disjunction, which preserves the similarity of the
combined vectors. Since the density of the bundled vectors increases with the number
of involved atomic HD vectors, we use the context-dependent thinning (CDT) procedure
to keep the density close to the starting atomic HD vectors [399]. CDT takes an SDR vec-
tor V, constructed with bundling several other vectors using elementwise disjunction, as
input, and thinned it in two steps: 1) It first permutes V for k times. These permutations
should be all independent, random, and fixed. 2) The output of permutation then will
be bundled with the original V using elementwise conjunction. In practice, cyclic shift
with a fixed, yet randomly chosen unit of shifts, is used for the permutation. There are
also examples in the prior works such as in [401] in which they applied the same random
permutation T times recursively.
Binary Dense HD Representation. In the binary dense HD representation, which is
called dense distributed representations or DDRs, the values of every single bit in the
HD vector are equally probable and independent, unlike the values in SDR vectors. This
was first proposed by Kanerva et al. [383, 393], in which they used dense HD vectors of
size N = 10000 binary elements. In DDRs, the similarity of two HD vector is determined

7.1. BACKGROUND AND MOTIVATION

7

133

by the Hamming distance of two vectors, normalized to the dimension or size of the vec-
tors, N. This operation can be implemented as summation and then normalization of
the bitwise XOR of two vectors. One can easily show that the hamming distance of any
two arbitrary HD vector (not similar HD vectors) exploiting this representation is around
0.5 [383, 402].

Like SDRs, HD vectors in DDR are also generated independently, randomly, and re-
cursively. Random vectors can be calculated using the cyclic shift operation, which is
similar to the SDR case. The simplest bundling operation in DDR is the elementwise
summation. However, this will result in a non-binary vector. To convert our new HD
vector into a binary representation again, the bundling operation also performs an el-
ementwise majority rule which outputs a binary HD vector. The elementwise majority
results in “1” only when G

2 or more arguments are “1”, and vice versa, for each position
in the HD vector, where G is the number of vectors being bundled together. When there
is an even number of “0”s and “1”s, one can break the tie by randomly generating a vec-
tor and adding it to the superposition. This effectively will be like drawing the output
from a Bernoulli distribution B(1,0.5). The result of such bundling will be itself an HD
vector in DDR and we refer enthusiastic readers to previous works for more details and
examples [393, 402, 403]. We use DDRs in our proposal that we discuss in Section 7.
Bipolar HD Representation. In the sparse and dense HD representations, SDR and
DDR, we encode the components in each vector using “0”s and “1”s. In the bipolar HD
distributed representation (BDR), on the other hand, we encode the components into
“-1” and “+1”. From the computational point of view, bipolar representation is more
convenient and posses a set of interesting features. The distance metric in BDR is sim-
ply the dot product, as in SDR. The bundling operation in BDR is implemented as an
elementwise summation. However, since doing that will results in a non-bipolar HD
vector, to put it back into the definition, we separate the results of the elementwise sum-
mation into the sign and magnitude and consider the sign, and restrict the bit value to
a pre-defined threshold at which we clip the resulting integer. Since these operations
are not as hardware friendly as operations needed in binary representations, current
HD-based hardware accelerators do not exploit this representation. We refer the readers
to [396, 397] for more detailed explanations.

CLASSIFICATION USING HDC
Like other reference-based classifiers, an HDC-based system also takes two steps: (1)
training and (2) classification. An encoding mechanism is used in both steps. One fa-
mous example is the N-gram encoding mechanism that follows a two-step approach for
encoding a string of size L to an HD vector of size D. Step 1: It combines N consecu-
tive alphabets of the string and builds an HD vector that is orthogonal to them all and
can preserve their relative order. This operation is called binding and is represented in
Equation 7.2, where ρi (X) represents the i th permutation of vector X and Bi are once
randomly-generated representative HD vectors (also referred to as atomic or basis HD
vectors) for the i th character of the string Ci . The string is a DNA sequence in Demeter
in Section 7.

N − g r am(C1,C2, ...,CN) = Sh[. . .Sh[Sh[B1]⊕ρ(B2)]⊕ . . .]⊕ρN−1(BN) (7.2)

7

134 7. DEMETER

Similarity Check
Online / Multiple

Similarity Check
Online / Multiple

HDC Configuration

New Dimension
New Sparsity

Encoding Mechanism
etc.

HDC Configuration

New Dimension
New Sparsity

Encoding Mechanism
etc.

Reference Genomes
AAACTGGTCA … TGTTCACCCG

ATCATGACGA … TCGTCTACGC

CTACATAGTA … AAATCACACT

GAGCGTGCCC … TGTTCACCCG

TTACGAGTCA … TGGGCAGCAA

CCCCTGGTCC … CGTGCACGGG

. . .

L_Ref

Reference Genomes
AAACTGGTCA … TGTTCACCCG

ATCATGACGA … TCGTCTACGC

CTACATAGTA … AAATCACACT

GAGCGTGCCC … TGTTCACCCG

TTACGAGTCA … TGGGCAGCAA

CCCCTGGTCC … CGTGCACGGG

. . .

L_Ref

Food Sample Reads

Read Sequences
ATTATCCGCGA … GGTCCTTGA

. . .

GGAAACCATT … TTTGCACGCG

L_Read

Read Sequences
ATTATCCGCGA … GGTCCTTGA

. . .

GGAAACCATT … TTTGCACGCG

L_Read

Food Sample Reads

Read Sequences
ATTATCCGCGA … GGTCCTTGA

. . .

GGAAACCATT … TTTGCACGCG

L_Read

User Input

Encoder Unit

Step 2:
Build HD-RefDB

2 Step 2:
Build HD-RefDB

2

Value
0010111001 … 0010110001Specie 1

0010111001 … 0010110001Specie N

. . .

HD-RefDB

0010001101 … 1010010111Specie 2

Key Value
0010111001 … 0010110001Specie 1

0010111001 … 0010110001Specie N

. . .

HD-RefDB

0010001101 … 1010010111Specie 2

Key

Step 3:
Read Conversion

3 Step 3:
Read Conversion

3

0010100101 … 0011110100Read k 0010100101 … 0011110100Read k

Species-level Abundance Calculation

Step 4:
Multi-Species Classification

4 Step 4:
Multi-Species Classification

4

Reads

Refs

.cfg

Offline / One-time

Step 5: Relative Abundance
Estimations

5 Online / Multiple

Step 1:
Define the HD Space

1 Step 1:
Define the HD Space

1

Offline / One-time

1. Hyperparameters:
O Dimension of HD
O Sparsity of HD vecs

2. HD vecs’ generation
3. Encoding mechanism
4. Similarity metric Online / Multiple

Figure 7.1: Overview of Demeter framework.

Step 2: The encoder performs an element-wise addition between all HD vectors
corresponding to consecutive N-grams, called bundling, to present the entire input se-
quence. To binarize the final HD vector, the encoder applies a majority function over
each position. This final vector is stored in associate memory (AM) and is called a pro-
totype HD vector if the input was a reference genome. Otherwise, it is called query HD
vector and will use it for classification.

The most common approach for classifying whether the sequence query belongs to
any of the classes in AM after using N-gram encoding mechanism is to measure the ham-
ming distance between the query HD vector (Q) and each of the prototype HD vectors
(Ps) and decide based on a fixed distance or threshold (T). This can be easily performed
with an XNOR of Q and each P followed by a pop-count2 and thresholding operation, as
shown in Equation 7.3.

C l assi f i cati on(i) =

 1, if
D∑

j=1
Q(j)⊕̄Pi (j) ≥ T

0, otherwise
(7.3)

7.2. DEMETER
Demeter is a configurable framework for food profiling and is based on three main in-
sights: (1) current food profilers, whereas accurate, are neither memory- nor energy-
efficient, (2) the primary sources of high cost and inefficiency in current food profilers is
their large reference data structures and working sets, and (3) one can profile food sam-
ples quickly and accurately using HDC. Fig. 7.1 provides an overview of the five key steps

2Pop-count (population count) of a vector or specific value is the process of finding the number of set bits (1s)
in that value.

7.2. DEMETER

7

135

in Demeter: 1 defining an HD space, 2 building an HD reference database (HD-RefDB),
3 converting sample reads into HD space, 4 determining the possible species assign-
ment per sample read, and 5 performing abundance estimation. We describe each step
in more detail next.

7.2.1. STEP 1: DEFINE THE HD SPACE
As the first step (1 in Fig. 7.1), Demeter defines an HD space for all subsequent opera-
tions and steps. This is a crucial step as it determines the operations in the remaining
steps. Unfortunately, many previous HDC-based proposals did not support the user’s
input for determining the HD space and designed their space statically. Hence, such
designs are more limited.

Demeter defines the HD space in 4 stages. Stage 1: Demeter fixes two hyperparam-
eters: (1) The dimension of the HD space; i.e., the dimensionality of the HD vectors
(element representations), and (2) The sparsity of each element (HD vector). Stage 2:
Demeter generates a few atomic HD vectors and store them in memory (commonly
called Item Memory (IM)). These vectors can be (1) the HD vectors that represent our
genome alphabets or (2) the one-time randomly generated HD vectors that some encod-
ing mechanisms use, for example, to introduce the concept of order between alphabets
of one input. Stage 3: Demeter decides on the encoding mechanism to build the space
with. This very encoding mechanism will be used throughout Steps 2 and 3 of Deme-
ter. Stage 4: Demeter fixes the similarity metric and any other associated parameters
(such as thresholds) based on the user’s input or a common choice considering previous
stages. Demeter stores a default value for each stage in a configuration file. Once the
user summons Demeter, Demeter quickly checks if a configuration file matches with the
user’s requested HD space or not. Demeter only runs this step if such file does not exist
or the user asked for a change.

7.2.2. STEP 2: BUILD DEMETER’S REFERENCE DATA STRUCTURE
Demeter takes two sets of inputs in step 2 : (1) HD space parameters defined in Step 1
and (2) a reference genome database. Subsequently, Demeter builds a new reference
database in its HD space out of all the considered reference genomes. This new database,
called HD-RefDB, consists of one (or few) prototype HD vector(s) from any given refer-
ence genome in the original reference database and is stored in AM. HD-RefDB can be as
varied as the number of combinations of possible hyperparameters, atomic vectors, and
encoding mechanisms in Step 1 . This step aims to reduce the size of the working set for
the classification task while avoiding accuracy drop. Since this step requires only simple
arithmetics and is also highly parallelizable, it can still be accelerated on our proposed
PIM-enabled accelerator (Section 7.4).

7.2.3. STEP 3: DEMETER’S READ CONVERSION
Demeter again takes two inputs in Step 3 : (1) HD space configuration and (2) read
sequences of the food sample under study. Demeter translates each of these read se-
quences into one query HD vector. To prevent any extra storage cost and to pipeline
computations of Step 3 and Step 4 , Demeter forwards each query HD vector to the next
step instead of storing them inside a memory unit while waiting for all of them to be con-

7

136 7. DEMETER

structed first3. Query HD vectors created in this step can require larger or smaller space
than a read, depending on the initial length of the read sequences and the dimension
of the HD space. Therefore, although Steps 2 and 3 share the encoding mechanism,
their input and how Demeter treats the outcome are pretty different. Step 3 neither
introduces a new operation nor a procedure other than those that already exist from
Step 2 . Therefore, it enjoys similar benefits as Step 2 , namely high parallelization and
in-memory suitability. Demeter runs Step 3 every time it profiles a new read of a food
sample.

7.2.4. STEP 4: MULTI-SPECIES CLASSIFICATION PER READ

In this step, Demeter takes (1) the query HD vector (Step 3), (2) HD-RefDB (Step 2),
and (3) similarity function and its corresponding parameters (Step 1) as inputs. To de-
termine the specie(s) that each read belongs to, Demeter performs a similarity check
between the query HD vector and each of the prototype HD vectors in HD-RefDB. The
similarity measure can vary depending on the vector representations and encoding ap-
proaches. Demeter allows various famous mechanisms for the similarity check, such as
Hamming distance [380] and dot product [379]. Usually, this step can be implemented
only with simple operations (Section 7.1.3). It also enjoys high parallelization, similar to
the previous steps. Although a similarity metric and its related parameters highly relate
to (1) the encoding mechanism and (2) hyperparameters of the HD space, such as repre-
sentations, sparsity, and the dimension of HD vectors, and therefore it makes sense not
to let them change arbitrarily, Demeter supports changing them in Step 4 as well, with-
out needing to re-run Steps 2 or 3 . This is because some studies show that different
similarity metrics and thresholds may outperform others depending on your applica-
tion and data for a fixed set of hyperparameters and encoding mechanisms. Therefore, if
one decides to change their reference database, they may need to play with these to find
the right match, and Demeter allows such investigations. Currently, Demeter provides a
default option.

Demeter may find out that the query HD vector is close to one, multiple, or none
of the prototype HD vectors in HD-RefDB. This variety in possible outputs differenti-
ates Demeter from many previous HDC-based designs [240, 296, 380, 403, 404]. In such
works, mostly due to the characteristics of applications under study, researchers always
assume that (1) the query HD vector can only belong to one of the prototype HD vectors,
and (2) the class of the query HD vector will exist in the AM. However, none of these as-
sumptions hold for a food profiler. One read from the food sample can be related to one,
multiple, or none of the reference genomes in the original reference genome database.
This is because the read sequences are mostly short strings with a reasonably high pro-
bability of existence in longer reference genome sequences. It is also not uncommon
that the query HD vector does not belong to any of the reference genomes in the initial
reference genome database. This case can happen when, for example, (1) there is either
an unknown species in the food sample, (2) one incorrectly excludes the corresponding

3This is the default behavior in Demeter. However, we also provide the option for the user to keep and store
these query HD vectors (HD-ReadDB) in case one needs to analyze them further. If one uses this option,
the stored query HD vectors create another database representing the reads in our food sample, called HD-
ReadDB hereafter.

7.3. DEMETER’S EVALUATION

7

137

reference genome in the initial reference genome database, or (3) an uncorrected se-
quencing error has happened. A food profiler should capture such cases. This difference
between how many prototype HD vectors in HD-RefDB can be assigned to one query
HD vector is a key difference that affects both the following abundance estimation step
and final results. It also distinguishes this work further from previous HDC-based pro-
posals for different applications. Step 4 also enjoys high parallelization and in-memory
suitability features similar to previous steps.

7.2.5. STEP 5: SPECIES LEVEL ABUNDANCE ESTIMATION

In Step 5 , Demeter performs a relative abundance estimation based on the results of
Step 4 . This step is particularly needed for a food profiler in which one query HD vec-
tor can be similar to one or more classes/species. Demeter categorizes each query HD
vector into (1) uniquely-mapped, (2) multi-mapped, and (3) unmapped, taking a two-
step approach. In the first step, Demeter assigns the uniquely mapped query HD vectors
to the species that they are similar to. In the second step, Demeter assigns the multi-
mapped query HD vector to multi-species proportionally to the number of reads that
have been uniquely aligned to in the first step divided by the length of species (reference
genome). Demeter’s Step 5 can be extended to support different assignment policies
for the multi-mapped reads. We leave investigating the effect of such methods for future
work.

7.3. DEMETER’S EVALUATION

7.3.1. METHODOLOGY

We implement a multi-threaded highly-parallelized version of Demeter in C++ using Se-
qAn library [405], called C-Demeter. SeqAn library is an open-source optimized library
for biological data. C-Demeter verifies the accuracy of Demeter. We also implement a
GPU version of Demeter, G-Demeter. G-Demeter uses CUDA streams for parallelizing
data copy operation between shared memory and global memory with other computa-
tions as much as possible. It implements the similarity check using parallel reduction
technique introduced by Harris et al. [406] in the shared memory. All of our experiments
run on a 128-core server with AMD EPYC 7742 CPUs [334] and with 500 GB of DDR4
DRAM. G-Demeter runs on a NVIDIA RTX 2080Ti GPU. Our sensitivity analysis shows
that binary HD vectors of size 40,000, with dense distributed representation (DDR [380])
and N-gram-based encoding mechanism, strike a sweet spot in the tradeoff between
accuracy, required memory, and performance. Therefore, unless otherwise stated, our
evaluations use these setups.

Accuracy Metrics. We capture the four fundamental rates from a (food) profiler when
considering the presence and absence of each species in the output, i.e., True Positive
(TP), False Positive (FP), False Negative (FN), and True Negative (TN) Rate. Based on
these rates, Demeter reports two standard metrics of Precision and Recall [192, 193, 407]
to assess the accuracy of our (food) profilers.

Performance Metrics. Performance analysis consists of three experiments: (1) Build
time, (2) Query time, and (3) Query throughput or speed. This separation has two main
reasons. (1) Build time is normally a one-time job and does not affect the overall pro-

7

138 7. DEMETER

filer’s performance. Therefore, it is only fair to separate build time and query time. (2)
Query time is simply the required time for profiling one single read. However, through-
put is measured by million reads per minute (MR

m) and should be differentiated as it can
get affected easily by other factors such as the size of the data structure, the classifier’s
parallelization capability, or the infrastructure’s computation and storage/memory lim-
itations (e.g., duplicating capabilities).
Datasets. We have two sets of datasets. (1) Genome sequences used as a reference
database. (2) Genomes sequences used as food samples and input queries. We consider
AFS20 and AFS31 [212, 213] as our reference genome datasets. These datasets are two-
commonly used datasets consist of 20 and 31 food-related reference genomes related to
animals whose sizes vary from 12 MB to 14 GB. AFS31 is currently also the biggest ref-
erence dataset used in food profiling. Food sample reads or queries are from calibrator
sausage samples from ENA project ID PRJEB34001 [408] and PRJNA271645 [409]. These
reads are real short-read sequences from a mixture of food ingredients such as chicken,
turkey, etc., sequenced on an Illumina HiSeq machine.
Baselines. We compare Demeter against MetaCache [212] (the most accurate food pro-
filer) Kraken2 [193], Kraken2+Bracken [204], and CLARK [203], the top 3 alignment-free
and fastest metagenomic profilers that are also commonly used for food profiling.

7.3.2. DEMETER’S ACCURACY ANALYSIS
Figures 7.2 and 7.3 present the results for the precision and recall of all evaluated food
profilers on the species levels over AFS20 for Kylo and Kal food samples [408, 409], res-
pectively. Note that the relative abundance of higher taxonomy levels is not of impor-
tance in food profiling. Additionally, those calculations highly depend on the propaga-
tion method from species level to those levels. Therefore, they have been excluded from
this study.

Figure 7.2: Precision rate for Kylo and Kal Samples on AFS20.

7.3. DEMETER’S EVALUATION

7

139

Figure 7.3: Recall rate for Kylo and Kal Samples on AFS20.

We observe that Demeter stands very close to the most accurate profiler, MetaCache,
and has only 1.4% and 2.6% less precision and recall, respectively, for KLyo samples.
Moreover, Demeter achieves similar results on AFS31 and Kal samples. Note that ac-
curacy is very much data-dependent, and indeed this accuracy drop is acceptable for a
food profiler. The results of the latest comparison between current (metagenomics) pro-
filers [205] show an Std error of the mean ranging from 0 to 5% regarding the precision
and recall among various widely-used profilers on different datasets.

We conclude that Demeter is accurate and achieves high precision and recall for
food samples. These results show that Demeter’s HDC-based classification approach
followed by our abundance estimation technique does not hurt the accuracy of the pro-
filer compared to baselines.

7.3.3. DEMETER’S SOFTWARE PERFORMANCE ANALYSIS

Fig. 7.4-a and Fig. 7.5-a present the time that each profiler takes to query one (short) read
from the query food sample and classify its specie(s) over AFS20 and AFS31, respectively.

We observe that both C-Demeter and G-Demeter, whereas accurate, require higher
query time compared to Kraken2. The time breakdown, using Intel VTune [381] and cu-
daEvents, reveals that both implementations are memory bound, meaning there exists a
significant percentage of under-utilized slots due to data access issues.

We believe that there are two main reasons behind this problem. First, the shift op-
eration per processed character in the encoding mechanism of Demeter. Both of these
implementations store the large HD vectors into multiple registers. Every shift operation
translates to multiple copy operations among those registers, which can become costly
in terms of time and energy consumption. This is why the query time is higher than ex-
pected. Second, not all prototype HD vectors fit in the caches. Therefore, the software
versions take a few cycles to read prototype HD vectors in batches, compare them to

7

140 7. DEMETER

Figure 7.4: (a) Query time and (b) Query throughput on AFS20.

Figure 7.5: (a) Query time and (b) Query throughput on AFS31.

7.3. DEMETER’S EVALUATION

7

141

query HD vector, save the results, and continue with the next batch. Note that these also
put a limit on the expected throughput.

Fig. 7.4-b and Fig. 7.5-b present throughput of different profilers over AFS20 and
AFS31. We make three observations. First, C-Demeter achieves a lower throughput
compared to Kraken2. The reasons behind this are similar to what was discussed for its
longer query time. Second, we observe that G-Demeter improves the throughput by up
to 24% (depending on the reference dataset) and therefore can be used for food profiling
in the industry in the near future. Third, we observe that simply increasing the num-
ber of working threads by moving from C-Demeter to G-Demeter does not improve the
throughput considerably. We ask to use the commodity GPUs to perform the food profil-
ing to cut the cost in the short term. In the long term, we propose extending Demeter to
ASIC designs (such as those we present next) that solve the new sources of inefficiency
we discussed above.

However, our analysis also shows that even a massively-parallel implementation of
Demeter, G-Demeter, does not fully utilize the parallelism offered by vector operations of
HDC classification of Demeter, while also suffering from expensive copy-pasting among
registers and its inability to perform the classification efficiently on a large vector in soft-
ware.

7.3.4. DEMETER’S MEMORY ANALYSIS
To show a key source of improvement in Demeter (and an enabler for Acc-Demeter), we
compared the memory requirement of Demeter with the other food profilers. Fig. 7.6
presents the required memory for each profiler on AFS20 and AFS31.

Figure 7.6: Required memory for (a) AFS20 and (b) AFS31.

We make the following two observations. First, Demeter requires ∼33x and 36x less
memory than Kraken2 and MetaCache for AFS20 database and ∼27x and 30x less mem-
ory for them for AFS31 database, respectively. This makes Demeter the most efficient
food profiler from a memory usage perspective. Second, the reduction in memory re-
quirement for Demeter is to the extent that, for the first time, the data structure of the
food profiler can fit into a standard size memory and does not require a colossal RAM
managing further queries. This reduction is the main enabler behind Acc-Demeter. We

7

142 7. DEMETER

conclude that Demeter is very memory efficient.

7.4. DEMETER’S PIM-ENABLED ACCELERATOR
Demeter is positioned as a platform-independent food profiling framework that uses
HDC. Demeter works with large HD vectors, is robust against errors, enjoys high par-
allelism, and exploits simple operations. These characteristics make Demeter a suitable
candidate for hardware acceleration. However, the interest behind accelerating Demeter
in a highly parallelizable and energy-efficient platform and specifically a PIM-enabled
design goes beyond being simply its suitability and is a requisite for such a platform
with two main motives.
Motivation 1: As discussed in Section 7.3.3, a software version of Demeter incurs a con-
siderable cost on copy operations among registers holding intermediate HD vectors and
classification. It also performs the classification poorly due to larger than cache HD-
RefDB and low cache hit rate. These costs diminish all the benefits of Demeter that come
from its small data structures and memory requirement. However, one can prevent this
if Demeter is implemented in hardware as they can (1) realize the shift operation for free
by only redirecting the output of each register to the next one and (2) perform the classi-
fication efficiently.
Motivation 2: A software-based implementation of Demeter still incurs a lot of unnec-
essary data movement for Steps 2 , 3 , and 4 . A hardware accelerator, especially a PIM-
enabled one, can mitigate this problem greatly.

Therefore, we propose a PIM-enabled hardware accelerator for Demeter using PCM
cells. One can accelerate Demeter using a PIM-enabled design on different memory
technologies. We choose a memristor-enabled design for three main reasons. First, it
is well-known that memristor-based memory technologies can perform vector-matrix
multiplication [410–413] using Kirchhoff’s law efficiently, making them suitable for our
design. In this work, we manage to propose a hybrid row-major/column-major data
mapping and intelligent data duplication scheme to perform encoding, classification,
and profiling efficiently on PCM devices using this operation. Other technologies than
memristors do not offer the same features for our hybrid data mapping.

Second, traditional technologies, such as non-memristor-based ones, are generally
general-purpose and cost-driven. Moreover, their design does not allow even simple cir-
cuit modifications without high penalty on the area and cost. This makes them face a lot
of pushback from the industry and unlikely to see future adoption. One of the advan-
tages of memristors over them is their high density and scalability, and previous works
show a wide range of accelerators using them.

Third, researchers already show the potential of accelerators based on emerging
technologies for other ML-based algorithms [108, 411]. Also, multiple memory tech-
nologies already exist in current sequence machines. Therefore, it is not unreasonable
to imagine one sort of these emerging memory technologies also be installed in these
machines, especially for performing ML-based algorithms such as those for base-calling
that are necessary for the sequencers [179].

In this work, we focus on PCM devices, as a member of the family of memristor de-
vices, due to our accessibility to accurate device measurements and models for these
devices and leave exploring other technologies for future research.

7.4. DEMETER’S PIM-ENABLED ACCELERATOR

7

143

7.4.1. OVERVIEW OF DEMETER’S ACCELERATOR
Fig. 7.7 shows an overview of the proposed PIM-enabled hardware accelerator for Deme-
ter, Acc-Demeter. Acc-Demeter consists of 5 key elements: 1 Item Memory (IM), 2
Encoder, 3 Associate Memory (AM), 4 Distance calculator, and 5 Controller. IM and
AM units are memory units, and we implement them as PCM arrays with their con-
trol circuitry. However, the encoder and distance calculator units are computing units
implemented as the periphery. The controller is a simple FSM designed to harmonize
the required steps of Demeter. The CPU initiates Demeter by gathering the user’s input
(Step 1) and then booting the controller; i.e., it sends the start command, initializes the
registers, and sets the addresses to consider for food samples and/or reference genomes
in the controller. In a nutshell, Acc-Demeter accelerates Steps 2 , 3 , and 4 of Demeter.
The controller returns the results of Step 4 to the CPU for final processing and perform-
ing the relative abundance estimation (Step 5). We discuss these units in more detail
next.

Controller
5

Arrays

Peripherials

Arrays

Peripherials

CPU

1 4-b5

CPU

1 4-b5 IM

Encoder

1

2

2 3

IM

Encoder

1

2

2 3

AM

Distance
Calculator

3

4

4-a

AM

Distance
Calculator

3

4

4-a

Figure 7.7: Overview of Demeter’s in-memory accelerator.

7.4.2. ITEM MEMORY (IM) DESIGN
We implement our IM using PCM arrays and corresponding circuits, such as decoders.
IM stores the atomic HD vectors. Binary “0” and binary “1” in an HD vector translate to
amorphous and crystalline states, respectively. In the beginning, the user (or Demeter)
generates 4 HD vectors for each DNA alphabet in Step 1 of Demeter and stores them
in the IM. Acc-Demeter reads these atomic HD vectors from IM every time it meets a
new symbol. Once Demeter fixes the HD space, IM becomes a read-only memory. This
allows us to prevent unwanted changes to the atomic vectors.

Fig. 7.8-(A) presents the IM design. The gate enabler provides access to cells that the
row decoder activated. This way, the design of an entire array is achieved much eas-
ier, and the write/read disturbance effect is also mitigated to a great extent. However,
this design also blocks the write on a row basis and only allows column-wise program-
ming of IM. This does not complicate IM in any way because the atomic vectors are

7

144 7. DEMETER

generated once in the beginning by the host CPU and then stored in the IM for a long
time. Note that random number generators are already well-optimized in CPUs. In ad-
dition, randomly generated values inside memristors are still in early stages [414–416],
and Acc-Demeter can be modified later to benefit from a non-intrusive (compatible)
random number generator in the future.

. .
 .

. .
 .

. .

Gate Enabler / Controller

R
e

a
d

/
Q

u
e

ry
 H

D
 V

e
ct

o
r

B_1

B_2

B_(n)

SASASA . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

#
 A

to
m

ic
 H

D
 V

ec
s

Dimension of HD Vecs

.

.

.

.

.

.

.

.

.

.

.

.

#
 A

to
m

ic
 H

D
 V

ec
s

Dimension of HD Vecs

(B)(A)

. .
 .

. .
 .

. .

B_1

B_2

B_(n)

SASASA . . .

.

.

.

.

.

.
.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

#
 A

to
m

ic
 H

D
 V

ec
s

Dimension of HD Vecs

.

.

.

.

.

.
.
.
.
.
.

.

#
 A

to
m

ic
 H

D
 V

ec
s

Dimension of HD Vecs

(B)(A)

Read voltage

D
e

co
d

e
r

Read voltage

Read voltage

Q
u

er
y

Figure 7.8: (A) IM design. (B) Data Mapping and placement of atomic HD vectors in IM.

Fig. 7.8-(B) presents (1) data mapping and (2) placement of HD vectors in the IM unit.
Note that data mapping is a critical contribution of Acc-Demeter. Acc-Demeter uses a
hybrid row-major and column-major data mapping for IM and AM units, respectively.
IM enjoys a row-major data mapping for two reasons. First, a row-major data mapping
of HD vectors allows Acc-Demeter to read the cells written in one row in one cycle. This
is helpful as IM is used in the encoding procedure, which is the bottleneck. Second,
the used PCM model provides more #columns than #rows. Therefore, even if there was
a method to read column cells all at once but separately, one could only store smaller
chunks of an HD vector on that column.

An important design choice regarding IM is related to the limited size of PCM ar-
rays (512×2048 [296]). This limitation of array size (which also exists in mature memory
technologies such as DRAM) prevents us from fitting an entire large HD vector in one
row or column. Therefore, one needs to break such an HD vector into smaller chunks
and store them into separate rows. Three options exist: (1) putting the chunks in the
same array, (2) putting them in different arrays, (3) a hybrid approach. As shown in Sec-
tion 7.6, encoder is the bottleneck of our operation. Therefore, to prevent exacerbating
the overhead of the encoding procedure, IM breaks a HD vector to the largest power of
two that is smaller than the number of columns available in an array (2048 in our case)
and stores different chunks on different arrays. This is a direct tradeoff between the used
area (#arrays) and performance. Fig. 7.8-(B) also shows this placement.

7.4.3. ENCODER DESIGN
The encoder is the main compute unit of Acc-Demeter. The encoder is implemented in
the periphery of arrays and executes the binding and bundling operations via a sequence

7.4. DEMETER’S PIM-ENABLED ACCELERATOR

7

145

of commands determined by the controller. Demeter is capable of handling different
representations (Section 7.2). However, to reduce the complexity and make the design
hardware friendly, the current design of Acc-Demeter only supports binary representa-
tions. In this setup, the N-gram encoding mechanism is the most common one, which
Acc-Demeter supports. We suspect that other choices are also possible with the same
hardware or minimal changes. We leave the exploration of those designs for future work.

Based on Equation 7.2, building an N-gram requires only simple XOR and shift op-
erations. This bitwise XOR operation can be quickly computed after reading the atomic
HD vector from the IM with an XOR gate in the periphery. Note that one can also imple-
ment XOR using bitwise AND (∧) and OR (∨). However, this technique requires breaking
the XOR operations into minterms whose numbers increase exponentially. Any attempt
to reduce them, even if empirically works as in [296], will only produce approximated
results and hurt the accuracy. Although some applications can tolerate such extreme ac-
curacy loss, food profiling cannot. Note that the 2-minterm based encoding in [296] also
affects the sparsity of N-grams (acknowledged in the paper) and limits the size of the
N-gram. However, this is not the case in Acc-Demeter because all the operations accu-
rately use XOR gates. This way, Acc-Demeter can benefit from larger N-grams and does
not hurt the density of the HD vectors. As discussed in Section 7.3.3, the shift operation
can quickly become a bottleneck for large HD vectors and strings in a software-based
implementation. However, this does not happen here since Acc-Demeter realizes the
shift for free by simply redirecting each Flip-Flop (FF)’s stored value to the neighboring
one every clock cycle. Fig. 7.9 depicts a schematic illustration of the encoder unit.

IM

. . .

. . .

. . .

Encoder

Binder

Bundler

Encoder

Binder

Bundler

Figure 7.9: Encoder components and schematic.

From the hardware perspective, the encoder distinguishes the binding and bundling
components completely. For the binding, the SA reads out the value from IM to one in-
put of an XOR gate and uses the previously stored value of neighbor FFs as the second

7

146 7. DEMETER

input. The encoder then stores the results in a buffer and repeats the procedure. This de-
sign choice provides Acc-Demeter with the cascaded logical operations, with minimum
changes to the memory array, and prevents any write back and pressuring the endurance
of the PCM substrates. The encoder performs this sequence N times (enforced by the
signals from the controller) to build an N-gram. After it finishes creating one N-gram,
it passes the N-gram to the bundler unit, resets the buffer, and starts building the next
N-gram until it hits either the last character of the input or set limit per final HD vector.

The bundler takes N-grams and adds them to a global HD vector that presents each
position with a counter instead of only one bit per position. It then repeats this operation
for M N-grams. Finally, the bundler applies a threshold (T) and makes a final binary HD
vector representing all the processed characters while building this vector. At this point,
the encoder is done. It passes the results to be stored as prototype HD vectors or used as
query HD vector in AM and resets both the integer-based and binary HD vectors.

7.4.4. ASSOCIATE MEMORY (AM) DESIGN

The AM unit is implemented using PCM arrays and their corresponding circuitry, simi-
lar to the IM unit. This unit takes the output of the encoding mechanism (an HD vector)
as input. Although the AM and the IM can technically be combined, Acc-Demeter con-
siders separate hardware for three reasons. First, these units serve in subsequent and
completely different steps in a profiling pipeline, naming encoding, and classification
step. Such a distinct separation enables building a pipeline for them. Second, row-major
and column-major data mapping in IM and introduce different parallelism opportuni-
ties for encoding and classification steps of a profiling pipeline, respectively. Row-major
data mapping of IM parallelizes encoding of all bits in a single HD vector in each clock
cycle. On the other hand, column-major mapping of parallelizes the similarity check of
one query HD vector with all prototype HD vectors stored vertically in at that clock cy-
cle. Third, separate hardware helps us to simplify IM design by using sense amplifiers
instead of ADCs. Doing so brings various benefits in terms of area saving, energy con-
sumption, and read-out time. Note that ADCs are usually the bottleneck of a memristor-
based memory in terms of energy, area, and time [90] and that is why one only uses them
when VMM or other logical operations such as Scouting Logic [106] are necessary.

Equation 7.3 shows that for the classification, we need to count the differences be-
tween the query HD vector and each prototype HD vector and then decide whether or
not it can belong to the corresponding class. Although one can realize this in hardware
by performing XNOR operation between the two vectors followed by a pop-count op-
eration all in the periphery, such design comes with two drawbacks: (1) it requires the
pop-count operation even after the XNOR, which introduces enormous area cost and
significant delay (log2D + 1 cycles [389]), and (2) the AM unit, similar to the IM, only
allows to write columns, not the rows. Since prototype HD vectors are not known from
the beginning (unlike atomic HD vectors), this limitation forces us to save them all in
another extra unit first and then write them back on a row basis. This is again inefficient.

However, Acc-Demeter proposes a new column-major data mapping and intelligent
data duplication for this unit and exploits the characteristics of the PCM substrate to
solve all these problems for HDC-based classification. It is well-known that memristor-
based memory technologies can perform vector-matrix multiplication [410–413]. There-

7.4. DEMETER’S PIM-ENABLED ACCELERATOR

7

147

fore, Acc-Demeter implements the required XNOR and following pop-count operations
in Equation 7.3 in four steps, three of which happen in the unit and the last one in the
Similarity Check unit.

Step 1: Acc-Demeter stores one prototype HD vector (or a chunk of one HD vector) in
one column and its complement in the same column number of a second array. Fig. 7.10-
A shows their placement in the AM unit. Step 2: Acc-Demeter applies the query HD
vector (Q) to the rows of the first array and the complement of the query HD vector (Q̄)
to the rows of the second array with complement prototype HD vectors (Ps), shown in
Fig. 7.10-B. Step 3: Acc-Demeter enables columns consecutively and effectively read out
the number of ones in Q.P and Q̄.P̄ in ADCs of each array. This way, it performs two
vector-matrix multiplications using Kirchhoff’s law, one between Q and all Ps in the first
array and one between Q̄ and all P̄ s. Section 7.4.5 describes Step 4 that realizes XNOR
and pop-count operation simultaneously. Fig. 7.10-B presents a high-level illustration of
AM design.

Similar to the case in IM, the limited array size of PCM substrates also prevents Acc-
Demeter from storing a full HD vector in one row or column of AM. To reduce the re-
quired area, and since the encoding is the bottleneck and not the classification (Sec-
tion 7.6), in the AM, unlike IM, Acc-Demeter stores the chunks of HD vectors in the
same array. Fig. 7.10-A takes a color-coding approach and depicts the way Acc-Demeter
breaks prototype HD vectors into multiple chunks and stores them in columns of AM in
and among tiles. It is worth noting that Acc-Demeter only writes to the PCM cells once in
both IM and AM units unless either the configuration file in Step 1 or the user the default
reference genome database in Step 2 changes. This prevents many writes to the devices,
which still have limited endurance compared to traditional memory technologies.

