
DELFT UNIVERSITY OF TECHNOLOGY

Suitability of Shallow Water Solving
Methods for GPU Acceleration

FLORIS BUWALDA

February 18, 2020

In fulfillment of the requirements to obtain the degree of Master of Science in Applied
Mathematics, specialized in Computational Science and Engineering

at the Delft University of Technology, Numerical Analysis group, faculty of Electrical
Engineering, Mathematics and Computer Science

to be defended publicly on Wednesday February 26, 2020 at 2:00 PM.

Student number: 4241290
Thesis committee: Prof. dr. ir. C. Vuik, TU Delft, supervisor

Dr. E. de Goede, Deltares, supervisor
Prof. dr. ir. H. X. Lin, TU Delft

Additional Supervisor: Ir. M. Pronk Deltares, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

1 The Shallow water equations 1
1.1 Introduction . 1
1.2 Derivation . 1

1.2.1 The Navier-Stokes Equations. 1
1.2.2 Boundary conditions. 2
1.2.3 Pressure approximation . 3
1.2.4 Depth averaging . 3

1.3 Linearised system . 4
1.4 Well posedness . 5

1.4.1 Domain boundaries . 5
1.4.2 Hyperbolic system . 6
1.4.3 Parabolic system . 6
1.4.4 Initial conditions. 6

2 Discretization 7
2.1 Introduction . 7
2.2 Finite differences . 7
2.3 Finite volumes . 8
2.4 Finite elements . 8
2.5 Structured and unstructured grids . 9
2.6 Collocated and staggered grids . 11

3 Time integration methods 13
3.1 Introduction . 13
3.2 Explicit time integration . 13

3.2.1 Stability . 14
3.3 Implicit time integration . 15

3.3.1 Mixed and Semi-implicit methods 16
3.4 Runge-Kutta methods. 17
3.5 Parareal . 19
3.6 Stelling & Duinmeijer scheme. 19

4 The graphics processing unit (GPU) 23
4.1 Introduction . 23
4.2 GPU structure. 23

4.2.1 Architecture . 23
4.2.2 Blocks & warps . 24
4.2.3 Memory . 26

iii

iv CONTENTS

4.3 Memory bandwidth and latency . 28
4.3.1 bandwidth . 28
4.3.2 latency . 28
4.3.3 bandwidth limitation example . 29
4.3.4 Roofline model. 29

4.4 Computational precision on the GPU . 30
4.5 GPU Tensor cores . 32
4.6 CUDA & OpenCl . 34
4.7 CUDA program structure . 34

5 Parallel solvers on the GPU 37
5.1 Introduction . 37
5.2 Matrix structure and storage . 37

5.2.1 Construction formats . 37
5.2.2 Compressed formats . 38
5.2.3 Diagonal formats . 38
5.2.4 Block Compressed Row format. 39

5.3 Explicit methods . 39
5.4 Direct solution methods . 39

5.4.1 LU decomposition . 40
5.5 Iterative solution methods . 43

5.5.1 Basic iterative methods . 43
5.5.2 Convergence criteria . 45
5.5.3 Damping methods . 46

5.6 Conjugate gradient method . 47
5.6.1 The Krylov subspace . 47
5.6.2 The method of Gradient descent 48
5.6.3 Conjugate directions . 50
5.6.4 Combining the methods . 50
5.6.5 Convergence behaviour of CG . 51
5.6.6 Parallel Conjugate Gradient . 52
5.6.7 Krylov subspace methods for general matrices. 52

5.7 Multigrid . 53
5.7.1 Algebraic vs Geometric Multigrid 55
5.7.2 Error frequency . 55
5.7.3 Convergence behaviour . 56

5.8 Parallel Preconditioners. 57
5.8.1 Incomplete decomposition . 58
5.8.2 Basic Iterative methods as preconditioners 58
5.8.3 Multigrid as a preconditioner . 59
5.8.4 Sparse Approximate Inverse preconditioners 59
5.8.5 Polynomial preconditioners . 60
5.8.6 Block Jacobi preconditioners. 61
5.8.7 Multicoloring preconditioners . 62

CONTENTS v

5.9 Solver software packages . 64
5.9.1 Paralution . 64
5.9.2 cuSOLVER & cuSPARSE . 65
5.9.3 AmgX . 65
5.9.4 MAGMA . 65

6 Implementation of the Stelling & Duinmeijer scheme 67
6.1 Explicit implementation in MATLAB . 67

6.1.1 Staggered grid . 67
6.1.2 Stelling & Duinmeijer scheme . 69
6.1.3 Explicit term formulation . 71
6.1.4 Advective velocity upwinding . 72
6.1.5 Resulting explicit update scheme for positive flow directions 72

6.2 GPU Cuda C++ implementation . 74
6.3 Multithreaded C++ implementation . 76
6.4 Implicit Matlab implementation . 76

6.4.1 Crank-Nicolson method . 78

7 Benchmark results of the preliminary explicit implementation 81
7.0.1 Block size . 85
7.0.2 initialization time . 88

8 Implementation of the modified Stelling & Duinmeijer scheme 89
8.1 Improvements of the scheme . 89

8.1.1 Velocity advection . 89
8.1.2 Control booleans. 90
8.1.3 Wetting and drying. 90
8.1.4 Bathymetry . 91

8.2 Test cases . 92
8.2.1 Timestep size . 95

8.3 CUDA C++ implementation. 95
8.3.1 Branch avoidance . 95
8.3.2 Grid corners . 96
8.3.3 Block-level synchronization . 96
8.3.4 Comparison of code complexity 98

9 Benchmark results of the modified Stelling & Duinmeijer scheme 103
9.1 Computation time . 103

9.1.1 Validation . 105
9.1.2 Test case 1 . 105
9.1.3 Test case 2 . 110

10 Benchmark results of the implicit implementation and preconditioners 113
10.1 Results . 115

10.1.1 Solve time . 115
10.1.2 Preconditioner iterations . 117
10.1.3 Preconditioner construction time 118

vi CONTENTS

11 Summary and Conclusions 123
11.0.1 Summary . 123

11.1 Conclusions. 124
11.1.1 Research questions . 124
11.1.2 Additional conclusions. 125

11.2 Recommendations for future work . 127

A Bibliography 129
References . 129

ABSTRACT

In the past 15 years the field of general purpose computing on graphics processing units,
or GPUs, has become well developed and the practice is becoming more mainstream.
Computational demands of simulation software are continuously increasing. As such
for many applications traditionally computed on the central processing unit the ques-
tion arises of whether moving to GPU computing is a possible cost effective way of meet-
ing these demands.
The fundamental nature of GPU architecture that makes it so cost effective at doing bulk
computation also poses restrictions on which applications are suitable for it.
The shallow water equations are a simplified form of the Navier-Stokes equations and
describe water levels and flow currents in suitably shallow water such as rivers, estuar-
ies and the North sea. The main research goal of this thesis project was to determine
whether the shallow water equations are suitable for implementation on a GPU. Two
options exist, the equations may be solved with either an explicit or implicit time inte-
gration method.

First, a literature study was conducted to familiarize with the tools required to build
explicit and implicit shallow water models on a GPU. Then both an explicit and implicit
shallow water solver were developed first in the MATLAB programming language and
later in CUDA C++ on both CPU and GPU.

The main findings are that both explicit and implicit methods are well suited for
GPU implementation. Both methods proved to be compatible with a wetting and drying
mechanism of numerical cells. The Cuda C++ implementation was in the order of 10
times as fast as a MATLAB implementation for both CPU and GPU. For the benchmark
cases tested, the Cuda C++ GPU implementation was in the order of 50 times faster than
the equivalent multithreaded CPU implementation.
The implicit implementation was benchmarked using the conjugate gradient method
to solve the linear system. Various preconditioners were tested and a Repeated Red
Black preconditioner was found to be the most effective. The computation time of the
RRB preconditioned implicit method was compared with the explicit method and it was
found that the two methods reached parity in computation time when the implicit time
step was taken roughly 50 times as large as the explicit time step. For implicit time steps
smaller than that the explicit method was faster and when the implicit time step was
larger the implicit method was faster.
For the benchmark cases tested, the implicit method using a time step 50 times larger
than the explicit method was found to be less accurate and less stable than the explicit
method. The conclusion is that for cases similar to the benchmark cases an explicit
method is the fastest, most stable and most accurate method and thus the preferred
choice.

vii

INTRODUCTION

In the Netherlands, water has always been an important element to consider, as large
parts of the country are land claimed from the sea through human engineering.
Already in the 1950s the Directorate-General for Public Works and Water Management,
Rijkswaterstaat in Dutch, started the Delta Works project for the closure of the Eastern
Scheldt Barrier [1]. In this project numerical methods were applied to predict the impact
of this storm surge barrier on water levels and flow currents.
Deltares continues this tradition as an independent institute for applied research in the
field of water and subsurface. Deltares’ software system Delft3D is state-of-the-art and
is applied worldwide for the computation of water-related processes like water levels,
water quality processes and waves [2].

Delft3D has been developed for calculations on a computer’s central processing unit,
or CPU. Since the advent of the 21st century, great developments have been made with
doing calculations on a computer’s graphics processing unit, or GPU. The GPU is gener-
ally more efficient and faster at parallel computations, but has other limitations.

This thesis project focuses on the shallow water equations, which describe water lev-
els and flow currents. Two main methods exist for simulation, explicit and implicit time
stepping methods. It is well established that an implicit method is preferred when doing
shallow water computations on a CPU. The main focus of research in the project is first
to implement both an explicit and implicit method on the GPU, and determine which
method is preferred under which circumstances. Therefore the main research question
is:

“Which numerical method is best suited for solving the shallow water equations on
a GPU in terms of model accuracy, robustness and speed?”

A second item of research is ‘drying and flooding‘ of areas of water. For example,
in the Wadden Sea a lot of drying and flooding of shallow areas occurs because of the
changing tides. For a shallow water model this mechanic needs to be treated specially,
and it is important that this is done efficiently. A secondary research goal is thus to de-
velop an efficient flooding and drying mechanism in both the implicit and explicit im-
plementation.

First, a literature study has been conducted to familiarize with the tools required to
build the explicit and implicit implementation. The Shallow Water equations are de-
scribed in chapter 1, followed by a review of differential equation discretization meth-
ods in chapter 2. Then, different time integration methods are discussed in chapter 3

ix

x CONTENTS

and the inner workings of a GPU in chapter 4. Finally methods for solving an implicit
linear system are described in chapter 5.

The implementation and results are structured chronologically, with the initial im-
plementation composing chapters 6 and 7, the second improved implementation chap-
ter 8 and 9, and the implicit implementation in chapter 10.
Finally a summary and conclusions are presented in chapter 11.

This master thesis project was carried out at the TU Delft Department of Computer
Science in collaboration with Deltares.

CONTENTS xi

RESEARCH QUESTIONS
As mentioned in the introduction, the main research question to be answered in the
coarse of the project is:

“Which numerical method is best suited for solving the shallow water equations on
a GPU in terms of model accuracy, robustness and speed?”

Additionally, a number of subquestions have been formulated:

1. What are the tradeoffs involved in solving the shallow water equations on a GPU
using explicit methods compared to implicit?

2. How does the performance of existing software packages compare to a self-built
solver?

3. What are the tradeoffs involved in solving the shallow water equations on a GPU
in 32-bit floating point precision compared to 64 bit and 16 bit?

4. Which method or solver library is best suited for integration into Deltares’ existing
FORTRAN based solvers?

The answers to the main research question and subquestion will be presented in
chapter 11.

1
THE SHALLOW WATER EQUATIONS

1.1. INTRODUCTION
The SWE are a set of equations that describe fluid flow on a domain which has a much
larger length scale than depth scale. This also means that the applicability of the shallow
water equations is not necessarily restricted to bodies of water that are actually shallow.
The equations were first derived in one dimensional form by Adhémar Jean Claude Barré
de Saint-Venant in 1871 who also was the first to derive the Navier-Stokes equations [3].
The Navier-Stokes equations are the full set of equations describing viscous fluid flow.
These equations are hard to solve due to their inherent non-linearity and complexity.
The shallow water equations can be derived from the Navier-Stokes equations as a spe-
cial case where the complexity is reduced by averaging over the depth, hence the shal-
lowness condition. This makes them a very popular set of equations for use in simulation
where the shallowness condition holds.

1.2. DERIVATION

1.2.1. THE NAVIER-STOKES EQUATIONS
In order to derive the shallow water equations we will first start by stating the Cauchy
momentum equation in convective form [4]:

ρ
∂u

∂t
=−∇p +∇·τ+ρg (1.1)

Where u is a 3-dimensional flow velocity vector, ρ the fluid density, p the pressure, τ the
deviatoric stress tensor and g the vector of body forces acting on the fluid.

Since we have conservation of mass, we can derive from the continuity equation [4]

that ∂ρ
∂t =−∇· (ρu

)
. Substituting this into 1.1 we obtain:

∂
(
ρu

)
∂t

+∇· (ρuuT)=−∇p +∇·τ+ρg (1.2)

1

1

2 1. THE SHALLOW WATER EQUATIONS

It is known that water is only slightly compressible. However, when the shallowness
assumption holds the pressures involved are small so it can be assumed incompressible,
which means the density is constant. 1.2 and the continuity equation then become:

∂ (u)

∂t
+∇· (uuT)= 1

ρ

(−∇p +∇·τ)+ g (1.3)

∇·u = 0 (1.4)

These are the incompressible Navier-Stokes equations in conservation form.