7.4.5. SIMILARITY CHECK HARDWARE

The similarity check unit is a small computing unit that takes the two ADCs’ output of
similar columns from the two crossbars and adds them together (Step 4). Fig. 7.10-C
depicts all the logic for this unit. The output of this unit is the results of XNOR and pop-
count together. At this stage, the similarity check unit sends the results out to the host
CPU to determine whether the similarity is close to the threshold and should be con-
sidered in the abundance estimation (4 -b, and 5). The reason behind sending the re-
sults out instead of a winner-take-all (WTA) circuit used in previous works [296, 417] is
two-folded. First, a WTA circuit assumes that the query matches one and only one pro-
totype HD vector. However, as discussed in Section 7.2.4 and 7.2.5, this is not always
the case when profiling the genomics data. Second, the relative abundance estimation
techniques (Step 5 in Fig. 7.1), although simple, require more complex and area-hungry
logic circuits, which Acc-Demeter aims to avoid whenever possible. Therefore, since the
results will be analyzed outside the PCM-substrate anyway and transferring such small
data can be easily handled by interconnects between the host and Acc-Demeter, Acc-
Demeter relies on the host CPU to perform the final steps of Demeter. Note that the host
is aware of prototype HD vectors’ mappings.

7

148 7. DEMETER

. .
 .

. .
 .

. .

Gate Enabler / Controller
.

ADCs

. .
 .

. .
 .

. .

Gate Enabler / Controller
R

e
a

d
/

Q
u

e
ry

 H
D

 V
e

ct
o

r
.

P
1

P
2

P
(n

)

. . .

Buffer and PCI_X

. . .

Buffer and PCI_X

ADCs

P
(n

)
P

(n
)

P
2

P
2

P
1

P
1

.

Analo
g MUX

Analo
g MUX

Analo
g MUX

Analo
g MUX

.
.

. . .

C
h

u
n

k
 o

f
H

D
 V

ec
s

.

. . .

C
h

u
n

k
 o

f
H

D
 V

ec
s

(A)

(B)

(C)

R
e

a
d

/
Q

u
e

ry
 H

D
 V

e
ct

o
r

.

.

.

Figure 7.10: (A) Data mapping and placement of prototype HD vectors in , (B) High-level
design, and (C) Partial hardware for Similarity Check unit.

7.5. SYSTEM INTEGRATION OF ACC-DEMETER

7

149

7.4.6. CONTROLLER UNIT
The controller orchestrates all the operations of Acc-Demeter by generating control sig-
nals for other components. It gets the start signal and the address of food samples (or
reference genomes) in the memory as its inputs. The controller outputs the results of
the similarity check unit back to the host for final steps. The controller is designed as a
simple FSM machine and operates based on parameters set in Step 1 .

7.5. SYSTEM INTEGRATION OF ACC-DEMETER
This section discussed Acc-Demeter’s system integration stack that enables it to operate
with the host processing system.

7.5.1. ADDRESS TRANSLATION
Acc-Demeter works with physical addresses, instead of virtual ones, and is relieved of
address translation challenges that exist and dealt with in previous works [418, 419]. The
CPU host uses the same translation lookaside buffer (TLB) lookup mechanism that exist
for normal load/store operations to translate instructions’s virtual memory addresses
into their physical addresses when we have a Acc-Demeter’s instruction.

7.5.2. COHERENCE
Acc-Demeter may require modified and/or generated atomic vectors (for the IM units)
or loaded prototype vectors (for the AM units). Similar to previous works [372, 420, 421],
ensuring that data for Acc-Demeter is up-to-date is a responsibility for programmers and
can be achieved easily by flushing cache lines. Acc-Demeter is also capable of leveraging
previous PIM coherence optimizations [422, 423] for further performance improvement.

7.5.3. INTERRUPTS
We assume that the pages required by Acc-Demeter’s AM and IM units are already
present. When this is not the case, we rely on the conventional mechanisms for han-
dling the page faults to place this data into the correct arrays. Therefore, Acc-Demeter
does not face page fault during the execution of food profiling since pages used by
Acc-Demeter are already loaded and pinned into AM and IM units. Acc-Demeter may,
however, face an interrupt during a context switch. In such cases, the context of the
control unit in Acc-Demeter will be saved and then restored when the profiler resumes.

7.5.4. ISA EXTENSIONS AND PROGRAMMING INTERFACE
An expressive and efficient programming interface is a must for Acc-Demeter as it di-
rectly impacts the usability of Demeter framework. To enable easy communication be-
tween Acc-Demeter and the programmer, we envision to extend the ISA with a few in-
structions to allow the control unit knows about the required operations, their timing,
and the place where data objects reside in IM and AM units. ISA extension is possible
due to the unused opcode space in the host CPU, and has also been adopted in previous
PIM-related architectures [93, 418].

Acc-Demeter requires 2 types of instructions: (1) bbop_init address, size, n: initial-
ization of IM and AM units and (2) bbop_op size, n: instructions for performing differ-

7

150 7. DEMETER

ent operations in Acc-Demeter. bbop_init is the initialization instruction that informs
the OS that the memory object is for Acc-Demeter. This way, the OS performs virtual-
to-physical memory mapping required for AM and IM units. bbop_init takes the base
physical address, the size of the vector, and the intended value. For Acc-Demeter’s op-
erations, we extend the CPU ISA with bbop_op. Acc-Demeter utilizes an array-based
computation model, i.e., src and dst are the source and destination arrays. bbop_op
is the opcode, where size and n are #elements in the array and #bits in each array ele-
ment, respectively. This chapter assumes that the programmer will write suitable code
for Acc-Demeter operations manually. We summarized the required CPU ISA extensions
for these operations in Table 7.1.

Type ISA Format

Initialization bbop_init, address, size, n
Input Operation bbop_op, size, n

Table 7.1: Acc-Demeter ISA Extensions.

7.6. ACC-DEMETER’S EVALUATION

7.6.1. METHODOLOGY
We emulate the execution of Acc-Demeter using a cycle-accurate RTL model and syn-
thesized it using UMC 65 nm technology node in Synopsys Design Compiler [331]. We
verify the correct behavior of our memory model using test benches and previous in-
memory simulators [296, 411]. We consider a typical operation condition of temperature
25°and voltage 1.2V when evaluating our energy consumption. All the experiments for
the PCM-based Acc-Demeter are carried out based on PCM statistical models that cap-
ture the variations in the spatiotemporal conductivity of the devices. PCM prototypes
and analytical models used for validation and further simulations are based on the re-
sults of EU project MNEMOSENE [333], led and concluded by TU Delft in 2020. Table 7.2
shows the other parameters of our PCM crossbars.

Technology PCM (512*2048 @1bit), Cell Size = 50 F 2

Current on Conducting Devices 0.1µA
Read Voltage 0.1 V
Read/Write Latency Read=2.8 ns, write=100 ns
ADC 9 bits resolution, 2 ns, 4 pJ per sample

Table 7.2: PCM configuration.

7.6.2. ACC-DEMETER’S PERFORMANCE ANALYSIS
This section compares the performance of SotA profilers compared to Acc-Demeter, our
PIM-enabled accelerator design of Demeter.

BUILD TIME.
Fig. 7.11 shows the build time that each profiler takes to build its initial data structure for
two reference databases AFS20 and AFS31.

7.6. ACC-DEMETER’S EVALUATION

7

151

Figure 7.11: Build time on (a) AFS20 and (b) AFS31.

We make two observations. First, Acc-Demeter has the lowest build time among
all previous food profilers. Acc-Demeter builds HD-RefDB corresponding to AFS20 and
AFS31 ∼3.2x and 2.8x faster, respectively than MetaCache, the next fastest profiler. Un-
like previous HDC-based methods that are faster than their ML competitors due to the
one-shot learning ability of HDC paradigm, Acc-Demeter outperforms SotA profilers
due to its highly parallelized performance and simple operations being performed on
Acc-Demeter’s hardware. SotA food profilers parse the reference genomes only once,
and the one-shot learning of Demeter is not particularly advantageous.

Second, CLARK exceeds the 500 GB memory of the system when running it for AFS31.
This is in line with observations in [212]. Therefore, we excluded it from all analyses re-
garding AFS31 from now on. This case shows an excellent example of where metage-
nomic profilers, whereas good for lengthy and costly studies, may not be applicable for
the scenario of food profiling and later food analysis and monitoring.

QUERY TIME.
Fig. 7.12 presents the time that each profiler takes to query one (short) read from the
query food sample and classify its specie(s) over AFS20 and AFS31.

We make two key observations. Acc-Demeter improves the query time by ∼74x/88x
and 272x/350x compared to Kraken2 and MetaCache, respectively, on AFS20/AFS31.
This shows that the acceleration of Demeter pays off and finally makes Demeter not only
an accurate but also a fast food profiler.

Second, the query time for Acc-Demeter remains almost the same for both databases
and does not change much. We further investigate this and realize a bottleneck shift:
Step 5 or abundance estimation that is being performed inside the CPU is now the
bottleneck of Acc-Demeter. This happens because of the high-frequency Acc-Demeter
achieved. However, this contrasts with other profilers that spend most of their time
querying their massive data structure.

QUERY THROUGHPUT.
Fig. 7.13 shows the throughput of different profilers over AFS20 and ASF31.

7

152 7. DEMETER

Figure 7.12: Query time on (a) AFS20 and (b) AFS31.

7.6. ACC-DEMETER’S EVALUATION

7

153

We make two observations. First, Acc-Demeter provides throughput improvement of
∼192x and 232x for both AFS20 and AFS31, respectively, compared to Kraken2, the sec-
ond food profiler regarding throughput. This more remarkable improvement in through-
put than query time results from Acc-Demeter’s ability to classify one query read in par-
allel with the encoding of the following query. Note that the throughput analysis of the
previous profiler does not consider the time for loading their data structure. Second,
similar to the query time, throughput is almost the same regardless of the database due
to the bottleneck shift. We conclude that Acc-Demeter significantly outperforms all four
SotA baselines for all performance metrics.

Figure 7.13: Query throughput on (a) AFS20 and (b) AFS31.

7.6.3. ACC-DEMETER’S POWER AND AREA ANALYSIS

Table 7.3 provides the area and energy consumption breakdown of different components
in Acc-Demeter per query on AFS31.

Unit Area (mm2) Area (%) Energy (n j) Energy (%)

IM 0.07 3.1 1.179E-06 7.4
Encoder 1.375 78.3 1.43E-05 90.6

AM 0.15 8.4 2.47E-07 1.56
Similarity 0.1815 10.2 6.91E-08 0.4

Table 7.3: Area and power breakdown of Acc-Demeter.

7

154 7. DEMETER

We make two observations. First, the logic for the encoder unit is the most energy
and area hungry unit among all others, more than 90% and 78% energy and area of the
whole Acc-Demeter. This is expected because (1) the encoder consists of many CMOS
circuits whereas AM and IM are small memory units with PCM technology and (2) the
encoder is in the heart of all operations in Demeter, and we spend most of our time in
this unit. We argue that this amount of logic around our array is still justifiable. Second,
compared to the die area in an Intel Xeon E5-2697 CPU [424], Acc-Demeter only has an
area overhead of less than 2%. We conclude that Acc-Demeter is low-cost in terms of die
area.

Our evaluations show that Acc-Demeter is capable of performing 9.45Mbp query per
joule. Unfortunately, measuring the energy consumption of other profilers and having
an apple-to-apple comparison between the energy consumption of this method with
other ones is hard. However, Merelli et al. [425, 426] show that running Kraken2 with
querying an even smaller data structure built from a reduced reference genome dataset,

minikraken [425, 427], can incur more energy (maximum of 0.6 Mbp
j). This consider-

able difference happens because of three reasons: (1) Kraken2 queries a more complex
data structure compared to Acc-Demeter and requires more complex operations, (2)
Kraken2 queries a bigger data structure for its query, and (3) Kraken2 incurs significant
data movement between the memory and the processing unit. All of these limitations
exist in similar forms in CLARK and MetaCache. We conclude that Acc-Demeter is more
energy-efficient than all four SotA baselines.

7.7. DISCUSSIONS AND FUTURE WORKS
Capacity. We define the capacity of Demeter as the ratio between the number of ref-
erence genomes encoded as prototype HD vectors to the size of HD space for a com-
petitive profiling accuracy target. The higher #prototype HD vectors are, the bigger ca-
pacity is needed, resulting in bigger HD space and lower efficiency. Therefore, if one
uses Demeter, as is, as a metagenomics profiler, they cannot expect similar improve-
ments compared to SotA metagenomics profilers (e.g., Kraken2, on those datasets. We
are currently investigating the additional techniques to enable Demeter for those cases
as well. However, we leave further analysis of required changes to Demeter for support-
ing metagenomics profiling or other profiling studies with many reference genomes for
future work.
Supported functions and representations. As discussed (Sections 7.1.3, 7.2, and 7.4),
Acc-Demeter currently supports only binary representations and N-gram encoding
mechanism. This is a design choice made for simplicity and is based on acceptable
accuracy results of the software version. We leave the hardware for other encoding
mechanisms and data representations for future work.

7.8. CONCLUSION
This chapter introduces Demeter, the first framework that enables profiling of food sam-
ples via HDC whereas strictly meeting the accuracy of state-of-the-art profilers. Demeter
uses a five-step approach to enable species-level profiling using HDC. This chapter also
introduces the first PCM-baed PIM-enabled hardware accelerator, called Acc-Demeter.

7.8. CONCLUSION

7

155

We evaluate Demeter on software and Acc-Demeter using a cycle-accurate model based
on a small-scale PCM-based prototype. We design Demeter and Acc-Demeter to (1) ad-
dress the key challenge of HDC-systems when facing a massive input, (2) eliminate the
need for a powerful machine with very large memories, and (3) prevent unnecessary
data movement between memory and processing units and therefore prevent wasting
time and energy. We achieve significant performance and energy benefits over the SotA
CPU implementations whereas achieving the same accuracy. We hope that future work
builds on top of our framework and its hardware and extends it to further improve our
food profiling systems.

8
KRAKENONMEM: A

MEMRISTOR-AUGMENTED

HW/SW FRAMEWORK FOR

TAXONOMIC PROFILING

State-of-the-art taxonomic profilers that comprise the first step in larger-context metage-
nomic studies have proven to be computationally intensive, i.e., while accurate, they come
at the cost of high latency and energy consumption. Table Lookup operation is a primary
bottleneck of today’s profilers. In this chapter, we first propose TL-PIM, a hardware acceler-
ator based on the processing-in-memory (PIM) paradigm to accelerate Table Lookup. TL-
PIM leverages the in-memory compute capability of emerging memory technologies along
with intelligent data mapping. Then, we integrate TL-PIM into Kraken2, a state-of-the-art
metagenomic profiler, and build an HW/SW co-designed profiler, called KrakenOnMem.
Results from a silicon-based prototype of our emerging memory validate the design and
required operations on a smaller scale. Our large-scale calibrated simulations show that
KrakenOnMem can provide an average of 61.3% speedup compared to original Kraken2
for end-to-end profiling. Additionally, our design improves the energy consumption by
orders of magnitude compared to the original Kraken2 while incurring a negligible area
overhead.

This chapter is partially based on the candidate’s work [121].

157

8

158 8. KRAKENONMEM

As discussed in Section 2.2.1, taxonomic profiling determines the relative abundance
of existing species in a (biological) sample under study. It constitutes the first and most
compute-intensive step of larger-context metagenomic studies (metagenomics for
short). The goal of metagenomics is to better understand the role of each organism in
our environment to improve our quality of life, e.g., by enhancing drugs [11]. The ability
to improve the performance of taxonomic profilers will, therefore, have a huge impact
on the overall speed of metagenomic studies and will remain a crucial line of research
for decades to come.

Many recent works have improved the speed and/or accuracy of taxonomic profiling
by various means, e.g., directly as heuristics in pre- and post-processing steps of pro-
filing [192, 407], indirectly as pre-alignment filters [186] or innovative hardware designs
for alignment [428–430]. However, the memory bandwidth and the (limited) cache ca-
pacities remain the two main bottlenecks even in these approaches [193, 212]. This is
because Table Lookup (i.e., key matching and label retrieval) is a critical kernel in today’s
profilers and it is performed on data structures that are hundreds of gigabytes in size that
cannot fit in caches of even high-performance computing (HPC) servers [193, 204, 244].
Note that it is also estimated that the working datasets that metagenomic studies should
deal with scale faster than those produced by YouTube and Twitter by 2025 [25–27, 244],
exacerbating this problem. Consequently, we need a fast, energy-efficient, scalable, and
yet accurate design for taxonomic profilers (with an emphasis on their bottlenecks) to
expedite the metagenomic studies and keep up with the fast data generation rate.

Our goal is to build the first hardware/software co-designed framework for taxo-
nomic profiling that exploits real memristor (i.e., STT-MRAM) devices and the process-
ing in-memory (PIM) paradigm. Using the PIM paradigm helps to prevent the high
cost of data movement between memory and different levels of caches by performing
the bottlenecked operations completely inside the memory, where the data resides. An
in-memory solution can also scale up the active computational units without the need
for expensive scale-up in the computational units of the server. To this end, we pro-
pose KrakenOnMem, an optimized framework for accelerating Kraken21 that notably
improves execution time and energy consumption of taxonomic profiling with a neg-
ligible area overhead. KrakenOnMem is based on two main observations: (1) reference
genomes rarely change, and (2) memristors are inherently capable of performing Vector-
Matrix Multiplication (VMM). KrakenOnMem exploits these observations and addresses
the bottlenecks of Kraken2 (and many other profilers), Table Lookup, using a memristor-
based substrate, called TL-PIM hereafter. We perform an extensive design exploration
for (1) data mapping, (2) logical operations, (3) array sizes, and (4) peripheral supports
to optimize TL-PIM for Table Lookup and KrakenOnMem for taxonomic profiling based
on Kraken2’s algorithm. Our evaluations show that KrakenOnMem can provide up to
61.3% end-to-end speedup compared to the original Kraken2 implementation.

This chapter makes the following contributions:

• To our knowledge, KrakenOnMem is the first HW/SW co-designed framework to
accelerate taxonomic profiling using memristor devices and the PIM paradigm.
We design KrakenOnMem to target the key bottleneck of SotA taxonomic profilers.

1Kraken2 is currently the most widely-used and one of the most promising taxonomic profilers based on recent
metagenomics challenges.

8.1. MOTIVATION

8

159

• We propose TL-PIM, an in-memory accelerator that executes Table Lookup effi-
ciently using an intelligent data duplication and hybrid row-major and column-
major data mapping. TL-PIM is designed to harvest the maximum parallelism and
performance of the underlying hardware (Section 8.2).

• We rigorously compared TL-PIM and KrakenOnMem to (1) Kraken2 (open-
sourced) as a SotA profiler and (2) Optimized Sieve as the latest in-memory
accelerator2. We use a real small-scale prototype to validate our memory design.
Our large-scale evaluations show that TL-PIM achieves an average 1386× and
111× speedup for Table Lookup operation compared to Kraken2 and Sieve,
respectively. To capture the full potential of KrakenOnMem, we also perform
a second set of analyses for end-to-end taxonomic profiling. KrakenOnMem
achieves 61.3% and 1.17% speedup compared to Kraken2 and Sieve, respectively,
for end-to-end taxonomic profiling. These improvements all come with the same
level of accuracy as Kraken2 (Section 8.5).

• We investigate the possibility to adopt our designs in future (or non-heuristic-
based) taxonomic profilers. TL-PIM integrated into Metalign, a SotA alignment-
based taxonomic profiler, shows a 23.01% improvement for end-to-end profiling
compared to original Metalign. This is achieved despite the fact that the bottle-
neck of Metalign does not lay on Table Lookup (Section 8.5).

8.1. MOTIVATION
In this section, we investigate the potential bottlenecks in Kraken2 and limitations of
previous solutions for taxonomic profiling.

8.1.1. KRAKEN2’S EXECUTION BREAKDOWN

Methodology. We evaluate Kraken2 on a high-end server and measure the execution
time of separate functions for end-to-end profiling of our input files. We use the default
parameters of the tool for our study. Query reads come from the CAMI challenge, and
Kraken2’s standard (default) reference genome dataset is used for the references. We
detail our evaluation methodology further in Section 8.4.
Results & Analysis. Fig. 8.1 depicts the percentage breakdown regarding execution time
of Kraken2. We classify the various functions of Kraken2’s implementation [431] into four
main groups: (1) Building Taxonomy Tree, (2) Key Extraction, (3) Table Lookup, (4) Pro-
filing. The building taxonomy tree function is run only once for each reference genome
database. This function does not exist in the profiling phase and can be considered as
a pre-processing function. We included the breakdown to show the relative time pro-
portion to other frequently run functions. The key extraction function is responsible for
reading the query files, extracting minimizers, performing hash functions, and produc-
ing the keys. The Table Lookup function tests each query key against all the keys in the
table and returns the associate value (label) if it finds a match. The profiling function

2Sieve is a SotA k-mer (a substring of length k) matching accelerator that we tuned for a similar profiling ap-
proach.

8

160 8. KRAKENONMEM

is responsible for aggregating the results of the Table Lookup function and performs the
final profiling processes alongside writing the data to a file.

0 20 40 60 80 100

Building Taxonomy Tree

Key Extraction

(Hash) Table Lookup

Profiling

Figure 8.1: Kraken2’s Execution Time Breakdown.

Based on Fig. 8.1, Kraken2 spends more than 60% of its total execution time on per-
forming the Table Lookup function. Therefore, Table Lookup is currently the bottleneck
of Kraken2 as a SotA taxonomic profiler. Our evaluations show that this humongous
share does not change significantly as we increase the number of active threads in the
system and Table Lookup remains the bottleneck of Kraken2.

Moreover, it is important to note that increasing the available memory bandwidth
does not improve the performance of Kraken2 significantly [244]. This is simply because
memory bandwidth is highly underutilized in the Table Lookup function as miss status
holding registers (MSHR) in caches will be used up quickly and prevent using the mem-
ory bandwidth fully. Using cores with more MSHRs (e.g., Broadwell cores) is also not
a suitable solution as they come with massive energy consumption (i.e., cost) and still
waste DRAM bandwidth as Kraken2 still uses a small number of the retrieved cache lines
for each Table Lookup [244].

We conclude that Table Lookup is currently the bottleneck in SotA Kraken2 profiler
and will likely remain the main bottleneck of future non-alignment-based profilers for
the same reasons unless hardware support is provided or profilers experience a cost-
efficient, dramatic algorithmic change.

8.1.2. LIMITATION OF PREVIOUS PIM-ENABLED DESIGNS
A recent work, Sieve [244], proposes a high-throughput k-mer matching mechanism
that uses in-DRAM processing. Sieve presents an Early Termination Mechanism (ETM)
method that can interrupt the matching procedure of two k-mers as soon as the first mis-
match occurs. This way Sieve can reduce the row activation required for its matching
mechanism and reduce the latency and energy overheads compared to a naive imple-
mentation for k-mer matching. Technically, one can perform a Table Lookup function
using Sieve’s matching mechanism with a simple value retrieval approach. Therefore, it
is reasonable to consider such an approach a suitable candidate for accelerating taxo-
nomic profilers.

However, Sieve comes with four main limitations. First, high and unacceptable area
overhead for a DRAM chip. Sieve requires up to 10.75% for its type III design which
achieves the highest performance. Since DRAM chips are optimized for die area, this
makes Sieve unlikely to be adopted in future systems. We compare Sieve’s area with the

8.2. KRAKENONMEM DESIGN

8

161

proposal in Section 8.5.2. Second, Sieve requires considerable data duplication and high
#writes for vertical placement of each query k-mer and its duplicates inside group pat-
terns in Region 1 defined in the original manuscript. Based on the examples provided
in the original manuscript [244], this can be up to 4× higher than the actual number of
query k-mers. Since query k-mers are extracted directly from reads/queries and vary per
input sample, this is not a one-time cost and cannot be justified. Moreover, although
the chosen memory technology in Sieve, namely DRAM, does not suffer from the en-
durance problem, such a decision still comes with endurance problems and a high cost
(energy consumption and time) for each query. This limitation also prevents applying
ideas presented by Sieve to emerging memory technologies that still suffer from low en-
durance. Third, Sieve only builds on DRAM as its underlying PIM infrastructure. Sieve
justifies this by the technology maturity, availability of simulation tools, and cost advan-
tages compared to SRAM. However, it left out exploring NVM-based technologies en-
tirely. Such memory technologies have been the focus of many recent accelerators since
they enjoy non-volatility, high-density, near-zero standby power, and low-cost logical
operations [179, 432]. Fourth, Sieve incurs a significant amount of internal data move-
ment associated with the multi-row activation needed for matching. This is unavoidable
because Sieve requires copying the operand rows to designated ones.

We argue that Sieve’s limitations are more than what can be expected for the cost of
a taxonomic profiler preventing it from being adopted in future systems. Sieve’s limita-
tions and our experimental observations motivate us to develop an in-situ Table Lookup
accelerator integrated with a host processing unit that accelerates taxonomic profiling.
Our design has four key objectives: (1) It should provide high Table Lookup performance.
(2). It should scale linearly with the required memory for Kraken2, rather than the pa-
rameters of the (hash) table. (3) It should not impose any significant overheads for its
additional hardware, such as logic circuits in the periphery. (4) It should incur minimum
#writes, data movement, and data duplication.

8.2. KRAKENONMEM DESIGN

The low arithmetic intensity and high energy inefficiency of Table Lookup, the primary
bottlenecks in Kraken2, limit the maximum attainable performance and increase the
energy consumption on server clusters typically used for profiling. This sub-optimal
performance and energy consumption happens for three reasons. First, the extensive
indexes used for taxonomic profiling. Second, irregular memory access and poor cache
hit rate of profilers. Third, unnecessary data movement between memory (where the
indexes initially reside) and the system’s rigid cache hierarchy. In a nutshell, taxonomic
profilers that use Table Lookup do not fully utilize the available bandwidth of memory
systems [244] for their operation. We mitigate this problem by proposing a PIM-enabled
accelerator for Table Lookup using memristor devices. We call this design TL-PIM here-
after. We integrate TL-PIM into a full system and propose an HW/SW co-designed frame-
work for taxonomic profiling based on Kraken2’s algorithm. This framework is called
KrakenOnMem henceforth.

8

162 8. KRAKENONMEM

8.2.1. A HIGH-LEVEL OVERVIEW

Fig. 8.2 presents a high-level overview of our entire KrakenOnMem framework, i.e.,
TL-PIM and its integration with the host CPU and storage unit. KrakenOnMem consists
of 4 main components: 1 Host CPU, 2 Main Memory, 3 Storage, and 4 TL-PIM.
Current taxonomic profilers share the first three components with KrakenOnMem, i.e.,
KrakenOnMem only adds TL-PIM.

Host CPUDRAMDRAMStorage Host CPUDRAMStorage
Query Files

Keys & Reference LocationsReference Table

Extract minimizers & apply spaced mask4 Extract minimizers & apply spaced mask4

Apply hash function5 Apply hash function5

Extract the key (compact hash code)6 Extract the key (compact hash code)6

...CGTAAATGGTAACTGCTGATTACGTAAATGGTAACTGCTGATTA...

TL-PIM

Table LookupTable Lookup5 Table Lookup5

TL-PIM

Table Lookup5

Controller

Memory
Controller

ACC-FSM

Controller

Memory
Controller

ACC-FSM

3 Controller

Memory
Controller

ACC-FSM

3

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

1 Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

1 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

2 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

2

TL-PIM

Table Lookup5

Controller

Memory
Controller

ACC-FSM

3

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

1 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
er

SASA

2

Loading Reference Table into TL-CIM2 Loading Reference Table into TL-CIM2Building Reference Table1 Building Reference Table1 Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Generating Keys3 Sending keys to TL-CIM4 Sending keys to TL-CIM4Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Receiving LCAs from TL-CIM6 Aggregating Results and ProfilingAggregating Results and Profiling7 Aggregating Results and Profiling7Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

1

23

4

Figure 8.2: An Overview of KrakenOnMem.

Host CPU is responsible for the non-bottleneck steps of Kraken2. This includes 1
building the reference (hash) table, 2 loading the reference table into TL-PIM, 3 reading
the query read sequences from Fastq files and generating keys (e.g., extracting minimiz-
ers and calculating the hash values), and 7 aggregating the retrieved taxonomic labels as
the profiling result. Host CPU also sends the keys to TL-PIM (4) and receives the results
back from the TL-PIM (6).

TL-PIM accelerates Table Lookup 5 (the bottleneck) and subsequently helps the

8.2. KRAKENONMEM DESIGN

8

163

overall performance and energy consumption. TL-PIM itself consists of 3 key compo-
nents: (1) Key-Arrays: Memory arrays for matching units 1 , (2) LCA-Arrays: Memory
arrays for taxonomic labels retrieval 2 , and (3) Controller 3 . Memory arrays are
memristor arrays and their periphery circuits.

When designing the matching and retrieval units of TL-PIM, a designer faces three
highly-correlated design choices and challenges, namely (1) data mapping, (2) matching
mechanism, and (3) additional required hardware resources. For data mapping, TL-PIM
should choose among possible options:

• Data layout: Row-major vs. Column-major

• Data distribution (i.e., keys or labels for queries or references): inter arrays vs. intra
arrays vs. near arrays3

For the matching mechanism and its place, TL-PIM again have several options to choose
from:

• Inside an array (e.g., using MAGIC [107] or other stateless methods)

• Outside the array but inside peripheries such as Sense Amplifiers (SAs) or Analoge
Analog-to-Digital Converter (ADCs) (e.g., Pinatubo [87] or other stateful methods)

• Outside but near the array using simple logic after SAs (e.g., XOR and shift registers)

• A hybrid of previous options

Finally, TL-PIM should consider the required additional hardware resources for the
matching or retrieval. These resources are for:

• The general control flow logic

• Modified peripheries (SAs or ADCs in the case of scouting or VMM operation)

• Fine-grained and complex control logic for analog operations in stateless mechanisms

We consider all possible (and logical) combinations of such design choices.
KrakenOnMem is built based on the most efficient designs for each component and we
discuss the reasonings in Sections 8.2.2 and 8.2.3. The controller is the brain of TL-PIM
and orchestrates all necessary operations (Section 8.2.4). All components are highly
efficient regarding their performance, area, and power. We discuss these in detail in
Section 8.5.

3The inter-array distribution is defined as when data (keys or LCA labels) is stored in a single memory array.
On the other hand, the intra-array distribution is when query- and reference-related data is stored in differ-
ent/separate memory arrays. The case for near array data distribution happens when either query keys/labels
or reference keys/labels are in a separate buffer next to the memory array that stores the other.

8

164 8. KRAKENONMEM

8.2.2. TL-PIM: MATCHING MECHANISM
For matching a query and reference in memory arrays, previous works took three main
approaches:

1. Approach 1:

(a) Store both (or at least the reference) inside the memory

(b) Read out the stored values

(c) Perform an XOR/XNOR using logical gates

(d) Perform a pop-count to determine the exact match

2. Approach 2:

(a) Store both inside the memory

(b) Read them into a modified SAs/ADCs to perform XOR/XNOR (e.g., Ambit [93]
for DRAM, Pinatubo [87] for memristors)

(c) Perform a pop-count on the output of SAs/ADCs

3. Approach 3:

(a) Store both inside the memory

(b) Perform XOR/XNOR inside the memory using analog computing (e.g.,
MAGIC [107])

(c) Read out the result

(d) Perform a pop-count

Unfortunately, all these techniques have one or more shortcomings in matching two
short sub-strings or keys. We provide two examples of the inefficiency of these meth-
ods. First, storing queries inside memory incurs unnecessary write operations that take
time, waste energy, and hurt endurance. Note that the query keys will change every time
one wants to profile a new metagenomic sample exacerbating the problem. Second, the
necessary logical gates to perform the pop-count operation after having the results of
XOR/XNOR are energy and area inefficient (e.g., a tree of logical OR gates) or time inef-
ficient (e.g., shift registers and counters), depending on the implementation. Note that,
as also stated in previous works [90, 296], the additional logic units in peripheries are
already responsible for most of the energy and area consumption of the whole design.

We propose a 1-cycle key matching (XNOR and pop-count in one cycle) using mem-
ristor devices in a typical memory array structure to mitigate previous shortcomings
without introducing a customized memory layout. We exploit the inherent capability
of memristor-based memory arrays for performing VMM operations. We also exploit
the fact that the XNOR of two keys (k1⊙k2) is functionally equivalent to k1.k2+ k̄1.k̄2.
Therefore, one can use a column-major data mapping to achieve the intended opera-
tions. We call these memory units Key-Arrays hereafter.

The VMM function takes the query key and its complement as the input vector and
a matrix of reference keys each placed with their complements in a single column as

8.2. KRAKENONMEM DESIGN

8

165

the input matrix. Fig. 8.3 demonstrates the placement of input vector and one column
of input matrix. Subsequently, by performing VMM operation and reading the results
out using an SA that uses a customized reference voltage, one can perform the pop-
count of (k1|k̄1) . (k2|k̄2) of multiple reference keys with a query key in one cycle. For
this purpose, the reference of SA is set to recognize any current higher than length (key)
as logical 1 and lower currents as logical 0. This way, a 1 in the output of an SA shows a
match between the query key and the reference key in the same column, and a 0 shows
a mismatch.

. .
 .

. .
 .

R
e

f
ke

y
R

e
f

ke
y

Q
u

er
y

K
e

y
Q

u
er

y
K

e
y

Query key ⊙ Ref key

SA

Figure 8.3: Matcher.

There are three points worth mentioning regarding our proposal. First, this method
doubles the required memory cells for reference keys. However, as our evaluations in
Section 8.5 and analysis in Section 8.1 show, our approach brings even further perfor-
mance improvement than doubling (1) the whole available bandwidth and (2) compute
power in the baselines. Additionally, a quick analysis of Kraken2 shows that reference
keys are the smaller part of the hash table.

Second, unlike previous designs that require ADCs for their VMM operation, our
method works with SAs. This simplification is because a Key-Array does not need to per-
form a complete VMM and get the exact number. We are simply interested in whether
there is a match at all positions (which produces a current equal to the length of a key).
ADCs represent a significant area overhead compared to the memory cells [90, 108].
Therefore, the current design overcomes a critical source of inefficiency if someone re-

8

166 8. KRAKENONMEM

places this design with those in previous works.
Third, in theory, the same results can be achieved using CAMs (but not TCAMs).

However, using CAMs instead of our design have two main limitations TL-PIM aims to
prevent: (1) The memory cells in a CAMs are different and fixed and cannot be recon-
figured for other types of memory arrays (like those we use for taxonomic retrieval in
Section 8.2.3). In other words, one cannot reuse Key-Arrays for other memory units if
they use CAMs for matching. Such a choice limits the design, for example, for a case
where one wants to support and load different reference tables; (2) CAMs require more
complex controllers due to their different cell designs. Our design does not change the
control circuits other than we already have in typical memories.

8.2.3. TL-PIM: TAXONOMIC RETRIEVAL
After finding a match between a query key and one of the stored reference keys in Key-
Arrays, TL-PIM needs to retrieve the corresponding taxonomic label and send it back to
the host CPU. LCA-Arrays are the memory units that store taxonomic labels. A LCA-Array
uses row-major data mapping to store the labels. This way, it can retrieve the full label by
only reading one row, which is impossible with a column-major mapping. In addition,
LCA-Array applies a revised data mapping allowing the design to retrieve the label in 1
cycle. This mapping is due to the limitation of shared SAs among columns in emerging
memories. Fig. 8.4 shows the proposed interleaved, row-major data mapping for each
LCA-Array.

. . .

1st bit of LCA(1)

1st bit of LCA(2)

Last bit of LCA(n)
Last bit of LCA(n-1)

LCA 1_1 ... LCA m_1 LCA 1_n ...

SA_1 SA_n

LCA m_n

. . .

Figure 8.4: Taxonomic Label Retrieval.

Since SAs are shared among columns of a LCA-Array, to ensure TL-PIM can retrieve
all the bits of one label in a single cycle, the LCA-Array needs to distribute the bits of a
label and store them among columns that use different SAs. In other words, LCA-Arrays
interleave bits of each LCA label among different SAs. LC A XY in Fig. 8.4 presents the Y th

bit of LC A X . For example, assume a 512×512 array where every 16 columns share one

8.2. KRAKENONMEM DESIGN

8

167

SA. Additionally, assume that each taxonomic label has 17 bits. In this case, an LCA-Array
puts the 1st bit of Label#1 in column#1, the 2nd bit of Label#1 in column#17 (=16+1), and
17th bit of Label#1 in column#273 (=17*16+1). It does the same for Label#2, i.e., it puts
1st bit of Label#2 in column#2, the 2nd bit of Label#2 in column#18 (=16+2), and so on.
This way, for retrieving Label#1, TL-PIM only needs to read out the first bit of the first 17
SAs, which can be achieved in 1 cycle simultaneously.