1.2.2. BOUNDARY CONDITIONS
For illustration a 3 dimensional representation of the shallow water domain is given in
figure 1.1.

Figure 1.1: A schematic of the shallow water domain. ux,y,z are the flow velocities in their respective directions,
source: [5]

The bottom and free surface boundaries are important to consider first for the deriva-
tion of the shallow water equations. After that the domain boundary conditions will be
discussed.

BOTTOM BOUNDARY

At the bottom z =−b(x, y) we have the following conditions:

1. No slip condition: u(x, y,−b(x, y)) = 0

2. The flux through the bottom is 0: ux
∂b
∂x +uy

∂b
∂y +uz = 0

3. The bottom shear stress equals τbx = τxx
∂b
∂x +τx y

∂b
∂y +τxz similarly for y

1.2. DERIVATION

1

3

FREE SURFACE

At the time dependent free surface z = ζ(x, y, t) we have the following conditions:

1. The flux through the surface is 0: ∂ζ
∂t +ux

∂ζ
∂x +uy

∂ζ
∂y −uz = 0

2. The top shear stress equals τζx =−τxx
∂ζ
∂x −τx y

∂ζ
∂y +τxz similarly for y

3. The pressure defined as p = p −p0 = 0 with p0 the atmospheric pressure.

1.2.3. PRESSURE APPROXIMATION
If we consider at the z component of equation 1.3 it can be assumed that all terms except
the pressure can be neglected when compared to the gravitational acceleration, so the

equation can be reduced to ∂p
∂z = ρ0g .

After integrating we find p = ρ0g (ζ− z), which is simply the hydrostatic pressure.

This also produces the other terms of the gradient of p: ∂p
∂x,y = ρ0g ∂ζ

∂x,y .

1.2.4. DEPTH AVERAGING
By assuming the density was constant we have essentially eliminated the z dependency
of the pressure in equation 1.3. This suggest that we can also approximate the velocities
setting them to be their average when integrated over depth. We denote this average as

ūx,y = 1
H

∫ ζ
−b ux,y d z Integrating the the continuity equation of 1.3 we apply the Leibniz

integral rule and our boundary conditions to obtain:

∫ ζ

−b
∇·ud z =∇

∫ ζ

−b
ud z−u(z = η)∇η+u(z = b)∇b = ∂H

∂t
+ ∂

∂x
(Hūx)+ ∂

∂y

(
Hūy

)= 0 (1.5)

Likewise we can also integrate 1.3 and apply the shear stress boundary conditions to
obtain:

∂

∂t
(Hūx)+ ∂

∂x

(
Hū2

x

)+ ∂

∂y

(
Hūx ūy

)=−g H
∂ζ

∂x
+ 1

ρ0

[
τζx −τbx +

∂

∂x
τ̄xx + ∂

∂y
τ̄x y

]
∂

∂t

(
Hūy

)+ ∂

∂x

(
Hūx ūy

)+ ∂

∂y

(
Hū2

y

)
=−g H

∂ζ

∂y
+ 1

ρ0

[
τζy −τby +

∂

∂x
τ̄x y + ∂

∂y
τ̄y y

]
(1.6)

Now finally we can expand the derivatives on the left-hand side using the chain rule,
simplify using 1.5 and then divide by H to obtain:

∂ūx

∂t
+ ∂ūx

∂x
ūx + ∂ūx

∂y
ūy =−g

∂ζ

∂x
+ 1

ρ0H

[
τζx −τbx +

∂

∂x
τ̄xx + ∂

∂y
τ̄x y

]
∂ūx

∂t
+ ∂ūy

∂x
ūx +

∂ūy

∂y
ūy =−g

∂ζ

∂y
+ 1

ρ0H

[
τζy −τby +

∂

∂x
τ̄x y + ∂

∂y
τ̄y y

]
(1.7)

1.5 together with 1.6 are what are called the 2D shallow water equations. The terms
that are still undetermined are the surface and bottom stress terms and the stress deriva-
tives on the right-hand side.

1

4 1. THE SHALLOW WATER EQUATIONS

Finally, it is known [6] that the divergence of the deviatoric stress equals the viscosity
multiplied by the Laplacian of the velocity for incompressible flow.
The surface stress can often be neglected and the bottom stress can be modeled [6] as
τbx
ρ0

= g ux ||u||
C 2 H

, where C is the Chézy coefficient [7]. Combining this with 1.6 and 1.5 we
obtain:

∂H

∂t
+ ∂

∂x
(Hūx)+ ∂

∂y

(
Hūy

)= 0

∂ūx

∂t
+ ∂ūx

∂x
ūx + ∂ūx

∂y
ūy =−g

∂ζ

∂x
− g ux ||u||

C 2H 2 +ν
(
∂2ux

∂x2 + ∂2ux

∂y2

)
∂ūx

∂t
+ ∂ūy

∂x
ūx +

∂ūy

∂y
ūy =−g

∂ζ

∂y
− g uy ||u||

C 2H 2 +ν
(
∂2uy

∂x2 + ∂2uy

∂y2

)
(1.8)

We now have a workable form of the shallow water equations.

1.3. LINEARISED SYSTEM
Non-linear systems are difficult to solve. If global system behaviour is an acceptable re-
sult it can often be more practical to linearise the system and obtain an approximate
solution instead. In equation 1.8 we can identify a number of non-linear terms. On the
left-hand side, we have the product of velocities and their spatial derivatives, and on the
right-hand side we have the bottom friction and the viscosity terms.

In order to linearize these equations it is suggested [5] that we consider a steady uni-
form flow that is perturbed. This means that u = (ux ,uy) = U+u′ and ζ= Z +ζ′
The viscosity term is linear but its second order derivatives make it complex to solve and
its influence is known to be small so it is neglected.

The bottom friction is approximated by a constant C that is proportional to the un-
perturbed bottom friction coefficient. The linear approximation to the bottom friction
also neglects the acceleration terms which are assumed to be small for almost steady
uniform flow. This breaks down in the case of tidal flow for example, as in that case the
acceleration terms become quite significant.

1.4. WELL POSEDNESS

1

5

Inserting this into 1.8 and after canceling some terms and neglecting the higher order
terms we obtain our linear approximation:

∂H

∂t
+ ∂H

∂x
Ux + ∂H

∂y
Uy +Z

(
∂ux

∂x
+ ∂uy

∂y

)
= 0

∂ux

∂t
+ ∂ux

∂x
Ux + ∂ux

∂y
Uy =−g

∂H

∂x
− cux

∂ux

∂t
+ ∂uy

∂x
Ux +

∂uy

∂y
Uy =−g

∂H

∂y
− cuy (1.9)

Where we have omitted the depth averaging bars and perturbation accents for readabil-
ity.

Since this is a linear system of equations it can be conveniently written in vector-
matrix form to aid the discretization process:

∂u

∂t
= A

∂u

∂x
+B

∂u

∂y
+C u (1.10)

Where

u =
ux

uy

H

 A =
Ux 0 g

0 Ux 0
Z 0 Ux

 B =
Uy 0 0

0 Uy g
0 Z Uy

 C =
c 0 0

0 c 0
0 0 0

 (1.11)

1.4. WELL POSEDNESS
A set of differential equations cannot have a unique solution if it is not supplied by initial
conditions and boundary conditions. We call a problem well-posed if:

1. A solution exists

2. The solution is unique

3. The solution its behaviour changes continuously with changing initial and bound-
ary conditions. This is often interpreted as the principle that small perturbations
to initial or boundary conditions do not have a large impact on the solution.

1.4.1. DOMAIN BOUNDARIES
For a two dimensional shallow water domain there exist two possible domain bound-
aries, open and closed. A closed boundary permits no flux in the direction normal to the
boundary. An open boundary is an artificial boundary through which flow moves unhin-
dered. An example domain with closed boundaries would be when simulating an entire
lake, surrounded by land on all sides. Open boundaries would occur when simulating
part of a river, where the open boundary would be at the points where the river enters
and leaves the domain.

1

6 1. THE SHALLOW WATER EQUATIONS

One problem with an open boundary is that imposing a boundary condition in order
to guarantee well posedness might lead to wave reflection at the artificial boundary. It
can be shown [8] that if the Sommerfeld radiation condition is perfectly satisfied it guar-
antees no wave reflection. In practice this works only in an ideal case. However prop-
erties can be determined that minimize reflection, which is why Sommerfeld radiation
conditions are also called weakly reflective boundary conditions.

1.4.2. HYPERBOLIC SYSTEM
According to Courant & Hilbert [9], the shallow water equations are a hyperbolic sys-
tem of equations if we omit the viscosity term. When the viscosity term is neglected, it
is known that the solutions of the linearized SWE are wave-like solutions called Gravity
waves.

The system can be written in terms of characteristics which represent the behaviour
of the solutions over time. Hyperbolic systems have characteristic solutions and at any
point of the boundary of the region it is necessary to specify as many boundary condi-
tions as there are characteristic planes entering the region [5].

The characteristic wave speed can be shown to be related to the long wave speed√
g H : u +√

g H and u −√
g H .

If |u| < √
g H we call the flow subcritical which is the most common scenario. In this

scenario when there is a positive flow into the domain there are also two characteristics
entering, which requires two boundary conditions.
When there is a negative flow into the domain only a single characteristic enters and we
require a single boundary condition for the problem to be well posed.

1.4.3. PARABOLIC SYSTEM
If the viscosity is taken into account the system is parabolic. This means that the system
can no longer be described by a set of characteristics. Oliger & Sundström [10] used an
energy conservation argument to conclude which additional boundary conditions need
to be imposed. For a closed boundary, it is necessary to specify either a no-slip boundary
which means the tangential velocity is 0, or a free-slip boundary which implies the shear
stress at that boundary is 0. On an open boundary Sundström proposed one should
require zero shear stress when water flows through the boundary out of the domain.
When water flows into the domain, the flux through the boundary is required to remain
constant. [5] notes that the physical significance of the two requirements on an open
boundary is not clear.

1.4.4. INITIAL CONDITIONS
If one imagines the simulation space as a plane in the (x, y, t) space, the moment t = 0 is
a boundary of the region. Thus the principle of characteristics that a boundary condition
is necessary for every characteristic entering the region holds. Every single characteristic
enters the "region" through this boundary which means that all three possible boundary
conditions need to be specified, the initial x velocity, y velocity and water level H .

2
DISCRETIZATION

2.1. INTRODUCTION
In chapter 1 we derived the shallow water equations. Before they can be solved however,
the problem needs to be discretized, which means dividing the domain of computation
into gridpoints on which function values are evaluated.
There exist three main approaches to discretization: the finite differences method, the
finite volumes method and the finite elements method.

2.2. FINITE DIFFERENCES
A differential equation involves (partial) derivatives, which are defined as some contin-
uous limit of a function. If we wish to solve a differential equation on a computer, we
cannot take a continuous limit because a computer itself operates in discrete terms.
Therefore in order to state our problem in a computer language the derivatives must
be approximated in a discrete way. If we approximate these derivatives using Taylor
polynomials we call this the method of finite differences. Taylor’s theorem states that
if a function is k times differentiable at a point a we can approximate the function in a
neighborhood of a as:

f (x) = f (a)+ f ′(a)(x −a)+ f ′′(a)(x −a)2

2
+ ...+ f (k)(a)(x −a)k

k !
+ ... (2.1)

Now suppose we wish to approximate a first order derivative on a numerical grid with
grid distance h. If we set x = a+h we obtain f (a+h) = f (a)+ f ′(a)h+O(h2). Rearranging
for the derivative produces:

f ′(a) = f (a +h)− f (a)

h
+O(h) (2.2)

Which means that we can approximate the value of the derivative in point a using the
function value in point a and a neighbor function value with an error of order h.

7

2

8 2. DISCRETIZATION

An important thing to note is that the form defined in 2.2 is called forward difference,
as the function value in the positive neighboring spatial direction is used to approximate
the derivative. Other options are central difference where the information is used from
both neighbors, or backwards difference where information is used from the negative
spatial direction.

The order of the error is quite large, the same order as the grid distance. This means
in order to obtain an accurate estimate of the derivatives a very fine grid must be used
for computation, which may take a lot of computing time. Various different methods
have been developed that provide higher order accuracy at the cost of computational
intensity.

One remark regarding finite differences is that it requires equidistant grid points,
which imposes some restrictions on real world applicability. It is technically possible
to construct a method based on the Taylor approximation of the derivative on an non-
equidistant grid, but in practice this is so cumbersome that often a finite element or
finite volume method is chosen.

2.3. FINITE VOLUMES
The principle behind the Finite volumes method is Gauss’s theorem, which states that in
a 2 dimensional domainΩ for a vector field F (x, y) it holds that:∫ ∫

Ω
∇·F dΩ=

∫
S

F ·ndS (2.3)

Where S denotes the boundary ofΩ and n denotes the unit vector normal to the bound-
ary S.
In this way a differential equation involving a divergence term can be solved by invoking
the above equivalency to simplify the equation. The boundary integral can be numer-
ically approximated using Newton-Cotes integration [11]. The idea of the method is to
partition the domain in a set of control volumes on which the differential equation is
solved using this principle.

A big advantage of finite volume schemes is that they are conservative: The fluxes are
approximated at the boundaries and whatever flows out of one control volume enters
the next. Thus if the differential equation that is solved using the method represents a
conserved variable such as energy, mass or momentum, the scheme will also guarantee
conservation for the numerical approximation which is very desirable.