8.2.4. TL-PIM: CONTROLLER

The Controller unit is the mind behind TL-PIM. The controller first receives the query
key as a PCIe packet from the host CPU through the PCIe (Peripheral Component In-
terconnect Express) [433, 434]. Subsequently, it unpacks the package and distributes
the query key to appropriate Key-Arrays. Additionally, the controller sends the proper
signals to all memory units (Key-Arrays and LCA-Arrays). Examples of such signals are
those for the VMM operation in Key-Arrays, select signals of MUXes in LCA-Arrays, and
decoders’ signals. Once TL-PIM compared the query key against all possible reference
keys, it sets the PCIe interconnects response ready queue (RRQ). The finished requests
will be forwarded to PCIe Out Queue (POQ). Each response can be either a taxonomic
label or a NULL, meaning that the query key did not exist in the index table. The con-
troller sends an interrupt signal to the host CPU when a packet is ready in POQ or empty
slots in PIQ. The controller is a simple FSM machine and can be easily modified for fu-
ture taxonomic profilers if the hardware requires the same sets of supported operations
by other units.

8.2.5. RELATION BETWEEN LCA-ARRAYS AND KEY-ARRAYS

The ratio between the number of LCA-Arrays and Key-Arrays is not necessarily 1-to-1.
A LCA-Array receives the results of N key-to-key comparisons per cycle per each Key-
Array, where N is #SAs per Key-Array. Only one of all these N comparisons can be an
exact match (Section 2.2.1). Therefore, in the worst case, or for the highest performance,
TL-PIM needs to be able to retrieve the corresponding taxonomic label for that 1 match
out of N possible cases in 1 cycle. This way TL-PIM can overlap retrieval operation of
the previous matching with finding the next exact match of the same Key-Array. This
scenario may require more than 1 LCA-Array per each Key-Array. In other words, the
ratio between the required number of LCA-Arrays per each Key-Array is a design choice
and tradeoff between the number of required LCA-Arrays and performance. This design
choice also affects the utilization of each LCA-Array as each LCA-Array may end up not
using all of its SAs or some columns in each SA (Section 8.5.2).

The ratio for the highest performance highly depends on the #SAs per Key-Array (or
the number of evaluated keys per cycle), length of LCA labels, the capacity of SAs in a
LCA-Array, and #SAs per LCA-Array. In other words, it depends not only on the device
characteristics of memory arrays and their peripheries but also on the length of values
(labels) in the reference table. This is the main reason that having the configurability
between Key-Array and LCA-Array is favorable, and we use a typical memory layout for
Key-Arrays instead of CAMs (Section 8.2.2). Fig. 8.5 presents a case were TL-PIM uses 2
LCA-Arrays per each Key-Array for achieving the highest performance.

Fig. 8.5 also demonstrates the expected utilization for Key-Arrays and LCA-Arrays by

8

168 8. KRAKENONMEM

. . .

. . .SA_1 SA_32SA_1 SA_32

Key-Array

16 bits16 bits 16 bits16 bits

1st bit of LCA 1

1st bit of LCA 1 Last bit of LCA 2

Last bit of LCA 1

SA_1 SA_32 . . .
1st bit of LCA 17

1st bit of LCA 18 Last bit of LCA 32

Last bit of LCA 31

SA_1 SA_32

LCA-Array LCA-Array

Figure 8.5: Relation and connection between one Key-Array and multiple LCA-Arrays.

8.2. KRAKENONMEM DESIGN

8

169

diagonal gray patterns. For minimizing this inefficiency in Key-Arrays, TL-PIM places
keys and their complement in each column, i.e., all columns are used. However, de-
pending on the #Rows and required bits per key, TL-PIM can only fill ⌊ #Row s

bi t s per ke y ⌋. This
means that some rows will remain empty (underutilized). For LCA-Arrays, memory uti-
lization is lower, especially when opting for the maximum achievable performance. This
means each LCA-Array may have to leave out a few SAs or columns of each SA depend-
ing on the number of results produced by corresponding Key-Array in each cycle, size
of LCA-Array itself, and #columns that share SAs in the LCA-Array. Each LCA-Array may
also have to not use some of its rows depending on expected #keys checked by corre-
sponding Key-Array in total. We evaluate array utilizations in Section 8.5.2.

8.2.6. OPTIMIZATIONS
We apply several design optimizations to further boost the performance and/or energy
consumption of our framework that we discuss here.

Optimization 1. We did not add any buffer or additional network among memory
arrays in TL-PIM other than those that exist in typical memories. As alluded before (Sec-
tions 8.2.2 and 8.2.3), each Key-Array produces at most 1 bit consumed by corresponding
LCA-Arrays. In addition, not all LCA-Arrays will consume the results of each Key-Array.
This means that TL-PIM requires no network among its arrays. This allows TL-PIM to
be less constrained regarding the area budget compared to all previous ML-related PIM-
enabled architectures using memristor devices [90, 108].

Optimization 2. KrakenOnMem prevents broadcasting each query key to all Key-
Arrays, and subsequently, it decreases the data movement in TL-PIM significantly. To
this end, KrakenOnMem sorts the required hash table based on the keys alphanumer-
ically and then stores them in Key-Arrays of TL-PIM according. Similar to Sieve [244],
KrakenOnMem stores an 8-byte ID consisting of first and last reference keys in an array.
Such a table will remain under 2 MB for a 500 GB reference table, and the host CPU or
controller can easily store it. For each query key, KrakenOnMem first consults this table
to find the correct Key-Array to send the request to in TL-PIM. This mechanism scales
linearly with the size of memory considered for KrakenOnMem (equivalently the size of
the hash table for references) rather than the length of the considered keys.

Optimization 3. We clock gate the LCA-Arrays that have no potential match for a
particular query key. This is possible since we only get at most one output "1" from all
Key-Arrays in each cycle because every query key can match only with one reference key
by definition of the key in a hash table. This optimization saves the static energy of our
system.

8.2.7. KRAKENONMEM PROFILING WALK THROUGH
KrakenOnMem performs an accurate and high-performance taxonomic profiling. In
the boot up, the host CPU of KrakenOnMem loads the reference indexes (hash table)
into TL-PIM’s memory units based their required data mapping (Sections 8.2.2, 8.2.3).
This is a one-time job, and we do not need to repeat it unless one changes the reference
database that rarely happens. Fig. 8.6 summarizes how KrakenOnMem translates an ex-
isting Kraken2’s database into appropriate data mapping in Key-Arrays and LCA-Arrays.

At the recipient of a metagenomics sample, the host CPU in KrakenOnMem reads

8

170 8. KRAKENONMEM

C
H

C

. . .

. . .
C

H
C

C
H

C

. . .

3
0

 b
it

s
3

0
 b

it
s

C
H

C

. . .

. . .
C

H
C

. . .

3
0

 b
it

s

Compact Hash Table (CHT)

. LCA
15 bits 17 bits15 bits 17 bits

CHC LCACHC LCA

Compact
Hash Code

Lowest
Common
Ancestor

Key-Array LCA-Array

Figure 8.6: Mapping of Kraken2’s Hash Table into TL-PIM for KrakenOnMem.

queries from Fastq files, extracts the k-mers, and calculates the corresponding keys. It
then transfers the results to TL-PIM as queries. TL-PIM connects to the CPU host us-
ing PCIe [433, 434]. KrakenOnMem uses this connection to (1) send TL-PIM the nec-
essary signals and query keys and (2) receive taxonomic labels from TL-PIM. KrakenOn-
Mem hides the transfer latency of PCIe between host CPU and TL-PIM using the double-
buffering technique [433]. TL-PIM unpacks the PCIe packets it gets from the PCIe input
queue and distributes the keys to possible target Key-Arrays. After retrieving a taxonomic
label, TL-PIM creates a response packet and stores it in PCIe’s RRQ. A batch of these pack-
ets will be sent to POQ and eventually to the host CPU. The host CPU reads the response
and aggregates them to achieve the final profiling of the read a key belongs to.

8.3. DISCUSSIONS AND FUTURE WORKS
Higher Memory Utilization. KrakenOnMem sacrifices memory utilization for perfor-
mance, especially in LCA-Arrays. To ensure that KrakenOnMem can perform the Table
Lookup operation in 1 cycle for the worst-case scenario, it has to leave some cells of the
LCA-Arrays unused. However, it is possible to reach a higher utilization without a con-
siderable performance loss. Currently, KrakenOnMem opts for this solution to provide
the maximum performance one can expect. Different data layouts for LCA-Arrays can be
investigated as future works for applying the same idea to other profilers or applications.

Optimization Possibilities for Rank-Level Profiling. KrakenOnMem can potentially
improve profiling performance at different taxonomic ranks as well. An example of
such optimizations can be the placement of keys related to a particular species on the
columns of a Key-Array that do not share their SAs. This way, one can investigate the
match of the query key to that species in 1 cycle. However, we leave the investigation of
such optimizations for future work.

More Application Support. KrakenOnMem focuses on taxonomic profiling due to
its importance and promise of being adopted with the newest technologies rather than
the importance of general Table Lookup itself. However, TL-PIM from KrakenOnMem

8.4. EVALUATION METHODOLOGY

8

171

can also be used in any other application bottlenecked by similar large (hash) tables. We
leave the exploration of such applications and benefits TL-PIM and a similar HW/SW
co-design to KrakenOnMem can provide to these applications for future work. The ef-
fectiveness, however, depends on how much of the issue this operation is in the original
problem.

Support for TL-PIM Data Mapping. Currently, KrakenOnMem does not have API
support for the required data mapping of flexible datasets and tables. We avoid virtual
memory translation by mapping the KrakenOnMem’s memory space directly to the CPU
host. Therefore, currently, KrakenOnMem loads the required hash table to the TL-PIM
memory arrays based on prior knowledge about the (hash) table in Kraken2. We leave
building an API to support all data mapping required for an efficient Table Lookup for
future work. Note that loading the hash table is a one-time (rare) task before starting the
query operation. Since these hash tables rarely change and we usually reuse genomics
databases, the cost of our approach is still acceptable for the intended long usage period.

Building Reference Table. Currently, KrakenOnMem does not build the required
(hash) table or the taxonomy tree. Therefore, the current design always requires the
(hash) table construction to be done first on another platform, which can be the pri-
mary host (CPU) used also in KrakenOnMem. However, this task is a one-time job and
does not diminish the benefits of KrakenOnMem.

8.4. EVALUATION METHODOLOGY
We build KrakenOnMem based on Kraken2 to perform end-to-end taxonomic profiling.
TL-PIM replaces the Kraken2’s Table Lookup operation, which accelerates this signifi-
cant bottleneck. We verify KrakenOnMem architecture using a cycle-accurate RTL model
of the complete CMOS design with equivalent throughput based on the architecture in
previous works [411, 413]. The memory model is validated and based on a small 4Gbit
STT-MRAM chip prototype in TSMC 28nm CMOS technology [435, 436]. We use an ana-
lytical model based on this small prototype and extend the memory to the required size.
The model is acquired from the results of the EU project MNEMOSENE [333], led and
concluded by TU Delft in 2020. In other words, without access to large-scale production-
level memristive devices, we evaluated our design using the next best approach: We im-
plemented and prototyped many parts in FPGA and connected them to existing (small)
memories and a high-performance AFE (analog -front-end) board for DACs, power sup-
plies, and voltage and current references, to faithfully build first a small scale (using real
size memory) and then an analytical model for our evaluation. We run all of our software
experiments on a 128-core server running on AMD EPYC 7742 processors that operate
at 2.25 GHz. We have 512 GB of 3200 MHz DDR4 DRAM available on this server.
Baselines. We compare KrakenOnMem mainly with Kraken2, the state-of-the-art tax-
onomic profiler. Kraken2 accompanied by Bracken [204] is one of the promising ap-
proaches for taxonomic profiling on different datasets once based on the latest results
of the CAMI challenge [205]. We analyze the accuracy of KrakenOnMem by comparing
its output results with only the profiling outputs of Kraken2. We also compare our plat-
form with a state-of-the-art in-memory k-mer matcher, Sieve [244]. We consider Sieve
only for the k-mer matching and query retrieval part (Table Lookup) and assume that the
CPU takes care of the rest for a taxonomic profiling, similar to our platform. Finally, we

8

172 8. KRAKENONMEM

compare the proposal with Metalign, an alignment-based taxonomic profiler. This study
demonstrates the potential of KrakenOnMem in general or TL-PIM in particular in other
and future taxonomic profilers that are not bottlenecked by Table Lookup but still suffer
from a similar inefficient operation.

Note that our evaluations do not include a GPU-based baseline for three reasons.
First, currently, there is no GPU-based taxonomic profiler for metagenomics, let alone a
GPU-based profiler based on Kraken2. Second, Sieve already outperforms GPUs in sim-
ple k-mer matching operation regarding performance and energy consumption. Third,
GPUs are power-hungry and require significant data movement for reference index ta-
bles making them less likely to be adopted by the experts in the near future.

Performance Model. Kraken2 and Metalign open-sourced implementations report per-
formance (execution time) directly when run on our servers. We use statistics of our syn-
thesized design using TSMC 28nm technology node in Synopsys Design Compiler [331]
to obtain the latency of main hardware components of KrakenOnMem, namely TL-PIM.
We obtain the execution time of other steps by running each necessary steps of the
Kraken2 on the host CPU. We take a similar approach for estimating Sieve’s performance,
considering improvements stated in the original paper for the matching.

Area and Power. Similar to performance, we also acquire the area and power consump-
tion of KrakenOnMem’s components from our synthesized design and memory model.
This design considers a typical operation condition of temperature 25°and voltage 1.2V
for power consumption evaluations. We measure the power consumed by our CPU host
using Intel’s PCM power utility [437].

Datasets. We use DustMasked MiniKraken for our reference database when testing our
small prototype. This is a pre-built 4GB database from dustmasked bacterial, archaeal,
and viral genomes in Refseq. For all other experiments, we used the default reference
database of Kraken2 and Metalign. For query sequences, we use 3 datasets from the
CAMI challenge: CAMI-low (RL), CAMI-medium (RM), and CAMI-high (RH).

8.5. EXPERIMENTAL RESULTS
KrakenOnMem produces the same list of matches, LCAs, and ultimately taxonomic pro-
filing results as the original Kraken2. This was expected since KrakenOnMem does not
change the order of steps in Kraken2 but it accelerates the bottleneck. Note that the or-
der or rate at which we perform the matching and retrieval does not affect the profiling
results as long as we ensure we have all the results before the final aggregation step. The
same holds for the accuracy results of Sieve. From the results of the latest CAMI chal-
lenge [205], we know that Kraken2+Bracken stands among the high accuracy taxonomy
profilers. Therefore, we conclude that KrakenOnMem also has high accuracy.

8.5.1. PERFORMANCE ANALYSIS

Our performance analysis consists of two separate sets of experiments. In the first set,
we compare the performance of TL-PIM for Table Lookup with that in Sieve and Kraken2.
Subsequently, we evaluate the end-to-end effect of our accelerator when employed for
taxonomic profiling. In the second set, we slightly modify TL-PIM to be used for count-
ing the matched k-mers instead of Table Lookup. Afterward, we compare this design

8.5. EXPERIMENTAL RESULTS

8

173

with KMC3 [438] used in Metalign. Finally, we evaluate the end-to-end effect of using
such a design in Metalign.
Table Lookup and Heuristic-based Profiling. Fig. 8.7 depicts the performance of
Kraken2, Sieve, and TL-PIM when performing Table Lookup. The y-axis utilizes a
logarithmic scale.

Kraken2 Sieve TL-PIM

Kraken2 Vs Sieve Vs KrakenOnMem – Table Lookup

0.01

0.1

1

10

100

1000

RL RM Avg RH Avg Avg

T
a

b
le

 L
o

o
k

u
p

T
im

e
 (

s)

Figure 8.7: Performance comparison for Table Lookup between Kraken2, Sieve, and TL-
PIM.

We make two observations. First, TL-PIM provides, on average, 1386× performance
improvement over the original Table Lookup in Kraken2 and 111× performance im-
provement over Sieve for the same operation. Second, TL-PIM performs Table Lookup
faster than Sieve and Kraken2 regardless of the dataset, on all three CAMI datasets by
at least 100× and 1250×, respectively. TL-PIM outperforms original Table Lookup in
Kraken2 due to its minimum data movement, high parallelism, and 1 cycle operation. It
also outperforms Sieve due to the inefficiencies that Sieve introduces, such as duplicates
and heavy internal data movement (Section 8.1.2). These results also show that ETM
in Sieve, while effective, does not help Sieve outperform TL-PIM, even for queries with
different complexity, such as those we used.

Fig. 8.8 presents end-to-end performance of taxonomic profiling for original
Kraken2, Sieve, and KrakenOnMem. We observe that KrakenOnMem provides (1) 61.3%
performance improvement over Kraken2, and (2) 1.17% performance improvement over
Sieve. As expected, this is lower than improvements considering only Table Lookup be-
cause although this operation is the bottleneck in taxonomic profiling, KrakenOnMem
still incurs some pre-processing and post-processing that become the new bottlenecks,
reducing the overall benefit to some extent. In other words, we have diminishing returns
due to the sequential nature of other sections of our application (i.e., Amdahl’s Law).

Note that improvements of KrakenOnMem over Sieve are still significant for four rea-
sons. First, although the overall speedup of KrakenOnMem compared to Sieve is small,

8

174 8. KRAKENONMEM

Kraken2 Sieve KrakenOnMem

Kraken2 Vs Sieve Vs KrakenOnMem – Profiling

0

100

200

RL RM Avg RH Avg Avg

E
n

d
 t

o
 E

n
d

P

ro
fi

li
n

g

T
im

e
 (

s)

Figure 8.8: Performance comparison for profiling between Kraken2, Sieve, and
KrakenOnMem.

the accelerated operation (Table Lookup) achieves a significant speedup. This opens up
the possibility of future work focusing on the next performance bottleneck - a common
(iterative) methodology in computer engineering. Second, Table Lookup will likely re-
main in future genomics pipelines for which the sequential part of the application can be
different. Third, as we will discuss in Section 8.5.2, KrakenOnMem is also advantageous
over Sieve in other aspects, e.g., area overhead and energy consumption. Fourth, the
sped-up operation can and will potentially be used in all the upcoming metagenomics
studies and profilers. Therefore, a modest 1.17% improvement can still translate into
significant time and cost gains.
k-mer Counting and Alignmnet-based Profiling. Fig. 8.9 presents the results for pre-
filtering stage in Metalign when tweaking TL-PIM to perform k-mer counting compared
to the original KMC3 implementation in Metalign. The y-axis utilizes a logarithmic scale.

We observe that for all CAMI datasets, the PIM-enabled design provides on average a
1595× improvement compared to an SW version of the same operation in Metalign. We
expected such significant improvements due to advances in data movement reduction
and high parallelism in TL-PIM.

Fig. 8.10 demonstrates the aftermath when we apply the new TL-PIM for end-to-end
taxonomic profiling using the Metalign approach as a SotA alignment-based profiler. We
make two observations. First, our proposal provides, on average, 23.01% improvement
in execution time for end-to-end profiling. This is expected as the k-mer counting op-
eration in Metalign still affects the overall performance and cannot be masked or paral-
lelized by other operations and steps.

Second, the end-to-end improvement in an alignment-based mechanism is much
less than the achieved improvement over Kraken2 (23.01% vs. 61.3%). This happens
because alignment-based taxonomic profilers are not bottlenecked by the Table Lookup
operation, rather their required alignment operation. However, we argue that this im-
provement is still significant and shows that the Table Lookup procedure is costly for any
type of profiler and worth the design, even if it is not the bottleneck.

8.5. EXPERIMENTAL RESULTS

8

175

0.1

1

10

100

1000

RL RM AvgRH Avg Avg

K
-m

e
r

C
o

u
n

ti
n

g
T

im
e

 (
s)

KMC in Metalign Tweaked TL-PIM

KrakenOnMem Vs Metalign/KMC – Kmer Counting

Figure 8.9: Performance comparison for k-mer counting between KMC and tweaked TL-
PIM.

Metalign Proposal

KrakenOnMem Vs Metalign - Profiling

0

1000

2000

3000

4000

5000

RL RM AvgRH Avg Avg

E
n

d
 t

o
 E

n
d

P

ro
fi

li
n

g
 T

im
e

(s

)

Figure 8.10: Performance comparison for profiling between original Metalign and Met-
align equipped with tweaked TL-PIM.

8

176 8. KRAKENONMEM

8.5.2. POWER AND AREA ANALYSIS

Energy and Power. We compare the expected energy consumption of Sieve with the
measured energy consumption of KrakenOnMem for Table Lookup operation. We con-
sider the DRAM technology mentioned in the original manuscript for Sieve. We exploit
three synthetic datasets to cover all spectrum of possible scenarios for Sieve, as its energy
highly depends on the effect of the data-dependent ETM component. Sc1 is when more
than 95% of the mismatch/difference between query and reference keys exists in the first
two characters of them. This scenario favors Sieve the most as the ETM component can
save Sieve a lot of row activations and unnecessary comparisons. Sc2 is the case where
the average distance of the first mismatch among query and reference keys from their
first bit is set to 10 bits. This is the main reported number in Sieve [244] for typical cases.
The last scenario, Sc3, contains the results for when the mismatches cannot be found
until the last two characters of query and reference keys. This is the worst-case scenario
for Sieve, in which ETM favors the performance and energy the least. Fig. 8.11 presents
the results.

0

100

200

300

Sc1 Sc2 Sc3 Avg

E
n

e
rg

y
 S

av
in

g

fo
r

T
a

b
le

L

o
o

k
u

p
 o

v
e

r
S

ie
v

e

Figure 8.11: Energy saving of KrakenOnMem over Sieve for Table Lookup.

We make two observations. First, KrakenOnMem achieves a better energy consump-
tion for all three scenarios, with an average of 11.34× energy saving over Sieve. One cycle
matching and label retrieval, pipelined design, available parallelism, and analog com-
puting are the reasons behind this significant improvement in energy consumption of
Table Lookup in KrakenOnMem over Sieve. Second, Sieve offers a very data-dependent
energy consumption that changes to an almost 62× depending on where the first mis-
match among keys occurs. This shows that while ETM in Sieve might be compelling
enough in average cases, it cannot be reliably used for a fixed/calculated energy con-
sumption. KrakenOnMem solves this issue.

Our power evaluations show that KrakenOnMem can profile with a rate of 4.75 Mbp
j .

This is while Merelli, et al. [425, 426] show that original Kraken2 on a 8-core XeonD

processor can achieve only a maximum of 0.22 Mbp
j . Note that we have not directly com-

pared the energy consumption of KrakenOnMem with Kraken2 for two reasons. First,
our expertise in memory accelerators allows us to measure the expected profiling rate for

8.5. EXPERIMENTAL RESULTS

8

177

KrakenOnMem, but it would not be a fair comparison with a software-only solution. Sec-
ond, only a few works [425, 426] provide energy numbers, and we utilized them for our
rough energy comparisons with KrakenOnMem. These results showcase that KrakenOn-
Mem consumes much lower energy for the same datasets than Kraken2.

Area. Although TL-PIM consists of memory arrays and controller logic, we only con-
sider the area of its controller as additional area overhead. This is because sequenc-
ing machines are heterogeneous systems that already use various memory technologies
(e.g., DRAM and SSD) and computational units (CPU, GPU, and FPGA) since their ben-
efits justify their cost. Therefore, having memristors installed in those machines as well
is not a far-fetched idea if we can harvest their power efficiently. The area overhead for
the required controller in TL-PIM is 0.009 mm2. This is a very modest overhead, only
0.002% of Skylake-SP, a modern Intel Processor at 14 nm [439]. Although any processor
can be chosen for this comparison, depending on the final product, we pick the Skylake-
SP processor for the area baseline only to be similar to works on PIM-based accelerators
and non-volatile memories [231, 440]. Note that Sieve Type III, which we used in our
performance and energy evaluations, incurs 10.9% area overhead for the required logic
of (1) k-mer matching and (2) row-address latches over an 8-bank DRAM chip in 22nm
technology mode. We use methods presented in [441] to scale the area consumption
down to 28nm technology mode and find an overhead of higher than 6%. On the other
hand, KrakenOnMem only incurs 0.0007% extra die area for its controller (as LCA- and
Key-arrays exist regardless) over the same memory size using our STT-MRAM devices.

Memory utilization. Fig. 8.12 and Fig. 8.13 depict the memory utilization for Key-
Arrays and LCA-Arrays, respectively, considering different array configurations, i.e., vary-
ing size and #SAs.

0
0.2
0.4
0.6
0.8
1

U
ti
li
za
ti
o
n

Ideal utilization

Array utilizations

0

0.2

0.4

0.6

0.8

1

512x512 256x256 128x128

U
ti
li
za
ti
o
n

Ideal utilization

(a) Key-Arrays utilization

(b) LCA-Arrays utilization

Figure 8.12: The memory utilization of Key-Arrays.

We make three observations. First, TL-PIM utilizes Key-Arrays close to the ideal case.
For three standard evaluated array sizes of 512×512, 256×256, and 128×128, TL-PIM
achieves a utilization higher than 93%. Second, utilization of LCA-Arrays is lower than
that in Key-Arrays. However, they are still on average higher than 50%. This is expected in

8

178 8. KRAKENONMEM

0
0.2
0.4
0.6
0.8
1

U
ti
li
za
ti
o
n

Ideal utilization

Array utilizations

0

0.2

0.4

0.6

0.8

1

512x512 256x256 128x128

U
ti
li
za
ti
o
n

Ideal utilization

(a) Key-Arrays utilization

(b) LCA-Arrays utilization
Figure 8.13: The memory utilization of LCA-Array.

any accelerator, including TL-PIM, that does not change the memory structure or data
representation yet aims for the highest achievable performance. Third, utilization of
Key-Arrays only depends on the array size, while LCA-Arrays’ utilization is also affected
by #columns that share one SA. The reason behind this is that the new parameters affect
the number of LCA-Arrays per one Key-Array, as discussed in Section 8.2.5.

8.6. CONCLUSION
This chapter introduces KrakenOnMem, the first HW/SW co-designed framework for
taxonomic profiling via in-memory hardware acceleration using emerging memory
technologies. KrakenOnMem accelerates the bottleneck of Kraken2, a SotA taxonomic
profiler, by a memristor-based PIM-enabled hardware called TL-PIM. TL-PIM enables
Table Lookup operation while it simultaneously aims for (1) being data-independent, (2)
maximizing the achievable performance for the worst-case scenarios, (3) having linear
scalability, (4) maintaining its design optimization advantages for future designs, and
(5) incurring minimal hardware and area overhead. The evaluation results show that
TL-PIM alleviates the existing bottleneck to the extent that the end-to-end performance
and energy consumption of Kraken2 significantly surpasses that of original Kraken2. We
expect that ideas presented for TL-PIM and the HW/SW co-designed of Kraken2 enable
the designs of future accelerators in other genomic applications. We also expect that the
overall improvement in end-to-end taxonomic profiling introduced by KrakenOnMem
further helps the upcoming metagenomic studies and opens new doors for improving
our lives.

9
LIGHTSPEED BINARY NEURAL

NETWORKS USING

MEMRISTOR-BASED CIM TILES

This chapter investigates the potential of the Computation-In-Memory paradigm using
memristors to speed up and reduce the energy consumption of the Binary Neural Networks
(BNNs). We propose a new data mapping for BNNs tailored for memory tiles capable of
Vector-Matrix-Multiplication (VMM) operation. The preliminary results show a signifi-
cant latency improvement irrespective of the evaluated network structure and size. The
improvement varies from network to network and goes up to ∼154×.

This chapter is partially based on the candidate’s published and under review works [122, 123].

179

9

180 9. LIGHTSPEED

As discussed Chapter 2.2.2 in we have witnessed significant progress of Neural Net-
work (NN) applications in the past few decades. However, this progress has, unfortu-
nately, come with extensive demand for system resources, e.g., memory and energy con-
sumption. This high demand has already slowed down the growth of active, deployed
NNs and their adoption when factoring in the costs. A recent research direction is to
use simpler (operation-wise) and smaller NNs, such as BNNs. BNNs enjoy lower mem-
ory requirements, simplified arithmetic operations, and near SotA accuracy on vision
tasks [221, 222]. However, an optimized hardware implementation is still necessary for
BNNs to smooth their cost-efficient adoption on our future systems.

A few works have investigated hardware realization of BNNs by introducing different
mapping and data flow techniques [442, 443] or various circuitry and memristor-based
crossbar structures (i.e., ReRAM or PCM) to perform required operations [444]. Unfortu-
nately, none of these methods exploit the full potential of underlying emerging devices
for BNNs due to inefficient data mapping and the sequential nature of how they perform
the necessary operations.

This chapter presents two major contributions:

• TacitMap: A highly parallel data mapping for BNN operations on any CIM design
capable of performing VMM, e.g., memristor-based crossbars such as electronic
phase change memory-based (ePCM) or resistive random-access memory-based
(ReRAM) ones. TacitMap is designed with the conventional 1T1R memory cross-
bar structure in mind and is therefore compatible with many of the already evolv-
ing crossbar architectures.

• A hardware acceleration of BNNs utilizing TacitMap instead of SotA data mapping,
both on the same underlying memristor device technology, PCM.

• A detailed performance comparison between the proposed CMOS-compatible ac-
celerator and previous SotA hardware accelerator for BNNs.

9.1. TACITMAP FOR BNN
To support necessary operations in Equation 2.5 (e.g., XNOR and Popcount) for hid-
den layers, we propose a data mapping for BNNs, called TacitMap. TacitMap requires
an underlying technology inherently capable of VMM operation (e.g., memristor-based
memory discussed in Section 2.1). Moreover, TacitMap is designed assuming the binary
vectors of {0, 1} for activation and weight vectors. This eliminates the need for handling
negative and positive weights separately [221]. Note that this approach understandably
requires a one-time conversion of initially signed vectors to unsigned binary vectors of
{0, 1}. Our evaluations (Section 10.3) take this overhead into account.

Fig. 9.1-(a) and -(b) present a comparison between how SotA mapping (hereafter
called CustBinaryMap) [444] and TacitMap handles a single XNOR+Popcount of Equa-
tion 2.5, respectively, in the form of an example. For a detailed description of CSL,
BL, WL, and SL, please refer to previous works [445, 446]. In Fig. 9.1, we assume in-
put (In) and weight (W) vectors of length 2 bits. InX _Y represent the Y th bit of X th
input. The same goes for other parameters. The bar on the parameters indicates the
complement value. Note that other operations of Equation 2.5 (e.g., the multiplication

9.1. TACITMAP FOR BNN

9

181

by 2 and the subtraction) are constant. Therefore, the mapping needs only to support
XNOR+Popcount, and hardware can implement the constant operations (e.g., shift by 1)
with minimum cost on the result of either mapping.

R1

BL

IBL

CSL

ADC

D
A

C
s

ADCs

In1

In2

In3

In4

W1_1

W2_1

W4_1

W1_3

W4_3

O3O2O1

D
A

C
s

ADCs

In1

In2

In3

In4

W1_1

W2_1

W4_1

W1_3

W4_3

O3O2O1

Memristor-based Crossbar

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

In1 In2 In3 In4In1 In2 In3 In4 O1 O2 O3O1 O2 O3

W4_1

W3_1

W2_1

W1_1

W4_2

W3_2

W2_2

W1_2

W4_3

W3_3

W2_3

W1_3

In1 In2 In3 In4 O1 O2 O3

Input

Layer
Output

Layer
In1

In2

In3

In4

W1_1

W2_1

Inputs (In) Weights (W)

O1

O2

O3

W4_3

Input

Layer
Output

Layer
In1

In2

In3

In4

W1_1

W2_1

Inputs (In) Weights (W)

O1

O2

O3

W4_3

(a) (b) (C)

A

1 1

A1_2

A1_1

A1_2

BLCSL

ADC

I1

B1_1

B1_2

B1_1

B1_2

Popcount(A B1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)Popcount (In1 W1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)

(b) TacitMap

(In1 W1)

In1_1 = W1

CSL BL

In1_2 = W2

In1_1 = W3

In1_2 = W4

ADC

Popcount (In1 W1)Popcount (In1 W1)

Popcount (In1 W1)Popcount (In1 W1)

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

Popcount (In1 W1)

In1_1 = WL1

CSL BL

In1_2 = WL2

In1_1 = WL3

In1_2 = WL4

ADC

W1_1

W1_2

W1_1

W1_2

(a) CustBinaryMap

In1: Input vector #1 with length = 2 bits

W1: Weight vector #1 with length = 2 bits

SL

WL1

Pre-charge SAPre-charge SA

W1_1 W1_2W1_1 W1_2

In1_1
=

BL1

In1_2
=

BL2

In1_1
=

BL1

In1_1
=

BL1

In1_2
=

BL2

In1_2
=

BL2

(In1_1 W1_1)(In1_1 W1_1) (In1_2 W1_2)(In1_2 W1_2)

Digital Popcount circuitry

Popcount (In1 W1)Popcount (In1 W1)

SL

WL1

Pre-charge SAPre-charge SA

W1_1 W1_2W1_1 W1_2

In1_1
=

BL1

In1_2
=

BL2

In1_1
=

BL1

In1_2
=

BL2

(In1_1 W1_1) (In1_2 W1_2)

Digital Popcount circuitry

Popcount (In1 W1)

Figure 9.1: Concepts of TacitMap vs CustBinaryMap [444].

CustBinaryMap (Fig. 9.1-(a)) uses uses a 2T2R memory structure and places weight
vectors horizontally in memory rows. Instead of storing the weight vectors as they are,
this mapping requires the programmer to interleave the weight vectors and their com-
plements in a bitwise manner and then either store every two bits of x and x in one of the
devices in the 2T2R memory cell. In contrast, TacitMap (Fig. 9.1-(b)) uses a 1T1R mem-
ory structure and stores each weight vector vertically in a column. In TacitMap, instead
of interleaving the weight vector with its complement, one first stores the weight vector
and then, right below it, stores the complemented weight vector. Regarding the inputs,
CustBinaryMap does the same interleaving of the input vector and its complement with
the input vectors. The outputs are read through a modified SA called precharge sense
amplifier (PCSA), which is the XNOR of the input vector and stored weight vector. Con-
versely, TacitMap concatenated the input vector and its complement and applied it to
the rows and of the crossbar. The XNOR+Popcount is directly read out from the ADC.
TacitMap offers three main benefits compared to CustBinaryMap:

• 1-step XNOR+Popcount in TacitMap compared to 2-step operation in CustBinaryMap.
This enables TacitMap not to require any additional digital circuitry for Popcount.

• Column-wise XNOR+Popcount operation in TacitMap compared to row-wise opera-
tion in CustBinaryMap. This enables high parallelism opportunity for a design that
utilizes TacitMap.

• Conventional µArch with multiple real-world chips (i.e., 1T1R cells + ADC [447, 448])
in TacitMap compared to heavily customized µArch (i.e., 2T2R cell structure with cus-

9

182 9. LIGHTSPEED

tomized SA) in CustBinaryMap. This makes TacitMap more suitable for extended and
future hardware that might be used for BNNs.

Note that TacitMap and CustBinaryMap both use a similar number of memristor de-
vices per 1 bit of weight kernel, i.e., they both use two devices to store both the bit and
the complemented value.

To demonstrate the performance benefit of TacitMap against CustBinaryMap for per-
forming BNN operations (i.e., multiple XNOR+Popcounts), Fig. 9.2 presents these map-
pings on the crossbar level.

R
o

w
 D

e
c
o

d
e

r

Interleaved input

S
e

q
u
e

n
tia

l R
o

w
 A

c
tiv

a
tio

n

In1In1 In1In1In1

In2In2

In2In2In2

InmInm

InmInmInm
...

W1_1W1_1 W1_1W1_1W1_1 W1_2W1_2 W1_2W1_2W1_2 W1_mW1_m W1_mW1_mW1_m
...W1_1 W1_1 W1_2 W1_2 W1_m W1_m
...

W2_1W2_1 W2_1W2_1W2_1 W2_2W2_2 W2_2W2_2W2_2 W2_mW2_m W2_mW2_mW2_m
...W2_1 W2_1 W2_2 W2_2 W2_m W2_m
...

Wn_1Wn_1 Wn_1Wn_1Wn_1 Wn_2Wn_2 Wn_2Wn_2Wn_2 Wn_mWn_m Wn_mWn_mWn_m
...Wn_1 Wn_1 Wn_2 Wn_2 Wn_m Wn_m
...

PCSAPCSA PCSAPCSA...

...

...

...

...

...

...

R
o

w
 D

e
c
o

d
e

r
R

o
w

 D
e

c
o

d
e

r

Column DecoderColumn Decoder

S
e

q
u
e

n
tia

l R
o

w
 A

c
tiv

a
tio

n

In1In1 In1In1In1 In2In2 In2In2In2 InmInm InmInmInm
...In1 In1 In2 In2 Inm Inm
...

2T2R Cell

Modified SA

(a) CustBinaryMap

W1_1 W1_1 W1_2 W1_2 W1_m W1_m
...

W2_1 W2_1 W2_2 W2_2 W2_m W2_m
...

Wn_1 Wn_1 Wn_2 Wn_2 Wn_m Wn_m
...

PCSA PCSA...

...

...

...

R
o

w
 D

e
c
o

d
e

r

Column Decoder

S
e

q
u
e

n
tia

l R
o

w
 A

c
tiv

a
tio

n

In1 In1 In2 In2 Inm Inm
...

2T2R Cell

Modified SA

(a) CustBinaryMap

W1_1 W1_1 W1_2 W1_2 W1_m W1_m
...

W2_1 W2_1 W2_2 W2_2 W2_m W2_m
...

Wn_1 Wn_1 Wn_2 Wn_2 Wn_m Wn_m
...

PCSA PCSA...

...

...

...

R
o

w
 D

e
c
o

d
e

r

Column Decoder

S
e

q
u
e

n
tia

l R
o

w
 A

c
tiv

a
tio

n

In1 In1 In2 In2 Inm Inm
...

2T2R Cell

Modified SA

(a) CustBinaryMap (b) TacitMap

R
o

w
 D

e
c
o

d
e

r
R

o
w

 D
e

c
o

d
e

r

Column Decoder

1T1R Cell

W1_1W1_1

W1_1W1_1W1_1

W1_2W1_2

W1_2W1_2W1_2

W1_mW1_m

W1_mW1_mW1_m

...
...

W1_1

W1_1

W1_2

W1_2

W1_m

W1_m

...
...

W2_1W2_1

W2_1W2_1W2_1

W2_2W2_2

W2_2W2_2W2_2

W2_mW2_m

W2_mW2_mW2_m

...
...

W2_1

W2_1

W2_2

W2_2

W2_m

W2_m

...
...

Wn_1Wn_1

Wn_1Wn_1Wn_1

Wn_2Wn_2

Wn_2Wn_2Wn_2

Wn_mWn_m

Wn_mWn_mWn_m

...
...

Wn_1

Wn_1

Wn_2

Wn_2

Wn_m

Wn_m

...
...

...

...

...

...

...

...

ADCADC ... ADCADC

P
a

ra
lle

l R
o

w
 A

c
tiv

a
tio

n
s

In1In1

In1In1In1

In2In2

In2In2In2

InmInm

InmInmInm

...
...

In1

In1

In2

In2

Inm

Inm

...
...

(b) TacitMap

R
o

w
 D

e
c
o

d
e

r

Column Decoder

1T1R Cell

W1_1

W1_1

W1_2

W1_2

W1_m

W1_m

...
...

W2_1

W2_1

W2_2

W2_2

W2_m

W2_m

...
...

Wn_1

Wn_1

Wn_2

Wn_2

Wn_m

Wn_m

...
...

...

...

...

ADC ... ADC

P
a

ra
lle

l R
o

w
 A

c
tiv

a
tio

n
s

In1

In1

In2

In2

Inm

Inm

...
...

Figure 9.2: TacitMap vs CustBinaryMap data mapping.

We observe that TacitMap enables the crossbar to perform multiple (specifically n
in Fig. 9.2) XNOR+Popcount via a single VMM operation in only 1 time step. TacitMap
reads the results of these n XNOR+Popcount from ADCs simultaneously. In contrast,
with CustBinaryMap, it takes a minimum of n time steps. This happens because when
using CustBinaryMap, one first utilizes PCSA to perform the logical XNOR for one input
and 1 weight vector of size m. To process n weight vectors, they must do this operation
sequentially n times. Moreover, using this mapping, one also needs to perform post-
processing on the read output on every final vector using two additional digital compo-
nents: (1) a fully digital five-bit counter per crossbar column for local Popcount and (2)
a tree-based Popcount circuit per several connected crossbars for a global Popcount.

TacitMap relies on VMM and is compatible with any technology for the crossbar that
supports it, e.g., ePCM-based crossbars or oPCM-based ones.

9.2. EVALUATIONS
Implementations and Models. We build a cycle-accurate emulator using PyTorch de-
rived from our device-aware extended circuits [113, 279]. We evaluate the effectiveness
of TacitMap using ePCM-TacitMap that is TacitMap on electronic PCM-based cores. Our
PCM and oPCM configurations are based on our previous results [146, 333]. We compare
our designs against that of [444] as the SotA hardware accelerator for BNNs (Baseline-

9.2. EVALUATIONS

9

183

ePCM). To eliminate the dependency on the type of device in the VMM-enabled cross-
bar, we also use the same PCM configuration in ePCM-TacitMap for the baseline.

9.2.1. NETWORKS AND DATASETS
We evaluate all designs over 6 BNNs with various sizes from MlBench [76]. Table 9.1
presents the topologies of these BNNs. The first three networks are convolutional net-
works. But the last ones are multilayer perceptrons (MLPs) with various scales from small
to medium to large [76]. We use MNIST [449] and CIFAR-10 [450] for the datasets.

Network Name Topology Accuracy
LeNet-5 5x5x6, 2x2 Pooling - 5x5x16, 2x2 Pooling - FC(120) - FC(84) - FC(10) 98%
CNN-1 5x5x5, 2x2 Pooling - FC(720) - FC(70) - FC(10) 97%
CNN-2 7x7x10, 2x2 Pooling - FC(1210) - FC(1210) - FC(10) 98%
MLP-S FC(784) - FC(500) - FC(250) - FC(10) 97%
MLP-M FC(784) - FC(1000) - FC(500) - FC(250) - FC(10) 98.2%
MLP-L FC(784) - FC(1500) - FC(1000) - FC(500) - FC(10) 98.4

Table 9.1: Configurations of evaluated BNNs.

Table 9.1 also presents the achieved accuracy for each BNN. The high accuracy sup-
ports the effectiveness of these networks for certain tasks with lower memory and stor-
age overhead and simpler operations discussed in Section 2.2.2. Note that TacitMap does
not affect the accuracy of the target BNN and simply accelerates them via handling their
required XNOR+Popcount in parallel and more efficiently.

Evaluation Results. Fig. 9.3 presents the latency improvement of proposals normal-
ized to SotA for the same underlying network. The y-axis uses a log scale.

Lightspeed for Thesis-Performance - TIA after ADC - Reported

~78x

~203x

Figure 9.3: Latency improvements over Baseline-ePCM.

We make two key observations.

• TacitMap improves the latency irrespective of BNN. This is because, unlike the
Baseline-ePCM, this data mapping not only parallelizes XNOR with Popcount but

9

184 9. LIGHTSPEED

also parallelizes both of these operations with many other sets via the proposed
vertical data mapping. ePCM-TacitMap improves the performance by ∼78× on
average.

• The latency improvement is network-dependent. This is directly related to the
available parallelism in the operations of understudy BNN. In our BNNs, the larger
the BNN is, the more parallel XNOR and Popcount operations exist. Improvements
vary from ∼1.6× to ∼203× for the evaluated BNNs.

9.3. CONCLUSION
This chapter proposes a CIM-based hardware accelerator using memristors and an effi-
cient data flow called TacitMap for BNNs. Our evaluations on latency suggest an enor-
mous potential for such CIM designs for NNs. Hence, our work encourages further in-
vestigations of CIM, memristors, and efficient data mapping.

10
HIGH-PERFORMANCE HARDWARE

ACCELERATOR FOR BNNS ON

PCM-BASED INTEGRATED

PHOTONICS

State-of-the-Art (SotA) hardware implementations of Deep Neural Networks (DNNs) for
vision and speech recognition on the cloud, mainly based on CMOS and Von-Neumann
architectures, incur high latencies and costs. Binary Neural Networks (BNNs) are poten-
tial solutions to realize faster and cost-efficient implementation without losing accuracy.
To achieve further improvements, this chapter builds on the idea Chapter 9, a new data
mapping, called TacitMap, notably suited for BNNs implemented with a Computation-
In-Memory (CIM) architecture. TacitMap maximizes the use of available parallelism,
while CIM architecture eliminates the data movement overhead. This chapter advances
the idea of TacitMap by proposing a hardware accelerator based on optical phase change
memory (oPCM), called EinsteinBarrier for BNNs. EinsteinBarrier incorporates TacitMap
and adds an extra dimension for parallelism through wavelength division multiplexing,
leading to extra latency reduction. The simulation results show that EinsteinBarrier sig-
nificantly improves execution time with sustainable energy consumption irrespective of
the dataset and network. More specifically, EinsteinBarrier provides up to ∼3113.2× im-
provement in execution time compared to SotA CIM baseline while maintaining the en-
ergy consumption within 60% of that in the CIM baseline.

This chapter is partially based on the candidate’s published and under review works [122, 123].

185

10

186 10. EINSTEINBARRIER

As discussed Chapter 2.2.2, momentous developments in Deep Neural Network
(DNN) in the past decade have led to significant improvements in accuracy and exe-
cution time of computer vision tasks such as object detection and recognition [22–24].
However, current DNN hardware implementations are relatively slow and costly to
run [214–216]; they suffer from data movement between the processor and mem-
ory [218] and make use of expensive hardware such as storing weights in 6 transistors
SRAM cells [216, 219]. Hence, developing a high-throughput, cost-effective hardware
realization of DNNs while being accurate is critical.

Recently, researchers have proposed the use of simpler (operation-wise) and smaller
Neural Networks (NNs) such as Binary Neural Networks (BNNs). BNNs enjoy lower
memory requirements (binary values or vectors of {0, 1} or {-1, 1}) [215, 451, 452],
simplified arithmetic operations (XNOR instead of multiplication or convolution) [221],
and near state-of-the-art (SotA) accuracy on vision tasks [221, 222]. Previous works have
investigated two directions to employ BNNs: (1) known platforms such as GPU and
central processing unit (CPU) [221, 453, 454], and (2) alternative architectures such as
those based on Computation-In-Memory (CIM) paradigm, with the focus on memristor-
based CIM designs [279, 442–444]. The solutions in the latter direction overcome the
data movement issue that significantly hampers the works in the former direction
regarding performance and energy consumption. However, the works in this direction
fail to (fully) exploit the inherent features of the underlying hardware. For instance, (a)
there is still a lack of efficient data mapping, (b) conventional CIM architectures can
typically perform at most one single vector operation (e.g., Vector-Matrix-Multiplication
(VMM) or logical vector operation that is the most common operation in NNs) at a time,
which limits the throughput, (c) these architectures face many design challenges such
as crosstalks and large capacitances of the wiring within the memory IP of CIM, which
make the design of such devices complex and limits their scalability.

This chapter advances the SotA CIM accelerators for BNNs by providing a high
throughput accelerator based on an oPCM crossbar combined with an efficient map-
ping method tuned to maximize the parallelism. The proposed accelerator realizes an
order of magnitude improvement in latency/throughput without losing the accuracy of
the network. The main contribution of this chapter is:

• EinsteinBarrier: An oPCM hardware-based CIM implementation incorporating the
TacitMap mapping. EinsteinBarrier ensures maximum parallelism through exploring
the potential provided by the features of CIM architecture and the inherent properties
of oPCM (via wavelength division multiplexing (WDM).

We extensively evaluate TacitMap and EinsteinBarrier and compare them with SotA
implementations for various BNNs. Our results show that when exploiting oPCM and
TacitMap, EinsteinBarrier improves the latency by up to ∼3113.2×, compared to the
same baseline.

10.1. EINSTEINBARRIER ARCHITECTURE
Fig. 10.1-(a) presents an overview of the EinsteinBarrier concept and its system place-
ment. We envision EinsteinBarrier as an accelerator that is part of the memory itself.

10.1. EINSTEINBARRIER ARCHITECTURE

10

187

Node 2

Node 4Node 3

Node 1 …

…

…

…

(b) Einstein Barrier

chip-to-chip
interconnects

Einstein Barrier System Overview - Horizontal

C
P

U
M

em
o

ry

Ei
n

st
ei

n
 B

ar
ri

er

(a
)

C
o

n
ce

p
t Tile 2

Tile 4Tile 3

Tile 1 …

…

…

…

(c) Node

on-chip network

Ctrl Ctrl
Shared Memory

ECore 0

(d) Tile

Receiver Buffer

…

ECore N

Ctrl

Input
Registers

Operand Steer Unit
PC

In
st

ru
ct

io
n

M
em

o
ry

D
ec

o
d

er

Scalar Functional Unit

. . .
Register File

(ROM or ERAM)
FU_NFunctional

Unit 0 (FU0)

Memory
Unit

VCore
Output

Registers

Ctrl

VMM/MMM Pipeline

Transmitter

(e) ECore

1

2

OLD

Node 2

Node 4Node 3

Node 1 …

…

…

…

(b) BOPCM-CIM

chip-to-chip
interconnects

C
P

U
M

em
o

ry

B
O

P
C

M
-C

IM

(a
)

C
o

n
ce

p
t Tile 2

Tile 4Tile 3

Tile 1 …

…

…

…

(c) Node

on-chip network

Ctrl Ctrl
Shared Memory

ECore 0

(d) Tile

Receiver Buffer

…

ECore N

Ctrl

Operand Steer Unit
PC

In
st

ru
ct

io
n

M
em

o
ry

D
ec

o
d

er

Scalar Functional Unit

. . .
Register File

(ROM or ERAM)
FU_NFunctional

Unit 0 (FU0)

Memory
Unit

VCore
Output

Registers

Ctrl

VMM/MMM Pipeline

Transmitter

(e) ECore

1 2

Node 2

Node 4Node 3

Node 1 …

…

…

…

(b) EinsteinBarrier

chip-to-chip
interconnects

C
P

U
M

em
o

ry

Ei
n

st
ei

n
B

ar
ri

er

(a
)

C
o

n
ce

p
t Tile 2

Tile 4Tile 3

Tile 1 …

…

…

…

(c) Node

on-chip network

Ctrl Ctrl
Shared Memory

ECore 0

(d) Tile

Receiver Buffer

…

ECore N

Ctrl

Operand Steer Unit
PC

In
st

ru
ct

io
n

M
em

o
ry

D
ec

o
d

er

Scalar Functional Unit

. . .
Register File

(ROM or ERAM)
FU_NFunctional

Unit 0 (FU0)

Memory
Unit

VCore
Output

Registers

Ctrl

VMM/MMM Pipeline

Transmitter

(e) ECore

1 2

Figure 10.1: EinsteinBarrier system placement and overview.

Fig. 10.1-(b) to -(e) present different levels of hierarchy in EinsteinBarrier. Einstein-
Barrier is a spatial architecture with four levels: Nodes, Tiles, External Cores (ECores),
and VMM-enabled cores (VCores). This hierarchical organization of EinsteinBarrier is
commonly used in other similar works as well [90, 108, 455]. In EinsteinBarrier, Nodes
comprise connected Tiles via an on-chip network, Tiles are connected cores sharing a
memory, and ECores contain the instruction execution pipeline, VCores, and execution
units. EinsteinBarrier follows a three-stage in-order pipeline with fetch, decode, and ex-
ecute as its stages. To support multiple simultaneous VMMs, which hereafter we call
Matrix-Matrix-Multiplication (MMM), EinsteinBarrier extends the ISA discussed in ear-
lier works [108, 456].

EinsteinBarrier offers four main characteristics: (1) Provide a configurable and hier-
archical accelerator to support various BNNs, (2) support VMM-enabled crossbars based
on emerging technologies as its computation core, (3) allow an extra dimension for par-
allelism and improving performance via WDM in its oPCM-based cores (i.e., effectively
enable MMM), and (4) resolve the challenges ePCM faces for a CIM-based implementa-
tion of BNNs via adopting CMOS-compatible oPCM-based cores.

EinsteinBarrier hierarchical organization and the architecture of Tile and ECores pro-
vide us with the generality and reconfigurability needed to support various BNNs and
multiple technologies (characteristics #1). The ECore architecture and the newµArch re-
quired for XNOR+Popcount brings the generality needed to support TacitMap and multi-
ple technologies in VCores as long as they support VMM operation in a crossbar format
(characteristics #2). The ECore and VCore designs prepare EinsteinBarrier particularly
to adopt oPCM technology and its advantages (characteristics #3). Finally, simply by
adopting CMOS-compatible oPCM-based VCores, EinsteinBarrier avoids many of the
challenges of ePCM-based CIM architecture (characteristics #4).

10.1.1. OPCM-BASED WDM-ENABLED ECORE
EinsteinBarrier uses integrated photonics with PCM devices in the crossbar. This choice
of oPCM-enabled ECores demands two specific extra components, namely VCore and
transmitter, compared to other CIM enabled designs. This choice provides an extra di-
mension for parallelization through WDM and avoids Joule heating and resistance drift
in electronic emerging memories [147, 149]. In the following, we first discuss the struc-
ture of the first component, a VCore. We then clarify the WDM capability of VCore
compared to ePCM-based electronic crossbar using an example. Finally, we discuss the
transmitter, the second component.

10

188 10. EINSTEINBARRIER

VCORE STRUCTURE

The oPCM-based VCore is a typical memory with PCM devices in a crossbar format. This
means that this core is essentially an array of cells connected together in a conventional
crossbar format of rows and columns. Each cell consists of a single PCM device and can
store 1 bit of data (binary usage of PCM as discussed in Section 2.1.3). A tile also includes
all the necessary peripheries for read and write operations (e.g., DACs and ADCs). In
addition, EinsteinBarrier adds 1 more component to the readout circuitry of the oPCM
core: transimpedance amplifiers (TIA) on the output (receiver). EinsteinBarrier uses TIA
to feed comparators or ADCs acting as a decision and deserialization stage in the output.

WDM
Fig. 10.2 uses an example to present the concept and benefits of WDM on how WDM
helps oPCM core to handle multiple VMM operations against how an ePCM-based core
handles them. In this example, we assume 3 2-bit activation vectors of X _i distinguished
by vectors with yellow, red, and blue colors. The indices demonstrate the bit num-
ber, i.e., first bit or second bit. Moreover, we assume 3 2-bit kernel vectors of k_i , j ,
where i denotes the activation/kernel vector and j denotes the bit position in that acti-
vation/kernel vector. Each of these kernel vectors is grouped in a box of orange, green,
or pink color. Note that the complements use the same color, but their boxes are dashed.

oPCM Core

X1X1X1

X2X2X2

X1

X1

Flatten
ed

K

ern
els

Y1

Y1

Y1

C
o

m
p

lem
en

ted

K
ern

els

Kernel#1 Kernel#3Kernel#2X1

X2

X1

X2

X1

X2

X1

X2

X1

X2

X1

X2

(a) TacitMap on ePCM

Flatten
ed

K

ern
els

X1X1X1

X2X2X2

Y1Y1

Y1

X1X1X1

X2X2X2

C
o

m
p

lem
en

ted

K
ern

els

Kernel#1 Kernel#3Kernel#2

Tr
an

sm
it

te
r

(b) TacitMap on oPCM

T1

T2

T3

T1T2T3

T1

T1

Figure 10.2: WDM in oPCM core.

For the example presented in Fig. 10.2, we want to calculate the XNOR+Popcount of
these activations on given kernels. With the mentioned assumptions on the data, Tac-
itMap requires three columns and 4 (2×2) rows of the crossbar to store the kernels and
their complement. TacitMap requires three VMM operations1 to process all the required
XNOR+Popcounts; 1 VMM per each activation vector, wherein each VMM we use the
vector of that activation concatenated by its complement as the input to the crossbar.

Fig. 10.2-(a) depicts the scenario for a conventional ePCM-based VMM-enabled
crossbar. In this case, the required VMMs happen in consecutive time-steps, denoted

1For simplicity of our example, we assumed that the columns could be read out in parallel and they do not
share an ADC. We will revisit this in Section 10.2.

10.1. EINSTEINBARRIER ARCHITECTURE

10

189

by T1, T2, and T3 in Fig. 10.2-(a). The input vector size in this scenario is 4, the number
of inputs is 3, and the matrix is 4×3.

On the other hand, Fig. 10.2-(b) depicts the same scenario but for an oPCM-based
VCore. Using an optical transmitter that we discuss next, one can combine our 3 input
vectors together into a single input and feed that single input to the crossbar. Therefore,
only 1 time-step, i.e., T1, is required to finish the operation. Here, the input vector and
the matrix size are still 4, and 4×3, respectively. But the number of input vectors is re-
duced to 1. This method is the WDM capability of oPCM we have discussed. Therefore,
effectively, WDM-enabled an MMM of size 4×4×3. We call the number of wavelengths
that can be combined into a single wavelength and still be detectable later (with accept-
able noise in TIA) the WDM capacity. Current technologies can comfortably support up
to a capacity of K = 16 [146].

TRANSMITTER STRUCTURE

To support optical inputs and WDM, EinsteinBarrier adds a transmitter circuit (1 in
Fig. 10.1) at the ECore level feeding the VMM/MMM pipeline, where the actual oPCM-
based core (2) resides as the VCore. Fig. 10.3 presents a high-level overview of the trans-
mitter circuit and components.

Transmitter

MR = Microresonator

MR

X1
X1

X1

CW

D
M

U
X

X2

X2

X2

VOA
VOA

M
U

X

VOA
VOA

VOA
VOA

VOA
VOA

X2

X1

X2X2X2X2

M
U

X

X1X1X1X1

VOA = Variable Optical Attenuator

CW = Continuous Wave

1
2

3
3

4

Figure 10.3: Transmitter overview.

Transmitter has four main components required for WDM: 1 a laser to provide a
single-wavelength continuous wave beam, 2 a microresonator-based optical frequency
comb to concentrate the optical power and excite new wavelengths based on non-
linearities, 3 DMUXs and MUXs for feeding individual waves to each variable optical
attenuator (VOA) and creating a single wave carrying information on multiple bits from
different vectors, and 4 VOAs to encode the information of each input into waves via
changing the amplitude. The colors and indices of X follow the same explanation as in
Fig. 10.2. In Fig. 10.3, the transmitter combines four 2-bit vectors (of different colors)
into a single vector of 2-bit width.

10

190 10. EINSTEINBARRIER

10.1.2. OPCM-BASED ECORE OVERHEADS
We show that using oPCM provides higher parallelism (simultaneous VMMs vs. single
VMM) for the same vector operations via WDM. However, this extra parallelism comes
at the cost of power for the additional components. Equation 10.1 presents the addi-
tional power needed for enabling WDM. Note that this additional power is for a com-
plete MMM in EinsteinBarrier, and for a fair comparison in Section 10.3.2 we report the
end-to-end effect of them on the application power consumption.

P Added = Ptr ansmi t ter +Pcr ossbar (10.1)

Assume a core with WDM capacity of K and crossbars of size M ×N . On the crossbar
side, the extra power is simply for processing and can be computed by Equation 10.2,
where N is # of TIAs, each of which consuming 2 mW.

Pcr ossbar = N ×2mW (10.2)

The transmitter, on the other hand, should account for all the components we dis-
cussed in Section 10.1.1. The power overhead of the transmitter is presented in Equa-
tion 10.3, where it accounts for the required power for the laser, modulators, and tun-
ing [457].

Ptot al = Pl aser +3×K MmW+ 3×K M +1

k
×45mW. (10.3)

Please refer to Section 10.2 for the numbers used in these equations in our evalua-
tions.

10.2. EVALUATION METHODOLOGY

Component Description

VCore size [146] 64×64
oDAC [458] 168 fJ, 0.0012 mm
Microresonator [458] 0.72 mW
TIA [459] 2 mW
EDFA Pump [460] 10W

amplifiedW

Table 10.1: Evaluated system configurations.

10.2.1. IMPLEMENTATIONS AND MODELS
We implement EinsteinBarrier as a heavily extended version of PUMA architecture and
compiler [111, 461]. This implementation2 accounts for (1) WDM capability of oPCM
cores, (2) new configurations related to integrated photonics, and (3) power and area
overheads introduced by extra components of oPCM cores, e.g., laser. For the photon-
ics components, we use our device-aware extended circuits [146, 457, 462, 463]. Our
ePCM-based crossbars are based on extensive characterization done in the EU project
MNEMOSENE project and previous works [146, 333], generously provided to us by the

2We intend to open-source our experimental setup upon acceptance.

10.3. EVALUATION RESULTS

10

191

partners. To evaluate additional CMOS circuitry of our design (e.g., such as MUXs), we
use Synopsys Design Compiler [331] and synthesize them in the target technology to ob-
tain their execution time, power, and area. We apply the prominent technology scaling
rules [332] to the configuration numbers of PUMA architecture to ensure all of our de-
sign components are based on the same technology node. Table 10.1 captures some of
the system parameters we use in our evaluations.

10.2.2. DESIGNS AND BASELINES

We evaluate the effectiveness of TacitMap and EinsteinBarrier separately using two dif-
ferent configurations: (1) ePCM-TacitMap that is TacitMap on electronic PCM-based
cores (this is the same configuration as the one in Chapter 9), and (2) EinsteinBarrier
that still uses TacitMap but utilizes oPCM-based VCores.

We use the design in [444], the SotA hardware accelerator for BNNs, as our baseline.
To eliminate the dependency on the type of device in the VMM-enabled crossbar, we also
use the same PCM configuration in ePCM-TacitMap for the baseline. This configuration
is denoted by Baseline-ePCM.

10.2.3. NETWORKS AND DATASETS

We evaluate all designs over 6 BNNs with various sizes from MlBench [76]. Table 9.1 in
Chapter 9 presents the topologies of these BNNs. The first three networks are convolu-
tional networks. But the last ones are multilayer perceptrons (MLPs) with various scales
from small to medium to large [76]. We use MNIST [449] and CIFAR-10 [450] for the
datasets.

Table 9.1 also presents the achieved accuracy for each BNN. The high accuracy sup-
ports the effectiveness of these networks for certain tasks with lower memory and stor-
age overhead and simpler operations discussed in Section 2.2.2. Note that neither Tac-
itMap nor EinsteinBarrier affect the accuracy of the target BNN and simply accelerates
them via handling their required XNOR+Popcount in parallel and more efficiently.

10.3. EVALUATION RESULTS

10.3.1. PERFORMANCE ANALYSIS

Fig. 10.4 presents the latency improvement of ePCM-TacitMap and EinsteinBarrier nor-
malized to SotA for the same underlying networks. The y-axis uses a log scale.

The following four key observations can be made:

• Both ePCM-TacitMap and EinsteinBarrier improve the latency over Baseline-ePCM
irrespective of the underlying network. On average, ePCM-TacitMap and Einstein-
Barrier improve the performance by ∼78× and ∼1205×, respectively (1). These are
because, unlike the Baseline-ePCM, ePCM-TacitMap and EinsteinBarrier parallelize
XNOR with Popcount and parallelize many XNOR+Popcounts via the proposed verti-
cal data mapping.

• The latency improvement is network-dependent and varies from BNN to BNN. Specif-
ically, the latency improvements over Baseline-ePCM vary from ∼22× to ∼3113.2× for

10

192 10. EINSTEINBARRIER

Results - Latency~78x ~1205x

~15x

OLD
~1205x

~14.5x

~78x

~2x

~3113x

~27x

1
2

~22x

2

1

3

1

4
~4x

4

~1205x

~14.5x

~78x

~3113x

~27x

1
2

~22x
2

1

3

4~4x
4

~1205x

~14.5x

~78x

~3113x

~27x

1

2~22x
2

1

3

4~4x
4

Figure 10.4: Normalized latency improvements over all networks.

EinsteinBarrier (2). This happens due to (1) the relation between the size of the hid-
den layers (binary layers) and the first and last layers and (2) available parallelism in
the XNOR+Popcount operations of each BNN. In evaluated BNNs, the larger the BNN
is, the more parallel XNOR+Popcount operations exist.

• EinsteinBarrier improves the latency on average ∼15× (3) with the exact data flow
compared to ePCM-TacitMap. This happens due to the extra parallelism dimension
enabled by WDM and the fast crossbar read of oPCM core. This is while the improve-
ment is still network-dependent. Unfortunately, the achieved improvement due to the
technology is still lower than the WDM capacity (i.e., K = 16). This is simply due to the
underlying network, and we expect that it goes higher for bigger networks. We leave
exploring this to future work.

• Baseline-ePCM does not always improve the latency over a Baseline-GPU. For exam-
ple, see 4 in Fig. 10.4, while Baseline-ePCM is ∼4× faster than Baseline-GPU for our
first CNN, it is ∼27× slower than Baseline-GPU for our MLP-L network. This happens
since in some networks, such as our MLP workloads, Baseline-ePCM has to serialize
XNOR+Popcount compared to Baseline-GPU, so much so that the benefits for reduc-
ing the data movement overhead diminish.

10.3.2. ENERGY ANALYSIS
Fig. 10.5 compares the energy consumption of Baseline-ePCM, ePCM-TacitMap, and
EinsteinBarrier. All numbers are normalized to the Baseline-ePCM energy consumption
of the same underlying network. The y-axis is in a log scale.

One can make the following two key observations:

• On average, ePCM-TacitMap increases the energy consumption compared to
Baseline-ePCM by ∼5.35×. This is because ePCM-TacitMap requires power-hungry
ADCs while baseline is using SAs (1).

10.4. DISCUSSIONS AND FUTURE WORKS

10

193

Results - Energy

~5.35x

~2.64x

~4.44x

~56%

~2.64x

~4.44x

OLD

~5.35x

~1.56x

~11.94x

1

2
~5.35x

~1.56x

~11.94x

1

2

Figure 10.5: Normalized energy consumption over all networks.

• On average, EinsteinBarrier improves the energy consumption by 56% and ∼11.94×
over Baseline-ePCM and ePCM-TacitMap, respectively (2). The improvement is
achieved because EinsteinBarrier requires a lower number of crossbar activations
by using the same crossbar, ADCs, and other peripheries but computing multiple
outputs at the same time.

10.4. DISCUSSIONS AND FUTURE WORKS
Multi-Level PCM Devices. In particular, this work uses PCMs in a binary mode, i.e.,
2 states per device. However, recent works [146, 464] show the potential for multi-bit
devices at the cost of increased noise. We leave the exploration of extending TacitMap
on multi-bit cells for future work.
Design Space Exploration of oPCM-based VCores. We currently evaluated EinsteinBar-
rier using fixed laser, array sizes, and other system configurations. This choice was made
due to our limited access to specs of different components (particularly those needed
in the transmitter), i.e., we do have only the power of the same components for a fixed
build size. A study that can freely explore this design space is encouraged but left for
future work.

10.5. CONCLUSION
This chapter proposes an CMOS-compatible oPCM-based hardware accelerator based
on integrated photonics principles, called EinsteinBarrier, to exploit the possible paral-
lelism with TacitMap (an efficient data flow for BNNs presented in Chapter 9) fully. Our
latency and energy evaluations suggest an enormous potential for oPCM-based acceler-
ators to improve performance in BNNs while improving their energy consumption. This
is the first step towards an optimized and efficient hardware realization for BNNs us-

10

194 10. EINSTEINBARRIER

ing these emerging technologies. Hence, our work encourages further investigations of
oPCM in the NN realm.

11
CONCLUSION

This dissertation demonstrates that CIM enhances the efficiency of various Genomics
pipelines and Machine Learning (ML) applications. Fundamentally, the goal of this
dissertation is twofold: (1) pinpoint and boost genomics and ML kernels with CIM,
and (2) investigate emerging (memory) technologies suited for CIM. We combine ana-
lytical methods with hands-on experiments, crafting innovative CIM architectures and
hardware/software co-designed strategies. These advancements enable faster and more
energy-conservative processing in numerous genomics pipelines and vision-centered
ML techniques. This chapter begins by highlighting the dissertation’s accomplishments
and the core findings of each chapter. It concludes by discussing potential avenues and
research directions for subsequent future research.

195

11

196 11. CONCLUSION

11.1. SUMMARY
Chapter 1, Introduction. This chapter underscores the significance of emerging systems
and architectures tailored for modern applications and their main features. First, we de-
scribe two exemplars of modern applications, namely genomics and Machine Learning.
We spotlight their distinctive attributes, such as the extensive data working sets, the swift
expansion of these already vast data sets, and their continuous urge for prompt analysis,
distinguishing them from traditional applications. Subsequently, we delve into tradi-
tional computing systems rooted in Von-Neumann architecture and CMOS technology,
emphasizing their inherent constraints that fuel the quest for novel computing concepts
and techniques. We then unfold (1) the Computation-In-Memory computing model and
(2) emerging memory technologies, explaining their potential to counteract current im-
pediments in our traditional computing systems. Further, we address the obstacles and
challenges researchers must navigate to fine-tune CIM designs utilizing these emerging
technologies, ensuring they are apt for modern application demands. Subsequently, we
outline the research directions of this thesis and articulate our core thesis statement.
Finally, we recapitulate this thesis’s contributions, outlining their relevance to the desig-
nated research domains.

Chapter 2, Background and State-of-the-Art. This chapter provides the necessary back-
ground and fundamentals of the Computation-In-Memory paradigm, emerging (mem-
ory) technologies, modern applications, and state-of-the-art designs using systems built
on CIM or emerging memory technologies. We use the details in this chapter to set the
stage for the next ones. First, we introduce CIM. We cover the terminologies used in CIM,
a classification for CIM designs, and what a CIM tile is. Next, we touch upon memristor
devices, often just called memristors. We highlight three main types: ReRAM, PCM, and
STT-MRAM, comparing them with traditional memory technologies and noting their im-
perfect aspects (termed non-idealities). We then look at common tile structures used
with memristors. Moving on, we discuss optical phase change memory, emphasizing its
advantages over other memristor-based CIM methods. We list some basic operations
that memristor-based CIM can handle. Then, we outline the design choices for CIM,
discussing homogenous and heterogeneous designs. Afterward, we dive into two criti-
cal modern applications: genomics and Machine Learning. We explain why their needs
align with what CIM and new (memory) technologies offer. We give examples of popu-
lar genomics pipelines and dive into a prominent category of ML tasks. Finally, we look
at top-notch state-of-the-art CIM designs and (simulation) tools, starting with general-
purpose ones and then narrowing down to more specialized accelerators.

Chapter 3, Swordfish: In-Memory Basecalling. This chapter focuses on basecalling, an
early step in the genomics pipelines, and explores how to make it faster using memristor-
based CIM. We introduce Swordfish, a new framework that helps us study how accu-
racy can drop because of device non-idealities and limitations of the memristor-based
CIM design for basecalling. With Swordfish, we can analyze these challenges and test
potential solutions to deal with them. Swordfish takes into account seven real-world
issues found in memristor-based tiles. Using different hardware/software co-designed
strategies from various techniques, Swordfish aims to maintain high accuracy. We tested
Swordfish using Bonito, a state-of-the-art (i.e., accurate and fast), freely available base-
caller. Our results show that our CIM design speeds up Bonito by around 25.7× and only

11.1. SUMMARY

11

197

has a small drop of 6.01% in accuracy.

Chapter 4, RattlesnakeJake: In-Memory Algorithm for Short-Read Pre-Alignment Fil-
tering. This chapter investigates a major (new) bottleneck in many genome analysis
pipelines: the pre-alignment filtering in short-read sequence alignment. Current meth-
ods move short-read sequences to processing units only to sometimes reject them, wast-
ing energy and time. To address this, we introduce RattlesnakeJake, a special algorithm
and its corresponding CIM hardware that makes pre-alignment filtering for short reads
faster and uses less energy. RattlesnakeJake offers a streamlined filtering method and
uses memristors and the CIM paradigm to carry out needed operations while saving on
data movement. RattlesnakeJake achieves an accuracy level on par with state-of-the-art
(SotA) level and significantly speeds up short-read sequence alignment. Depending on
the dataset, we have seen improvements of up to ∼7× and ∼80× compared to the best
alternatives on GPU and CPU, respectively.

Chapter 5, SieveMem: In-Memory Hardware Acceleration for Short-Read Pre-
Alignment Filtering. This chapter continues from the last, addressing the challenge of
data movement delays in pre-alignment filtering tools for short reads. We noticed that
current SotA accelerators for pre-alignment filtering are not well-suited for upcoming
filtering algorithms using the same operations while suffering from their data movement
overhead. To bridge this gap, we present SieveMem, an architecture designed around
the Computation-In-Memory approach and memristor devices. SieveMem operates
directly in memory, reducing unnecessary data movement. We craft SieveMem to be
adaptable for future short-read algorithms by supporting the shared kernels seen in
previous SotA pre-alignment filters. Our experiments show that SieveMem efficiently
supports over 47.6% of shared tasks across the top five filters. We also refine Rat-
tlesnakeJake discussed in Chapter 4 and introduce a filtering algorithm, BandedKrait,
that blends well with SieveMem. This combination of BandedKrait on SieveMem, which
we term Mem-BandedKrait, showcases a significant speed boost, reducing processing
times by up to 331.1× for two common operations. Lastly, when using BandedKrait
on SieveMem, the overall sequence alignment time for short reads improves, even
surpassing the best GPU accelerator by up to 91.4×.

Chapter 6, FilterFuse: In-Memory Hardware/Software Co-Designed for Long-Read
Pre-Alignment Filtering. This chapter builds on our previous observations in Chapter 4
and chap5, delving deeper into the challenge of efficiently analyzing long reads instead,
the industry’s new preference for a more precise and efficient DNA reconstruction.
Long-read alignment consumes much time, causing a lag, i.e., bottleneck, in ge-
nomics research reliant on this alignment. While pre-alignment filters boost short-read
alignments, their effectiveness dwindles with long reads. Moreover, even with these
pre-alignment filters, the full alignment process (both filtering and actual alignment)
for long reads takes long, with filtering accounting for a big chunk of this time. The
vast amounts of long-read data movement between storage and processors are a main
contributor to this overhead. Although filters discard many of these reads before
alignment, they come at a steep price in terms of time and energy. Addressing this, we
introduce LongGeneGuardian, an adapted pre-alignment filter explicitly designed for
long reads. To fully harness its potential, we present FilterFuse, an architecture running
LongGeneGuardian directly in memory. Using the Computation-In-Memory approach,

11

198 11. CONCLUSION

FilterFuse sidesteps data movement costs. Our tests reveal that FilterFuse trims the fil-
tering time by 120.47× when compared against the leading filter, SneakySnake. Further,
it reduces the total end-to-end alignment time for long reads by up to 49.14× compared
to pairing SneakySnake with a top-tier aligner and by 5207.63× against just the premier
aligner.