2.4. FINITE ELEMENTS
The finite element method is similar to the finite volumes method in the sense that the
problem is often reformulated in a so called "weak formulation" by integrating with a
chosen test function and applying 2.3. The major difference however, is that the solu-
tion of the differential equation is approximated by a finite linear combination of basis
functions. The problem then reduces into calculating the weights of the basis functions.

2.5. STRUCTURED AND UNSTRUCTURED GRIDS

2

9

These basis functions are defined on the edges of the numerical grid and are prefer-
ably nearly orthogonal. This is because the differential equation often involves a sum of
inner products between those basis functions. Every non zero inner product will then
correspond to an entry in the computation matrix and thus if a sparse matrix is desired
the basis functions must be nearly orthogonal.

Many different basis functions can be chosen to suit the differential equation and
boundary conditions. For example the incompressible SWE’s have the incompressib-
lity condition ∇u = 0, and it is possible to choose elements in such a way that this con-
dition is automatically satisfied, significantly reducing computational complexity. Like
the finite volume method it is also possible to choose your elements such that conserved
variables are also conserved by the numerical scheme. It should be noted however that
finding these elements is a very complex task and will only be an option for specific prob-
lems.

A big advantage of the finite element method is that the grid on which the basis func-
tions exist does not have to be structured. This means that if greater numerical precision
is required on a subdomain of computation, the grid can be refined only on that subdo-
main and remain coarse on the rest of the domain which reduces computational com-
plexity. However the method is inherently more computationally intensive than finite
difference or finite volume volumes which makes these methods preferred for homoge-
neous grids.

2.5. STRUCTURED AND UNSTRUCTURED GRIDS
The methods described in the preceding sections all have different requirements for the
discretized grid that represents the domain of computation. The two main grid cate-
gories are structured and unstructured grids.

STRUCTURED GRIDS

A structured grid has a constant structure: it contains a number of nodes that have a
regular connectivity. This makes it very easy to represent the domain in matrix form:
A grid node at index (i , j) is represented by matrix element (i , j) and nodes adjacent in
space are also adjacent in memory. Intuitively one would expect that this means that the
domain represented is always a rectangle. A problem with a rectangular domain is that
the boundaries of your physical problem may not be rectangular. This means that the
boundary values on the gridpoints must be inter- or extrapolated which is cumbersome
and introduces errors. The matrix structure is such that there is no need for a connec-
tivity matrix: connections are implied by in-matrix adjacency, which is very storage effi-
cient.

Fortunately a method exists to circumvent this problem: boundary fitted coordi-
nates. By reformulating the problem in general curvilinear coordinates the grid can be
morphed to fit the physical boundaries [11]. This solves the boundary problem but re-
formulation of the original problem into curvilinear coördinates is often nontrivial.

2

10 2. DISCRETIZATION

An illustration of a curvilinear reformulation is given in figure 2.1.

Figure 2.1: An illustration of boundary fitting a structured grid using curvilinear coordinates. Source: [5]

UNSTRUCTURED GRIDS

A structured grid has the requirement that every row and column has a constant number
of grid points. An unstructured grid is simply a grid that has no such restriction. This
makes unstructured grids very useful for representing complex domains, or domains
where greater grid density is required at specific subdomains. An unstructured grid is
easier to generate for complex problems but harder to represent and store in computer
memory. An example of an unstructured grid is given in figure 2.2.

Figure 2.2: An example of an unstructured grid using triangular elements. Source: [12]

2.6. COLLOCATED AND STAGGERED GRIDS

2

11

Since the domain of computation has a large impact on grid generation and storage
complexity, and since grid choice and solving method are closely entwined the optimal
choices in these matters are highly problem dependent.

2.6. COLLOCATED AND STAGGERED GRIDS
The linearised shallow water equations 1.9 involve three unknown variables, ux ,uy and
H . In the discretisation process the domain of computation is represented by a finite
number of connected grid nodes. When representing a structured grid in computer
memory the grid nodes easily map to the matrix elements, and thus it would be very in-
tuitive to define all three variables on these same nodes. This is what we call a collocated
grid, where all the variables are defined on the same position. Defining the variables on
the same location as the grid nodes is called the vertex-centered approach [11].

It is not necessary however, to define function values at the same location as the grid
nodes. If the function values are instead defined in the center of the cells created by the
grid nodes, we call this the cell-centered approach. An advantage of the cell-centered
approach is that when using the finite volumes method the cell boundaries automati-
cally define the control volumes.

When using the central finite difference approximation of a derivative of a variable,
the values from neighboring grid nodes are used to approximate the derivative but not
the value on the node itself. This leads to idea that if a derivative of a variable and the
variable itself are never used at the same time in the same equation, there is no need for
them to be defined on the same node. If a grid is built in this fashion it is called a stag-
gered grid. The advantage here lies in the fact that only a quarter of the total number of
variables need to be computed and stored when compared to the original grid.

In the case of the linearized shallow water equations 1.9, the water height and ve-
locities can be staggered in this fashion. Arakawa [13] proposed four different staggered
grids. According to [14], the Arakawa C-grid is best suited for the shallow water equa-
tions. It is staggered such that the water height H is defined on the grid points, the flow
velocity ux is defined between grid points neighboring in the x-direction and the flow
velocity uy is defined between grid points neighboring in the y-direction. An illustration
of the grid is given in 2.3.

The staggering prevents odd-even decoupling leading to numerical solutions per-
turbed by checkerboarding, and allows for a larger grid size as variable density is re-
duced.

2

12 2. DISCRETIZATION

Figure 2.3: An illustration of the Arakawa C-grid. ux ,uy are the flow velocity in the x, y directions respectively,
H is the water depth, D the bathymetry height and i , j are the node indices. The control volumes for the
conserved variables are coloured white, pink and blue. Source: [15]

3
TIME INTEGRATION METHODS

3.1. INTRODUCTION
In chapter 2 various discretization methods for solving partial differential equations have
been described. However, these methods involve approximating spatial derivatives in
order to obtain an approximate numerical solution. The shallow water equations do not
only contain spatial derivatives but also temporal derivatives. Taylor’s theorem 2.1 can
be used in the same way as in chapter 2 to approximate the time derivative:

∂φn

∂t
≈ φn+1 −φn

∆t
= F (φn+ω) (3.1)

Where is φn the value of the function φ at time t , and φn+1 is the value at time t +∆t
and F (φ) some function of φ that defines the (partial) differential equation, and ω some
value between 0 and 1 which exists due to the intermediate value theorem.

There is however one crucial difference between the application of the approxima-
tion of the derivative. In the case of a spatial derivative, all function values are known
and used to approximate the value of the derivative at a point. In the temporal case the
derivative is used to approximate a function value at a later time given the values from
the past.

This method is what we call time integration, because the partial differential equa-
tion is essentially integrated over a small time step. There exist two different classes of
time integration methods, explicit and implicit, which will be covered in more detail in
the next sections.

3.2. EXPLICIT TIME INTEGRATION
The expression in equation 3.1 is not complete as the function F (φ) is not yet discretized.
In order to approximate the function F (φ) it seems obvious to take some linear combi-

13

3

14 3. TIME INTEGRATION METHODS

nation of the past and future value:

φn+1 −φn

∆t
= aF (φn+1)+ (1−a)F (φn) (3.2)

Two obvious choices for a exist, which are a = 1 and a = 0. If we take a = 0 then the right-
hand side of the equation depends only on the past values of φ, and we call the method
Explicit. It is then quite easy to reorder the equation to find an expression for φn+1:

φn+1 =φn +∆tF (φn) (3.3)

Euler [16] was the first to publish this method in 1768. Since it uses information from the
present to approximate a function forward in time, it is called the Euler forward method.
An advantage of the Euler forward method is that it is very easy to implement. A disad-
vantage of the method is that it is only numerically stable for small enough time steps.

For explicit time integration the right-hand side of the recurrence relation equation
3.3 is composed of known variables. After discretization of the problem the function
F (φ) if it is a linear function can be expressed as a product of a matrix A and the vector
φn .
The φn term can be absorbed into A by adding the identity matrix to A. This leads to the
following update procedure for explicit time integration

φn+1 = Aφn (3.4)

This means that for each timestep a matrix vector product must be calculated. Matrix
vector product operations are highly parallelizable because every resulting vector value
results from a row-column multiplication that is independent from all other rows. This
makes an explicit method an ideal candidate for implementation on a GPU, which will
be explained further in chapters 4 and 5.

3.2.1. STABILITY

When numerically time integrating a hyperbolic partial differential equation, it is im-
portant to know when the method will converge to a satisfactory solution, i.e. whether
it is numerically stable. Many different mathematical definitions of numerical stability
exist, but intuitively it means method has a numerical error that is either constant or
decreasing in time.

One factor is that when using a Taylor approximation to discretize a PDE as described
in chapter 2, only the first order term is taken. This means that an error is made in order
of the square of the discretization dimension step size. This error can be seen as some-
thing called ’numerical diffusion’. It behaves like diffusion and is introduced as a result
of truncating the Taylor expansion.

As explained in chapter 3, explicit methods’ stability depends on the size of the time
step chosen. Specifically, the time step must satisfy the Courant-Friedrichs-Lewy condi-
tion, or CFL condition, who derived it in 1928 [9].

3.3. IMPLICIT TIME INTEGRATION

3

15

C = ux∆t

∆x
+ uy∆t

d y
≤Cmax (3.5)

Where C is the Courant number, ux and uy the characteristic velocity in its respective
dimensions, and Cmax some number that depends on the PDE and the discretization
method.

One way of describing the CFL condition is that for an explicit scheme, the speed
at which information travels in a single timestep must not exceed the spacing of the
grid. Since the Courant number is the ratio of information propagation distance to grid
distance it follows that in an Euler forward case the Courant number must be less or
equal to 1.

Higher order methods tend to use values from neighbors that are further away, for
example the RK3 method has a C F Lmax number of 3 since it uses spatial information
from 3 grid points away [17].

However, the CFL condition is a necessary but not sufficient condition for stability.
Usually a method’s inherent stability region is decided using the so called test problem.
The test problem is defined as

y ′ =λy (3.6)

When we apply the Taylor approximation as described in chapter 3 we obtain the
following recurrence relation:

yn+1 = yn +∆tλyn = (1+∆tλ) yn (3.7)

It follows that if |1+∆tλ| > 1 the solution will grow indefinitely over time, which leads to
a restriction on the time step based on the value of λ.

Note that this condition means that for positive values of λ, the method is inherently
unstable for problems that behave like the test problem. It follows explicit time inte-
gration is only a viable option when λ ≤ 0. The stability region of the Euler backwards
method is the complement of the region for Euler forward, which means that in such a
case an implicit method should be used.

3.3. IMPLICIT TIME INTEGRATION
If a = 1 then the right-hand side of 3.2 depends solely on the function value F (φn+1) and
the complexity of finding φn+1 is highly dependent on the function F .
This method is also called the Euler backward method and is considered an implicit
method as φn+1 is defined implicitly.
The big advantage of implicit time integration is that it is unconditionally stable with re-
spect to the size of the time step. However, the numerical error of an implicit method is
still dependent on the time step size which also needs to be considered when choosing

3

16 3. TIME INTEGRATION METHODS

time step size.

In the case of backwards Euler assuming as before F to be linear the update proce-
dure can be expressed as:

(A+ I)φn+1 =φn (3.8)

Which is a system of linear equations which needs to be solved which is computa-
tionally expensive. Intuitively it appears equation 3.8 can be solved by determining the
matrix inverse of (A+ I) and left multiplying it with both sides of the equation. In prac-
tice this is never done due to cost and instead a variety of methods can be employed to
obtain φn+1 from equation 3.8, which will be discussed in chapter 5.
An advantage of an implicit method is that since the method is unconditionally stable
often a larger time step can be used offset this. A drawback is that solving a system of
linear equations is computationally expensive and not trivial to parallelize.

Chapter 5 describes various solving methods and discusses their suitability for GPU
implementation.

3.3.1. MIXED AND SEMI-IMPLICIT METHODS

CRANK-NICHOLSON

In the last two sections we have described the simplest fully explicit or implicit time in-
tegration. However both these methods will only produce first order accurate solutions.
This of course led to the development of more accurate schemes. For example, Crank
and Nicolson [18]found that setting a = 1/2 in 3.2 leads to second-order numerical ac-
curacy while preserving the unconditional stability of the Euler backwards method.

SEMI-IMPLICIT EULER

When Euler Forward proves to be unstable one option is to try to improve stability by us-
ing the semi-implicit Euler method. The semi-implicit method is a somewhat confusing
name as no implicit time integration actually takes place. When time integrating a sys-
tem of equations explicitly often multiple variables need to be updated every time step.
In the case of the Shallow-Water equations 1.9 the water level, x-velocity and y-velocity
all need to be updated. In the case of Euler forward all three variables are updated inde-
pendently using values from the previous timestep.

The idea behind the semi-implicit Euler method updates the variables explicitly in
sequential order, where once a variable has been updated the updated expression is used
to update the other variables.

Other methods were developed by Runge and Kutta, of which their fourth order method
is the most popular, which takes a weighted average of four different increments in order
to achieve fourth order accuracy at the cost of additional computation.

3.4. RUNGE-KUTTA METHODS

3

17

ADI
Another interesting method which is very relevant to the shallow water equations is a
semi implicit method called the alternating direction implicit method, or ADI. The idea
is that for a coupled system of partial differential equations in two spatial directions x
and y , a time step is split into two parts where first the x-derivative is calculated explic-
itly and the y-derivative implicitly, and for the next half time step this is reversed. This
results into a tridiagonal system that needs to be solved twice at every time step, which
is comparatively computationally cheap.
Aackermann & Pedersen [19] used this method do discretize the SWE and solve the re-
sulting tridiagonal system on a GPU and concluded it was very efficient.

3.4. RUNGE-KUTTA METHODS
Around 1900 Carl Runge and Martin Kutta developed a family of implicit and explicit
time integration methods [17]. As mentioned before the Runge-Kutta 4 method has re-
mained very popular to this day. The family of explicit Runge-Kutta methods is given by
the following expression:

un+1 = un +h
s∑

i=1
bi ki

k1 = f (tn , yn)

k2 = f (tn + c2h, yn +h(a21k1))

k3 = f (tn + c3h, yn +h(a31k1)+a32k2)

...

ks = f
(
tn + cs h, yn +h

[
as1k1 + ...+as,s−1ks−1

])
(3.9)

Where un is the solution to the to be solved initial value problem at time t = tn . ai j

are the coefficients and bi j and ci j are the weights. The weights and coefficients can be
conveniently organised in a so called Butcher tableau, introduced by John C. Butcher 60
years after the RK methods were developed. [17]:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

Table 3.1: Butcher tableau for weights and coefficients

3

18 3. TIME INTEGRATION METHODS

The question now is which values to pick for the weights and coefficients. For a
Runge-Kutta method of the above form to be consistent it is necessary that the sum of
coefficients of each row i equals the row-weight ci .

If this consistency requirement is applied to an RK method with only 1 stage it fol-
lows that Euler forward is the only consistent single stage method.

If the formula 3.9 is observed it can be concluded that if all nonzero coefficients lie
on the bottom-triangular part of the Butcher tableau the method is explicit, and if they
lie on the upper-triangular part the method is implicit.

The Runge-Kutta 4 method for example has the following tableau:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

The choice of Runge-Kutta method is a trade-off between accuracy and computa-
tional intensity.
Butcher [17] shows that in order to obtain accuracy of order p the method must have a
number of stages s equal to p for s ≤ 4 and at least p +1 for s ≥ 5.
This partially explains why the RK4 method is so popular, as it is the highest order method
that has a number of stages equal to the order of accuracy. The exact relation between p
and s is an open problem.

3.5. PARAREAL

3

19

3.5. PARAREAL
An revolutionary concept in time integration is a method called Parareal [20]. When par-
allelizing solving a partial differential equation, usually the system of equations is solved
in a parallel fashion but sequentially in time. Parareal however, attempts to obtain a
higher level by parallelizing the method at the temporal stage. The main idea behind the
method is to decompose the time interval over which the initial value problem is inte-
grated into parts that are then assigned each to a parallel processor.

The idea is to have a coarse solving method that is executed serially for all time steps.
If speedup is desired then the course method should be chosen in such a way that this
serial execution is somewhat accurate and fast. If we denote the coarse method that
calculates the solution u at time j given the solution at time j −1 by
u j =C (u j−1, t j , t j−1).

Secondly the solution is iteratively improved in parallel. If we denote the fine solver
by F (u j−1, t j , t j−1) and we denote the iteration number by superscript k we obtain the
following procedure:

uk
j =C (uk

j−1, t j , t j−1)+F (uk−1
j−1 , t j , t j−1)−C (uk−1

j−1 , t j , t j−1) (3.10)

It is obvious that if the course method converges, e.g C (uk
j−1, t j , t j−1) = C (uk−1

j−1 , t j , t j−1)

then the two course terms cancel out and only the fine solver term remains.

3.6. STELLING & DUINMEIJER SCHEME
Stelling & Duinmeijer [21] developed a first order finite difference scheme for the shallow
water equations that can be modified for second order accuracy. The scheme is generic
allowing for both an explicit and implicit implementation.
They start with the non-conservative two dimensional form given by

∂ζ

∂t
+ ∂ (hu)

∂x
+ ∂ (hv)

∂y
= 0 (3.11)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+ g

∂ζ

∂x
+ c f

u|u|
h

= 0 (3.12)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ g

∂ζ

∂y
+ c f

v |u|
h

= 0 (3.13)

Where u is the depth averaged flow velocity in the x-direction, v the flow velocity in the
y-direction u the vector containing u and v , ζ the water level above the plane of refer-
ence, c f the bottom friction coefficient, d the depth below the plane of reference and h
the total water depth h = ζ+d .

The scheme uses a staggered Arakawa C grid, see figure 2.3, to spatially decouple the
values of h and u and v . Discretizing equation 3.11 and noting that the bottom height is
time independent leads to

3

20 3. TIME INTEGRATION METHODS

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un+θ

i+1/2, j −h′n
i−1/2, j un+θ

i−1/2, j

∆x
+

h′n
i , j+1/2vn+θ

i , j+1/2 −h′n
i , j−1/2vn+θ

i , j−1/2

∆y
= 0

(3.14)
Where un+θ = θun+1 + (1−θ)un and
h′

i+1/2, j = hi , j if ui+1/2, j > 0,

h′
i+1/2, j = hi+1, j if ui+1/2, j < 0 and

h′
i+1/2, j = max(ζi , j ,ζi i +1, j)+mi n(di , j ,di+1, j) if ui+1/2, j = 0

With rules analogous in the y-direction.

When discretizing equations 3.12 and 3.13 the question is how to approach the non-
linear terms, which are the bed friction with a product of u, |u| and h, and the advection
term which is a product of flow velocity and its spatial derivative.

Stelling & Duinmeijer propose two different approximations which can be used de-
pending on which characteristics of the scheme are required. One is a momentum con-

servative advection approximation, the other an energy head E H = u2

2g + ζ conserving
approach.

For the momentum conservation the advection terms are approximated using first-
order upwinding, which means the flow velocity takes on the values of neighboring points
depending on the flow direction. This results in the following expression:

dui+1/2, j

d t
+

(
q−x

u

)
i , j

h−x
i+1/2, j

ui+1/2, j −ui−1/2, j

∆x
+

(
q−x

v

)
i , j−1/2

h−x
i+1/2, j

ui+1/2, j −ui+1/2, j−1

∆y

+ g
ζi+1, j −ζi , j

∆x
+ c f

ui+1/2, j ||ui+1/2, j ||
h−x

i+1/2, j

= 0 (3.15)

Where
dui+1/2, j

d t is the time derivative x-velocity u evaluated at grid point (i +1/2, j),
qu = uh and h−x

i+1/2, j = (hi , j +hi+1, j)/2, with the y equation defined analogously.

The energy-head conserving discretization in the x-direction is given by:

dui+1/2, j

∆t
+ ui+1/2, j +ui−1/2, j

2

ui+1/2, j −ui−1/2, j

∆x
+ vi+1/2, j−1/2 + vi−1/2, j−1/2

2

ui+1/2, j −ui+1/2, j−1

∆y

+ g
ζi+1, j −ζi , j

∆x
+ c f

ui+1/2, j ||ui+1/2, j ||
h−x

i+1/2, j

= 0 (3.16)

Stelling and Duinmeijer propose the following system of linearized equations based

3.6. STELLING & DUINMEIJER SCHEME

3

21

on the θ method that is momentum conservative for θ = 0.5.

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un+θ

i+1/2, j −h′n
i−1/2, j un+θ

i−1/2, j

∆x
+

h′n
i , j+1/2vn+θ

i , j+1/2 −h′n
i , j−1/2vn+θ

i , j−1/2

∆y
= 0

(3.17)

un+1
i+1/2, j −un

i+1/2, j

∆t
+un

→
un

i+1/2, j −un
i−1/2, j

∆x
+ vn

↑
un

i+1/2, j −un
i+1/2, j−1

∆y

+ g
ζn+θ

i+1, j −ζn+θ
i , j

∆x
+ c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

= 0 (3.18)

vn+1
i , j+1/2 −un

i , j+1/2

∆t
+un

→
vn

i , j+1/2 − vn
i−1, j+1/2

∆x
+ vn

↑
vn

i , j+1/2 − vn
i , j−1/2

∆y

+ g
ζn+θ

i , j+1 −ζn+θ
i , j

∆y
+ c f

vn+1
i , j+1/2

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−y)n

i , j+1/2

= 0 (3.19)

With (h−x)n
i+1/2, j =

(
hn

i , j +hn
i+1, j

)
/2 and (h−y)n

i+1/2, j =
(
hn

i , j +hn
i , j+1

)
/2

and u→ and v↑ the convective velocity approximations, which can be either momentum-
conservative or energy-conservative.

This system can be represented in matrix form similar to 1.11:
It is proposed that the scheme could be implemented dynamically, switching be-

tween the momentum- and energy-conserving algorithm depending on the magnitude
of the spatial derivatives.

The system of equations that follows is symmetric and positive definite, which makes
the implicit system suitable for the Conjugate Gradient method further discussed in
chapter 5.

It is noted that the method can be constructed to be second order accurate by using
upwinded second-order approximations instead of first-order in combination with so
called ’slope limiters’. Slope limited approximations guarantee non-negative water lev-
els for sufficiently small time steps. A slope limiter is added to the flow velocity terms
and is a function of neighboring terms.

It is also important to note that the above approximations are all for positive flow di-
rection. Because upwinding is used which depends on the flow direction, the upwinding
terms change too when flow direction is reversed. This makes calculations complex for
situations with often reversing flow directions, such as tidal simulations.

4
THE GRAPHICS PROCESSING UNIT

(GPU)

4.1. INTRODUCTION
A graphics processing unit, or GPU, is a computer part that is primarily developed, de-
signed and used to generate a stream of output images, computer graphics, to a display
device. The most widespread use is to generate the output of a video game. However,
in recent years their use for accelerating scientific computations has become an active
research topic.

Historically, the field of scientific computing has focused and done most of said com-
puting on the central processing unit, partially because the concept of a central process-
ing unit came first and graphics processing units did not become mainstream until many
years later. Early GPUs were designed and used exclusively for video game rendering.

Later it was discovered that the computing capabilities of a GPU could be harnessed
for other uses, by rewriting problems and presenting them to the GPU as if it were a video
game [22]. It was not until 2007 when Nvidia introduced the CUDA GPU programming
framework that GPU computing became more accessible for mainstream use.
Modern GPUs have a large amount of computing cores that when utilized together in
parallel provide a great deal of computing power at comparatively low monetary and
energy cost. The challenges lie in rewriting programs or algorithms to be suitable for
parallel computing and dealing with the other limitations of a GPU.

4.2. GPU STRUCTURE

4.2.1. ARCHITECTURE
As mentioned in the introduction, a GPU contains many cores. In the case of a central
processing unit, a program contains a number of threads to be executed which are then

23

4

24 4. THE GRAPHICS PROCESSING UNIT (GPU)

mapped to the cores by the operating system. Due to the parallel nature of a GPU this
process is a little more complex.

Computer architectures can be classified using Flynn’s taxonomy [23]. A classical
computer is classified as SISD, Single Instruction Single Datastream, which means a sin-
gle program is executed on a single dataset sequentially. A GPU is considered a Single
Instruction Multiple Datastream, or SIMD device. This means that a single instruction is
run multiple times in parallel on different data.

A GPU does not simply contain a number of cores which can execute threads like a
CPU. An Nvidia GPU consists of a number of streaming multiprocessors, or SM’s, which
each contain a number of CUDA cores which can perform floating point operations.
Threads are grouped in blocks which are assigned to the SM’s, which will explained fur-
ther in section 4.2.2. Every SM can be considered an SIMD device, as blocks are assigned
to the SM’s.
As SMs can receive instructions that are not identical within the same program, the SIMD
classification does not truly fit a GPU as a whole. Thankfully a new term has been coined:
Single Program Multiple Datastreams, or SPMD.

For example, the Nvidia Turing TU102 GPU [24] contains 68 SMs, each with 64 CUDA
cores for a total of 4352 cores. The cores have a clockrate of 1350mhz to 2200mhz and
can perform 2 floating point operations (flops) per clock cycle.
This results in a total of roughly 12 to 19 Teraflops.
For comparison, an average modern desktop CPU has compute capability in the order
of 100 Gigaflops. This means that a perfectly parallelizable program could run around
100 times faster when executed on the GPU.

4.2.2. BLOCKS & WARPS
As mentioned before, threads on a GPU are grouped per 32 in warps, which then are
grouped together in blocks. This is schematically represented in figure 4.1.

When a program is executed on a GPU, every block in the program is assigned to
an SM. If the number of blocks in the program exceeds the number of SMs, they will be
executed sequentially. This is schematically represented in figure 4.2.

4.2. GPU STRUCTURE

4

25

Figure 4.1: A schematic representation of GPU program structure Source: [25]

Because the program is divided into blocks which are then subdivided into warps, it
is not self-evident how many blocks and how many warps per block should be chosen.
To keep every SM active, there need to be at least as many blocks as there are SMs on the
GPU. Since one SM can execute 32 threads, or 1 warp, at the same time, there should be
at least 32 threads per block in order to have full GPU utilization. Memory restrictions
complicate this a bit further, which are explained in the next section. There can be a
maximum of 1024 threads in a single block on modern GPUs, and the maximum number
of blocks is 231 −1 or around 2 billion for modern GPUS.

4

26 4. THE GRAPHICS PROCESSING UNIT (GPU)

Figure 4.2: A schematic representation of GPU program execution structure Source: [25]

4.2.3. MEMORY

A CPU uses data that is stored in random access memory, or RAM. RAM is faster than
storage media such as solid state drives, but it is expensive, has limited capacity and
does not retain data when powered off. When running a program on the CPU the only
constraint is that you do not exceed the system’s RAM capacity.
A GPU’s memory structure is more complex. In figure 4.3 the different types of memory
a thread has access to is schematically represented.