Chapter 7, Demeter: In-Memory Algorithm and Accelerator for Food Profiling. This
chapter explores ways to monitor food for safety and authenticity better. With advances
in sequencing technologies, acquiring the food sequences becomes cheaper, while food
profiling (the computational step) is becoming more time-consuming and the primary
computational bottleneck. The current state-of-the-art (SotA) food profiling tools are
expensive and unsuitable for quick monitoring. We aim to develop a more efficient pro-
filer to handle large data structures and minimize data transfers for real-time systems.
Therefore, we introduce Demeter, our new framework designed for food profiling. Using
hyperdimensional computing (HDC), Demeter can efficiently categorize and identify a
few species in food, addressing the large data structure challenges of previous food pro-
filers. For the data movement problem, we introduce Acc-Demeter, an in-memory hard-
ware system made with memristor devices. This setup makes Demeter faster and uses
less energy. When we put Demeter to the test against other SotA food profilers, Demeter
maintains a high accuracy level, staying within 2% of SotA food profilers. We synthesize
Acc-Demeter’s required hardware using UMC’s 65nm library by considering an accurate
PCM model based on silicon-based prototypes. Our hardware evaluations show that
Acc-Demeter significantly outperforms two leading profilers regarding speed and mem-
ory use. More specifically, Acc-Demeter achieves a (1) throughput improvement of 192×
and 724× and (2) memory reduction of 36× and 33× compared to Kraken2 and Meta-
Cache (2 state-of-the-art profilers), respectively, on typical food-related databases. Plus,
Acc-Demeter does not take up much extra space.

Chapter 8, KrakenOnMem: In-Memory Taxonomic Profiler. This chapter focuses on
creating a fast and energy-efficient hardware accelerator for taxonomic profiling, a cru-
cial first step in advanced metagenomic studies. While modern taxonomic profilers are
accurate, they are slow and consume a lot of energy, with the Table Lookup operation
being a primary bottleneck. To address this, we introduce TL-PIM, a hardware accelera-
tor that uses CIM to speed up Table Lookup. By combining the capabilities of emerging
memory technologies with intelligent data placement, TL-PIM enhances the efficiency
of Table Lookup. We then combine TL-PIM with a SotA profiler, Kraken2, creating a more
efficient hardware/software co-designed system named KrakenOnMem. Initial tests on
a small-scale silicon-based memory prototype are promising. Pir large=scale calibrated
simulations show that KrakenOnMem is much faster than Kraken2, providing an average
of 61.3% speedup compared to original Kraken2 for end-to-end profiling. KrakenOn-
Mem is also by orders of magnitude more energy-efficient than Kraken2, with only a tiny
increase in the area overhead of the entire system for the accelerator.

Chapter 9, LightSpeed: In-Memory Data Mapping for BNNs. This chapter shifts the
attention from the genomics field to the ML application domain, explicitly emphasizing
the acceleration of Binary Neural Networks (BNNs). Recent studies highlight BNNs as ef-
ficient solutions for task vision, notably for enhancing power and storage efficiency with-
out compromising accuracy. We identify significant data movement overheads by ana-

11.2. FUTURE RESEARCH DIRECTIONS

11

199

lyzing BNNs’ performance on conventional systems with GPUs. This opens an oppor-
tunity for a CIM design to address this overhead. However, earlier CIM approaches that
aim to reduce these overheads do not fully leverage the potential of the native hardware
features. Addressing this, we introduce an innovative data mapping, called TacitMap,
tailored for BNNs on CIM platforms. TacitMap is a highly parallel data mapping for BNN
operations on any CIM design capable of performing VMM, e.g., memristor-based cross-
bars such as electronic phase change memory-based (ePCM) or resistive random-access
memory-based (ReRAM) ones. TacitMap is designed with the conventional 1T1R mem-
ory crossbar structure in mind and is therefore compatible with many of the already
evolving crossbar architectures. We benchmark TacitMap against SotA workloads for as-
sorted BNNs through rigorous evaluations. The results of this chapter underscore that
our approach trims the latency by a remarkable ∼154× when compared to the prevailing
SotA data mappings for BNNs on CIM frameworks.

Chapter 10, EinsteinBarrier: oPCM-based In-Memory Acceleration of BNNs. This
chapter furthers our exploration of improving BNNs using CIM (discussed in Chapter 9)
into hardware acceleration. We introduce a new accelerator, EinsteinBarrier, which
leverages the unique features of optical phase change memory (oPCM). By integrating
TacitMap from Chapter 9 and capitalizing on the efficiency of oPCM, especially with
the help of wavelength division multiplexing (WDM), EinsteinBarrier achieves optimal
parallel processing. Our results reveal that EinsteinBarrier significantly cuts down
latency (up to ∼3113.2×) when paired with TacitMap and remains energy-efficient
(within 60%), staying close to the consumption levels of the SotA CIM baseline.

11.2. FUTURE RESEARCH DIRECTIONS
Although this dissertation focuses on enabling modern applications to overcome the
performance and energy barriers of traditional systems using the CIM paradigm and
emerging memory technologies, we believe that our works and the insights they pro-
duce are applicable in a more general sense and open up new research directions. This
section reviews promising directions for future work.

11.2.1. EXTENDING THE PROPOSED TECHNIQUES

Throughout this dissertation, we uncover techniques grounded in universal principles.
These methods fit the genomics realm and align with other (modern) applications.
Think about domains grappling with ever-growing data sets and crave swift and
energy-efficient processing; our strategies can also serve there. Now, consider emerging
memory technologies. Be it NAND Flash memory [465, 466], ferroelectric field-effect
transistor (FeFET), phase-change memory [278, 295, 467], magnetoresistive mem-
ory [468, 469], or racetrack memory (RM) [470], our approaches seem promising.
Therefore, we propose to cast a wide net, explore and adapt our insights to new arenas,
and identify and tackle the bottlenecks they present.

TO OTHER (MODERN) APPLICATIONS

While centered on CIM for specific aspects of genomics and select ML kernels, our de-
signs are built on foundational principles. Therefore, these principles are not limited to

11

200 11. CONCLUSION

the realms we explored. At their core, our proposals and designs address challenges re-
lated to processing large datasets quickly and efficiently. This characteristic is not unique
to only genomics or ML; many modern and even traditional applications share this trait.
Take, for example, database searches. These searches, especially those that involve ex-
tensive table lookups, can be time-consuming and computationally intensive. Our ap-
proach, exemplified by tools like TL-PIM from our KrakenOnMem project (see Chap-
ter 8), could potentially be adapted to streamline database operations, making them
faster and more energy-efficient. Then, there is the potential of oPCM (see Chapter 10).
Given its proven ability to accelerate multiple VMM operations with the help of WDM,
we can envision its applicability in larger computational settings. Neural networks, es-
pecially Deep Neural Networks, might benefit substantially from this technology. The
underlying operations and data flow in large-scale neural networks are similar to the
challenges we addressed in genomics. In conclusion, while our work offers solutions for
specific challenges, the underlying strategies have broader implications. We are excited
about the potential of adapting and expanding these methods to other domains. We be-
lieve that future researchers and developers can draw inspiration from our work, tweak
and refine the concepts, and devise innovative solutions for a plethora of applications
beyond what we have touched upon.

TO OTHER MEMORY TECHNOLOGIES
Our research provides valuable insights into the application of emerging memory tech-
nologies for enhancing the performance and energy efficiency of contemporary applica-
tions dealing with large data working sets. Although we delved into the specifics of par-
ticular technologies, like PCM in Demeter (referenced in Chapter 7) and ReRAM in Sieve-
Mem (highlighted in Chapter 5), the principles and methodologies we have discussed
have a broader reach. For instance, while we tailor our analysis to certain memory tech-
nologies, the underlying principles can potentially be expanded to encompass others
like STT-MRAM or RM. Both of these, similar in nature to the ones we have examined,
support akin logical operations, which suggests that they could benefit from strategies
akin to what we have proposed, especially within a CIM design context. Indeed, many
of these innovative memory technologies are still in their developmental phases, not yet
achieving full commercialization. But envisioning and mapping out efficient architec-
tures and designs for them is most important. As these technologies evolve, the research
landscape will inevitably shift toward resolving their challenges. In such a scenario, the
foundations we have laid in our work can act as a guiding light, assisting researchers
in navigating the intricate pathways of CIM designs utilizing these upcoming memory
technologies.

11.2.2. LEVERAGING AND CASCADING THE NEW-FOUND CIM DESIGNS IN

END-TO-END PIPELINES
Our research lays the groundwork for more efficient systems in genomics and ML by
leveraging CIM and emerging memory technologies. Therefore, future research can ex-
plore some potential avenues. In this section, we review several possibilities stemming
from our work. However, we believe that the true potential of CIM, combined with
emerging memory technologies, is vast, and as the field evolves, we will see unforeseen

11.2. FUTURE RESEARCH DIRECTIONS

11

201

applications and innovations that will undoubtedly surface.

CASCADED CIM ARCHITECTURES IN A GENOMICS PIPELINE
In this thesis, our primary focus has been on devising accelerators tailored for specific
stages of the genome analysis pipeline, as depicted in Fig. 2.13. These accelerators,
while impactful in isolation, might offer compounded benefits when integrated into a
cohesive system, acting in concert with each other across multiple steps of the pipeline.
An intriguing avenue for future research would be a holistic evaluation of the entire
pipeline, gauging the collective impact when all these accelerators are operational to-
gether. Such an analysis would not merely be a sum of individual performances; the in-
terplay between various accelerators, data flow intricacies, and synergistic effects could
bring about unforeseen enhancements or challenges. For instance, the data exchange
and communication between accelerators might be a significant aspect to address. How
do these accelerators communicate? What is the best strategy to ensure efficient data
transfer between them without bottlenecks? Furthermore, understanding the adoption
costs of integrating multiple accelerators is pivotal. This includes the overhead of estab-
lishing the connectivity, ensuring compatibility, and potentially reconfiguring existing
systems to accommodate these new additions. In essence, while our contributions pro-
vide valuable building blocks for improving individual pipeline stages, the next frontier
would be to architect a seamless, integrated system where these accelerators cohesively
drive the entire genomics pipeline to new heights of efficiency and performance.

COMBINED CIM ARCHITECTURES IN AN UNIFIED ACCELERATOR
Here, we have delved into various stages of the genomics pipeline, as illustrated in
Fig. 2.13. For each segment, we have designed distinct CIM accelerators to optimize
performance. Yet, a promising avenue for future studies is the integration of these
individual techniques into a singular, unified accelerator. By fusing these separate
techniques, we aim to harness the full power of in-memory computation and leverage
the capabilities of emerging memory technologies. The key challenge, and potential
advantage, lies in achieving this amalgamation without incurring significant area
overhead. This would not only optimize performance but also drive down associated
costs. In essence, while our current approach offers modular solutions tailored to each
pipeline step, the future beckons a more holistic approach, crafting a streamlined and
cost-effective accelerator that encapsulates the benefits of all individual techniques.

SYSTEM INTEGRATION OF ACCELERATORS WITH OUR APPLICATION-
SPECIFIC ECOSYSTEM
Our thesis delves deep into designing accelerators using CIM and novel memory tech-
nologies, targeting enhancements in modern genomics and ML applications. Yet, it is
crucial to note that these accelerators do not operate in a vacuum. Given that not all
steps are covered by these solutions, they must mesh seamlessly with many other com-
putational units and memory types. Consider sequencing machines, for instance. These
systems inherently possess heterogeneity, encompassing a diverse mix of memory tech-
nologies, such as DRAM and NAND flash memories and computational cores, including
CPU, GPU, and FPGA. This diversity exists because each component brings unique ad-

11

202 11. CONCLUSION

vantages, justifying the integration costs. Hence, a ripe avenue for subsequent studies
is to delve into the fluid integration of our accelerators within this intricate landscape.
Particularly, as mentioned in Section 11.2.2, understanding how a consolidated accel-
erator fits in becomes essential. Indeed, our current models adopt varying approaches,
oscillating between standalone accelerators or those that collaborate with a host, which
could range from a CPU to more specialized hardware like a GPU or FPGA. However, the
assumptions underlying these models might necessitate a re-evaluation. This would be
determined by the resources available in any heterogeneous environment our accelera-
tor(s) aim to integrate into. In essence, tailoring our solutions to the specificities of their
operational context remains a compelling challenge and opportunity for future explo-
rations.

11.2.3. NEW BOTTLENECKS AFTER EXPLOITING THE PROPOSED CIM DE-
SIGNS

Throughout this thesis, we unveil individual accelerators that dramatically speed up spe-
cific kernels within the genomics pipeline. It is essential to underscore that while the
macroscopic speedup for some tasks, like the taxonomic profiling discussed in Chap-
ter 8, might appear subtle, the speed boosts for micro-tasks, like Table Lookup, is mon-
umental. We recognize a pattern when we step back and envision the bigger picture.
As each bottleneck is alleviated by one of our proposals, another one naturally surfaces.
This domino effect is intrinsic to computer engineering, where enhancing one compo-
nent may shift the performance bottleneck to another. What does this imply for future
research? As we deploy our accelerators in full-fledged genome analysis systems, the
interplay of bottlenecks will evolve. The challenge then morphs from addressing indi-
vidual bottlenecks to understanding and rectifying the emergent bottlenecks that arise
from these interplays. This iterative approach of identifying, resolving, and then mov-
ing to the next bottleneck forms the crux of our field, making future endeavors in this
direction both exciting and imperative.

OTHER WORKS OF THE AUTHOR

In my time at TU Delft, I led nine successful projects. These projects shape this disserta-
tion. The earlier chapters detail these works. Chapter 11 captures our key findings and
suggests future, both immediate and distant, research paths.

During my graduate studies, I also worked on many research projects. I collabo-
rated with peers from the Quantum and Computer Engineering (QCE) department at
TU Delft. I also teamed up with the SAFARI group at ETH Zürich and the Chair for Com-
piler Construction (CCC) at TU Dresden. These projects taught me two things. First,
they sharpened my research thinking and critical mindset. Second, they expanded my
knowledge of computer architecture, especially about memory systems, in-memory pro-
cessing, and bioinformatics. I will discuss these projects in the next parts of this chapter.

During my first Ph.D. year, I teamed up with the SAFARI group for various projects.
My collaboration with Abdullah Giray Yağlıkçı led to BlockHammer [471]. BlockHammer
is a fresh approach to defense against RowHammer, a vulnerability in today DRAM.
BlockHammer outperforms previous defenses regarding protection, scalability, and
compatibility with standard DRAM chips. I explored system-level methods to reduce
energy use in VR and video streaming with Javad Haj-Yahya. We investigate several
system-level techniques, such as bypassing the host DRAM and extending the display
panel with a double remote frame buffer (DRFB) instead of DRAM’s double frame
buffer. As a result, we came up with BurstLink [472] that requires only minor tweaks
to the display processes of today’s mobile systems. With Rahul Bera, we crafted a
hardware prefetching system. We envision the prefetching as a task for a reinforcement
learning agent. Our outcome, Pythia [473], learns using various program features and
system-level feedback. We designed Pythia to be tweaked in silicon without hardware
changes, making it adaptable to diverse program needs.

In my second year, I delved deep into exploring the CIM paradigm, intertwining
both traditional and emergent memory technologies with genomics. Initially, I collab-
orated with João Dinis Ferreira from Avaloq, leading to the conception of pLUTo [115].
Uniquely positioned, pLUTo leverages conventional memory technology (DRAM) to ini-
tiate lookup table operations, opting for bulk memory reads, LUT queries, and com-
plex additional logic. Subsequently, my journey with Mahdi Zahedi from QCE involved a
meticulous review of the SotA memristor-centric CIM designs that facilitate many logical
and arithmetic functions. Our discourse unveils the intricate data flow within a generic
CIM-tile and the innate capacity to devise complex functions. Furthermore, we lay out a
spectrum of applications primed for in-memory execution and contemplate their gener-
alization facets. We then outline future pathways for CIM-based computational systems,
asserting that our design would illuminate challenges and uncharted research vectors
around a generalized CIM tile. Shifting the focus to STT-MRAMs, I partnered with IMEC
in Belgium and Abhairaj Singh at IBM Zürich. Our collective efforts birthed an adaptive
referencing modality tailored for CIM architectures, emphasizing boolean binary logi-

203

11

204 11. CONCLUSION

cal functions. Our method enhances both the sensing margin and the performance of
the operation [279]. Tailored for STT-MRAM devices constructed using a 28nm technol-
ogy node, we seamlessly integrate our model into two pivotal domains: BNNs and text
encryption and show the potential benefits of our design. Lastly, Minesh Patel from SA-
FARI at ETH Zürich and I draw from the rich tapestry of insights on DRAM devices and
their vulnerabilities that we learned during M.Sc. and Ph.D. journeys. We jointly advo-
cated for enhanced clarity into foundational DRAM reliability traits. This, we believed,
would arm system designers with the tools to refine and adapt standard DRAM chips,
catering to system-specific needs [474]. Our advocacy gains momentum through three
case studies, spotlighting DRAM refresh overhead reduction, latency enhancement, and
RowHammer defense design. Our discourse emphasizes a prevailing opacity that deters
system designers from embracing optimization. We cap our discussion with insight-
ful recommendations, championing transparency in prevailing and prospective DRAM-
centric systems.

In my last two years, things got busier and more insightful. First, I teamed up with
Can Firtina from SAFARI on two main projects. In our first project, we dug into ways
to find exact and close matches (short strings) useful for read mapping and read over-
lapping. Our solution was BLEND [475]. In BLEND, we simplified the task to just one
lookup for finding fuzzy matches (exact or very close matches). Using SimHash, BLEND
could give us similar hash values for similar sets without many clashes. In the second
project, we studied pHMMs and the Baum-Welch method. Our proposal, ApHMM [476],
was a HW/SW co-designed framework. ApHMM reduced the computational and power
use of the Baum-Welch method. We designed flexible hardware that can handle differ-
ent pHMM types, remember data patterns on-chip, and skip over repeated tasks using
a bloom filter. Next, Mahdi Zahedi from QCE and I embarked on three distinct projects.
Our first project investigated how memory can handle both signed and unsigned arith-
metic tasks. Taking cues from memristor crossbars, we suggested a two’s complement
approach for various arithmetic tasks [301]. We also crafted a streamlined digital layout
to support MMM in an energy and area-efficient manner. Our second project dove into
speeding up graph tasks using CIM, especially targeting sparse graphs. We proposed
SparseMEM [114]. SparseMEM works with a novel data representation for compressed
graph data and is supported by any memory technology. We also created an optimized
ReRAM-based version of SparseMem, built on our data layout, to handle popular graph
tasks. In our third shirt project, Mahdi Zahedi and I analyzed the energy and speed inef-
ficiencies in running BNNs on memristor-based CIM designs. Our solution to mitigate
these inefficiencies, BCIM [477], mimics ADC and the required following digital process-
ing by a SA while it allows simultaneous row activation to maximize resource utilization
on the crossbar and enhance the performance. We investigated the effect of the num-
ber of references for each SA. We also explored the distance between the values of the
references. Moreover, we examined how to use weights and activation data of BNNs
better to communicate less between layers, leading to more energy and performance ef-
ficiency. Lastly, extending my work on pre-alignment filtering, I collaborated with Asif
Ali Khan from TU Dresden. We developed a pre-alignment filter with racetrack memory
(RM) - another emerging memory tech. Our creation [478] designed a new data layout
to make the most out of RM and overcome its sequential access challenge that previous

11.2. FUTURE RESEARCH DIRECTIONS

11

205

in-memory filters based on RM face.

EPILOGUE

In this dissertation, we dive deep into how certain tasks from genomics and ML can run
on a CIM setup using new memory tech. We build a detailed understanding of our tar-
get applications’ performance and energy bottlenecks. We find that while CIM systems
and these new memory technologies promise better speeds, they come with challenges.
These challenges, like non-ideal behaviors of devices and the need for specific logic close
to or within memory, can make it hard for system designers to adopt them directly. This
is especially true if we want to set up the system with the right data flows, actions, and
connections to embrace CIM fully. Our work offers solutions to these challenges, focus-
ing on genomics tasks and BNNs. We hope our findings and tools pave the way for more
research. This research would ideally merge the advantages of CIM and new memory
tech, like memristors, with the reliable benefits of traditional systems and CMOS tech-
nology, which we believe remain vital for innovation and other tasks.

207

BIBLIOGRAPHY

[1] Geoffrey Ginsburg and Kathryn Phillips. Precision Medicine: From Science To Value. Health Affairs,
37:694–701, 05 2018.

[2] Zahra Aryan, Attila Szanto, Angeliki Pantazi, Tejaswini Reddi, Carolyn Rheinstein, Winslow Powers, Evan
Wilson, Rahul Deo, Shimul Chowdhury, Lisa Salz, David Dimmock, Shareef Nahas, Wendy Benson,
Stephen Kingsmore, Calum MacRae, and Dana Vuzman. Moving Genomics to Routine Care: An Ini-
tial Pilot in Acute Cardiovascular Disease. Circulation: Genomic and Precision Medicine, 13, 08 2020.

[3] Michelle M Clark, Amber Hildreth, Sergey Batalov, Yan Ding, Shimul Chowdhury, Kelly Watkins,
Katarzyna Ellsworth, Brandon Camp, Cyrielle I Kint, Calum Yacoubian, et al. Diagnosis of genetic dis-
eases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and in-
terpretation. Science translational medicine, 11(489):eaat6177, 2019.

[4] Stephen Kingsmore, Laurie Smith, Chris Kunard, Matthew Bainbridge, Serge Batalov, Wendy Ben-
son, Eric Blincow, Sara Caylor, Christina Chambers, Guillermo Angel, David Dimmock, Yan Ding,
Katarzyna Ellsworth, Annette Feigenbaum, Erwin Frise, Robert Green, Lucia Guidugli, Kevin Hall, Chris-
tian Hansen, and Thomas Defay. A genome sequencing system for universal newborn screening, diag-
nosis, and precision medicine for severe genetic diseases. The American Journal of Human Genetics,
109, 08 2022.

[5] Geoffrey Ginsburg and Huntington Willard. Genomic and Personalized Medicine: Foundations and
Applications. Translational research : the journal of laboratory and clinical medicine, 154:277–87, 12
2009.

[6] Joshua Bloom, Laila Sathe, Chetan Munugala, Eric Jones, Molly Gasperini, Nathan Lubock, Fauna Yarza,
Erin Thompson, Kyle Kovary, Jimin Park, Dawn Marquette, Stephania Kay, Mark Lucas, TreQuan Love,
A. Booeshaghi, Oliver Brandenberg, Longhua Guo, James Boocock, Myles Hochman, and Valerie Ar-
boleda. Massively scaled-up testing for SARS-CoV-2 RNA via next-generation sequencing of pooled and
barcoded nasal and saliva samples. Nature Biomedical Engineering, 5:1–9, 07 2021.

[7] Joshua Quick, Nicholas Loman, Sophie Duraffour, Jared Simpson, Ettore Severi, Lauren Cowley, Joseph
Bore, Raymond Koundouno, Gytis Dudas, Amy Mikhail, Nobila Ouedraogo, Babak Afrough, Amadou
Bah, Jonathan Baum, Beate Becker-Ziaja, Jan Boettcher, Mar Cabeza-Cabrerizo, Álvaro Camino-
Sánchez, Lisa Carter, and Miles Carroll. Real-time, portable genome sequencing for Ebola surveillance.
Nature, 530, 02 2016.

[8] Ramesh Yelagandula, Aleksandr Bykov, Alexander Vogt, Robert Heinen, Ezgi Özkan, Marcus Martin
Strobl, Juliane Christina Baar, Kristina Uzunova, Bence Hajdusits, Darja Kordic, Erna Suljić, Amina
Kurtovic-Kozaric, Sebija Izetbegovíc, Justine Schaeffer, Peter Hufnagl, Alexander Zoufaly, Tamara Seitz,
Manuela Födinger, Franz Allerberger, Alexander Stark, Luisa Cochella, and Ulrich Elling. Multiplexed
detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq. Nature Com-
munications, 12, 2021.

[9] Vien Le and Binh Diep. Selected Insights from Application of Whole Genome Sequencing for Outbreak
Investigations. Current opinion in critical care, 19, 07 2013.

[10] Vladyslav Nikolayevskyy, Katharina Kranzer, Stefan Niemann, and Francis Drobniewski. Whole Genome
Sequencing of M.tuberculosis for detection of recent transmission and tracing outbreaks: a systematic
review. Tuberculosis, 98, 03 2016.

[11] John Wooley, Adam Godzik, and Iddo Friedberg. A Primer on Metagenomics. PLoS computational biol-
ogy, 6:e1000667, 02 2010.

209

11

210 BIBLIOGRAPHY

[12] Can Alkan, Jeffrey Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Fereydoun Hor-
mozdiari, Jacob Kitzman, Carl Baker, Maika Malig, Onur Mutlu, Cenk Sahinalp, Richard Gibbs, and Evan
Eichler. Personalized Copy-Number and Segmental Duplication Maps using Next-Generation Sequenc-
ing. Nature genetics, 41:1061–7, 08 2009.

[13] Euan A Ashley. Towards precision medicine. Nature Reviews Genetics, 17(9):507–522, 2016.

[14] Lynda Chin, Jannik Andersen, and P Futreal. Cancer genomics: From discovery science to personalized
medicine. Nature medicine, 17:297–303, 03 2011.

[15] Taha Shahroodi, Stephan Wong, and Said Hamdioui. A Case for Genome Analysis Where Genomes Re-
side. In Embedded Computer Systems: Architectures, Modeling, and Simulation, pages 453–458. Springer
Nature Switzerland, 2023.

[16] Hans Ellegren. Genome sequencing and population genomics in non-model organisms. Trends in Ecol-
ogy & Evolution, 29(1):51–63, 2014.

[17] María Alvarez-Cubero, Maria Saiz, Belén Martínez-García, Sara Sayalero, Carmen Entrala, Jose
LORENTE, and Luis Martinez-Gonzalez. Next generation sequencing: an application in forensic sci-
ences? Annals of Human Biology, 44:1–12, 09 2017.

[18] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A Survey of the Usages of Deep Learning for Natural
Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2):604–624, 2021.

[19] Anamika Dhillon and Gyanendra Verma. Convolutional neural network: a review of models, method-
ologies and applications to object detection. Progress in Artificial Intelligence, 9, 12 2019.

[20] Wei Wang and Yujing Yang. Development of convolutional neural network and its application in image
classification: A survey. Optical Engineering, 58:1, 04 2019.

[21] Dengsheng Lu. A Survey of Image Classification Methods and Techniques for Improving Classification
Performance. International Journal of Remote Sensing, 28:823 – 870, 03 2007.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Convolu-
tional Neural Networks. Commun. ACM, 60(6):84–90, may 2017.

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 11 2013.

[24] Ross Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV), pages
1440–1448, 2015.

[25] G. V. RESEARCH. Metagenomics market size, share and trends analysis report by product (sequencing
and data analytics), by technology (sequencing, function), by application (environmental), and segment
forecasts, 2018 - 2025., 2017.

[26] Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP).
https://www.genome.gov/sequencingcostsdata.

[27] Barba, M, Czosnek, H and Hadidi, A. Cost in US Dollars per Raw Megabase of DNA Sequence. https:
//www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data.

[28] Pablo Villalobos and Anson Ho. Trends in training dataset sizes, 2022. Accessed: 2023-6-7.

[29] David A Patterson and John L Hennessy. Computer organization and design ARM edition: the hardware
software interface. Morgan kaufmann, 2016.

[30] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of Computing, 15(4):27–
75, 1993.

https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

BIBLIOGRAPHY

11

211

[31] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

[32] Nor Zaidi Haron and Said Hamdioui. Why is CMOS scaling coming to an END? In 2008 3rd International
Design and Test Workshop, pages 98–103, 2008.

[33] Gordon E. Moore. Cramming more components onto integrated circuits, Reprinted from Electronics,
volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35,
2006.

[34] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–
268, 1974.

[35] Sriseshan Srikanth, Lavanya Subramanian, Sreenivas Subramoney, Thomas M. Conte, and Hong Wang.
Tackling Memory Access Latency through DRAM Row Management. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’18, page 137–147, New York, NY, USA, 2018. Association for
Computing Machinery.

[36] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu. Memory Power Man-
agement via Dynamic Voltage/Frequency Scaling. In Proceedings of the 8th ACM International Confer-
ence on Autonomic Computing, ICAC ’11, page 31–40, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[37] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Rahatekar, Lihu Rappoport,
Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside 6th-Generation Intel Core: New Microarchitecture
Code-Named Skylake. IEEE Micro, 37(2):52–62, 2017.

[38] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. Dark
Silicon and the End of Multicore Scaling. In Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA ’11, page 365–376, New York, NY, USA, 2011. Association for Computing
Machinery.

[39] David Yeager. Dynimize: The Big Picture. Dynimize, 2020.

[40] Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson, and Adolfy Hoisie. Quantifying the energy cost of
data movement in scientific applications. In 2013 IEEE International Symposium on Workload Charac-
terization (IISWC), pages 56–65, 2013.

[41] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data movement for emerg-
ing smart phone workloads on mobile platforms. In 2014 IEEE International Symposium on Workload
Characterization (IISWC), pages 171–180, 2014.

[42] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur,
Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu. Google Work-
loads for Consumer Devices: Mitigating Data Movement Bottlenecks. Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Systems,
53(2):316–331, mar 2018.

[43] W.H. Kautz. Cellular Logic-in-Memory Arrays. IEEE Transactions on Computers, C-18(8):719–727, 1969.

[44] Harold S. Stone. A Logic-in-Memory Computer. IEEE Transactions on Computers, C-19(1):73–78, 1970.

[45] David Elliot Shaw, Salvatore J. Stolfo, Hussein Ibrahim, Bruce Hillyer, Gio Wiederhold, and JA Andrews.
The NON-VON database machine: A brief overview. IEEE Database Eng. Bull., 4(2):41–52, 1981.

[46] D.G. Elliott, W.M. Snelgrove, and M. Stumm. Computational Ram: A Memory-simd Hybrid And Its Ap-
plication To Dsp. In 1992 Proceedings of the IEEE Custom Integrated Circuits Conference, pages 30.6.1–
30.6.4, 1992.

11

212 BIBLIOGRAPHY

[47] Peter M. Kogge. EXECUBE-A New Architecture for Scaleable MPPs. In 1994 International Conference on
Parallel Processing Vol. 1, volume 1, pages 77–84, 1994.

[48] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the Terasys massively parallel PIM array.
Computer, 28(4):23–31, 1995.

[49] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. A
case for intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[50] M. Oskin, F.T. Chong, and T. Sherwood. Active Pages: a computation model for intelligent memory.
In Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235),
pages 192–203, 1998.

[51] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik, and J. Torrellas.
FlexRAM: toward an advanced intelligent memory system. In Proceedings 1999 IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040), pages 192–201,
1999.

[52] Basilio B. Fraguela, Jose Renau, Paul Feautrier, David Padua, and Josep Torrellas. Programming the
FlexRAM Parallel Intelligent Memory System. In Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’03, page 49–60, New York, NY, USA, 2003.
Association for Computing Machinery.

[53] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss, John Granacki, Jaewook
Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and Gokhan Daglikoca. The Architecture of the DIVA
Processing-in-Memory Chip. In Proceedings of the 16th International Conference on Supercomputing,
ICS ’02, page 14–25, New York, NY, USA, 2002. Association for Computing Machinery.

[54] K. Mai, T. Paaske, N. Jayasena, R. Ho, W.J. Dally, and M. Horowitz. Smart Memories: a modular recon-
figurable architecture. In Proceedings of 27th International Symposium on Computer Architecture (IEEE
Cat. No.RS00201), pages 161–171, 2000.

[55] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A Case for Intelligent Disks (IDISKs).
SIGMOD Rec., 27(3):42–52, sep 1998.

[56] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming Model, Algorithms and Eval-
uation. In Proceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VIII, page 81–91, New York, NY, USA, 1998. Association for
Computing Machinery.

[57] Liu and Jino. Intelligent Magnetic Bubble Memories and Their Applications in Data Base Management
Systems. IEEE Transactions on Computers, C-28(12):888–906, 1979.

[58] Doty, Greenblatt, and Stanley Y.W. Su. Magnetic Bubble Memory Architectures for Supporting Associa-
tive Searching of Relational Databases. IEEE Transactions on Computers, C-29(11):957–970, 1980.

[59] Bongiovanni and Luccio. Maintaining Sorted Files in a Magnetic Bubble Memory. IEEE Transactions on
Computers, C-29(10):855–863, 1980.

[60] Yong-Bin Kim and T. Chen. Assessing merged DRAM/logic technology. In 1996 IEEE International Sym-
posium on Circuits and Systems (ISCAS), volume 4, pages 133–136 vol.4, 1996.

[61] Joseph Gebis. Trends in merged DRAM-logic computing. In Sunny Bains and Leo J. Irakliotis, editors,
Critical Technologies for the Future of Computing, volume 4109, pages 198 – 205. International Society
for Optics and Photonics, SPIE, 2000.

[62] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim,
Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Norion,
Allison Scibisz, Sreenivas Subramoneyon, Can Alkan, Saugata Ghose, and Onur Mutlu. GenASM: A High-
Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence
Analysis. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
951–966, 2020.

BIBLIOGRAPHY

11

213

[63] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In 2015 ACM/IEEE 42nd Annual International Sym-
posium on Computer Architecture (ISCA), pages 105–117, 2015.

[64] Qiuling Zhu, Tobias Graf, H. Ekin Sumbul, Larry Pileggi, and Franz Franchetti. Accelerating sparse
matrix-matrix multiplication with 3D-stacked logic-in-memory hardware. In 2013 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages 1–6, 2013.

[65] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalakshmi Srinivasan, Alper
Buyuktosunoglu, Al Davis, and Feifei Li. NDC: Analyzing the impact of 3D-stacked memory+logic de-
vices on MapReduce workloads. In 2014 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 190–200, 2014.

[66] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph Greathouse, Lifan Xu, and Michael
Ignatowski. TOP-PIM: Throughput-oriented programmable processing in memory. In HPDC 2014 -
Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Com-
puting, 06 2014.

[67] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Kim. NDA: Near-DRAM accelera-
tion architecture leveraging commodity DRAM devices and standard memory modules. 2015 IEEE 21st
International Symposium on High Performance Computer Architecture, HPCA 2015, pages 283–295, 03
2015.

[68] Gabriel H Loh, Nuwan Jayasena, Mark Oskin, Mark Nutter, David Roberts, Mitesh Meswani, Dong Ping
Zhang, and Mike Ignatowski. A processing in memory taxonomy and a case for studying fixed-function
pim. In Workshop on Near-Data Processing (WoNDP), pages 1–4, 2013.

[69] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita Vi-
jaykumar, Onur Mutlu, and Stephen Keckler. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems. ACM SIGARCH Computer Architecture
News, 44:204–216, 06 2016.

[70] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, and Chita R. Das. Scheduling Techniques for GPU Architectures with Processing-In-Memory Ca-
pabilities. In Proceedings of the 2016 International Conference on Parallel Architectures and Compilation,
PACT ’16, page 31–44, New York, NY, USA, 2016. Association for Computing Machinery.

[71] Berkin Akin, Franz Franchetti, and James C. Hoe. Data Reorganization in Memory Using 3D-Stacked
DRAM. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, ISCA
’15, page 131–143, New York, NY, USA, 2015. Association for Computing Machinery.

[72] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin Chang, Amirali Boroumand, Saugata Ghose, and
Onur Mutlu. Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evaluation.
In 2016 IEEE 34th International Conference on Computer Design (ICCD), pages 25–32, 10 2016.

[73] Aurelia Augusta and Stratos Idreos. JAFAR: Near-Data Processing for Databases. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, page 2069–2070,
New York, NY, USA, 2015. Association for Computing Machinery.

[74] Joo Lee, Jaewoong Sim, and Hyesoon Kim. BSSync: Processing Near Memory for Machine Learning
Workloads with Bounded Staleness Consistency Models. In 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 241–252, 10 2015.

[75] Mingyu Gao and Christoforos E. Kozyrakis. HRL: Efficient and flexible reconfigurable logic for near-data
processing. 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 126–137, 2016.

[76] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main
Memory. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
pages 27–39, 2016.

11

214 BIBLIOGRAPHY

[77] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang,
Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. Biscuit: A Frame-
work for near-Data Processing of Big Data Workloads. In Proceedings of the 43rd International Sympo-
sium on Computer Architecture, ISCA ’16, page 153–165. IEEE Press, 2016.