SHARED MEMORY

Shared memory is arguably the most important memory on a GPU. Shared memory is
very fast memory that is accessible to every thread in a block. This for example means
that if a matrix matrix product is being done on a GPU, all threads can quickly add their
result to the result matrix in the shared memory.

An important aspect to consider when deciding on block count and threads per block
when designing a program is the shared memory use. The TU102 GPU has a maximum
of 64Kb of shared memory per block. This means that if a block wants to efficiently use

4.2. GPU STRUCTURE

4

27

Figure 4.3: A schematic representation of GPU memory structure Source: [25]

shared memory the threads in the block must not occupy a total of more than 64Kb.

GLOBAL MEMORY

The bulk of the memory available within GPU is the global memory. It is generally faster
than RAM, but the transfer of data from RAM to Global memory is through the PCI-E bus
which has comparatively high latency and low .

REGISTERS

Register memory is extremely fast, but it is only accessible by a single thread and data
stored in a register only lasts for the lifetime of the thread. This is usually where memory
intensive operations are performed.

LOCAL MEMORY

Local memory is almost identical to registers, except it is off-chip and part of the global
memory. The difference is that global memory can be accessed by every thread while
local memory is a subsection of global memory that is reserved for a single thread. Be-
cause of this the amount of local memory available to a thread is larger than the register
memory, but is as slow as global memory.

CONSTANT MEMORY

Constant memory is read-only memory that can only be modified by the host, usually
the CPU. It is intended for data that will not change over the course of the program. It is

4

28 4. THE GRAPHICS PROCESSING UNIT (GPU)

optimized for broadcasting data to multiple threads at the same time which it does faster
than global memory.

TEXTURE MEMORY

Texture memory is mainly used for storing video game textures. It is read-only in the
same way as constant memory and has high latency, although it is still faster than global
memory. However, an advantage of texture memory is that it does not share with global
memory, which is beneficial for -limited applications. Texture memory is optimized for
spatial locality [26], which means that threads in the same warp access data that is close
together in memory will be faster.

Texture memory has some other functions that can be used for free, such as linear
interpolation of adjacent data, automatic data normalization on fetch, and automatic
boundary handling [26].

4.3. MEMORY BANDWIDTH AND LATENCY
When talking about GPU floating point Teraflops usually the maximum performance is
meant, assuming that every GPU core is processing data at the same time. When perfor-
mance of the execution of actual programs is measured, the throughput is often less than
this theoretical maximum. This is because in order for the GPU cores to do calculations
they need to be fed instructions and data. Memory bandwidth and latency limitations
will often prevent this, and thus code optimization of a GPU program will often mean
optimizing memory utilization.

4.3.1. BANDWIDTH

Memory bandwidth is defined as the maximum amount of data that can pass through
the memory to the execution units. It is calculated with the following formula: B =
bw

8 ∗mc. Here B is the in bytes per second, bw is the memory bus width in bits, and
mc is the memory clock in Hertz.
For example the TU102 GPU has a 352 bit Memory bus width which is 48 bytes. TU102
memory is GDDR6 with a base memory clock of 14 Ghz for a total bandwidth of 616 Gi-
gabytes per second. If data needs to be sent from CPU RAM to the GPU execution cores
this happens through the PCIE-bus. This bus also has a limited bandwidth which needs
to be taken into account as well. Modern GPUs still use the PCI Express 3.0 x16 stan-
dard released in 2010, which has a maximum of 15,76 Gigabyte per second. Compared
to the internal memory of the TU102 GPU this is slower by approximately a factor 40.
This means that when doing calculations on a GPU with a very large dataset the limiting
factor, also called bottleneck, will be the PCIE interface.

4.3.2. LATENCY

Bandwidth limits the maximum data transfer rate through a memory bus. This figure
however is only important when a program is bottlenecked by the available bandwidth.
However, even when transferring data and not exceeding the bandwidth capacity there

4.3. MEMORY BANDWIDTH AND LATENCY

4

29

is still a delay between the sending and receiving of the data. This is what is called the
data latency, the time it takes for a single byte of data to transfer. Because any memory
transfer takes at least as much time as the latency, it is advantageous to send as much
data as possible in a single transfer operation. It should be noted that modern GPU
devices have a number of techniques to hide latency.

4.3.3. BANDWIDTH LIMITATION EXAMPLE

To illustrate the bandwidth limitations of GPU computing capability, consider a matrix-
vector product b = Ax that is to be computed on a GPU in parallel with A an NxN matrix
and x an Nx1 matrix.
Doing this calculation sequentially would require N vector-vector products which cost
N ∗ t1 seconds for a total of Tseq = N 2t1 = O(N 2), where t1 the time it takes for a single
flop on the sequential unit.

Doing the same calculation in parallel on P processors would take

Tpar = N
P ∗N ∗ t2 = O(N 2

P) seconds, as P operations are performed in parallel, where t2

is the time it takes for a single flop on the parallel machine. Note that the maximum
speedup would be achieved when using N parallel processors.

This sounds very appealing until communication time is taken into account, the ma-
trix parts of A and the vector x need to be copied (also called scattering) to the parallel
processors, and the result b needs to be copied back (also called gathering). The matrix

part is N 2

P copy operations for each processor and the two vectors are each N
P operations.

This results in:
Tcomm = P

[
N 2

P +2 N
P

]
t3 = O(N 2) Where t3 is the time it takes per memory copy opera-

tion.
This means that if

(t2
P + t3

)<< N it follows that:

Tpartot = N 2

P t2 +P
[

N 2

P +2 N
P

]
t3 =O(N 2)

Because in this case the sequential and the parallel implementation are of the same
order of magnitude, any speedup achieved will be at most a constant factor. Thankfully,
various other methods have been developed to work around this communication bot-
tleneck, which will be described further in chapter 5.

The above example is a worst case scenario. One way to circumvent the memory
bottleneck is to construct the matrix and vector on the GPU instead of constructing it on
the CPU and then scattering it to the GPU.

4.3.4. ROOFLINE MODEL

A Parallel program will often run into some kind of bottleneck, as illustrated in the pre-
ceding section, that prevents it from utilizing the maximal computing capabilities of the
device it runs on. Since bottlenecks lead to inefficiency, it is important for code writers
to know what is the limiting factor. The idea behind the Roofline model is to provide a
visual guide on what the limiting factors are. The most simple form of the roofline takes

4

30 4. THE GRAPHICS PROCESSING UNIT (GPU)

the minimum of two functions [27]:

R = mi n{π,β∗ W

Q
} (4.1)

Where R is the roofline, representing the performance bottleneck, π the peak device per-
formance in flops, β the communication bandwidth in bytes, W the program arithmetic
intensity in flops and Q the memory usage in bytes per second. An elementary example
Roofline model is presented in figure 4.4.

Figure 4.4: A schematic representation of the Roofline model,
maximum program Gflops vs program Operational intensity, where Operational Intensity is W

Q Source: [28]

To increase the accuracy of the model, other limitations can be added to better indi-
cate performance bottlenecks. These include concurrency or cache coherence effects in
the memory category, in-core ceilings (lack of parallelism) limiting peak performance or
locality walls which limit Operational Intensity [27].

4.4. COMPUTATIONAL PRECISION ON THE GPU
Data and variable values in a computer are often stored as floating point numbers. A
floating point number consists of a significant, a base and an exponent. The value of
the number is then equal to F = S ∗B E , where F is the number being represented as a
floating point, S the significant, B the base and E the exponent. Computers store data in
bits and calculate in binary, and thus they do not have to store the base.

Several standards exist for floating point precision:

• Half precision or FP16: 1 sign bit, 5 exponent bits and 10 significant bits for a total
of 16

• Single precision or FP32: 1 sign bit, 8 exponent bits, 23 significant bits for a total of
32

4.4. COMPUTATIONAL PRECISION ON THE GPU

4

31

• Double precision or FP64 1 sign bit, 11 exponent bits, 52 significant bits for a total
of 64

When using a CPU for computation, double precision calculations are just as fast as
single precision. Double precision takes up twice the memory, however, which is some-
thing to consider when working with large datasets.

A GPU however is much more specialised. Most video games, which are still the
main usecase of a GPU, do not require 64-bit precision. In order to save heat, memory
and physical die space GPU CUDA cores were designed to only perform single or half
precision flops.
Despite this, every SM has a small amount of FP64 cores. In the case of the TU102 GPU
there are 2 FP64 cores per SM compared to 64 FP32 cores. This means that the GPU is
able to perform floating point calculations up to 32 times faster when working in single
precision, and this is often represented as with the FP64 to FP32 ratio 1:32.
Nvidia GPUs which are not specialized for FP64 computing have ratios between 1:8 and
1:32 [29], with the more modern architectures having the lower ratios.

When using GPUs for high performance scientific computing became more popular
it lead to Nvidia developing the Tesla line of GPUs of which the first was the Fermi-based
20 series in 2011. The Tesla line has 1:4 to 1:2 FP64 compute capability and error correct-
ing memory, but they are marketed towards enterprises at enterprise costs. For example
a modern Tesla V100 GPU released in 2017 provides 7 Tflop at a release price of roughly
10.000 American dollars [30].

This changed with the release of the GTX Titan which was a consumer card and had
an unprecedented 1:3 double precision ratio at a release price of 999 American dollars
[31]. It provides 1.882 Tflop of double precision compute power.
The Titan was succeeded by the Titan V which has a 1:2 double precision ratio and pro-
vides 7.45 Tflop of double precision compute power. It was released in 2017 at a price of
3000 American dollars and is to this day has the most FP64 performance per dollar for
an Nvidia GPU [32]. The Titans lack error correcting memory, however.

AMD gaming GPUs commonly have ratios between 1:8 to 1:16. Like Nvidia they
also released a few consumer GPUs with FP64 ratios of 1:4. These include the Radeon
HD7970 with .95 Tflop FP64 at a launch price of 550 USD in 2011, the Radeon R9 280
with 1.05 Tflop FP64 for 300 USD in 2013, and the Radeon VII with 3.36 Tflop for 699
USD in 2019.

AMD also has an enterprise line of double precision GPUs, the Radeon (Fire)Pro line
going as far back as 1995. Despite many Radeon Pro GPUs having low FP64 ratios of
around 1:16, the Radeon Pro drivers allowed the use of FP32 cores to work together to
provide FP64 output at a 1:3 ratio [33].

Despite AMD GPUs providing more double precision flops per dollar, the maturity
of the CUDA platform has led Nvidia to be the dominant player in the field of scientific

4

32 4. THE GRAPHICS PROCESSING UNIT (GPU)

computing [34].

4.5. GPU TENSOR CORES
Nvidia’s Volta architecture of which the first GPU was released in 2017 was the first mi-
croarchitecture to feature Tensor cores. Tensor cores are a new kind of cores that were
specifically designed to be very suitable for artificial intelligence and deep learning re-
lated workloads.
A single Tensor core provides a 4x4x4x4 processing array which performs a so called
FMA, fused multiply addition, by multiplying two 4x4 matrices and adding the result
to a third for 64 floating point operations per cycle. This has been schematically repre-
sented in figure 4.5.
The input matrices are FP16 precision, but even if the input is FP16 the accumulator can
still be FP32. Because the operation then uses half-precision input to produce a single-
precision result, this is also called mixed-precision.

Figure 4.5: A schematic representation of a Tensor core operation Source: [35]

The TU102 GPU contains 8 Tensor cores per SM, which work together to do a total of
1024 FP16 operations per clock cycle per SM. This concurrency allows the threads within
a warp to perform FMA operations on 16x16 matrices every clock cycle. To achieve this
the warp of 32 threads is split into 8 cooperative groups which each compute part of the
16x16 matrix in four sequential steps. These four steps for the first top-left group have
been schematically represented in figure 4.6.

Tensor cores can be utilized by the CUDA cuBLAS GEMM library. BLAS stands for
Basic Linear Algebra Subroutine and cuBLAS contains the fastest GPU basic linear alge-
bra routines.
GEMM stands for General Matrix Multiply. However, in order for the cuBLAS GEMM to
utilize Tensor cores, a few restrictions exist because of the 4x4 nature of the basic tensor
core operation.
If the GEMM operation is represented as D = A ∗B +C with A an ld A∗m, B an ldB ∗k
and C an ldC∗n matrix then for the GEMM library to utilize Tensor cores the parameters
l d A,ldB ,l dC and k must be multiples of 8, and m must be a multiple of 4.
Other rules of matrix multiplication and addition apply too, so m = ldB and l d A = l dC
and k = n.

4.5. GPU TENSOR CORES

4

33

Figure 4.6: A schematic representation of a Tensor core 16x16 operation Source: [36]

4

34 4. THE GRAPHICS PROCESSING UNIT (GPU)

4.6. CUDA & OPENCL
There exist two major GPU programming languages: CUDA and OpenCl. CUDA stands
for Compute Unified Device Architecture. When using GPUs for general purpose pro-
cessing gained popularity it was developed by Nvidia and released in 2007. It is a propri-
etary framework and only compatible with Nvidia GPUs.
OpenCl stands for Open Compute Language which was developed by the Khronos group
and released in 2009. It is a more general language for compute devices which include
GPUs

CUDA has the advantage of being easier to work with, and also has a variety of tools
and profilers have been built by Nvidia to aid development.
OpenCl has the advantage of supporting other GPU brands, with Advanced Micro De-
vices being the most prominent.

A study done by the TU Delft [37] found that translating a CUDA program into OpenCl
reduced performance by up to 30%, but this difference disappeared when the corre-
sponding OpenCl specific optimizations were performed.