[78] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. Neurocube:
A Programmable Digital Neuromorphic Architecture with High-Density 3D Memory. In Proceedings of
the 43rd International Symposium on Computer Architecture, ISCA ’16, page 380–392. IEEE Press, 2016.

[79] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. Chameleon: Versatile
and Practical near-DRAM Acceleration Architecture for Large Memory Systems. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-49. IEEE Press, 2016.

[80] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spa-
tial Locality of Non-Unit Strided Accesses. In Proceedings of the 48th International Symposium on Mi-
croarchitecture, MICRO-48, page 267–280, New York, NY, USA, 2015. Association for Computing Machin-
ery.

[81] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent Data Structures for Near-Memory
Computing. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’17, page 235–245, New York, NY, USA, 2017. Association for Computing Machinery.

[82] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical near-data processing for in-memory ana-
lytics frameworks. In 2015 International Conference on Parallel Architecture and Compilation (PACT),
pages 113–124, 10 2015.

[83] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Low, Larry Pileggi, James Hoe, and
Franz Franchetti. 3D-Stacked Memory-Side Acceleration: Accelerator and System Design. In WoNDP,
12 2014.

[84] Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier Sallenave, Carlo Bertolli, Samuel Antao,
Jose Brunheroto, Yoonho Park, Kevin O’Brien, and Ravi Nair. Data Access Optimization in a Processing-
in-Memory System. In Proceedings of the 12th ACM International Conference on Computing Frontiers,
CF ’15, New York, NY, USA, 2015. Association for Computing Machinery.

[85] Amir Morad, Leonid Yavits, and Ran Ginosar. GP-SIMD Processing-in-Memory. ACM Trans. Archit. Code
Optim., 11(4), jan 2015.

[86] Syed Minhaj Hassan, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. Near Data Processing: Impact
and Optimization of 3D Memory System Architecture on the Uncore. In Proceedings of the 2015 Interna-
tional Symposium on Memory Systems, MEMSYS ’15, page 11–21, New York, NY, USA, 2015. Association
for Computing Machinery.

[87] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

[88] Mingu Kang, Min-Sun Keel, Naresh Shanbhag, Sean Eilert, and Ken Curewitz. An energy-efficient VLSI
architecture for pattern recognition via deep embedding of computation in SRAM. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8326–8330, 05 2014.

[89] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetu-
parna Das. Compute Caches. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 481–492, 2017.

[90] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao
Hu, R. Stanley Williams, and Vivek Srikumar. ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 14–26, 2016.

BIBLIOGRAPHY

11

215

[91] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhi-
menko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. RowClone:
Fast and Energy-Efficient in-DRAM Bulk Data Copy and Initialization. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46, page 185–197, New York, NY, USA,
2013. Association for Computing Machinery.

[92] Kevin Chang, Prashant Nair, Donghyuk Lee, Saugata Ghose, Moinuddin Qureshi, and Onur Mutlu. Low-
Cost Inter-Linked Subarrays (LISA): Enabling fast inter-subarray data movement in DRAM. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 568–580, 03 2016.

[93] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM Technology. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, page 273–287, New York, NY,
USA, 2017. Association for Computing Machinery.

[94] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. GraphPIM: Enabling Instruction-Level PIM Of-
floading in Graph Computing Frameworks. In 2017 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 457–468, Los Alamitos, CA, USA, feb 2017. IEEE Computer Society.

[95] Jeremie Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan
Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu. GRIM-Filter: Fast Seed Location Filtering in DNA
Read Mapping Using Processing-in-Memory Technologies. BMC Genomics, 19, 05 2018.

[96] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. DRISA:
A DRAM-Based Reconfigurable In-Situ Accelerator. In Proceedings of the 50th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-50 ’17, page 288–301, New York, NY, USA, 2017.
Association for Computing Machinery.

[97] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. Toward standardized near-data
processing with unrestricted data placement for gpus. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[98] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub
Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana
Stefan, Juan Gómez-Luna, Jakub Golinowski, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Giro-
lamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler. SISA: Set-Centric Instruction
Set Architecture for Graph Mining on Processing-in-Memory Systems. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 282–297, 10 2021.

[99] Shuangchen Li, Alvin Oliver Glova, Xing Hu, Peng Gu, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng,
Bob Brennan, and Yuan Xie. SCOPE: A Stochastic Computing Engine for DRAM-Based in-Situ Accelera-
tor. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
51, page 696–709. IEEE Press, 2018.

[100] Sayeef Salahuddin, Kai Ni, and Suman Datta. The era of hyper-scaling in electronics. Nature Electronics,
1(8):442–450, 2018.

[101] Fabian Oboril, Rajendra Bishnoi, Mojtaba Ebrahimi, and Mehdi B. Tahoori. Evaluation of Hybrid Mem-
ory Technologies Using SOT-MRAM for On-Chip Cache Hierarchy. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(3):367–380, 2015.

[102] Shimeng Yu and Pai-Yu Chen. Emerging Memory Technologies: Recent Trends and Prospects. IEEE
Solid-State Circuits Magazine, 8(2):43–56, 2016.

[103] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and D. Ielmini. Understanding switch-
ing variability and random telegraph noise in resistive RAM. In 2013 IEEE International Electron Devices
Meeting, pages 31.5.1–31.5.4, 2013.

11

216 BIBLIOGRAPHY

[104] Alexander Hardtdegen, Camilla La Torre, Felix Cüppers, Stephan Menzel, Rainer Waser, and Susanne
Hoffmann-Eifert. Improved switching stability and the effect of an internal series resistor in hfo2/tiox
bilayer reram cells. IEEE Transactions on Electron Devices, 65(8):3229–3236, 2018.

[105] Tifenn Hirtzlin, Marc Bocquet, Bogdan Penkovsky, Jacques-Olivier Klein, Etienne Nowak, Elisa Vianello,
Jean-Michel Portal, and Damien Querlioz. Digital Biologically Plausible Implementation of Binarized
Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays. Frontiers in Neuroscience,
13, 2020.

[106] Lei Xie, H.A. Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil, Mohammad AlFailakawi, and
Said Hamdioui. Scouting Logic: A Novel Memristor-Based Logic Design for Resistive Computing. In
2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 176–181, 2017.

[107] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam
Kolodny, and Uri C. Weiser. MAGIC—Memristor-Aided Logic. IEEE Transactions on Circuits and Systems
II: Express Briefs, 61(11):895–899, 2014.

[108] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R. Stanley Williams,
Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. PUMA:
A Programmable Ultra-Efficient Memristor-Based Accelerator for Machine Learning Inference. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, page 715–731, New York, NY, USA, 2019. Association for
Computing Machinery.

[109] Gokul Krishnan, Sumit K. Mandal, Chaitali Chakrabarti, Jae-Sun Seo, Umit Y. Ogras, and Yu Cao. Im-
pact of On-Chip Interconnect on In-Memory Acceleration of Deep Neural Networks. J. Emerg. Technol.
Comput. Syst., 18(2), dec 2022.

[110] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Xiling Yin, Wenqin Huangfu, Pai-Yu Chen, Shimeng Yu,
Yu Cao, Yu Wang, Yuan Xie, and Huazhong Yang. MNSIM: Simulation platform for memristor-based
neuromorphic computing system. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 469–474, 2016.

[111] Ankit, Aayush. PUMA Compiler. https://github.com/Aayush-Ankit/puma-compiler, 2019.

[112] Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk Corporaal, Tobias Grosser, Kan-
ishkan Vadivel, and Nicolas Vasilache. Tc-cim: Empowering tensor comprehensions for computing-in-
memory. In IMPACT 2020 workshop (associated with HIPEAC 2020), 2020. Informal proceedings.

[113] Mahdi Zahedi, Muah Abu Lebdeh, Christopher Bengel, Dirk Wouters, Stephan Menzel, Manuel Le Gallo,
Abu Sebastian, Stephan Wong, and Said Hamdioui. MNEMOSENE: Tile Architecture and Simulator for
Memristor-Based Computation-in-Memory. J. Emerg. Technol. Comput. Syst., 18(3), jan 2022.

[114] Mahdi Zahedi, Geert Custers, Taha Shahroodi, Georgi Gaydadjiev, Stephan Wong, and Said Hamdioui.
Sparsemem: Energy-efficient design for in-memory sparse-based graph processing. In Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE 2023, Antwerp, Belgium, April 17-19, 2023, pages
1–6. IEEE, 2023.

[115] João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Mohammad
Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu. pLUTo:
Enabling Massively Parallel Computation in DRAM via Lookup Tables. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 900–919, 2022.

[116] Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina, Stephan
Wong, Onur Mutlu, and Said Hamdioui. Swordfish: A Framework for Evaluating Deep Neural
Network-based Basecalling using Computation-In-Memory with Non-Ideal Memristors. In 56rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2023.

https://github.com/Aayush-Ankit/puma-compiler

BIBLIOGRAPHY

11

217

[117] Taha Shahroodi, Michael Miao, Mahdi Zahedi, Stephan Wong, and Said Hamdioui. RattlesnakeJake: A
Fast and Accurate Pre-alignment Filter Suitable for Computation-in-Memory. In Embedded Computer
Systems: Architectures, Modeling, and Simulation, pages 209–221. Springer Nature Switzerland, 2023.

[118] Taha Shahroodi, Michael Miao, Mahdi Zahedi, Stephan Wong, and Said Hamdioui. SieveMem: A
Computation-in-Memory Architecture for Fast and Accurate Pre-Alignment. In 2023 IEEE 34th Interna-
tional Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 156–164.
IEEE, 2023.

[119] Taha Shahroodi, Michael Miao, Stephan Wong, and Said Hamdioui. FilterFuse: A Computation-In-
Memory Architecture for High-Performance Long-Read Pre-Alignment Filtering. In Review Process of
2024 ACM/IEEE 51th Annual International Symposium on Computer Architecture (ISCA), 2024.

[120] Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong, Onur Mutlu, and Said
Hamdioui. Demeter: A Fast and Energy-Efficient Food Profiler Using Hyperdimensional Computing in
Memory. IEEE Access, 10:82493–82510, 2022.

[121] Taha Shahroodi, Mahdi Zahedi, Abhairaj Singh, Stephan Wong, and Said Hamdioui. KrakenOnMem:
A Memristor-Augmented HW/SW Framework for Taxonomic Profiling. In Proceedings of the 36th ACM
International Conference on Supercomputing, ICS ’22, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[122] Taha Shahroodi, Raphael Cardoso, Mahdi Zahedi, Stephan Wong, Alberto Bosio, Ian O’Connor, and Said
Hamdioui. Lightspeed Binary Neural Networks using Optical Phase-Change Materials. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–2. IEEE, 2023.

[123] Taha Shahroodi, Raphael Cardoso, Stephan Wong, Alberto Bosio, Ian O’Connor, and Said Hamdioui.
High-Performance Data Mapping for BNNs on PCM-based Integrated Photonics. In 2024 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE, 2024.

[124] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data movement for emerg-
ing smart phone workloads on mobile platforms. In 2014 IEEE International Symposium on Workload
Characterization (IISWC), pages 171–180, 2014.

[125] Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson, and Adolfy Hoisie. Quantifying the energy cost of
data movement in scientific applications. In 2013 IEEE International Symposium on Workload Charac-
terization (IISWC), pages 56–65, 2013.

[126] Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui, and Francky
Catthoor. A Classification of Memory-Centric Computing. J. Emerg. Technol. Comput. Syst., 16(2), jan
2020.

[127] Mahdi Zahedi, Remon van Duijnen, Stephan Wong, and Said Hamdioui. Tile Architecture and Hardware
Implementation for Computation-in-Memory. In 2021 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 108–113, 2021.

[128] Mahdi Zahedi, Taha Shahroodi, Geert Custers, Abhairaj Singh, Stephan Wong, and Said Hamdioui. Sys-
tem Design for Computation-in-Memory: From Primitive to Complex Functions. 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6, 2022.

[129] James M Tour and Tao He. The fourth element. Nature, 453(7191):42–43, 2008.

[130] Jamie Beckett. Demystifying the memristor: Proof of fourth basic circuit element could transform com-
puting. HPL. HP. COM, 2008.

[131] Dirk Wouters. Resistive switching materials and devices for future memory applications. Tutorial on 43
rd IEEE Semiconductor Interface Specialists Conference (SISC), San Diego, 5, 2012.

[132] Heba Abunahla, Baker Mohammad, Maguy Abi jaoudé, and Mahmoud Al-Qutayri. Novel hafnium ox-
ide memristor device: Switching behaviour and size effect. In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–4, 05 2017.

11

218 BIBLIOGRAPHY

[133] Abu Sebastian, Manuel Gallo, Riduan Khaddam-Aljameh, and Evangelos Eleftheriou. Memory devices
and applications for in-memory computing. Nature Nanotechnology, 15, 03 2020.

[134] Lizhou Wu, Siddharth Rao, Mottaqiallah Taouil, Erik Jan Marinissen, Gouri Sankar Kar, and Said Ham-
dioui. Characterization and Fault Modeling of Intermediate State Defects in STT-MRAM. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1717–1722, 2021.

[135] Sayeef Salahuddin, Kai Ni, and Suman Datta. The era of hyper-scaling in electronics. Nature Electronics,
1, 08 2018.

[136] Fabian Oboril, Rajendra Bishnoi, Mojtaba Ebrahimi, and Mehdi B. Tahoori. Evaluation of Hybrid Mem-
ory Technologies Using SOT-MRAM for On-Chip Cache Hierarchy. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(3):367–380, 2015.

[137] Pai-Yu Chen and Shimeng Yu. Technological Benchmark of Analog Synaptic Devices for Neuroinspired
Architectures. IEEE Design & Test, 36(3):31–38, 2019.

[138] Xiaoxuan Yang, Brady Taylor, Ailong Wu, Yiran Chen, and Leon O. Chua. Research Progress on Memris-
tor: From Synapses to Computing Systems. IEEE Transactions on Circuits and Systems I: Regular Papers,
69(5):1845–1857, 2022.

[139] Shubham Jain, Abhronil Sengupta, Kaushik Roy, and Anand Raghunathan. RxNN: A Framework for
Evaluating Deep Neural Networks on Resistive Crossbars. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 40(2):326–338, 2021.

[140] YeonJoo Jeong, Mohammed A. Zidan, and Wei D. Lu. Parasitic Effect Analysis in Memristor-Array-Based
Neuromorphic Systems. IEEE Transactions on Nanotechnology, 17(1):184–193, 2018.

[141] Yaojun Zhang, Xiaobin Wang, Hai Li, and Yiran Chen. STT-RAM Cell Optimization Considering MTJ and
CMOS Variations. IEEE Transactions on Magnetics, 47(10):2962–2965, 2011.

[142] Nicola Peserico, Bhavin J. Shastri, and Volker J. Sorger. Integrated Photonic Tensor Processing Unit for a
Matrix Multiply: a Review, 2022.

[143] Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi, and Aydogan Oz-
can. All-optical machine learning using diffractive deep neural networks. Science, 361(6406):1004–1008,
2018.

[144] Alexander N. Tait. Quantifying Power in Silicon Photonic Neural Networks. Phys. Rev. Appl., 17:054029,
May 2022.

[145] Raphael Cardoso, Clément Zrounba, Mohab Abdalla, Paul Jimenez, Mauricio Gomes de Queiroz, Benoît
Charbonnier, Fabio Pavanello, Ian O’Connor, and Sébastien Le Beux. Towards a Robust Multiply-
Accumulate Cell in Photonics using Phase-Change Materials. In 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1–2, 2023.

[146] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring, Xuan Li, Maik Stappers,
Manuel Le Gallo, Xin Fu, Anton Lukashchuk, Arslan Sajid Raja, et al. Parallel convolutional process-
ing using an integrated photonic tensor core. Nature, 589(7840):52–58, 2021.

[147] David A. B. Miller. Attojoule Optoelectronics for Low-Energy Information Processing and Communica-
tions. Journal of Lightwave Technology, 35(3):346–396, 2017.

[148] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos, Venkatraman Govindaraju,
Venkatanathan Varadarajan, Cagri Balkesen, Georgios Giannikis, Charlie Roth, Nipun Agarwal, and Eric
Sedlar. A Many-Core Architecture for in-Memory Data Processing. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, page 245–258, New York, NY,
USA, 2017. Association for Computing Machinery.

BIBLIOGRAPHY

11

219

[149] Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Mar-
tino Dazzi, Bipin Rajendran, Abu Sebastian, and Evangelos Eleftheriou. Accurate deep neural network
inference using computational phase-change memory. Nature Communications, 11, 2019.

[150] Tae-Youl Yang, Il-Mok Park, Byoung-Joon Kim, and Young-Chang Joo. Atomic migration in molten and
crystalline Ge2Sb2Te5 under high electric field. Applied Physics Letters, 95(3), 07 2009. 032104.

[151] Wabe Koelmans, Abu Sebastian, Vara Jonnalagadda, Daniel Krebs, Laurent Dellmann, and Evangelos
Eleftheriou. Projected phase-change memory devices. Nature communications, 6:8181, 09 2015.

[152] G. Snider. Computing with hysteretic resistor crossbars. Applied Physics A, 80:1165–1172, 03 2005.

[153] Muath Lebdeh, Uljana Reinsalu, Hoang Anh Du Nguyen, Stephan Wong, and Said Hamdioui. Mem-
ristive Device Based Circuits for Computation-in-Memory Architectures. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 05 2019.

[154] Pierre-Emmanuel Gaillardon, Luca Amarú, Anne Siemon, Eike Linn, Rainer Waser, Anupam Chattopad-
hyay, and Giovanni De Micheli. The Programmable Logic-in-Memory (PLiM) Computer. In Proceedings
of the 2016 Conference on Design, Automation & Test in Europe, DATE ’16, page 427–432, San Jose, CA,
USA, 2016. EDA Consortium.

[155] Catherine Graves, Can Li, Xia Sheng, Darrin Miller, Jim Ignowski, Lennie Kiyama, and John Paul Stra-
chan. In-Memory Computing with Memristor Content Addressable Memories for Pattern Matching.
Advanced Materials, 32:2003437, 08 2020.

[156] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-Memory Data Parallel Processor. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, page 1–14, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[157] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined reram-based accelerator
for deep learning. In 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 541–552, 2017.

[158] Saransh Gupta, Mohsen Imani, and Tajana Rosing. FELIX: Fast and Energy-Efficient Logic in Memory.
In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–7, 2018.

[159] Nima TaheriNejad. SIXOR: Single-Cycle In-Memristor XOR. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 29(5):925–935, 2021.

[160] Yichen Shen, Nicholas C. Harris, Scott Skirlo, Dirk Englund, and Marin Soljačić. Deep learning with
coherent nanophotonic circuits. In 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM),
pages 189–190, 2017.

[161] Daniel Sturm and Sajjad Moazeni. Scalable Coherent Optical Crossbar Architecture using PCM for AI
Acceleration, 10 2022.

[162] Erwin Dijk, Yan Jaszczyszyn, Delphine Naquin, and Claude Thermes. The Third Revolution in Sequenc-
ing Technology. Trends in Genetics, 34, 06 2018.

[163] Simon Ardui, Adam Ameur, Joris Vermeesch, and Matthew Hestand. Single molecule real-time (SMRT)
sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic acids research, 46,
02 2018.

[164] Miten Jain, S Koren, Joshua Quick, AC Rand, Thomas Sasani, JR Tyson, Andrew Beggs, Alexander Dilthey,
Ian Fiddes, S Malla, H Marriott, KH Miga, Thomas Nieto, Justin O’Grady, Hugh Olsen, BS Pedersen,
Arang Rhie, H Richardson, Aaron Quinlan, and Matthew Loose. Nanopore sequencing and assembly of
a human genome with ultra-long reads. Nature Biotechnology, 04 2017.

11

220 BIBLIOGRAPHY

[165] Mehdi Kchouk, Jean-Francois Gibrat, and Mourad Elloumi. Generations of Sequencing Technologies:
From First to Next Generation. Biology and Medicine, 09, 01 2017.

[166] Jason Weirather, Mariateresa de Cesare, Yunhao Wang, Paolo Piazza, Vittorio Sebastiano, Xiu-Jie Wang,
David Buck, and Kin Au. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Tech-
nologies and their applications to transcriptome analysis. F1000Research, 6:100, 02 2017.

[167] Yunhao Wang, Yue Zhao, Audrey Bollas, Yuru Wang, and Kin Fai Au. Nanopore sequencing technology,
bioinformatics and applications. Nature Biotechnology, 39:1348 – 1365, 2021.

[168] Marc Pagès-Gallego and Jeroen de Ridder. Comprehensive benchmark and architectural analysis of
deep learning models for Nanopore sequencing basecalling, 2022.

[169] Ryan Wick, Louise Judd, and Kathryn Holt. Performance of neural network basecalling tools for Oxford
Nanopore sequencing. Genome Biology, 20, 06 2019.

[170] Raquel Dias and Ali Torkamani. Artificial intelligence in clinical and genomic diagnostics. Genome
Medicine, 11, 11 2019.

[171] Yao-zhong Zhang, Arda Akdemir, Georg Tremmel, Seiya Imoto, Satoru Miyano, Tetsuo Shibuya, and Rui
Yamaguchi. Nanopore basecalling from a perspective of instance segmentation. BMC Bioinformatics,
21:136, 04 2020.

[172] Franka Rang, Wigard Kloosterman, and Jeroen De Ridder. From squiggle to basepair: Computational
approaches for improving nanopore sequencing read accuracy. Genome Biology, 19, 07 2018.

[173] Oxford Nanopore Technologies Ltd. Developers. Flappie. https://github.com/nanoporetech/
flappie, 2018.

[174] Oxford Nanopore Technologies Ltd. Developers. Scrappie. https://github.com/nanoporetech/
scrappie, 2019.

[175] Oxford Nanopore Technologies Ltd. Developers. Bonito. https://github.com/nanoporetech/
bonito, 2020.

[176] Oxford Nanopore Technologies Ltd. Developers. Metrichor. https://metrichor.com, 2017.

[177] Zhimeng Xu, Yuting Mai, Denghui Liu, Wenjun He, Xinyuan Lin, Chi Xu, Lei Zhang, Xin Meng, Joseph
Mafofo, Walid Abbas Zaher, Ashish Koshy, Yi Li, and Nan Qiao. Fast-bonito: A faster deep learning based
basecaller for nanopore sequencing. Artificial Intelligence in the Life Sciences, 1:100011, 2021.

[178] Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu
Cavlak, Henk Corporaal, and Onur Mutlu. A framework for designing efficient deep learning-based
genomic basecallers, 2023.

[179] Qian Lou, Sarath Chandra Janga, and Lei Jiang. Helix: Algorithm/Architecture Co-Design for Acceler-
ating Nanopore Genome Base-Calling. In Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, PACT ’20, page 293–304, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[180] J Shendure and H.L. Ji. Next-generation DNa sequencing. Nat. Biotechnol., 26:1135–1145, 01 2008.

[181] Michael L Metzker. Sequencing technologies—the next generation. Nature reviews genetics, 11(1):31–46,
2010.

[182] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan
Gomez-Luna, and Onur Mutlu. From molecules to genomic variations: Accelerating genome analy-
sis via intelligent algorithms and architectures. Computational and Structural Biotechnology Journal,
20:4579–4599, 2022.

https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
https://metrichor.com

BIBLIOGRAPHY

11

221

[183] Sean Eddy. What is dynamic programming? Nature biotechnology, 22:909–10, 08 2004.

[184] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[185] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, 1981.

[186] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan, and Onur Mutlu. SneakySnake: a
fast and accurate universal genome pre-alignment filter for CPUs, GPUs and FPGAs. Bioinformatics,
36(22-23):5282–5290, 12 2020.

[187] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan. Shouji: a fast and efficient
pre-alignment filter for sequence alignment. Bioinformatics, 35(21):4255–4263, 03 2019.

[188] Mohammed Alser, Onur Mutlu, and Can Alkan. MAGNET: Understanding and Improving the Accuracy
of Genome Pre-Alignment Filtering. arXiv, 2017.

[189] Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl Kingsford, Can Alkan, and Onur
Mutlu. Shifted Hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment
verification in read mapping. Bioinformatics, 31(10):1553–1560, 01 2015.

[190] Jo Handelsman, Michelle R. Rondon, Sean F. Brady, Jon Clardy, and Robert M. Goodman. Molecular bio-
logical access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry
& Biology, 5(10):R245–R249, 1998.

[191] Michelle Rondon, Paul August, Alan Bettermann, Sean Brady, Trudy Grossman, Mark Liles, Kara Loia-
cono, Berkley Lynch, Ian Macneil, Charles Minor, Choi-Lai Tiong-Yip, Michael Gilman, Marcia Osburne,
JON Clardy, Jo Handelsman, and Robert Goodman. Cloning the Soil Metagenome: a Strategy for Access-
ing the Genetic and Functional Diversity of Uncultured Microorganisms. Applied and Environmental
Microbiology, 66, 07 2000.

[192] Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, and Serghei Mangul. Metalign: Effi-
cient alignment-based metagenomic profiling via containment min hash. Genome biology, 21:242, 09
2020.

[193] Derrick Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with Kraken 2, 09 2019.

[194] Ana Pérez-Cobas, Laura Gomez-Valero, and Carmen Buchrieser. Metagenomic approaches in microbial
ecology: An update on whole-genome and marker gene sequencing analyses. Microbial Genomics, 6, 07
2020.

[195] Nicola Segata, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan, Olivier Jousson, and Curtis Hut-
tenhower. Metagenomic microbial community profiling using unique clade-specific marker genes. Na-
ture methods, 9:811–4, 06 2012.

[196] Duy Tin Truong, Eric Franzosa, Timothy Tickle, Matthias Scholz, George Weingart, Edoardo Pasolli,
Adrian Tett, Curtis Huttenhower, and Nicola Segata. MetaPhlAn2 for Enhanced Metagenomic Taxo-
nomic Profiling. Nature Methods, 12:902–903, 10 2015.

[197] Arthur Brady and Steven Salzberg. PhymmBL expanded: Confidence scores, custom databases, paral-
lelization and more. Nature methods, 8:367, 05 2011.

[198] Ivan Gregor, Johannes Dröge, Melanie Schirmer, Christopher Quince, and Alice McHardy. Phy-
loPythiaS+: A self-training method for the rapid reconstruction of low-ranking taxonomic bins from
metagenomes. PeerJ, 4, 06 2014.

[199] Folker Meyer, Saurabh Bagchi, Somali Chaterji, Wolfgang Gerlach, Ananth Grama, Travis Harrison, To-
bias Paczian, Will Trimble, and Andreas Wilke. MG-RAST version 4-lessons learned from a decade of
low-budget ultra-high-throughput metagenome analysis. Briefings in bioinformatics, 20, 09 2017.

11

222 BIBLIOGRAPHY

[200] Daniel Huson, Sina Beier, Isabell Flade, Anna Górska, Mohamed El-Hadidi, Suparna Mitra, Hans-
Joachim Ruscheweyh, and Rewati Tappu. MEGAN Community Edition - Interactive Exploration and
Analysis of Large-Scale Microbiome Sequencing Data. PLoS computational biology, 12:e1004957, 06
2016.

[201] J. Dröge, Ivan Gregor, and Alice McHardy. Taxator-tk: Precise Taxonomic Assignment of Metagenomes
by Fast Approximation of Evolutionary Neighborhoods. Bioinformatics (Oxford, England), 31, 03 2014.

[202] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification using
exact alignments. Genome biology, 15(3):R46–R46, 2014.

[203] Rachid Ounit, Steve Wanamaker, Timothy Close, and Stefano Lonardi. CLARK: Fast and accurate clas-
sification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics, 16, 03
2015.

[204] Jennifer Lu, Florian Breitwieser, Peter Thielen, and Steven Salzberg. Bracken: Estimating species abun-
dance in metagenomics data. PeerJ Computer Science, 3:e104, 01 2017.

[205] Fernando Meyer, Adrian Fritz, Zhi-Luo Deng, David Koslicki, Till Lesker, Alexey Gurevich, Gary Robert-
son, Mohammed Alser, Dmitry Antipov, Francesco Beghini, Denis Bertrand, Jaqueline Brito, C. Titus
Brown, Jan Buchmann, Aydin Buluç, Bo Chen, Rayan Chikhi, Philip Clausen, Alexandru Cristian, and
Alice McHardy. Critical Assessment of Metagenome Interpretation: the second round of challenges.
Nature Methods, 19:1–12, 04 2022.

[206] Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes Dröge,
Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges, Adrian Fritz, Ruben Garrido-
Oter, Tue Jørgensen, Nicole Shapiro, Philip Blood, Alexey Gurevich, Yang Bai, Dmitrij Turaev, and Alice
McHardy. Critical Assessment of Metagenome Interpretation – a benchmark of computational metage-
nomics software. Nature Methods, 06 2017.

[207] Michael Roberts, Wayne Hayes, Brian Hunt, Steve Mount, and James Yorke. Reducing storage require-
ments for biological sequence comparison. Bioinformatics (Oxford, England), 20:3363–9, 01 2005.

[208] Ben Langmead, Christopher Wilks, Valentin Antonescu, and Rone Charles. Scaling read aligners to hun-
dreds of threads on general-purpose processors. Bioinformatics, 35, 07 2018.

[209] David J. Agnew, John Pearce, Ganapathiraju Pramod, Tom Peatman, Reg Watson, John R. Beddington,
and Tony J. Pitcher. Estimating the Worldwide Extent of Illegal Fishing. PLOS ONE, 4(2):1–8, 02 2009.

[210] Robert Smith. Rural rogues: A case story on the ’smokies’ trade. International Journal of Entrepreneurial
Behaviour & Research, 10:277–294, 08 2004.

[211] Robert Smith. Documenting the UK “Black Fish Scandal” as a case study of criminal entrepreneurship.
International Journal of Sociology and Social Policy, 35:199–221, 04 2015.

[212] Robin Kobus, José Abuín Mosquera, André Müller, Sören Hellmann, Juan Pichel, Tomas Pena, Andreas
Hildebrandt, Thomas Hankeln, and Bertil Schmidt. A big data approach to metagenomics for all-food-
sequencing. BMC Bioinformatics, 21, 03 2020.

[213] Fabian Ripp, Christopher Krombholz, Yongchao Liu, Mathias Weber, Anne Schaefer, Bertil Schmidt,
René Köppel, and Thomas Hankeln. All-Food-Seq (AFS): A quantifiable screen for species in biologi-
cal samples by deep DNA sequencing. BMC Genomics, 15, 07 2014.

[214] Chunyu Yuan and Sos S. Agaian. A comprehensive review of Binary Neural Network. Artificial Intelli-
gence Review, pages 1–65, 2021.

[215] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep Neural
Networks with Binary Weights during Propagations. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA, USA,
2015. MIT Press.

BIBLIOGRAPHY

11

223

[216] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural net-
works: A survey. Pattern Recognition, 105:107281, 2020.

[217] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[218] Jiawen Liu, Hengyu Zhao, Matheus A. Ogleari, Dong Li, and Jishen Zhao. Processing-in-Memory for
Energy-Efficient Neural Network Training: A Heterogeneous Approach. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 655–668, 2018.

[219] Jia Zhan, Onur Kayıran, Gabriel H. Loh, Chita R. Das, and Yuan Xie. OSCAR: Orchestrating STT-RAM
cache traffic for heterogeneous CPU-GPU architectures. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, 2016.

[220] Sunil Shukla, Bruce Fleischer, Matthew Ziegler, Joel Silberman, Jinwook Oh, Vijayalakshmi Srinivasan,
Jungwook Choi, Silvia Mueller, Ankur Agrawal, Tina Babinsky, Nianzheng Cao, Chia-Yu Chen, Pierce
Chuang, Thomas Fox, George Gristede, Michael Guillorn, Howard Haynie, Michael Klaiber, Dongsoo
Lee, Shih-Hsien Lo, Gary Maier, Michael Scheuermann, Swagath Venkataramani, Christos Vezyrtzis,
Naigang Wang, Fanchieh Yee, Ching Zhou, Pong-Fei Lu, Brian Curran, Leland Chang, and Kailash
Gopalakrishnan. A Scalable Multi-TeraOPS Core for AI Training and Inference. IEEE Solid-State Circuits
Letters, 1(12):217–220, 2018.

[221] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet Clas-
sification Using Binary Convolutional Neural Networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision – ECCV 2016, pages 525–542, Cham, 2016. Springer International
Publishing.

[222] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized Neural
Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, 2016.

[223] Fabrice Devaux. The true Processing In Memory accelerator. In 2019 IEEE Hot Chips 31 Symposium
(HCS), pages 1–24, 2019.

[224] Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator (White Paper). In
UPMEM, Grenoble, France, 2018.

[225] Debjyoti Bhattacharjee, Rajeswari Devadoss, and Anupam Chattopadhyay. ReVAMP: ReRAM based
VLIW architecture for in-memory computing. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pages 782–787, 2017.

[226] Ankit, Aayush and Kim, Dong-Eun and Chakraborty, Indranil and Ali, Mustafa and Negi, Shubham.
PUMA Functional Simulator. https://github.com/Aayush-Ankit/puma-functional-model,
2020.

[227] Dong, Xiangyu and Xu, Cong and Xie, Yuan and Jouppi, Norman P. NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 31(7):994–1007, 2012.

[228] Matt Poremba and Yuan Xie. NVMain: An Architectural-Level Main Memory Simulator for Emerging
Non-volatile Memories. In 2012 IEEE Computer Society Annual Symposium on VLSI, pages 392–397,
2012.

[229] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman Jouppi. Cacti 6.0: A tool to model large
caches. HP Laboratories, 01 2009.

[230] Matthew Kay Fei Lee, Yingnan Cui, Thannirmalai Somu, Tao Luo, Jun Zhou, Wai Teng Tang, Weng-Fai
Wong, and Rick Siow Mong Goh. A System-Level Simulator for RRAM-Based Neuromorphic Computing
Chips. ACM Trans. Archit. Code Optim., 15(4), jan 2019.

https://github.com/Aayush-Ankit/puma-functional-model

11

224 BIBLIOGRAPHY

[231] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim,
Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Norion,
Allison Scibisz, Sreenivas Subramoneyon, Can Alkan, Saugata Ghose, and Onur Mutlu. GenASM: A High-
Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence
Analysis. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
951–966, 2020.

[232] Yatish Turakhia, Gill Bejerano, and William J. Dally. Darwin: A Genomics Co-Processor Provides up to
15,000X Acceleration on Long Read Assembly. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’18, page
199–213, New York, NY, USA, 2018. Association for Computing Machinery.

[233] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan Stutsman, Edouard Giacomin, Hari
Kambalasubramanyam, and Pierre-Emmanuel Gaillardon. GenCache: Leveraging In-Cache Operators
for Efficient Sequence Alignment. In Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO ’52, page 334–346, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[234] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das, David Blaauw, and Satish
Narayanasamy. GenAx: A Genome Sequencing Accelerator. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 69–82, 2018.

[235] Ying Wang, Yinhe Han, Cheng Wang, Huawei Li, and Xiao-Wei Li. RADAR: a case for retention-aware
DRAM assembly and repair in future FGR DRAM memory. 06 2015.

[236] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. PIM-Aligner: A Processing-in-MRAM Platform
for Biological Sequence Alignment. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1265–1270, 2020.

[237] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. AlignS: A Processing-In-Memory Accelerator for
DNA Short Read Alignment Leveraging SOT-MRAM. In 2019 56th ACM/IEEE Design Automation Confer-
ence (DAC), pages 1–6, 2019.

[238] Shaahin Angizi, Wei Zhang, and Deliang Fan. Exploring DNA Alignment-in-Memory Leveraging Emerg-
ing SOT-MRAM. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, GLSVLSI ’20, page
277–282, New York, NY, USA, 2020. Association for Computing Machinery.

[239] Yeseong Kim, Mohsen Imani, Niema Moshiri, and Tajana Rosing. GenieHD: Efficient DNA Pattern
Matching Accelerator Using Hyperdimensional Computing. In 2020 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), pages 115–120, 2020.

[240] Mohsen Imani, Tarek Nassar, Abbas Rahimi, and Tajana Rosing. HDNA: Energy-efficient DNA sequenc-
ing using hyperdimensional computing. In 2018 IEEE EMBS International Conference on Biomedical &
Health Informatics (BHI), pages 271–274, 2018.

[241] Farzaneh Zokaee, Mingzhe Zhang, and Lei Jiang. FindeR: Accelerating FM-Index-Based Exact Pattern
Matching in Genomic Sequences through ReRAM Technology. In 2019 28th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 284–295, 2019.

[242] L. Jiang and F. Zokaee. EXMA: A Genomics Accelerator for Exact-Matching. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 399–411, Los Alamitos, CA, USA,
mar 2021. IEEE Computer Society.

[243] Ann Franchesca Laguna, Hasindu Gamaarachchi, Xunzhao Yin, Michael Niemier, Sri Parameswaran,
and X. Sharon Hu. Seed-and-Vote Based in-Memory Accelerator for DNA Read Mapping. In Proceedings
of the 39th International Conference on Computer-Aided Design, ICCAD ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

BIBLIOGRAPHY

11

225

[244] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. Sieve: Scalable In-situ
DRAM-based Accelerator Designs for Massively Parallel k-mer Matching. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 251–264, 2021.