A third, less known programming standard was exists called OpenACC, or open ac-
celerators, with the aim to simplify parallel programming on heterogeneous systems, of
which the first version was released in 2012 [38]. An advantage of OpenAcc is that it is
easier to work with than OpenCl and CUDA but less efficient, according to [39].

4.7. CUDA PROGRAM STRUCTURE
In order for a program to be executed on a GPU it must be started from a ’host’, generally
the system’s CPU, and also receive the relevant data from the host. In the case of CUDA
it has its own compiler called nvcc. It compiles both the host code which is compiled in
the C language, and the GPU code which are combined into a single .cu source file.
In the case of CUDA Fortran a program can be compiled using the PGI compiler from
The Portland Group [40]. Third party wrappers are available for a variety of languages
such as Python, Java, Matlab and OpenCL.

A generic CUDA program structure consists of the following steps:

1. Initialize host program, load CUDA libraries and declare variables

2. Allocate memory on GPU and send data from host

3. Launch kernel on GPU

4. Collect kernel result and send it to the host

5. Process result on host

This structure has been illustrated in figure 4.7:

4.7. CUDA PROGRAM STRUCTURE

4

35

Figure 4.7: A schematic representation of CUDA processing flow Source: [41]

5
PARALLEL SOLVERS ON THE GPU

5.1. INTRODUCTION
As mentioned in chapter 4, a GPU is a device with an enormous amount of computing
power. In chapter 3 was explained that an implicit time integration method requires
solving a linear system of equations Ax = b at every time step. The majority of this chap-
ter aims to describe the various methods that exist for efficiently solving systems of linear
equations and how the methods can be adapted to be used in parallel on a GPU.

5.2. MATRIX STRUCTURE AND STORAGE
As mentioned in chapter 3 time integrating a discretized system of partial differential
equations leads to a matrix equation. Often the differential equation is structured on the
domain, and can be represented in stencil notation. This means that the matrix will have
a band structure, with only a few diagonals filled and everything else zeros. This is also
called a sparse matrix.

When storing matrix values into computer memory, it does not make sense to also
store the components with value zero. If only the non zero entries of the matrix are
stored, the memory footprint is greatly reduced but also calculations are sped up. These
two qualities have led to the development of various methods to efficiently store large
sparse matrices.

5.2.1. CONSTRUCTION FORMATS
There are two elementary categories. The first are efficient modification systems, which
are generally used for constructing sparse matrices such as:

• Coordinate list, a list that contains triples of coordinates and their values.

• Dictionary of keys, a dictionary-structure that maps coordinate pairs to corre-
sponding matrix entry values.

37

5

38 5. PARALLEL SOLVERS ON THE GPU

• List of lists, which is a list that stores every column as another list

After constructing the matrix in a construction format it is usually then converted to a
more computationally efficient format.

5.2.2. COMPRESSED FORMATS
The second are the Yale and compressed sparse row/column formats. These compressed
formats reduce memory footprint without impeding access times or matrix operations
[42]

The Yale format stores a matrix A using three one dimensional arrays:

• A A an array of all nonzero entries in row-major order, which means the index
loops through the matrix per row.

• I A is an array of integers that contains the index in A A of the first element of the
row, followed by the total number of non-zero entries plus one.

• J A contains the column index of each element of I A

Compressed sparse row format, or CSR, is effectively the same as Yale format except
J A is stored second and I A is stored third.

Compressed sparse column format, or CSP is ’transposed’ CSR. Here I A contains the
index in A A of the first element of each column of A, and J A contains the row index of
each element of I A.

For example, the matrix
1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

 (5.1)

Is represented in CSR format by:

AA 1 2 3 4 5 6 7 8 9 10 11 12
JA 1 4 1 2 4 1 3 4 5 3 4 5
IA 1 3 6 10 12 13

5.2.3. DIAGONAL FORMATS
If a sparse matrix contains only a small amount of non-zero diagonals (for example the
ADI method produces a tridiagonal system), even more efficient storage methods can
be used to exploit this. The simplest is to only store the diagonals in a "rectified" array
as one vector per diagonal. In this case the offset of a row is equal to the column index

5.3. EXPLICIT METHODS

5

39

which makes matrix reconstruction simple.

A slightly more complex method is Modified Sparse Row format, or MSR. The MSR
format has just two arrays, A A and J A. The first N elements of A A contain the main
diagonal of A. Starting at N + 2 the array contains all other non-zero elements of A in
row-major order. The elements starting at N +2 of J A contain the column index of the
corresponding elements of A A. The first N +1 positions contain the pointer to the be-
ginning of each row in A A and J A.

A third scheme suited for matrices with a diagonal structure is the Ellpack-Itpack for-
mat. If the number of diagonals is nd , the scheme stores two N xnd arrays called COEF
and JCOEF. Every row in COEF containing the elements on that row in A, very similar
to the trivial storage method. The integer array JCOEF contains the column positions of
every entry in COEF.

5.2.4. BLOCK COMPRESSED ROW FORMAT
After discretization of the shallow water equations we have a system of three equations
and three unknowns per grid point if a collocated grid is used. In this case every element
of A is not a value but instead a diagonal 3x3 matrix. The three vectors are the same as in
normal CSR except that the A A array is now not one dimensional but stores the diagonal
of each submatrix as a vector.

If the submatrices are dense instead of diagonal, the array becomes three dimen-
sional and the entire submatrix is stored.

5.3. EXPLICIT METHODS
As mentioned in chapter 3, an explicit time integration method means that every timestep
a matrix vector multiply needs to be performed. As demonstrated in the example in
section 4.3.3 this operation is highly parallelizable but primarily memory-bound. This
means that when an explicit method is implemented on a GPU, memory optimizations
should be performed to assure data locality and optimize shared memory usage.

5.4. DIRECT SOLUTION METHODS
When solving an Ax = b problem, with A a square matrix and x and b vectors, two classes
of solution methods exist: direct solution methods and iterative solution methods. A di-
rect solution method solves the system of equations in a few computationally expensive
steps. An iterative solution method uses an iterative process that is computationally light
which is repeated until the solution is accurate enough. It is also possible to combine the
two methods.

The most simple way of solving a linear system is by means of Gaussian Elimination,
also called sweeping. Since for a set of linear equations it is possible to perform linear
operations on the equations without changing the solution, the matrix can be reduced to
the identity matrix by this method which provides the solution. Performing these linear
operations takes in order of N 3 operations, if A is an N xN matrix. Most direct solution

5

40 5. PARALLEL SOLVERS ON THE GPU

methods also rely on Gaussian elimination, but aim to have a computational cost that is
smaller than calculating the full matrix inverse.

5.4.1. LU DECOMPOSITION
The idea behind LU decomposition is that if it is possible to write the matrix as

A = LU (5.2)

Where L is a lower triangular matrix and U an upper triangular matrix.
The system of equations Ax = b can then be solved in two steps by introducing an auxil-
iary vector w and solving the following two systems:

Lw = b (5.3)

U u = w (5.4)

(5.5)

Solving these two systems is computationally cheap. The difficulty lies in factorizing
A as the product of L and U .

It is first important to check in which case an LU-factorization exists and is unique.
The LU-factorization of A can be proven to exist if all principal submatrices are non-
singular. A principal submatrix of a matrix consists of the first k rows and columns, for
1 ≤ k ≤ N . A non-singular matrix is a matrix that has an inverse, which coincides with
having a non-zero determinant.

The LU-factorization can be shown to be unique if either U or L has a main diagonal
that consists only of ones.

The simplest way to compute an LU factorization is to perform a sequence of row
operations that bring A to upper triangular form through Gaussian elimination. If we
represent the matrix A as [

l11

l21 L22

][
u11 u12

U22

]
=

[
a11 a12

a21 A22

]
(5.6)

Where a11 is the matrix element at index (1,1), a12 the remaining 1x(N-1) first matrix row
and a21 the remaining (N-1)x1 first column and A22 the N-1xN-1 trailing matrix after re-
moval of the first row and column.

Because l11 = 1 we know u11 = a11 and u12 = a12 and l21 = a21./a11. What remains is
the trailing matrix update L22U22 = A22 − l21u21.

Observe that this method factorizes a single row-column of the original matrix per
step. This method is not well suited for parallel implementation on a GPU as it is inher-
ently sequential: it is only possible to start factorizing the next row-column pair after the

5.4. DIRECT SOLUTION METHODS

5

41

trailing matrix update has been performed. This method is also called the right-looking
method since it moves through the columns from left to right and updates the trailing
matrix on the right side.

It can be shown that using this method the computational cost of solving the linear
system is O

(2
3 N 3

)
PIVOTING AND FILL-IN

In the LU factorization algorithm described in the previous section, the column update
involves dividing the values on the column by the value on the diagonal of that column in
the original matrix A. If the value on the diagonal is very small then the updated column
values will become very large, leading to an ill-conditioned matrix which makes the so-
lution unreliable. If the value on the diagonal is 0 the algorithm breaks down. Therefore
it is important that the values on the diagonal of A are not too small and of comparable
size.

Fortunately which values lie on the diagonal is flexible since for a system of linear
equations the order is irrelevant and can be shuffled as desired. The process of swap-
ping rows to make sure the diagonal of the matrix contains desirable values is also called
pivoting.

Another reason to use row pivoting is to reduce an effect called fill-in. A big problem
that factorization algorithms have is that if A is a sparse matrix with a certain band width,
this does not guarantee that L and U have comparable bandwidth. In certain cases it is
possible for the matrix L and U to be almost full matrices in their nonempty sections,
which is inefficient both computationally and memory wise.

This is why most factorization algorithms also have a so called "preordering" phase,
where the order of equations is changed in such a way that predicted fill-in is minimal.
This is usually achieved by reordering the matrix A in such a way that the densest rows
are in the lowest part of the matrix and the densest columns are in the rightmost part.

PARALLEL SPARSE LU FACTORIZATION ON A GPU BY KAI HE ET AL.
Kai He et al. [43] developed a parallel column-based right-looking LU factorization al-
gorithm designed for the GPU. In order to parallelize the factorization they perform a
symbolic analysis to predict non-zero LU factors, after which data dependence between
columns can be identified. Every dependency introduces a new graph layer and columns
in the same layer are independent and thus can be updated in parallel. This process is
represented in figures 5.2 and 5.1.
For example, the first row has a non-zero right looking entry on column 8, which means
that column 8 must be factorized after column 1. Subsequently, the second row has a
non-zero entry on column 4, which means column 4 must be factorized after column 2.
If this process is repeated for every row we obtain the top graph in figure 5.1.

Since the column levels are factorized sequentially it is important to distribute the
work among levels as equally as possible. This is to prevent a single level running into
a bottleneck while on other levels the majority the GPU is idling. This technique is also
called load balancing. This is why in figure 5.1 the levels are redistributed in such a way

5

42 5. PARALLEL SOLVERS ON THE GPU

that the first level contains three columns and the third contains two, instead of four and
one. The maximum number of columns per level should be chosen in such a way that
the GPU occupancy is maximal but not exceeded.

Figure 5.1: Levelization tree of the columns of the right matrix shown in figure 5.2.
The top figure shows naive column leveling, the bottom figure shows equalized column leveling.
Source: [43]

Figure 5.2: Representation of expected fill-in of a simple matrix with 8 rows and columns, where the white
entries on the right are the predicted fill-in elements.
Source: [43]

5.5. ITERATIVE SOLUTION METHODS

5

43

After the preprocessing algorithm then consists of two steps:
First all columns of the L matrix in the current level are computed in parallel.
Then the subcolumns of the trailing matrix which depend on the corresponding columns
in the L matrix need to be updated, which can also be done in parallel.
These two steps are repeated for every sequential level that was constructed during pre-
processing.

CHOLESKY DECOMPOSITION

If the matrix A is symmetric and positive definite (SPD), the LU-decomposition reduces
to its so-called Cholesky decomposition, which means it is possible to write

A =CC T (5.7)

Where C is a lower triangular matrix and C T its transpose.

The fact that only a single lower triangular matrix needs to be computed theoreti-
cally cuts memory requirements and the necessary number of flops in half, which makes
Cholesky decomposition very attractive. Furthermore, because A is positive definite in
this case this guarantees non-zero diagonal elements which means no partial pivoting is
needed.

5.5. ITERATIVE SOLUTION METHODS
As mentioned before, the second class of linear system solvers is the iterative solution
methods. Instead of computing a solution directly instead an iterative process is used
whose result converges to the exact solution. Two main classes of iterative solution
methods exists, namely the basic iterative methods and the Krylov subspace methods,
which will be covered in their respective subsections.

When solving a system Ax = b using an iterative method, we call the k’th approxi-
mation of the solution xk . If the true solution is x, the solution error at step k is defined
as

ek = x −xk (5.8)

The problem however is that knowing the error is equivalent to knowing the true solu-
tion. Therefore instead often the residual vector r k is used as a measure of the error. The
residual vector follows from the fact that

Axk = b + r k (5.9)

and thus
r k = b − Axk (5.10)

5.5.1. BASIC ITERATIVE METHODS
A basic iterative method is a method that uses a splitting of the matrix A by defining a
non-singular matrix M such that A = M −N in order to obtain a recursion relation for
the solution approximation in the following way:

5

44 5. PARALLEL SOLVERS ON THE GPU

Ax = b

M x = N x +b

x = M−1N x +M−1b

x = M−1 (M − A) x +M−1b

x = x +M−1 (b − Ax)

(5.11)

Now since Ax = b we have essentially written x = x in a fancy way.
However remember that if we do not take x but instead substitute the approximate so-
lution xk then b − Axk = r k . This suggests the expression can be used to define the
recurrence relation:

xk+1 = xk +M−1r k (5.12)

Which is the basis for all basic iterative methods. The question now becomes how to
define the matrix M . Since the matrix M is inverted it must be the case that it is much
easier to invert M than to invert A, otherwise the method provides no advantage.