[245] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu, Peng Gu, and Yuan Xie. MEDAL: Scalable DIMM
Based Near Data Processing Accelerator for DNA Seeding Algorithm. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, page 587–599, New York,
NY, USA, 2019. Association for Computing Machinery.

[246] Wenqin Huangfu, Krishna T. Malladi, Shuangchen Li, Peng Gu, and Yuan Xie. NEST: DIMM Based near-
Data-Processing Accelerator for K-Mer Counting. In Proceedings of the 39th International Conference on
Computer-Aided Design, ICCAD ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[247] Ming Cheng, Lixue Xia, Zhenhua Zhu, Yi Cai, Yuan Xie, Yu Wang, and Huazhong Yang. TIME: A training-
in-memory architecture for memristor-based deep neural networks. In 2017 54th ACM/EDAC/IEEE De-
sign Automation Conference (DAC), pages 1–6, 2017.

[248] Yue Xi, Bin Gao, Jianshi Tang, An Chen, Meng-Fan Chang, Xiaobo Sharon Hu, Jan Van der Spiegel,
He Qian, and Huaqiang Wu. In-memory Learning with Analog Resistive Switching Memory: A Review
and Perspective. Proceedings of the IEEE, 109:14–42, 2021.

[249] Xiaoyang Liu and Zhigang Zeng. Memristor crossbar architectures for implementing deep neural net-
works. Complex & Intelligent Systems, 8:787–802, 07 2021.

[250] Fernando Corinto, Alon Ascoli, and Steve Kang Sung-Mo. Memristor-based neural circuits. In 2013 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 417–420, 2013.

[251] Amirali Amirsoleimani, Majid Ahmadi, and Arash Ahmadi. STDP-based unsupervised learning of mem-
ristive spiking neural network by Morris-Lecar model. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 3409–3414, 2017.

[252] Jihong Zhang and Xiaofeng Liao. Synchronization and chaos in coupled memristor-based FitzHugh-
Nagumo circuits with memristor synapse. AEU - International Journal of Electronics and Communica-
tions, 75:82–90, 2017.

[253] S. Lashkare, S. Chouhan, T. Chavan, A. Bhat, P. Kumbhare, and U. Ganguly. PCMO RRAM for Integrate-
and-Fire Neuron in Spiking Neural Networks. IEEE Electron Device Letters, 39(4):484–487, 2018.

[254] Maruan Al-Shedivat, Rawan Naous, Gert Cauwenberghs, and Khaled Nabil Salama. Memristors Em-
power Spiking Neurons With Stochasticity. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 5(2):242–253, 2015.

[255] Jafar Shamsi, Amirali Amirsoleimani, Sattar Mirzakuchaki, and Majid Ahmadi. Modular neuron com-
prises of memristor-based synapse. Neural Computing and Applications, 09 2015.

[256] Adnan Mehonic and Anthony J. Kenyon. Emulating the Electrical Activity of the Neuron Using a Silicon
Oxide RRAM Cell. Frontiers in Neuroscience, 10, 2016.

[257] Jia-Qin Yang, Ruopeng Wang, Zhan-Peng Wang, Qin-Yuan Ma, Jing-Yu Mao, Yi Ren, Xiaoyang Yang,
Ye Zhou, and Su-Ting Han. Leaky integrate-and-fire neurons based on perovskite memristor for spiking
neural networks. Nano Energy, 74:104828, 2020.

[258] Zhenyu Zhao, Lianhua Qu, Lei Wang, Quan Deng, Nan Li, Ziyang Kang, Shasha Guo, and Weixia Xu. A
memristor-based spiking neural network with high scalability and learning efficiency. IEEE Transactions
on Circuits and Systems II: Express Briefs, 67(5):931–935, 2020.

[259] Nan Zheng and Pinaki Mazumder. Online Supervised Learning for Hardware-Based Multilayer Spiking
Neural Networks Through the Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity.
IEEE Transactions on Neural Networks and Learning Systems, 29(9):4287–4302, 2018.

11

226 BIBLIOGRAPHY

[260] Nan Zheng and Pinaki Mazumder. Learning in Memristor Crossbar-Based Spiking Neural Networks
Through Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity. IEEE Transactions on
Nanotechnology, 17(3):520–532, 2018.

[261] Yuan Zeng, Kevin Devincentis, Yao Xiao, Zubayer Ibne Ferdous, Xiaochen Guo, Zhiyuan Yan, and
Yevgeny Berdichevsky. A Supervised Stdp-Based Training Algorithm for Living Neural Networks. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1154–1158,
2018.

[262] Giacomo Pedretti, Valerio Milo, S. Ambrogio, Roberto Carboni, S. Bianchi, Alessandro Calderoni, Nirmal
Ramaswamy, A. Spinelli, and D. Ielmini. Memristive neural network for on-line learning and tracking
with brain-inspired spike timing dependent plasticity. Scientific Reports, 7, 07 2017.

[263] Yu Nishitani, Yukihiro Kaneko, and Michihito Ueda. Supervised Learning Using Spike-Timing-
Dependent Plasticity of Memristive Synapses. IEEE Transactions on Neural Networks and Learning Sys-
tems, 26:2999–3008, 2015.

[264] Yun Long, Taesik Na, and Saibal Mukhopadhyay. ReRAM-Based Processing-in-Memory Architecture
for Recurrent Neural Network Acceleration. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 26(12):2781–2794, 2018.

[265] Kamilya Smagulova and A. James. A survey on LSTM memristive neural network architectures and ap-
plications. The European Physical Journal Special Topics, 228, 05 2019.

[266] H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. M. Shelby, K. Rocki, A. Chen, and G. W. Burr. Inference
of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change
Memory devices. In 2019 Symposium on VLSI Technology, pages T82–T83, 2019.

[267] Can Li, Zhongrui Wang, Mingyi Rao, Daniel Belkin, Wenhao Song, Hao Jiang, Peng Yan, Yunning Li, Peng
Lin, Miao Hu, Ning Ge, John William Strachan, Mark Barnell, Qing wu, Stan Williams, Jianhua Joshua
Yang, and Qiangfei Xia. Long short-term memory networks in memristor crossbar arrays. Nature Ma-
chine Intelligence, 1, 01 2019.

[268] Kazybek Adam, Kamilya Smagulova, and Alex Pappachen James. Memristive LSTM network hardware
architecture for time-series predictive modeling problems. In 2018 IEEE Asia Pacific Conference on Cir-
cuits and Systems (APCCAS), pages 459–462, 2018.

[269] Kamilya Smagulova, Kazybek Adam, Olga Krestinskaya, and Alex Pappachen James. Design of CMOS-
memristor Circuits for LSTM architecture. In 2018 IEEE International Conference on Electron Devices
and Solid State Circuits (EDSSC), pages 1–2, 2018.

[270] Kamilya Smagulova, Olga Krestinskaya, and Alex Pappachen James. A Memristor-Based Long Short Term
Memory Circuit. Analog Integr. Circuits Signal Process., 95(3):467–472, jun 2018.

[271] Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina, Stephan
Wong, Onur Mutlu, and Said Hamdioui. Swordfish: A framework for evaluating deep neural
network-based basecalling using computation-in-memory with non-ideal memristors. arXiv preprint
arXiv:2310.04366, 2023.

[272] Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, and Onur Mutlu. Nanopore Sequencing
Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions. Briefings in Bioinformatics, 20(4):1542–1559, 04 2018.

[273] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan
Gomez-Luna, and Onur Mutlu. From molecules to genomic variations: Accelerating genome analy-
sis via intelligent algorithms and architectures. Computational and Structural Biotechnology Journal,
20:4579–4599, 2022.

[274] Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu
Cavlak, Henk Corporaal, and Onur Mutlu. A Framework for Designing Efficient Deep Learning-Based
Genomic Basecallers. arXiv preprint arXiv:2211.03079, 2022.

BIBLIOGRAPHY

11

227

[275] Onur Mutlu and Can Firtina. Accelerating Genome Analysis via Algorithm-Architecture Co-Design. In
DAC, pages 1–4, 07 2023.

[276] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma,
Eric Shiu, and Onur Mutlu. Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks. In 2021 30th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 159–172, Los Alamitos, CA, USA, sep 2021. IEEE Computer
Society.

[277] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, page 4278–4284. AAAI Press, 2017.

[278] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change memory as a
scalable dram alternative. In International Symposium on Computer Architecture, 2009.

[279] Abhairaj Singh, Mahdi Zahedi, Taha Shahroodi, Mohit Gupta, Anteneh Gebregiorgis, Manu Komalan,
Rajiv V Joshi, Francky Catthoor, Rajendra Bishnoi, and Said Hamdioui. Cim-based robust logic acceler-
ator using 28 nm stt-mram characterization chip tape-out. In 2022 IEEE 4th International Conference
on Artificial Intelligence Circuits and Systems (AICAS), pages 451–454. IEEE, 2022.

[280] Mirko Prezioso, Farnood Merrikh-Bayat, Brian Hoskins, Gina Adam, Konstantin Likharev, and Dmitri
Strukov. Training and Operation of an Integrated Neuromorphic Network Based on Metal-Oxide Mem-
ristors. Nature, 521, 12 2014.

[281] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A Modern Primer on
Processing in Memory. pages 171–243, 2022.

[282] Lingyun Shi, Guohao Zheng, Bobo Tian, Brahim Dkhil, and Chungang Duan. Research progress on
solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Advances, 2(5):1811–1827,
2020.

[283] Miao Hu, Catherine E Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, Noraica Davila, Hao Jiang,
R Stanley Williams, J Joshua Yang, et al. Memristor-based analog computation and neural network clas-
sification with a dot product engine. Advanced Materials, 30(9):1705914, 2018.

[284] Wenqiang Zhang, Xiaochen Peng, Huaqiang Wu, Bin Gao, Hu He, Youhui Zhang, Shimeng Yu, and
He Qian. Design guidelines of rram based neural-processing-unit: A joint device-circuit-algorithm anal-
ysis. In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[285] VG Karpov, YA Kryukov, SD Savransky, and IV Karpov. Nucleation switching in phase change memory.
Applied physics letters, 90(12):123504, 2007.

[286] Mohamad G. Moinuddin, Aijaz H. Lone, Shivangi Shringi, Srikant Srinivasan, and Satinder K. Sharma.
Low-current-density magnetic tunnel junctions for stt-ram application using mgo x n 1−x (x = 0.57)
tunnel barrier. IEEE Transactions on Electron Devices, 67(1):125–132, 2020.

[287] Daniel Branton, David W Deamer, Andre Marziali, Hagan Bayley, Steven A Benner, Thomas Butler, Mas-
similiano Di Ventra, Slaven Garaj, Andrew Hibbs, Xiaohua Huang, et al. The potential and challenges of
nanopore sequencing. Nature biotechnology, 26(10):1146–1153, 2008.

[288] Said Hamdioui, Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Koen Bertels, Henk Corporaal,
Hailong Jiao, Francky Catthoor, Dirk Wouters, Linn Eike, and Jan van Lunteren. Memristor based
computation-in-memory architecture for data-intensive applications. In 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1718–1725, 2015.

[289] Oxford Nanopore Technologies Ltd. Developers. GridION. https://nanoporetech.com/products/
gridion, 2017.

https://nanoporetech.com/products/gridion
https://nanoporetech.com/products/gridion

11

228 BIBLIOGRAPHY

[290] Oxford Nanopore Technologies Ltd. Developers. PromethION. https://nanoporetech.com/
products/promethion-2, 2018.

[291] Oxford Nanopore Technologies Ltd. Developers. MinION. https://nanoporetech.com/products/
minion, 2019.

[292] Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-Yu Chen, David Blaauw, Reetuparna
Das, and Satish Narayanasamy. SquiggleFilter: An Accelerator for Portable Virus Detection. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page 535–549,
New York, NY, USA, 2021. Association for Computing Machinery.

[293] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioin-
formatics, 32(14):2103–2110, 2016.

[294] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-Based Resistive Switching Mem-
ories – Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 21, 2009.

[295] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Phase change memory architecture and
the quest for scalability. Communications of the ACM, 53:99 – 106, 2010.

[296] Geethan Karunaratne, Manuel Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi, and Abu Sebas-
tian. In-memory hyperdimensional computing. Nature Electronics, 3, 06 2020.

[297] Qiangfei Xia and J. Joshua Yang. Memristive crossbar arrays for brain-inspired computing. Nature Ma-
terials, 18:309–323, 2019.

[298] Long Cheng, Yi Li, Kang-Sheng Yin, Si-Yu Hu, Yu-Ting Su, Miao-Miao Jin, Zhuorui Wang, Ting-
Chang Chang, and Xiang shui Miao. Functional Demonstration of a Memristive Arithmetic Logic Unit
(MemALU) for In-Memory Computing. Advanced Functional Materials, 29, 2019.

[299] Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stan Williams. The Missing Memristor Found.
Nature, 453:80–3, 06 2008.

[300] Mahdi Zahedi, Taha Shahroodi, Geert Custers, Abhairaj Singh, Stephan Wong, and Said Hamdioui. Sys-
tem Design for Computation-in-Memory: From Primitive to Complex Functions. In 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6, 2022.

[301] Mahdi Zahedi, Taha Shahroodi, Stephan Wong, and Said Hamdioui. Efficient signed arithmetic multi-
plication on memristor-based crossbar. IEEE Access, 11:33964–33978, 2023.

[302] Fabien Alibart, Ligang Gao, Brian D. Hoskins, and Dmitri B. Strukov. High precision tuning of state for
memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 23, 2011.

[303] Ching-Yi Chen, Hsiu-Chuan Shih, Cheng-Wen Wu, Chih-He Lin, Pi-Feng Chiu, Shyh-Shyuan Sheu, and
Frederick T. Chen. RRAM Defect Modeling and Failure Analysis Based on March Test and a Novel
Squeeze-Search Scheme. IEEE Transactions on Computers, 64:180–190, 2015.

[304] Jung-Hoon Lee, Dong-Hyeok Lim, Hongsik Jeong, Huimin Ma, and Luping Shi. Exploring Cycle-to-
Cycle and Device-to-Device Variation Tolerance in MLC Storage-Based Neural Network Training. IEEE
Transactions on Electron Devices, 66:2172–2178, 2019.

[305] A. Vittal, L.H. Chen, M. Marek-Sadowska, Kai-Ping Wang, and S. Yang. Crosstalk in VLSI Interconnec-
tions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(12):1817–
1824, 1999.

[306] A. Vittal and M. Marek-Sadowska. Crosstalk Reduction for VLSI. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 16(3):290–298, 1997.

[307] S. Ramachandran, J.W. Nicholson, S. Ghalmi, and M.F. Yan. Measurement of Multipath Interference in
the Coherent Crosstalk Regime. IEEE Photonics Technology Letters, 15(8):1171–1173, 2003.

https://nanoporetech.com/products/promethion-2
https://nanoporetech.com/products/promethion-2
https://nanoporetech.com/products/minion
https://nanoporetech.com/products/minion

BIBLIOGRAPHY

11

229

[308] Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler, Ku-
mar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola, Lucas L. Sanches, Irem Boybat,
Manuel Le Gallo, Kibong Moon, J. Woo, Hyunsang Hwang, and Yusuf Leblebici. Neuromorphic comput-
ing using non-volatile memory. Advances in Physics: X, 2:124 – 89, 2017.

[309] Leibin Ni, Zichuan Liu, Hao Yu, and Rajiv V. Joshi. An Energy-Efficient Digital ReRAM-Crossbar-Based
CNN With Bitwise Parallelism. IEEE Journal on Exploratory Solid-State Computational Devices and Cir-
cuits, 3:37–46, 2017.

[310] Suyog Gupta, Ankur Agrawal, K. Gopalakrishnan, and Pritish Narayanan. Deep Learning with Limited
Numerical Precision. In International Conference on Machine Learning, 2015.

[311] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. AxNN: Energy-efficient
neuromorphic systems using approximate computing. 2014 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), pages 27–32, 2014.

[312] Hokchhay Tann, Soheil Hashemi, Iris Bahar, and Sherief Reda. Hardware-software codesign of accurate,
multiplier-free Deep Neural Networks. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6, 2017.

[313] Skanda Koppula, Lois Orosa, A. Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi, Konstantinos Kanel-
lopoulos, and Onur Mutlu. EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network
Inference Using Approximate DRAM. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO ’52, page 166–181, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[314] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
With Pruning, Trained Quantization and Huffman Coding. In Yoshua Bengio and Yann LeCun, editors,
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[315] Kodai Ueyoshi, Kota Ando, Kazutoshi Hirose, Shinya Takamaeda-Yamazaki, Junichiro Kadomoto,
Tomoki Miyata, Mototsugu Hamada, Tadahiro Kuroda, and Masato Motomura. QUEST: A 7.49 TOPS
Multi-Purpose Log-Quantized DNN Inference Engine Stacked on 96MB 3D SRAM Using Inductive-
Coupling Technology in 40nm CMOS. In 2018 IEEE International Solid - State Circuits Conference -
(ISSCC), pages 216–218, 2018.

[316] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon Hu, and Yiyu Shi. Device-
circuit-architecture co-exploration for computing-in-memory neural accelerators. IEEE Transactions
on Computers, 70(4):595–605, 2020.

[317] Oxford Nanopore Technologies Ltd. Developers. Dorado. https://github.com/nanoporetech/
dorado, 2022.

[318] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. Design of reliable DNN accelerator with un-reliable
ReRAM. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1769–1774.
IEEE, 2019.

[319] Beiye Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. Vortex: Variation-aware training for
memristor X-bar. In Proceedings of the 52nd Annual Design Automation Conference, pages 1–6, 2015.

[320] Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang, and Li Jiang.
Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 19–24. IEEE, 2017.

[321] Michael Klachko, Mohammad Reza Mahmoodi, and Dmitri Strukov. Improving noise tolerance of
mixed-signal neural networks. In 2019 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019.

https://github.com/nanoporetech/dorado
https://github.com/nanoporetech/dorado

11

230 BIBLIOGRAPHY

[322] Markus Fritscher, Johannes Knödtel, Daniel Reiser, Maen Mallah, Stefan Pechmann, Dietmar Fey, and
Marc Reichenbach. Simulating large neural networks embedding MLC RRAM as weight storage consid-
ering device variations. In 2021 IEEE 12th Latin America Symposium on Circuits and System (LASCAS),
pages 1–4. IEEE, 2021.

[323] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[324] Gouranga Charan, Abinash Mohanty, Xiaocong Du, Gokul Krishnan, Rajiv V Joshi, and Yu Cao. Accurate
inference with inaccurate rram devices: A joint algorithm-design solution. IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, 6(1):27–35, 2020.

[325] Beiye Liu, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, and Mark Barnell. Reduction and IR-
drop compensations techniques for reliable neuromorphic computing systems. In 2014 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), pages 63–70. IEEE, 2014.

[326] Miao Hu, Hai Li, Yiran Chen, Qing Wu, and Garrett S Rose. BSB training scheme implementation on
memristor-based circuit. In 2013 IEEE Symposium on Computational Intelligence for Security and De-
fense Applications (CISDA), pages 80–87. IEEE, 2013.

[327] Neng Huang, Fan Nie, Peng Ni, Feng Luo, and Jianxin Wang. Sacall: a neural network basecaller for
oxford nanopore sequencing data based on self-attention mechanism. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 2020.

[328] Meng-Yao Lin, Hsiang-Yun Cheng, Wei-Ting Lin, Tzu-Hsien Yang, I-Ching Tseng, Chia-Lin Yang, Han-
Wen Hu, Hung-Sheng Chang, Hsiang-Pang Li, and Meng-Fan Chang. DL-RSIM: A simulation framework
to enable reliable ReRAM-based accelerators for deep learning. In 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[329] Hiroki Konishi, Rui Yamaguchi, Kiyoshi Yamaguchi, Yoichi Furukawa, and Seiya Imoto. Halcyon: an
accurate basecaller exploiting an encoder–decoder model with monotonic attention. Bioinformatics,
37(9):1211–1217, 2021.

[330] Wonjoo Kim, Anupam Chattopadhyay, Anne Siemon, Eike Linn, Rainer Waser, and Vikas Rana. Multi-
state memristive tantalum oxide devices for ternary arithmetic. Scientific reports, 6(1):1–9, 2016.

[331] Synopsys, Inc. Synopsys Design Compiler. https://www.synopsys.com/support/training/
rtl-synthesis/design-compiler-rtl-synthesis.html.

[332] Satyabrata Sarangi and Bevan Baas. DeepScaleTool: A Tool for the Accurate Estimation of Technology
Scaling in the Deep-Submicron Era. In 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1–5, 2021.

[333] MNEMOSENE partners. The MNEMOSENE project. http://www.mnemosene.eu/, 2020.

[334] AMD. AMDő EPYCő 7742 CPU. https://www.amd.com/en/products/cpu/amd-epyc-7742.

[335] NVIDIA. NVIDIA V 100. https://www.nvidia.com/en-us/data-center/v100/.

[336] Charlene Yang. Hierarchical roofline analysis: How to collect data using performance tools on intel
CPUs and NVIDIA GPUs. arXiv preprint arXiv:2009.02449, 2020.

[337] Wick, Ryan. Raw fast5s. https://bridges.monash.edu/articles/dataset/Raw_fast5s/
7676174.

[338] Wick, Ryan. Reference genomes. https://bridges.monash.edu/articles/dataset/Reference_
genomes/7676135.

[339] Shubham Jain and Anand Raghunathan. Cxdnn: Hardware-software compensation methods for deep
neural networks on resistive crossbar systems. ACM Transactions on Embedded Computing Systems
(TECS), 18(6):1–23, 2019.

https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
http://www.mnemosene.eu/
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.nvidia.com/en-us/data-center/v100/
https://bridges.monash.edu/articles/dataset/Raw_fast5s/7676174
https://bridges.monash.edu/articles/dataset/Raw_fast5s/7676174
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135
https://bridges.monash.edu/articles/dataset/Reference_genomes/7676135

BIBLIOGRAPHY

11

231

[340] Giacomo Pedretti, Elia Ambrosi, and Daniele Ielmini. Conductance variations and their impact on the
precision of in-memory computing with resistive switching memory (rram). In 2021 IEEE International
Reliability Physics Symposium (IRPS), pages 1–8. IEEE, 2021.

[341] Markus Fritscher, Johannes Knödtel, Maen Mallah, Stefan Pechmann, Emilio Perez-Bosch Quesada,
Tommaso Rizzi, Christian Wenger, and Marc Reichenbach. Mitigating the Effects of RRAM Process Vari-
ation on the Accuracy of Artificial Neural Networks. In International Conference on Embedded Computer
Systems, pages 401–417. Springer, 2022.

[342] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. DeepRoad: GAN-
based Metamorphic Testing and Input Validation Framework for Autonomous Driving Systems. In
2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 132–142,
2018.

[343] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. An End-to-End Deep Neural Network for Autonomous
Driving Designed for Embedded Automotive Platforms. Sensors, 19(9), 2019.

[344] Zhong Li, Minxue Pan, Tian Zhang, and Xuandong Li. Testing DNN-based Autonomous Driving Systems
under Critical Environmental Conditions. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 6471–6482. PMLR, 18–24 Jul 2021.

[345] Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang, and Li Jiang.
Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 19–24. IEEE, 2017.

[346] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu, and Can Alkan. GateKeeper: a
new hardware architecture for accelerating pre-alignment in DNA short read mapping. Bioinformatics,
33(21):3355–3363, 05 2017.

[347] Genome Reference Consortium. Human reference genome GRCh38.p14. https://www.ncbi.nlm.
nih.gov/assembly?term=GRCh38&cmd=DetailsSearch.

[348] Unknown. Homo sapiens (human). https://www.ebi.ac.uk/ena/data/view/ERR240727.

[349] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol, Evan E Eichler, and
S Cenk Sahinalp. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature methods,
7(8):576–577, 2010.

[350] Martin Šošić and Mile Šikić. Edlib: A C/C++ Library for Fast, Exact Sequence Alignment Using Edit
Distance. Bioinformatics, 33(9):1394–1395, 2017.

[351] D. R. Bentley, Shankar Balasubramanian, Harold P Swerdlow, Geoffrey Paul Smith, J Milton, Clive Brown,
Kevin P Hall, Dirk J. Evers, Colin L. Barnes, Helen Bignell, Jonathan Mark Boutell, Jason Bryant, Richard J.
Carter, R. Keira Cheetham, Anthony J. Cox, Darren J. Ellis, Michael R. Flatbush, Niall A. Gormley, Sean J.
Humphray, Leslie J. Irving, Mirian Karbelashvili, Scott M. Kirk, Heng Li, Xiaohai Liu, Klaus Maisinger,
Lisa J. Murray, Bojana Obradovic, Tobias William Barr Ost, Michael L. Parkinson, Mark Pratt, Isabelle
Rasolonjatovo, Mark T. Reed, Roberto Rigatti, Chiara Rodighiero, Mark T. Ross, Andrea Sabot, Subrama-
nian V. Sankar, Aylwyn Scally, Gary P. Schroth, Mark E. B. Smith, Vincent P. Smith, Anastassia Spiridou,
Peta E. Torrance, Svilen Tzonev, Eric H. Vermaas, Klaudia Walter, Xiaolin Wu, Lu Zhang, Mohammed D.
Alam, Carole Anastasi, I. N. C. Aniebo, David M. D. Bailey, Iain Bancarz, Saibal Banerjee, Selena G. Bar-
bour, Primo A. Baybayan, Vincent Benoit, Kevin Benson, Claire Bevis, Phillip J. Black, Asha Boodhun, J. S.
Brennan, John A. Bridgham, Rob C. Brown, Andrew Anand Brown, Dale H. Buermann, Abass A. Bundu,
James C. Burrows, Nigel P. Carter, Nestor Castillo, Maria Chiara E. Catenazzi, Simon Chang, R. Neil Coo-
ley, Natasha R. Crake, Olubunmi O. Dada, Konstantinos D. Diakoumakos, Belen Dominguez-Fernandez,
David J. Earnshaw, Ugonna C. Egbujor, Dave Elmore, Sergey Etchin, Mark Ewan, Milan Fedurco, Louise J.
Fraser, Karin V Fuentes Fajardo, W. Scott Furey, Dave George, Kimberley J. Gietzen, Colin P. Goddard,
George Golda, Philip A. Granieri, David E. Green, David L. Gustafson, Nancy F. Hansen, Kevin Har-
nish, Christian D. Haudenschild, Narinder I. Heyer, Matthew M. Hims, Johnny T. Ho, Adrian Horgan,

https://www.ncbi.nlm.nih.gov/assembly?term=GRCh38&cmd=DetailsSearch
https://www.ncbi.nlm.nih.gov/assembly?term=GRCh38&cmd=DetailsSearch
https://www.ebi.ac.uk/ena/data/view/ERR240727

11

232 BIBLIOGRAPHY

Katya Hoschler, Steve Hurwitz, D. Vlasenko K. Ivanov, Maria Q. Johnson, Terena James, Thomas A. Jones,
Gyoung-Dong Kang, Tzvetana H. Kerelska, Alan D. Kersey, Irina Khrebtukova, Alex Kindwall, Zoya Kings-
bury, Paula I. Kokko-Gonzales, Anil Kumar, Marc Laurent, Cynthia Taylor Lawley, Sarah E. Lee, Xavier
Lee, Arnold Liao, Jennifer A. Loch, Mitch Lok, Shujun J Luo, Radhika M. Mammen, John Wesley Mar-
tin, Patrick G. McCauley, Paul McNitt, Parul Ben D Mehta, Keith Moon, Joe W. Mullens, Taksina New-
ington, Zemin Ning, Bee Ling Ng, Sonia M. Novo, Michael J. O’neill, Mark A. Osborne, Andrew P. Os-
nowski, Omead Ostadan, Lambros L. Paraschos, Lea Pickering, Andrew C. Pike, Alger C. Pike, D. Chris
Pinkard, Daniel P. Pliskin, Joe Podhasky, Victor J. Quijano, Come Raczy, Vicki H. Rae, Stephen R. Rawl-
ings, Ana Chiva Rodriguez, Phyllida Roe, J. Rogers, M. Candelaria Rogert Bacigalupo, Nikolai Romanov,
Anthony Romieu, Rithy K. Roth, Natalie J. Rourke, Silke T. Ruediger, Eli Rusman, Raquel M. Sanches-
Kuiper, Martin R. Schenker, Jose Miguel Seoane, Richard Shaw, Mitch K. Shiver, Steven W. Short, Ning Le-
ung Sizto, Johannes P. Sluis, Melanie Ann Smith, Jean-Ernest Sohna Sohna, Eric Spence, K. Stevens,
Neil W. Sutton, Lukasz Szajkowski, Carolyn L. Tregidgo, Gerardo Turcatti, Stephanie vandeVondele, Yuli
Verhovsky, Selene M. Virk, Suzanne Wakelin, Gregory C. Walcott, Jingwen Wang, Graham J. Worsley, Juy-
ing Yan, Ling Yau, Mike Zuerlein, Jane Rogers, James C. Mullikin, Matthew E. Hurles, Nick J. McCooke,
John S. West, Frank L. Oaks, Peter L. Lundberg, David Klenerman, Richard Durbin, and Anthony J. Smith.
Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. Nature, 456:53 –
59, 2008.

[352] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. XNOR-SRAM: In-Memory Computing SRAM
Macro for Binary/Ternary Deep Neural Networks. IEEE Journal of Solid-State Circuits, 55(6):1733–1743,
2020.

[353] Zahid Ullah, Manish K. Jaiswal, and Ray C. C. Cheung. Z-TCAM: An SRAM-based Architecture for TCAM.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(2):402–406, 2015.

[354] Taha Shahroodi, Michael Miao, Joel Lindegger, Stephan Wong, Onur Mutlu, and Said Hamdioui.
An in-memory architecture for high-performance long-read pre-alignment filtering. arXiv preprint
arXiv:2310.15634, 2023.

[355] Michael A Quail, Iwanka Kozarewa, Frances Smith, Aylwyn Scally, Philip J Stephens, Richard Durbin,
Harold Swerdlow, and Daniel J Turner. A large genome center’s improvements to the Illumina sequenc-
ing system. Nature methods, 5(12):1005–1010, 2008.

[356] Bo Segerman. The most frequently used sequencing technologies and assembly methods in different
time segments of the bacterial surveillance and RefSeq genome databases. Frontiers in cellular and
infection microbiology, 10:527102, 2020.

[357] Edward J Fox, Kate S Reid-Bayliss, Mary J Emond, and Lawrence A Loeb. Accuracy of next generation
sequencing platforms. Next generation, sequencing & applications, 1, 2014.

[358] Anthony Rhoads and Kin Fai Au. PacBio sequencing and its applications. Genomics, proteomics & bioin-
formatics, 13(5):278–289, 2015.

[359] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. Pbsim: Pacbio reads simulator—toward accurate
genome assembly. Bioinformatics, 29(1):119–121, 2013.

[360] Taishan Hu, Nilesh Chitnis, Dimitri Monos, and Anh Dinh. Next-generation sequencing technologies:
An overview. Human Immunology, 82(11):801–811, 2021.

[361] Miten Jain, Hugh E Olsen, Benedict Paten, and Mark Akeson. The Oxford Nanopore MinION: delivery of
nanopore sequencing to the genomics community. Genome biology, 17(1):1–11, 2016.

[362] M. Amin, S. Skiena, and M. C. Schatz. NanoBLASTer: Fast alignment and characterization of Oxford
Nanopore single molecule sequencing reads. In 2016 IEEE 6th International Conference on Computa-
tional Advances in Bio and Medical Sciences (ICCABS), pages 1–6, Los Alamitos, CA, USA, oct 2016. IEEE
Computer Society.

[363] Ehsan Haghshenas, Süleyman Cenk Sahinalp, and Faraz Hach. lordFAST: sensitive and Fast Alignment
Search Tool for LOng noisy Read sequencing Data. Bioinformatics, 35:20–27, 2018.

BIBLIOGRAPHY

11

233

[364] Mark Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using Basic Local Align-
ment with Successive Refinement (BLASR): Theory and Application. BMC bioinformatics, 13:238, 09
2012.

[365] Gregory G. Faust and Ira M. Hall. YAHA: fast and flexible long-read alignment with optimal breakpoint
detection. Bioinformatics, 28(19):2417–2424, 07 2012.

[366] Bo Liu, Dengfeng Guan, Mingxiang Teng, and Yadong Wang. rHAT: fast alignment of noisy long reads
with regional hashing. Bioinformatics, 32(11):1625–1631, 11 2015.

[367] Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen, and Niranjan Nagarajan.
Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nature Communications, 7,
2016.

[368] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla
Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vi-
jaykumar, Mohammed Alser, and Onur Mutlu. GenStore: A High-Performance in-Storage Processing
System for Genome Sequence Analysis. In Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’22, page 635–654, New
York, NY, USA, 2022. Association for Computing Machinery.

[369] Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, Damla
Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu. GenPIP: In-Memory Accelera-
tion of Genome Analysis via Tight Integration of Basecalling and Read Mapping. In MICRO-55: 55th
Annual IEEE/ACM International Symposium on Microarchitecture, 09 2022.

[370] Yufeng Gu, Arun Subramaniyan, Tim Dunn, Alireza Khadem, Kuan-Yu Chen, Somnath Paul,
Md Vasimuddin, Sanchit Misra, David Blaauw, Satish Narayanasamy, and Reetuparna Das. GenDP: A
Framework of Dynamic Programming Acceleration for Genome Sequencing Analysis. In Proceedings of
the 50th Annual International Symposium on Computer Architecture, ISCA ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[371] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A case for exploiting subarray-
level parallelism (SALP) in DRAM. Proceedings - International Symposium on Computer Architecture,
pages 368–379, 2012.

[372] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri Ghiasi, Mi-
nesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu. SIMDRAM: A Frame-
work for Bit-Serial SIMD Processing Using DRAM. In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’21, page
329–345, New York, NY, USA, 2021. Association for Computing Machinery.

[373] Yukiteru Ono, Michiaki Hamada, and Kiyoshi Asai. PBSIM3: a simulator for all types of PacBio and ONT
long reads. NAR Genomics and Bioinformatics, 4(4):lqac092, 12 2022.

[374] Ono, Yukiteru and Hamada, Michiaki and Asai, Kiyoshi. PBSIM3: a simulator for all types of PacBio and
ONT long reads. https://github.com/yukiteruono/pbsim3, 2022.

[375] Heng Li. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England),
34, 05 2018.

[376] Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew
Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, and Heng Li. Twelve years of SAMtools
and BCFtools. GigaScience, 10(2), 02 2021. giab008.

[377] Alexa McIntyre, Rachid Ounit, Ebrahim Afshinnekoo, Robert Prill, Elizabeth Henaff, Noah Alexander,
Samuel Minot, David Danko, Jonathan Foox, Sofia Ahsanuddin, Scott Tighe, Nur Hasan, Poorani Sub-
ramanian, Kelly Moffat, Shawn Levy, Stefano Lonardi, Nick Greenfield, Rita Colwell, Gail Rosen, and
Christopher Mason. Comprehensive benchmarking and ensemble approaches for metagenomic classi-
fiers. Genome Biology, 18:182, 09 2017.

https://github.com/yukiteruono/pbsim3

11

234 BIBLIOGRAPHY

[378] Florian P Breitwieser, Jennifer Lu, and Steven L Salzberg. A review of methods and databases for metage-
nomic classification and assembly. Briefings in Bioinformatics, 20(4):1125–1136, 09 2017.

[379] Lulu Ge and Keshab K. Parhi. Classification Using Hyperdimensional Computing: A Review. IEEE Cir-
cuits and Systems Magazine, 20:30–47, 2020.

[380] Denis Kleyko, Abbas Rahimi, Dmitri A. Rachkovskij, Evgeny Osipov, and Jan M. Rabaey. Classification
and Recall With Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping
Characteristics. IEEE Transactions on Neural Networks and Learning Systems, 29(12):5880–5898, 2018.

[381] Intel. Intel VTune Amplifier 2019 User Guide. https://software.intel.com/en-us/
vtune-amplifier-help, 2018.

[382] Minxuan Zhou, Lingxi Wu, Muzhou Li, Niema Moshiri, Kevin Skadron, and Tajana Simunic. Ultra Ef-
ficient Acceleration for De Novo Genome Assembly via Near-Memory Computing. 2021 30th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), pages 199–212, 2021.

[383] Pentti Kanerva. Hyperdimensional Computing: An Introduction to Computing in Distributed Repre-
sentation with High-Dimensional Random Vectors. Cognitive Computation, 1:139–159, 2009.

[384] Ross W. Gayler. Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuro-
science. ArXiv, abs/cs/0412059, 2004.

[385] Dmitri A. Rachkovskij. Some approaches to analogical mapping with structure-sensitive distributed
representations. Journal of Experimental & Theoretical Artificial Intelligence, 16(3):125–144, 2004.

[386] Serge Slipchenko and Dmitri Rachkovskij. Analogical mapping using similarity of binary distributed
representations. J. Information Theories and Applications, 16:269–290, 01 2009.

[387] Dmitri Rachkovskij and Serge Slipchenko. Similarity-based retrieval with structure-sensitive sparse bi-
nary distributed representations. Computational Intelligence, 28:106 – 129, 03 2012.

[388] Fateme Rasti Najafabadi, Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. Hyperdimensional comput-
ing for text classification. In Design, automation test in Europe conference exhibition (DATE), University
Booth, pages 1–1, 2016.

[389] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M. Rabaey. Exploring Hyperdi-
mensional Associative Memory. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 445–456, 2017.

[390] Denis Kleyko, Evgeny Osipov, Nikolaos Papakonstantinou, Valeriy Vyatkin, and Arash Mousavi. Fault
detection in the hyperspace: Towards intelligent automation systems. In 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), pages 1219–1224, 2015.

[391] Denis Kleyko, Evgeny Osipov, Ross W. Gayler, Asad I. Khan, and Adrian G. Dyer. Imitation of honey
bees’ concept learning processes using Vector Symbolic Architectures. Biologically Inspired Cognitive
Architectures, 14:57–72, 2015.

[392] Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M. Rabaey. Hyperdimensional
biosignal processing: A case study for EMG-based hand gesture recognition. In 2016 IEEE International
Conference on Rebooting Computing (ICRC), pages 1–8, 2016.

[393] P. Kanerva, J. Kristofersson, and A. Holst. Random Indexing of Text Samples for Latent Semantic Analy-
sis. In L.R. Gleitman and A.K. Josh, editors, Proceedings of the 22nd Annual Conference of the Cognitive
Science Society, volume 1036, Erlbaum, New Jersey, 2000.

[394] Behnam Khaleghi, Mohsen Imani, and Tajana Rosing. Prive-HD: Privacy-Preserved Hyperdimensional
Computing. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference, DAC ’20. IEEE
Press, 2020.

https://software.intel.com/en-us/vtune-amplifier-help
https://software.intel.com/en-us/vtune-amplifier-help

BIBLIOGRAPHY

11

235

[395] T.A. Plate. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3):623–641,
1995.

[396] Stephen I. Gallant and T. Wendy Okaywe. Representing Objects, Relations, and Sequences. Neural Com-
putation, 25(8):2038–2078, 08 2013.

[397] Ross W. Gayler. Multiplicative Binding, Representation Operators & Analogy. In Workshop Poster, 1998.

[398] Stephen I. Gallant and Phil Culliton. Positional binding with distributed representations. In 2016 Inter-
national Conference on Image, Vision and Computing (ICIVC), pages 108–113, 2016.

[399] D.A. Rachkovskij. Representation and processing of structures with binary sparse distributed codes.
IEEE Transactions on Knowledge and Data Engineering, 13(2):261–276, 2001.

[400] Tony Plate. Holographic Reduced Representations. IEEE transactions on neural networks / a publication
of the IEEE Neural Networks Council, 6:623–41, 02 1995.

[401] Dmitri A. Rachkovskij, Ernst M. Kussul, and Tatiana N. Baidyk. Building a world model with structure-
sensitive sparse binary distributed representations. Biologically Inspired Cognitive Architectures, 3:64–
86, 2013.

[402] Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

[403] Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I. Khan, and Yaşar Ahmet Şekerciogğlu. Holo-
graphic Graph Neuron: A Bioinspired Architecture for Pattern Processing. IEEE Transactions on Neural
Networks and Learning Systems, 28(6):1250–1262, 2017.

[404] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim, and Tajana Rosing.
DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 356–371, 2020.

[405] Knut Reinert, Temesgen Hailemariam Dadi, Marcel Ehrhardt, Hannes Hauswedell, Svenja Mehringer,
René Rahn, Jongkyu Kim, Christopher Pockrandt, Jörg Winkler, Enrico Siragusa, Gianvito Urgese, and
David Weese. The SeqAn C++ template library for efficient sequence analysis: A resource for program-
mers. Journal of Biotechnology, 261:157–168, 2017. Bioinformatics Solutions for Big Data Analysis in Life
Sciences presented by the German Network for Bioinformatics Infrastructure.

[406] Mark Harris et al. Optimizing parallel reduction in CUDA. Nvidia developer technology, 2(4):70, 2007.

[407] Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas Wu, David Koslicki, and
Eleazar Eskin. MiCoP: microbial community profiling method for detecting viral and fungal organisms
in metagenomic samples. BMC Genomics, 20:423, 06 2019.

[408] Project: PRJEB34001. Calibration sausages WGS containing mammalian and avian species. https:
//www.ebi.ac.uk/ena/browser/view/PRJEB34001.

[409] Project: PRJNA271645. Calibration sausages Metagenome. https://www.ebi.ac.uk/ena/browser/
view/PRJNA271645.

[410] Miao Hu, Catherine Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, Noraica Dávila, Hao Jiang,
Stan Williams, Jianhua Joshua Yang, Qiangfei Xia, and John William Strachan. Memristor-Based Analog
Computation and Neural Network Classification with a Dot Product Engine. Advanced Materials, 30, 01
2018.

[411] Mahdi Zahedi, Mahta Mayahinia, Muath Abu Lebdeh, Stephan Wong, and Said Hamdioui. Efficient
Organization of Digital Periphery to Support Integer Datatype for Memristor-Based CIM. In 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 216–221, 2020.

[412] Shinhyun Choi, Jong Hoon Shin, Jihang Lee, Patrick Sheridan, and Wei D. Lu. Experimental Demonstra-
tion of Feature Extraction and Dimensionality Reduction Using Memristor Networks. Nano letters, 17
5:3113–3118, 2017.

https://www.ebi.ac.uk/ena/browser/view/PRJEB34001
https://www.ebi.ac.uk/ena/browser/view/PRJEB34001
https://www.ebi.ac.uk/ena/browser/view/PRJNA271645
https://www.ebi.ac.uk/ena/browser/view/PRJNA271645

11

236 BIBLIOGRAPHY

[413] Mahdi Zahedi, Remon van Duijnen, Stephan Wong, and Said Hamdioui. Tile Architecture and Hardware
Implementation for Computation-in-Memory. In 2021 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 108–113, 2021.

[414] Gonzalo Diarce, Álvaro Celador, K. Martin, A. Urresti, Ane Garcia-Romero, and J.M. Sala. PA compara-
tive study of the CFD modeling of a ventilated active fa ade including phase change materials. Applied
Energy, 126:307–17, 08 2014.

[415] Simone Balatti, Stefano Ambrogio, Zhongqiang Wang, and Daniele Ielmini. True Random Number Gen-
eration by Variability of Resistive Switching in Oxide-Based Devices. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 5(2):214–221, 2015.

[416] Francesco Maria Puglisi°, Nicolò Zagni, Luca Larcher, and Paolo Pavan. A new verilog-A compact model
of random telegraph noise in oxide-based RRAM for advanced circuit design. In 2017 47th European
Solid-State Device Research Conference (ESSDERC), pages 204–207, 2017.

[417] R.G. Carvajal, J. Ramirez-Angula, and J. Tombs. High-speed high-precision voltage-mode MIN/MAX
circuits in CMOS technology. In 2000 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 5, pages 13–16 vol.5, 2000.

[418] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture. In 2015 ACM/IEEE 42nd Annual International Sym-
posium on Computer Architecture (ISCA), pages 336–348, 2015.

[419] J. Picorel, D. Jevdjic, and B. Falsafi. Near-Memory Address Translation. In 2017 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), pages 303–317, Los Alamitos, CA,
USA, sep 2017. IEEE Computer Society.

[420] ARM Holdings. Cortex-A8 Technical: Reference Manual, 2010.

[421] Intel Intel. and IA-32 architectures software developer’s manual. Volume 3A: System Programming
Guide, Part, 1(64):64, 64.

[422] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Kr-
ishna T. Malladi, Hongzhong Zheng, and Onur Mutlu. LazyPIM: An Efficient Cache Coherence Mecha-
nism for Processing-in-Memory. IEEE Computer Architecture Letters, 16(1):46–50, 2017.

[423] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarung-
nirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu.
CoNDA: Efficient Cache Coherence Support for near-Data Accelerators. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture, ISCA ’19, page 629–642, New York, NY, USA, 2019.
Association for Computing Machinery.

[424] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality Cache for Data Parallel Acceleration. In Pro-
ceedings of the 46th International Symposium on Computer Architecture, ISCA ’19, page 397–410, New
York, NY, USA, 2019. Association for Computing Machinery.

[425] Ivan Merelli, Lucia Morganti, Elena Corni, Carmelo Pellegrino, Daniele Cesini, Luca Roverelli, Gabriele
Zereik, and Daniele D’Agostino. Low-power portable devices for metagenomics analysis: Fog computing
makes bioinformatics ready for the Internet of Things. Future Generation Computer Systems, 88:467–478,
2018.

[426] Daniele D’Agostino, Lucia Morganti, Elena Corni, Daniele Cesini, and Ivan Merelli. Combining Edge and
Cloud computing for low-power, cost-effective metagenomics analysis. Future Generation Computer
Systems, 90:79–85, 2019.

[427] Özge Eyice, Motonobu Namura, Yin Chen, Andrew Mead, Siva Samavedam, and Hendrik Schäfer. SIP
metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil
and lake sediment. The ISME journal, 9(11):2336—2348, November 2015.

BIBLIOGRAPHY

11

237

[428] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbigniew T. Kalbarczyk, Deming Chen,
Steven S. Lumetta, and Ravishankar K. Iyer. ASAP: Accelerated Short-Read Alignment on Programmable
Hardware. IEEE Trans. Comput., 68(3):331–346, mar 2019.

[429] Xia Fei, Zou Dan, Lu Lina, Man Xin, and Zhang Chunlei. FPGASW: Accelerating Large-Scale
Smith–Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.
Interdisciplinary Sciences: Computational Life Sciences, 10, 04 2017.

[430] Robin Kobus, Christian Hundt, André Müller, and Bertil Schmidt. Accelerating metagenomic read clas-
sification on CUDA-enabled GPUs. BMC Bioinformatics, 18, 01 2017.

[431] Derrick E Wood, Jennifer Lu, and Ben Langmead. Kraken 2 Open-Sourced Implementation. https:
//github.com/DerrickWood/kraken2, 2019.

[432] Qian Lou and Lei Jiang. BRAWL: A Spintronics-Based Portable Basecalling-in-Memory Architecture for
Nanopore Genome Sequencing. IEEE Computer Architecture Letters, 17(2):241–244, 2018.

[433] D. Mayhew and V. Krishnan. PCI express and advanced switching: evolutionary path to building next
generation interconnects. In 11th Symposium on High Performance Interconnects, 2003. Proceedings.,
pages 21–29, 2003.

[434] PCI-SIG. PCI-E Specification. https://pcisig.com/specifications.

[435] S. Rao, W. Kim, S. van Beek, S. Kundu, M. Perumkunnil, S. Cosemans, F. Yasin, S. Couet, R. Carpenter, B.J.
O’Sullivan, S. H. Sharifi, N. Jossart, L. Souriau, L. Goux, D. Crotti, and G. S. Kar. STT-MRAM array perfor-
mance improvement through optimization of Ion Beam Etch and MTJ for Last-Level Cache application.
In 2021 IEEE International Memory Workshop (IMW), pages 1–4, 2021.

[436] Manu Komalan, Sushil Sakhare, Trong Huynh Bao, Siddharth Rao, Woojin Kim, Christian Tenllado,
José Ignacio Gómez, Gouri Sankar Kar, Arnaud Furnemont, and Francky Catthoor. Cross-layer design
and analysis of a low power, high density STT-MRAM for embedded systems. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–4, 2017.

[437] Intel Corp. Intel® Performance Counter Monitor. https://www.intel.com/software/pcm, 2017.

[438] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and manipulating k-mer
statistics. Bioinformatics (Oxford, England), 33, 01 2017.

[439] Ian Curtis. The Intel Skylake-X Review: Core i9 7900X, i7 7820X and i7 7800X Tested:
Die Size Estimates and Arrangements. https://www.anandtech.com/show/11550/
the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6, 2017.

[440] Lillian Pentecost, Alexander Hankin, Marco Donato, Mark Hempstead, Gu-Yeon Wei, and David Brooks.
NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories. In
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 938–
956, 2022.

[441] Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate prediction of CMOS device perfor-
mance from 180nm to 7nm. Integration, 58:74–81, 2017.

[442] Yi-Fan Qin, Rui Kuang, Xiao-Di Huang, Yi Li, Jia Chen, and Xiang-Shui Miao. Design of High Robust-
ness BNN Inference Accelerator Based on Binary Memristors. IEEE Transactions on Electron Devices,
67(8):3435–3441, 2020.

[443] Yiyang Zhao, Yongjia Wang, Ruibo Wang, Yuan Rong, and Xianyang Jiang. A Highly Robust Binary Neural
Network Inference Accelerator Based on Binary Memristors. Electronics, 10(21), 2021.

[444] Tifenn Hirtzlin, Marc Bocquet, Bogdan Penkovsky, Jacques-Olivier Klein, Etienne Nowak, Elisa Vianello,
Jean-Michel Portal, and Damien Querlioz. Digital biologically plausible implementation of binarized
neural networks with differential hafnium oxide resistive memory arrays. Frontiers in neuroscience,
2020.

https://github.com/DerrickWood/kraken2
https://github.com/DerrickWood/kraken2
https://pcisig.com/specifications
https: //www.intel.com/software/pcm
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6

11

238 BIBLIOGRAPHY

[445] Chung-Cheng Chou, Zheng-Jun Lin, Pei-Ling Tseng, Chih-Feng Li, Chih-Yang Chang, Wei-Chih Chen,
Y. D. Chih, and Tsung-Yung Jonathan Chang. An N40 256K×44 embedded RRAM macro with SL-
precharge SA and low-voltage current limiter to improve read and write performance. 2018 IEEE In-
ternational Solid - State Circuits Conference - (ISSCC), pages 478–480, 2018.

[446] Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and R.D. (Shawn) Blanton. LightNN: Filling the
Gap between Conventional Deep Neural Networks and Binarized Networks. In Proceedings of the on
Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, page 35–40, New York, NY, USA, 2017. Association
for Computing Machinery.

[447] Stefano Ambrogio, Nicola Ciocchini, Mario Laudato, Valerio Milo, Agostino Pirovano, Paolo Fantini, and
D. Ielmini. Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory
(PCM) Synapses. Frontiers in Neuroscience, 10, 03 2016.

[448] Qi Liu, Bin Gao, Peng Yao, Dong Wu, Junren Chen, Yachuan Pang, Wenqiang Zhang, Yan Liao, Cheng-Xin
Xue, Wei-Hao Chen, Jianshi Tang, Yu Wang, Meng-Fan Chang, He Qian, and Huaqiang Wu. 33.2 a fully
integrated analog reram based 78.4tops/w compute-in-memory chip with fully parallel mac computing.
In 2020 IEEE International Solid- State Circuits Conference - (ISSCC), pages 500–502, 02 2020.

[449] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-Based Learning Applied to Docu-
ment Recognition. Proceedings of the IEEE, 86:2278 – 2324, 12 1998.

[450] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. University of Toronto, 05 2012.

[451] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. Advances in neural information processing systems, 29, 2016.

[452] Pan Zhou, Weiguang Zhao, Jianghui Li, Ang Li, Wei Du, and Shiping Wen. Massive Maritime Path Plan-
ning: A Contextual Online Learning Approach. IEEE Transactions on Cybernetics, 51(12):6262–6273,
2021.

[453] Gang Chen, Shengyu He, Haitao Meng, and Kai Huang. PhoneBit: Efficient Gpu-Accelerated Binary
Neural Network Inference Engine for Mobile Phones. In Proceedings of the 23rd Conference on Design,
Automation and Test in Europe, DATE ’20, page 786–791, San Jose, CA, USA, 2020. EDA Consortium.

[454] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. Ac-
celerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC. In 2016 International
Conference on Field-Programmable Technology (FPT), pages 77–84, 2016.

[455] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning supercomputer. 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 609–622, 2014.

[456] Joao Ambrosi, Aayush Ankit, Rodrigo Antunes, Sai Rahul Chalamalasetti, Soumitra Chatterjee, Izzat El
Hajj, Guilherme Fachini, Paolo Faraboschi, Martin Foltin, Sitao Huang, Wen-Mei Hwu, Gustavo Knuppe,
Sunil Vishwanathpur Lakshminarasimha, Dejan Milojicic, Mohan Parthasarathy, Filipe Ribeiro, Lucas
Rosa, Kaushik Roy, Plinio Silveira, and John Paul Strachan. Hardware-Software Co-Design for an Analog-
Digital Accelerator for Machine Learning. In 2018 IEEE International Conference on Rebooting Comput-
ing (ICRC), pages 1–13, 11 2018.

[457] Raphael Cardoso, Lubna Arif, Clément Zrounba, Fabio Pavanello, Ian O’Connor, Laurent Vivien, Léopold
Virot, and Sébastien Le Beux. Energy efficient on-chip optical broadcast with partial-absorption photo-
diodes. In 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), pages 198–202, 2022.

[458] Sajjad Moazeni, Sen Lin, Mark Wade, Luca Alloatti, Rajeev J. Ram, Miloš Popović, and Vladimir Sto-
janović. A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45-nm SOI CMOS.
IEEE Journal of Solid-State Circuits, 52(12):3503–3516, 2017.

[459] Aditya Narayan, Yvain Thonnart, Pascal Vivet, and Kaan Coşkun. PROWAVES: Proactive Runtime Wave-
length Selection for Energy-efficient Photonic NoCs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, PP:1–1, 11 2020.

BIBLIOGRAPHY

11

239

[460] Masaki Wada, Taiji Sakamoto, Shinichi Aozasa, Ryota Imada, Takashi Yamamoto, and Kazuhide Naka-
jima. Full C-Band and Power Efficient Coupled-Multi-Core Fiber Amplifier. In 2020 Optical Fiber Com-
munications Conference and Exhibition (OFC), pages 1–3, 01 2020.

[461] Ankit, Aayush and Silveira, Plinio and Aguiar, Glaucimar. PUMA Simulator. https://github.com/
Aayush-Ankit/puma-simulator, 2019.

[462] Clément Zrounba, Sebastien Cueff, Sébastien Le Beux, Ian O’Connor, and Fabio Pavanello. Explo-
ration of the optical behavior of phase-change materials integrated in silicon photonics platforms.
In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference
(CLEO/Europe-EQEC), pages 1–1, 2021.

[463] Robert Polster, Yvain Thonnart, Guillaume Waltener, Jose-Luis Gonzalez, and Eric Cassan. Efficiency
Optimization of Silicon Photonic Links in 65-nm CMOS and 28-nm FDSOI Technology Nodes. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 24:1–10, 12 2016.

[464] Hanyu Zhang, Linjie Zhou, Liangjun Lu, Jian Xu, Ningning Wang, Hao Hu, B. M. A. Rahman, Zhiping
Zhou, and Jianping Chen. Miniature Multi-Level Optical Memristive Switch Using Phase Change Mate-
rial. arXiv e-prints, page arXiv:1905.03163, May 2019.

[465] Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, Jun Yang, and Jiwu Shu. ParaBit: Processing Parallel
Bitwise Operations in NAND Flash Memory Based SSDs. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’21, page 59–70, New York, NY, USA, 2021. Association
for Computing Machinery.

[466] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Error Patterns in MLC NAND Flash Memory: Mea-
surement, Characterization, and Analysis. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’12, page 521–526, San Jose, CA, USA, 2012. EDA Consortium.

[467] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, Bipin Rajendran, Mehdi
Asheghi, and Kenneth E. Goodson. Phase Change Memory. Proceedings of the IEEE, 98(12):2201–2227,
2010.

[468] Jun Yang and Bo Zhao. Improving phase change memory (pcm) and spin-torque-transfer magnetic-ram
(stt-mram) as next-generation memories: a circuit perspective. 2013.

[469] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok
Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexander Driskill-Smith, and Mohamad Krounbi. Spin-
Transfer Torque Magnetic Random Access Memory (STT-MRAM). J. Emerg. Technol. Comput. Syst., 9(2),
may 2013.

[470] Stuart S. P. Parkin and See-Hun Yang. Memory on the racetrack. Nature nanotechnology, 10 3:195–8,
2015.

[471] Abdullah Giray Yağlıkçı, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa,
Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur
Mutlu. BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM
Rows. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages
345–358, 2021.

[472] Jawad Haj-Yahya, Jisung Park, Rahul Bera, Juan Gómez Luna, Efraim Rotem, Taha Shahroodi, Jeremie
Kim, and Onur Mutlu. BurstLink: Techniques for Energy-Efficient Video Display for Conventional and
Virtual Reality Systems. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’21, page 155–169, New York, NY, USA, 2021. Association for Computing Machinery.

[473] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur
Mutlu. Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page
1121–1137, New York, NY, USA, 2021. Association for Computing Machinery.

https://github.com/Aayush-Ankit/puma-simulator
https://github.com/Aayush-Ankit/puma-simulator

240 BIBLIOGRAPHY

[474] Minesh Patel, Taha Shahroodi, Aditya Manglik, A Giray Yaglikci, Ataberk Olgun, Haocong Luo, and Onur
Mutlu. A case for transparent reliability in DRAM systems. arXiv preprint arXiv:2204.10378, 2022.

[475] Can Firtina, Jisung Park, Mohammed H. Alser, Jeremie S. Kim, Damla Senol Cali, Taha Shahroodi,
Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, and Onur Mutlu.
BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analy-
sis. NAR Genomics and Bioinformatics, 5, 2021.

[476] Can Firtina, Kamlesh R. Pillai, Gurpreet Singh Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S.
Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, Mohammed H. Alser, Juan Gómez-Luna,
Sreenivas Subramoney, and Onur Cezmi Mutlu. Aphmm: Accelerating profile hidden markov models
for fast and energy-efficient genome analysis. ArXiv, abs/2207.09765, 2022.

[477] Mahdi Zahedi, Taha Shahroodi, Stephan Wong, and Said Hamdioui. Bcim: Efficient implementation of
binary neural network based on computation in memory, 2022.

[478] Asif Ali Khan, Fazal Hameed, Taha Shahroodi, Alex K. Jones, and Jeronimo Castrillon. Efficient Mem-
ory Layout for Pre-Alignment Filtering of Long DNA Reads Using Racetrack Memory. IEEE Computer
Architecture Letters, pages 1–4, 2024.

CURRICULUM VITÆ

Taha (Michael) SHAHROODI

01-07-1995 Born in Tehran, Iran.

EDUCATION
Sep. 2018 B.Sc. degree in Computer Engineering

Sharif University of Technology (SUT), Tehran, Iran

Oct. 2020 M.Sc. degree in Computer Science
Eidgens̈sische Technische Hochschule Zürich (ETH Zürich)
Thesis: Investigating the Opportunities for Improving the Ef-

ficiency and Accuracy of Metagenomics Profiling
Promotor: Onur Mutlu

Mar. 2024 Ph.D. degree in Computer Science and Engineering
Technische Universiteit Delft (TU Delft), Delft, The Netherlands
Thesis: Computation-in-Memory for Modern Applications
Promotors: Stephan Wong, Said Hamdioui

241

MAIN PUBLICATIONS

9. T. Shahroodi, M. Miao, J. Lindegger, S. Wong, O. Mutlu, and S. Hamdioui, FilterFuse: A
Computation-In-Memory Architecture for High-Performance Long-Read Pre-Alignment Fil-
tering, Submitted for publication to International Symposium on Computer Architecture
(ISCA), 2024.

8. T. Shahroodi, R. Cardoso, S. Wong, A. Bosio, I. O’Connor, and S. Hamdioui, High-
Performance Data Mapping for BNNs on PCM-based Integrated Photonics, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2024.

7. T. Shahroodi, G. Singh, M. Zahedi, H. Mao, J. Lindegger, C. Firtina, S. Wong, O. Mutlu, and
S. Hamdioui, A Framework for Evaluating DNN-based Basecalling using Computation-In-
Memory with Non-Ideal Memristors, 56th IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2023.

6. T. Shahroodi, M. Miao, M. Zahedi, S. Wong, and S. Hamdioui, SieveMem: A Computation-
in-Memory Architecture for Fast and Accurate Pre-Alignment, 34th IEEE International Con-
ference on Application-specific Systems, Architectures, and Processors (ASAP), 2023.

5. T. Shahroodi, M. Miao, M. Zahedi, S. Wong, and S. Hamdioui, RattlesnakeJake: A Fast and
Accurate Pre-Alignment Filter Suitable for Computation-in-Memory, International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
2023.

4. T. Shahroodi, S. Wong, and S. Hamdioui, A Case for Genome Analysis Where Genomes Re-
side, International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), 2023.

3. T. Shahroodi, R. Cardoso, M. Zahedi, S. Wong, A. Bosio, I. O’Connor, and S. Hamdioui, Light-
speed Binary Neural Networks using Optical Phase-Change Materials, Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2023.

2. T. Shahroodi, M. Zahedi, A. Singh, S. Wong, and S. Hamdioui, KrakenOnMem: A Memristor-
Augmented HW/SW Framework for Taxonomic Profiling, 36th ACM International Confer-
ence on Supercomputing (ICS), 2022.

1. T. Shahroodi, M. Zahedi, C. Firtina, M. Alser, S. Wong, O. Mutlu, and S. Hamdioui, Demeter:
A Fast and Energy-Efficient Food Profiler using Hyperdimensional Computing in Memory,
IEEE Access, 2022.

243

https://arxiv.org/abs/2310.15634
https://arxiv.org/abs/2310.15634
https://arxiv.org/abs/2310.15634
https://arxiv.org/abs/2310.04366
https://arxiv.org/abs/2310.04366
10.1109/ASAP57973.2023.00035
10.1109/ASAP57973.2023.00035
https://doi.org/10.1007/978-3-031-46077-7_14
https://doi.org/10.1007/978-3-031-46077-7_14
https://doi.org/10.1007/978-3-031-46077-7_30
https://doi.org/10.1007/978-3-031-46077-7_30
10.23919/DATE56975.2023.10137229
10.23919/DATE56975.2023.10137229
https://doi.org/10.1145/3524059.3532367
https://doi.org/10.1145/3524059.3532367
https://doi.org/10.1109/ACCESS.2022.3195878
https://doi.org/10.1109/ACCESS.2022.3195878

OTHER PUBLICATIONS

13. A.A. Khan, F. Hameed, T. Shahroodi, A.K. Jones, J. Castrillon, Efficient Memory Layout for
Pre-alignment Filtering of Long DNA Reads Using Racetrack Memory, IEEE Computer Archi-
tecture Letters (CAL), 2024.

12. C. Firtina, K. Pillai, G.S. Kalsi, B. Suresh, D.S. Cali, J. Kim, T. Shahroodi, M.B. Cavlak, J. Lin-
degger, M. Alser, J. Gómez Luna, S. Subramoney, and O. Mutlu, ApHMM: Accelerating Profile
Hidden Markov Models for Fast and Energy-Efficient Genome Analysis, ACM Transactions on
Architecture and Code Optimization (TACO), 2023.

11. M. Zahedi, T. Shahroodi, S. Wong, and S. Hamdioui, BCIM: Efficient Implementation of Bi-
nary Neural Network Based on Computation in Memory, Submitted for publication to IEEE
Transactions on Emerging Topics in Computing (TETC), 2023.

10. M. Zahedi, G. Custers, T. Shahroodi, G. Gaydadjiev, S. Wong, and S. Hamdioui, SparseMEM:
Energy-efficient Design for In-memory Sparse-based Graph Processing, Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2023.

9. M. Zahedi, T. Shahroodi, S. Wong, and S. Hamdioui, Efficient Signed Arithmetic Multiplica-
tion on Memristor-Based CrossbarProcessing, IEEE Access 11, 2023.

8. C. Firtina, J. Park, M. Alser, J.S. Kim, D.S. Cali, T. Shahroodi, N.M. Ghiasi, G. Singh, K. Kanel-
lopoulos, C. Alkan, and O. Mutlu, BLEND: A Fast, Memory-Efficient and Accurate Mechanism
to Find Fuzzy Seed Matches in Genome Analysis, NAR Genomics and Bioinformatics, 2023.

7. M. Patel, T. Shahroodi, A. Manglik, G. Yaglikci, A. Olgun, H. Luo, and O. Mutlu, A Case
for Transparent Reliability in DRAM systems, Submitted to arXiv preprint arXiv:2204.10378
(2022).

6. J.D. Ferreira, G. Falcao, J. Gómez Luna, M. Alser, L. Orosa, M. Sadrosadati, J.S. Kim, G.F.
Oliveira, T. Shahroodi, A. Nori, and O. Mutlu, pluto: Enabling Massively Parallel Computa-
tion in DRAM via Lookup Tables, 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2022.

5. M. Zahedi, T. Shahroodi, G. Custers, A. Singh, S. Wong, and S. Hamdioui, System Design for
Computation-in-Memory: From Primitive to Complex Functions, IFIP/IEEE 30th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), 2022.

4. A. Singh, M. Zahedi, T. Shahroodi, M. Gupta, A. Gebregiorgis, M. Komalan, R.V. Joshi, F.
Catthoor, R. Bishnoi, and S. Hamdioui, Cim-based Robust Logic Accelerator using 28 nm
STT-MRAM Characterization Chip Tape-out, IEEE 4th International Conference on Artificial
Intelligence Circuits and Systems (AICAS), 2022.

3. R. Bera, K. Konstantinos, A. Nori, T. Shahroodi, S. Sreenivas, and O. Mutlu, Pythia: A Cus-
tomizable Hardware Prefetching Framework using Online Reinforcement Learning, 54th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021.

245

https://doi.org/10.48550/arXiv.2207.09765
https://doi.org/10.48550/arXiv.2207.09765
https://doi.org/10.48550/arXiv.2211.06261
https://doi.org/10.48550/arXiv.2211.06261
https://doi.org/10.23919/DATE56975.2023.10137303
https://doi.org/10.23919/DATE56975.2023.10137303
https://doi.org/10.1109/ACCESS.2023.3263259
https://doi.org/10.1109/ACCESS.2023.3263259
https://api.semanticscholar.org/CorpusID:245218560
https://api.semanticscholar.org/CorpusID:245218560
https://doi.org/10.48550/arXiv.2204.10378
https://doi.org/10.48550/arXiv.2204.10378
https://api.semanticscholar.org/CorpusID:244708872
https://api.semanticscholar.org/CorpusID:244708872
https://doi.org/10.1109/VLSI-SoC54400.2022.9939571
https://doi.org/10.1109/VLSI-SoC54400.2022.9939571
https://doi.org/10.1109/AICAS54282.2022.9869993
https://doi.org/10.1109/AICAS54282.2022.9869993
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3466752.3480114

246 LIST OF PUBLICATIONS

2. J. Haj-Yahya, J. Park, R. Bera, G. Gómez Luna, E. Rotem, T. Shahroodi, J. Kim, and O. Mutlu,
BurstLink: Techniques for Energy-Efficient Video Display for Conventional and Virtual Real-
ity Systems, 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.

1. A.G. Yağlikçi, M. Patel, J.S. Kim, R. Azizi, A. Olgun, L. Orosa, H. Hassan, J. Park, K. Kanel-
lopoulos, T. Shahroodi, S. Ghose, and O. Mutlu, BlockHammer: Preventing RowHammer at
Low Cost by Blacklisting Rapidly-Accessed DRAM Rows, IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021.

https://doi.org/10.1145/3466752.3480085
https://doi.org/10.1145/3466752.3480085
https://doi.org/10.1109/HPCA51647.2021.00037
https://doi.org/10.1109/HPCA51647.2021.00037

	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Motivation
	Limitations of Traditional Computing Systems
	Problem Discussion
	Solution Direction and Research Topics
	Identify and improve Bioinformatics and Neural Network kernels using CIM
	Exploring emerging (memory) technologies for CIM

	Thesis Statement
	Contributions
	Thesis Outline

	Background and State-of-the-Art
	Computation-In-Memory (CIM)
	CIM designs classification based on computation location
	Illustration of generic CIM tile
	Potential Emerging Technologies for CIM
	Primitive functions in CIM classes
	Abstraction of CIM Design Choices

	Modern Applications
	Bioinformatics and genomics
	Neural Network

	State-of-the-Art CIM Designs and Simulators
	General-Purpose State-of-the-Art CIM Designs and Simulators
	Specific-Purpose State-of-the-Art CIM Designs and Simulators

	Swordfish
	Background and Motivation
	Genome Sequencing Pipeline
	Basecalling
	Memristor-based CIM and Associated Non-Idealities
	Programmable Inference Architecture

	Swordfish Framework
	Swordfish Overview
	Partition & Map
	VMM Model Generator
	Accuracy Enhancer
	System Evaluator
	Swordfish Evaluation Challenges

	Evaluation Methodology
	Implementations and Models
	Simulation Infrastructure
	Evaluation Metrics
	Datasets and Workloads

	Swordfish Evaluation
	Effect of Quantization on Accuracy without Accuracy Enhancement
	Effect of Non-idealities on Accuracy without Accuracy Enhancement
	Effect of Accuracy Enhancement on Quantized Basecallers
	Effect of Accuracy Enhancement on Non-idealities
	Throughput Analysis of SwordfishAccel
	Area vs. Accuracy Analysis
	Verdict on Realistic-SwordfishAccel

	Discussions and Future Works
	Applicability of Swordfish Looking forward
	Other DNN-based Applications
	Better Accuracy Enhancement Techniques

	Conclusion

	RattlesnakeJake
	Proposal and Architecture
	RattlesnakeJake's Algorithm
	RattlesnakeJake's Architecture
	RattlesnakeJake Algorithm to Hardware Mapping

	Evaluations
	Evaluation Methodology
	Accuracy Analysis
	Throughput and Execution Time

	Discussions and Future Works
	RattlesnakeJake for Long Sequence Alignment
	Potential Design Improvements

	Conclusion

	SieveMem
	Motivation and Profiling
	Shared Kernels in Filters
	Data Movement in Fitlers

	Proposal and Architecture
	SieveMem Architecture
	SieveMem Example Support for SHD
	BandedKrait Algorithm
	BandedKrait on SieveMem (Mem-BandedKrait)

	Evaluations
	Evaluation Methodology
	Execution Time of Supported Kernels
	Filtering Accuracy
	Filtering Speed
	End-to-end Alignment Speed

	Discussions and Future Works
	SieveMem for Long Sequence Alignment
	Potential Design Explorations

	Conclusion

	FilterFuse
	Motivation
	Long Reads vs. Short Reads
	Limitations of SotA filters for long reads

	LongGeneGuardian Algorithm
	FilterFuse Architecture
	FilterFuse Overview
	Tile Architecture
	Sub-Array Architecture
	Bank and Bank-Group Architecture
	Rank Architecture
	Data Mapping in FilterFuse
	Long Read Compatibility
	LongGeneGuardian on Software vs. on FilterFuse

	Evaluation Methodology
	Evaluation Results
	Design Space Exploration
	Filtering Accuracy
	Filtering Speed
	End-to-end Alignment Speed
	Area and Power Analysis

	Conclusion

	Demeter
	Background and Motivation
	Metagenomic Profilers
	Problems of Food Profilers
	hyperdimensional computing.

	Demeter
	Step 1: Define the HD Space
	Step 2: Build Demeter's Reference Data Structure
	Step 3: Demeter's Read Conversion
	Step 4: Multi-Species Classification per Read
	Step 5: Species Level Abundance Estimation

	Demeter's Evaluation
	Methodology
	Demeter's Accuracy Analysis
	Demeter's Software Performance Analysis
	Demeter's Memory Analysis

	Demeter's PIM-enabled Accelerator
	Overview of Demeter's Accelerator
	Item Memory (IM) Design
	Encoder Design
	Associate Memory (AM) Design
	Similarity Check Hardware
	Controller Unit

	System Integration of Acc-Demeter
	Address Translation
	Coherence
	Interrupts
	ISA Extensions and Programming Interface

	Acc-Demeter's Evaluation
	Methodology
	Acc-Demeter's Performance Analysis
	Acc-Demeter's Power and Area Analysis

	Discussions and Future Works
	Conclusion

	KrakenOnMem
	Motivation
	Kraken2's Execution Breakdown
	Limitation of Previous PIM-enabled Designs

	KrakenOnMem Design
	A High-Level Overview
	TL-PIM: Matching Mechanism
	TL-PIM: Taxonomic Retrieval
	TL-PIM: Controller
	Relation between LCA-Arrays and Key-Arrays
	Optimizations
	KrakenOnMem Profiling Walk Through

	Discussions and Future Works
	Evaluation Methodology
	Experimental Results
	Performance Analysis
	Power and Area Analysis

	Conclusion

	LightSpeed
	TacitMap for BNN
	Evaluations
	Networks and Datasets

	Conclusion

	EinsteinBarrier
	EinsteinBarrier Architecture
	oPCM-based WDM-enabled ECore
	oPCM-based ECore Overheads

	Evaluation Methodology
	Implementations and Models
	Designs and Baselines
	Networks and Datasets

	Evaluation Results
	Performance Analysis
	Energy Analysis

	Discussions and Future Works
	Conclusion

	Conclusion
	Summary
	Future Research Directions
	Extending the Proposed Techniques
	Leveraging and Cascading the New-Found CIM Designs in End-to-End Pipelines
	New Bottlenecks after Exploiting the Proposed CIM Designs

	Epilogue
	Bibliography
	Curriculum Vitæ
	List of Publications