JACOBI METHOD

The simplest iterative method is the method of Jacobi, named after Carl Gustav Jacob
Jacobi (1804-1851) who presumably was the first to propose the method. As mentioned
before, the matrix M should be easily invertible. The method of Jacobi consists of choos-
ing M to be the diagonal of the matrix A which we denote as D . In this case inverting M is
a matter of simply replacing every non-zero value on the diagonal by its reciprocal value.

Because the Jacobi method involves multiplications with a diagonal matrix it means
that all components of the vector xk are updated independently of each other. This
makes the method inherently parallel and thus well suited for GPU implementation.

GAUSS-SEIDEL METHOD

The Gauss-Seidel method, named after Carl Friedrich Gauss (1777-1855) and Philipp
Ludwig von Seidel (1821-1896), is another basic iterative method.
Where the Jacobi method chooses the diagonal of A as M matrix, the Gauss-Seidel method
instead takes the diagonal and the lower triangular part of A. If we call the strictly lower
triangular part of A E and the strictly upper part F and insert these expressions into 5.12
after some reshuffling the Gauss-Seidel recursion relation can be written as

xk+1 = D−1
(

f −E xk+1 −F xk
)

(5.13)

This may not look like a good recurrence relation because xk+1 exists on both sides of
the equals sign. However it is important to note that on the right-hand side xk+1 is
multiplied by a strictly upper triangular matrix. This means that to calculate the nth
component of xk+1, only the values xk+1

1 through xk+1
n−1 are necessary. In other words, the

Gauss-Seidel method uses newly calculated components of xk+1 as soon as they become

5.5. ITERATIVE SOLUTION METHODS

5

45

available.

This means that the Gauss-Seidel method converges faster than the Jacobi method,
but is inherently sequential making it ill-suited for parallel implementation on a GPU.

RED-BLACK ORDERING

As mentioned before, a linear system of equations may be reordered to aid computa-
tions. In the case of the Gauss-Seidel method, the structure of the method makes it in-
herently sequential which makes the method ill-suited for parallel computing. Reorder-
ing provides the solution to this problem.

The Gauss-Seidel method is sequential because nodes require the computed values
from neighboring nodes in order to do their own computations. If nodes are marked
either red or black, with black nodes surrounded by only red nodes and vice versa, a
checkerboard configuration is obtained.

The advantage here lies in that red nodes are surrounded by only black nodes thus
only require information from black nodes to update their own values. This means that if
all red values are known, subsequently all black values can be computed independently
and thus in parallel. In the next step, the roles of red and black are reversed.

A red-black ordered matrix problem has the form

A =
[

DR C T

C DB

]
(5.14)

Where DR is a diagonal block matrix corresponding to the red nodes, DB a diagonal
matrix corresponding to the black nodes and C a matrix representing the connectivity
of the nodes. A simple example for a 4x4 tridiagonal system can be seen in figure 5.3

Figure 5.3: Example of reordering of a tridiagonal 4x4 matrix in Red-Black format
Source: [44]

Note that if the connectivity of the system of equations is such that nodes are con-
nected not only in the x or y direction but also in the x y directions, as for example with a
9-point stencil, the Red-Black ordering does no longer work and more colors are needed.

5.5.2. CONVERGENCE CRITERIA

In the introduction section to basic iterative methods the error vector at step k ek was
defined as x −xk , the difference between the approximation of the solution and the true

5

46 5. PARALLEL SOLVERS ON THE GPU

solution. The error vector is not very useful during calculations since it cannot be com-
puted without knowing the true solution. However if we use relation 5.12 we can define:

ek+1 = x −xk+1

= x −xk −M−1r k

= ek −M−1 Aek

= (
I −M−1 A

)
ek

= (
I −M−1 A

)k+1
e0

(5.15)

Intuitively this means that if the matrix
(
I −M−1 A

) = B makes the vector it is right-
multiplied with smaller, i.e. B has an operator norm ||B || < 1 then the error will decrease
every time step. This is a vague statement as a definition of the operator norm of B was
not given, but there exist a more precise mathematical definition of the convergence
criteria:

ρ
(
I −M−1 A

)< 1 ⇐⇒ lim
k→∞

ek = 0 ⇐⇒ lim
k→∞

xk = x (5.16)

Where the function ρ is the spectral radius of the matrix which is equal to its largest
eigenvalue in absolute value.
This spectral radius also determines the convergence speed. If it is close to 1 the conver-
gence will be very slow, while if it is small convergence will be fast.

5.5.3. DAMPING METHODS
From the definition of the Jacobi iteration matrix M = D it follows that the error propaga-
tion matrix of the Jacobi method B = I −D−1 A = E +F . This means that if the diagonal of
A is small compared to the upper and lower triangular parts E and F the Jacobi method
will not converge. This problem can be solved by introducing a damping parameter ω:

xk+1 = (1−ω)uk +ωxk+1
J AC (5.17)

Where xk+1
J AC is the original value of xk+1 calculated with the Jacobi method.

It follows that the new error propagation matrix B Jac = I −ωD−1 A. Which means the
parameter ω may be used to adjust the convergence rate depending on A.

This same damping strategy can also be used to modify the Gauss-Seidel method,
after which it is called the Successive Overrelaxation method, or SOR. Again the new
recurrence relation is

xk+1 = (1−ω)xk +ωxk+1
GS (5.18)

which written in matrix-vector form is:

(D +ωE) xk+1 = (1−ω)Dxk −ωFuk +ωb (5.19)

5.6. CONJUGATE GRADIENT METHOD

5

47

It follows that MSOR(ω) = D
ω +E .

Another variant is the symmetric SOR method, which consist of a forward and back-
ward step with M1 = D

ω +E and M2 = D
ω +F . The resulting product iteration matrix is

MSSOR(ω) = 1

ω(2−ω)
(D +ωE)D−1 (D +ωF) (5.20)

5.6. CONJUGATE GRADIENT METHOD
The conjugate gradient method is one of the most efficient methods for solving linear
systems that it can be applied to. For this reason it is one of the more popular methods
used today. This section will describe some of the theory on which the method was built,
followed by an analysis of the methods properties.

5.6.1. THE KRYLOV SUBSPACE
The conjugate gradient method falls in the category of the so called the Krylov subspace
methods. One of the problems with the basic iterative methods described in section 5.5
is that while they are more suited for large problems than the direct solution methods
of 5.4, their convergence speed is linear. As will be shown later, an advantage of Krylov
subspace methods is that they will exhibit superlinear convergence behaviour under the
right circumstances. A disadvantage is that they are not suitable for all problems, and
adapting the problem to suit the method may be nontrivial.

The Krylov subspace is named after Alexei Krylov (1863-1945) who was the first to
introduce the concept in 1931. The Krylov subspace appears organically when one ex-
amines the recursion relation of basic iterative methods 5.12:

xk+1 = xk +M−1r k = xk +M−1
(
b − Axk

)
xk+2 = xk+1 +M−1

(
b − Axk+1

)
xk+2 = xk +M−1r k +M−1

(
b − A

(
xk +M−1r k

))
xk+2 = xk +M−1r k +M−1

(
b − Axk

)
+M−1 AM−1r k

xk+2 = xk +2M−1r k +M−1 AM−1r k

xk+3 = xk +C1M−1r k +C2M−1 AM−1r k +C3
(
M−1 A

)2
M−1r k (5.21)

Since this also holds for k = 0 it follows that xk is some linear combination of powers of
M−1 A multiplied with M−1r 0.
In other words:

xk ∈ x0 + span
{

M−1r 0, M−1 AM−1r 0, ... ,
(
M−1 A

)k−1
M−1r 0

}
(5.22)

A Krylov subspace of order r generated by an N × N matrix A and an N × 1 vector b is
defined as the span of the images of b under the first r powers of A:

K k (A,b) = span
{

b, Ab, ... , Ak−1b
}

(5.23)

5

48 5. PARALLEL SOLVERS ON THE GPU

It follows that the BIM solution at step k is equal to the starting guess x0 plus some ele-
ment of the Krylov subspace K k

(
M−1 A, M−1r 0

)
.

The fact that the iterative method converges to the true solution x means that this
true solution must also lie in this subspace. This means the structure of this subspace
may be exploited in order to find the solution in an efficient fashion.

The conjugate gradient method is a method that takes advantage of the Krylov sub-
space nature of iterative solutions. It was discovered independently many times in the
early 20th century, but the first paper on it was published by Stiefel and Hestenes in 1951
[45]. It is a very popular method because it is well suited for sparse linear systems and
convergence is superlinear under the right circumstances.

5.6.2. THE METHOD OF GRADIENT DESCENT

The conjugate gradient method is a modification of the method of gradient descent [46].
The method of gradient descent is a very intuitive method. If one imagines himself at
night and walking around a hilly landscape with the objective to find the lowest point in
the area, traversing in the direction of steepest descent is guaranteed to lead to a local
minimum. An illustration of this can be observed in figure 5.4.

Figure 5.4: Illustration of successive steps of the Gradient Descent method
Source: [47]

The method of gradient descent is based on the same principle. In mathematical
terms in the case of the linear problem Ax = b this means the objective of the method is

5.6. CONJUGATE GRADIENT METHOD

5

49

to find a minimum of the function

F (x) = ‖Ax−b‖2 (5.24)

Where the lower case 2 means the L2 norm or Euclidian norm.

Now the direction of steepest descent in a point x is minus the gradient of the func-
tion evaluated at that point:

−∇F (x) =−

∂F (x)
∂x1
∂F (x)
∂x2

...
∂F (x)
∂xn

 (5.25)

Because F (x) is a linear function the gradient can be conveniently written as a matrix
vector product:

∇F (x) = 2AT (Ax−b) (5.26)

If we substitute x = xk we find

∇F (xk) = 2AT r k (5.27)

This means the direction of steepest descent in a point xk lies in the direction of the
residual in that point left-multiplied by the transpose of the problem matrix A:

xk+1 = xk +αAT r k (5.28)

The question is now what the value of α should be.
For readability, assume x0 = 0 which implies x1 =αAT r 0.
Then∥∥x −x1∥∥

2 =
(
x −αAT r 0)T (

x −αAT r 0)= xT x −α(
r 0)T

Ax −αxT AT r 0 +α2 (
AT r 0)T

AT r 0

(5.29)

Using that Ax = b produces:

∥∥x −x1∥∥
2 = xT x−α(

r 0)T
b−αbT r 0+α2 (

AT r 0)T
AT r 0 = xT x−2α

(
r 0)T

b+α2 (
AT r 0)T

AT r 0

(5.30)

Setting the derivative with respect to α to zero produces

α=
(
r 0

)T
b(

AT r 0
)T AT r 0

(5.31)

One of the problems with the method of Gradient descent is that it will only converge
to a global minimum if ∇F is Lipschitz continuous and F is a convex function.

5

50 5. PARALLEL SOLVERS ON THE GPU

5.6.3. CONJUGATE DIRECTIONS
One of the problems of the method of Gradient Descent is that it can occur that it often
takes steps in the same direction as earlier steps. One way of avoiding this is to make
sure that every new step is in a direction that is orthogonal to every previous step direc-
tion. Since you are no longer moving in the direction of the gradient this is no longer the
method of gradient descent. However it does eventually lead to the conjugate gradient
method.

Now one way to implement this orthogonal search direction idea is to use the con-
dition that the new search direction must be orthogonal to the current error direction.
Otherwise it could occur that the method would have to move more than once in a par-
ticular direction. This means xk+1 = xk +αk dk where dk is the k’th search direction. The
orthogonality criterion gives

d T
k ek+1 = 0

d T
k (ek +αk dk)

αk =− d T
k ek

d T
k dk

(5.32)

(5.33)

This is a useless expression as the error vector ek is unknown. This can be solved by
instead using the matrix A-norm for the orthogonality criterion, which can be shown
that this inner product and corresponding norms are properly defined when the matrix
A is symmetric and positive definite.
It is defined as:

〈y,y〉A = yT Ay (5.34)∥∥y
∥∥

A =√〈y,y〉A (5.35)

Where y is some vector of dimension N .

Since the value of α in equation 5.32 is the quotient of two inner products we may
use the A inner product instead to ensure A-orthogonality. This produces:

αk =− d T
k Aek

d T
k Adk

= d T
k r k

d T
k Adk

(5.36)

Now an α has been found the method is not yet complete. It remains to construct N
orthogonal search directions.
A classic method of orthogonalizing a set of vector with respect to an inner product is by
the Gram-Schmidt orthogonalisation process.

5.6.4. COMBINING THE METHODS
If the set of vectors to be used as search directions is chosen to be the residuals we call
the resulting method the conjugate gradient method.

5.6. CONJUGATE GRADIENT METHOD

5

51

It uses the search directions of the method of Gradient descent and then proceeds to
make them more efficient by orthogonalizing them with respect to the A-norm.

One of the big advantages of the Conjugate gradient method is that since the search
directions are orthogonal, and for every search direction the method reduces the com-
ponent of the residual in that direction to zero, it follows that the method arrives at the
solution after at most N iterations.
In practice, floating point errors cause the search directions not to be completely orthog-
onal and causes an error in the residual as well, which may slow down the method.

5.6.5. CONVERGENCE BEHAVIOUR OF CG
It can be proven [48] that the following relation holds:

∥∥∥x −xk
∥∥∥

A
≤ 2

(p
C (A)−1p
C (A)+1

)k ∥∥x −x0∥∥
A (5.37)

Where C (A) is the condition number of the matrix A. The condition number associated
with a linear equation Ax = b is defined as the maximum ratio of the relative error in the
solution x to the relative error in b. This can be proven to be equal to ‖A‖∥∥A−1

∥∥.

If A is a normal matrix, e.g. A commutes with its conjugate transpose, the condition
number equals the ratio of the largest eigenvalue of A and the smallest eigenvalue of A.
This criterion is automatically satisfied when A is symmetric and positive definite.
This means that the conditioning of the matirx A is a very important factor in its suit-
ability for the CG algorithm.
Preconditioning modifies the eigenvalues of A, so a good preconditioner will provide a
large speedup for the CG method.

The above bound is a linear bound with a constant rate of convergence. When us-
ing the CG method in practice, one may observe superlinear convergence behaviour in-
stead.

RITZ VALUES

According to [48] the Ritz values θk
i of the matrix A with respect to the Krylov subspace

Kk are defined as the eigenvalues of the mapping

Ak =πk A|Kk (5.38)

where πk is the orthogonal projection upon Kk and k is the iteration number and i is the
index of the value.

Correspondingly, the Ritz vectors yk
i are the normalized eigenvectors of Ai corre-

sponding to θk
i with the property that

Ayk
i −θk

i yk
i ⊥ Ki (5.39)

5

52 5. PARALLEL SOLVERS ON THE GPU

The normalized residual matrix Rk is then defined as

Rk =
[

ri

‖r1‖2
... rk−1

‖rk−1‖2

]
(5.40)

The Ritz matrix is then defined as

Tk = RT
k ARk (5.41)

The Ritz matrix can be seen as the projection of A onto the Krylov subspace K k
(

A;r 0
)

The Ritz values approximate the extreme eigenvalues of A, and correspondingly the
Ritz vectors approximate the eigenvectors of A.
Now suppose a Ritz value θk and corresponding eigenvector are exactly an eigen value
and vector yk of A. Then, since we can write u as a linear combination of eigenvectors
and its projection upon those vectors we obtain:

u =
N∑

i=1

(
uT yi

)
y j (5.42)

Because y j is contained in the Krylov subspace it must follow that rk is perpendicular to
it. Thus (

rk
)T

yk = (u−uk)T AT yk = (u−uk)T θk yk = θk eT
k yk = 0 (5.43)

The conclusion is that the component of the error vector in the direction of the eigen-
vector yk is zero.
Thus it follows that although the condition number of A remains unchanged, the con-
vergence of the conjugate gradient method is now limited not by the condition number
of A but by the effective condition number. Where the effective condition number is the
condition number with θk excluded.

5.6.6. PARALLEL CONJUGATE GRADIENT
The conjugate gradient method consists of calculating inner products and matrix-vector
multiplications, which are perfectly parallelizable. However as mentioned in chapter 4
subsection 4.3.3 these operations are memory-bound.

The process finding a preconditioner is well suited for parallel implementation and
preconditioning the method will also provide speedup. The process of finding an effec-
tive preconditioner using a parallel method will be explored in section 5.8.

5.6.7. KRYLOV SUBSPACE METHODS FOR GENERAL MATRICES
Preconditioned Conjugate Gradient is one of the most efficient methods for solving lin-
ear problems where A is symmetric and positive-definite. However many problems will
not fit this requirement. Thus various Krylov methods have been developed to accomo-
date for this.

Many of these methods involve expanding the matrix A in order to make it symmet-
ric. One idea was to precondition the system with the matrix AT to obtain

AT Ax = AT b (5.44)

5.7. MULTIGRID

5

53

However a problem here is that AT is often a very poor preconditioner with respect to
the condition number, significantly slowing down this method.

Another option is the so called Bi-CG method. The idea is instead of defining the
residual vector of CG to be orthogonal to the Krylov subspace constructed it creates a
second subspace to account for the non-symmetry of A.
Where the first subspace was K k

(
M−1 A, M−1r 0

)
this second subspace is of the form

K k
(
M−1 AT , M−1r 0

)
and thus is constructed out of the powers of the transpose of the

problem matrix.

The Bi-CG method thus also introduces a second residual that relates to this second
subspace, where it tries to make the second residuals A-orthogonal instead of standard
orthogonal. It also uses the bi-Lanczos method to orthogonalize the residuals instead of
the classical CG orthogonalization method.

One of the problems with Bi-CG is that it is numerically unstable and thus not robust.
A modification was developed around 1992 [49] which was called Bi-CGSTAB where
STAB stands for stabilized. The main idea is that in the Bi-CG method the residuals do
not need to be explicit, and instead defines a modified residual that is multiplied with a
polynomial:

r̃i =Qi (A)ri = (I −ω1 A) ... (I −ωi A) (A)ri (5.45)

Which allows for smoother and more stable convergence.
Bi-CG uses short recurrences but is only semi-optimal. It is possible for the method to
experience a near-breakdown which may still produce instabilities.

Another method for general matrices is the GMRES algorithm, which stands for Gen-
eralized Minimal RESidual. It uses Arnoldi’s method for computing an orthonormal ba-
sis of the Krylov subspace K K

(
A;r 0

)
[50]. It is an optimal method in terms of conver-

gence, but has as a drawback that k vectors need to be stored in memory for the k-th
iteration.
A second drawback is that the cost of the Gram-Schmidt orthogonalization process,
which is part of Arnoldi’s method, scales quadratically in the number of iterations. One
option to remedy this is to restart GMRES after a chosen number of iterations, but this
destroys the superlinear convergence behavior and optimality property.

Thus when preconditioning GMRES often aggressive preconditioners are chosen that
aim to greatly limit the number of GMRES iterations needed for convergence but are
costly to compute.

5.7. MULTIGRID
Multigrid methods were developed in the late 20th century and have since then become
quite popular due to their computational efficiency. Properly implemented Multigrid
exhibits a convergence rate that is independent from the number of unknowns in the

5

54 5. PARALLEL SOLVERS ON THE GPU

discretized system, and thus is called an optimal method [51].

The name Multigrid comes from the fact that the method solves an Ax = b problem
using multiple grids with different mesh sizes.

Usually the complexity of a problem is expressed in powers of N . For example, a full
inversion of the matrix A using Gaussian elimination costs O(N 3) floating point oper-
ations, and using an LU decomposition costs 2

3 O(N 3) operations, where A is an N ×N
matrix.

Thus the time it takes to solve linear problems usually scales somewhere between
quadratically and cubic in the number of unknowns. It follows that an easy way of re-
ducing computation time is to sacrifice some accuracy by coarsening the grid. Halving
the number of unknowns will reduce the problem matrix by a factor 4. However, this
often leads to a loss of accuracy that is unacceptable and thus is not feasible.

The multigrid method instead uses this cheaper coarse solution to accelerate the
process of finding the solution on the fine grid.
This is done by successively coarsening the grid and then using a basic iterative method
to obtain a coarse residual. The next step is solving the problem once grid coarseness
is so low that computational cost is negligible, and finally resharpening by interpolation
and then correcting the solution with the calculated coarse solution and residuals.
An illustration of the method can be observed in figure 5.5.

5.7. MULTIGRID

5

55

Figure 5.5: Illustration of an iteration of a V-cycle multigrid method
Source: [52]

5.7.1. ALGEBRAIC VS GEOMETRIC MULTIGRID
When discretizing a physical problem there is an obvious choice as how to construct the
coarse matrix: it follows naturally from discretizing the problem with half the number of
variables as in the original problem. However when all you have is a matrix A without
any knowledge of the underlying problem constructing a coarser grid becomes nontriv-
ial.

Choosing a coarsening method that is optimal for the multigrid method based on
nothing but the problem matrix A is known as Algebraic multigrid. Because the prob-
lems considered in this thesis are all of the geometric type, it has been chosen to not go
into the theory behind Algebraic multigrid any further.

5.7.2. ERROR FREQUENCY
One of the key elements in the efficiency of the multigrid method is the fact that it com-
bines a coarse solution with a basic iterative method which complement each other well.
Since the problem matrix A can be decomposed into a sum of weighted eigenvectors,
this means that any function on the grid is some weighted sum of eigenmodes corre-
sponding to these eigenvectors.
These eigenmodes will be either high frequency or low frequency, where a low frequency

5

56 5. PARALLEL SOLVERS ON THE GPU

mode corresponds to a small eigenvalue of A and a high frequency mode corresponds to
a large eigenvalue of A.

This means that the error vector x − xk can also be decomposed into these eigen-
modes. In other words: the error is a sum of low and high frequency errors.

Solving the system of equations on a coarsened grid will only correct the low fre-
quency errors. This is because when a smooth function is discretized coarsely, the inter-
polation between nodes will approximate the true function well since it varies slowly. An
illustration of this principle can be observed in figure 5.6.

Figure 5.6: Illustration of coarsening error for a smooth function (left) and an oscillatory function (right) when
moving from a fine grid with grid distance h to a coarse grid with grid distance 2h.
Source: [51]

Fortunately, a basic iterative method is very effective at reducing high frequency er-
rors but is slow to correct low frequency errors. This explains the slow convergence rate
of unrelaxed Jacobi or Gauss-Seidel.

To illustrate this, if the Jacobi method M = D is substituted into expression 5.15 the
error propagation matrix consists of the rescaled strictly lower and upper triangular parts
of the matrix A. This means that the error in a certain point i after multiplication with
the error propagation matrix will be some linear combination of neighboring values de-
pending on the structure of A.

It follows intuitively that after this repeated error averaging the high frequency errors
will reduce quickly, while low frequency errors will be on average the same and thus will
damp out slower.

5.7.3. CONVERGENCE BEHAVIOUR
As mentioned before, the multigrid method is an optimal method for problems that are
suitable and thus converges in O(1) iterations as it reduces the error by a fixed factor
independent of the problem size N . This means that the total number of floating point

5.8. PARALLEL PRECONDITIONERS

5

57

operations necessary to solve a linear problem depend only on the cost of the iterations.
A basic iterative method residual computation and the grid coarsening operations will
be of order O(N) when A is sparse enough, which would make the multigrid method an
order N method [51].

5.8. PARALLEL PRECONDITIONERS
As mentioned before, many iterative solvers suffer from a lack of robustness. The con-
vergence speed of the methods is highly dependent on the characteristics of the prob-
lem matrix which makes them ill suited for wide applications. Fortunately there exists a
method called preconditioning that aims to compensate for this.

Preconditioning a linear problem Ax = b means left or right multiplying both sides
of the equation with a preconditioner M−1, which produces

M−1 Ax = M−1b (5.46)

or

AM−1u = M−1b

x = M−1u

(5.47)

The solution of these new systems is exactly the same as the original problem, except
the problem matrix is transformed. The characteristics of the preconditioner depend
on the solution method that it tries to accelerate. For example the convergence rate of
the Conjugate Gradient method described in section 5.6 is bounded by the ratio of the
largest and smallest eigenvalues of A. Thus when preconditioning the system for accel-
eration of CG the aim of M−1 is to bring the ratio of the smallest and largest eigenvalues
of the preconditioned system closer to 1.

When choosing a preconditioner it is important to keep in mind that its inverse must
also be implicitly formulated. Two trivial choices of preconditioner would be the identity
matrix I or the problem matrix inverse A−1. In the first case the preconditioned system
is exactly the same as the original problem and thus the preconditioning is useless.
In the second case inverting the preconditioner is exactly as hard as the original problem
so nothing is gained either.

A good preconditioner will have the property that inverting it and multiplying the
system with it saves more time for the iterative method than the cost of computing it.

Note that when preconditioning a Krylov subspace method there is the extra condi-
tion that the preconditioned system must remain symmetric and positive definite. In
this case the simplest way to make sure of this is to require the preconditioner to be
Cholesky decomposable: M = PP T .

In which case the system becomes:

5

58 5. PARALLEL SOLVERS ON THE GPU

P−1 AP−T u = P−1b

x = P−T u

(5.48)

5.8.1. INCOMPLETE DECOMPOSITION

As mentioned in section 5.4, LU or Cholesky decomposition algorithms are rarely used
due to poor scaling with problem size and fill in. The incomplete factorization precondi-
tioner aims to remedy these problems. It involves the system matrix as A = LU−R, where
L and U are lower- and upper triangular matrices, and R is some factorization residual
due to the factorization being incomplete.

The idea is to only factorize the parts of A that do not produce any fill-in, and leave
the rest as a residual for the actual solution method to solve. This is also called ILU(0)
incomplete factorization.

The accuracy of the incomplete ILU(0) factorization may be insufficient to accelerate
the actual solution method, as discarding fill in terms can prove to be quite significant.
In this case, it can be chosen to allow some but not all fill in during the factorization.

5.8.2. BASIC ITERATIVE METHODS AS PRECONDITIONERS

Basic iterative methods themselves exhibit slow convergence behaviour as they are gen-
erally only effective at reducing high frequency errors. However they are well suited for
use as a preconditioner. Because for a basic iterative method the matrix A is split into
A = M−N , from the third step in equation 5.11 we have x = M−1 (M − A) x+M−1b Which
we can rewrite to (

I −M−1 (M − A)
)

x = M−1 Ax = M−1b (5.49)

Thus it follows that the splitting introduced by a basic iterative method also automati-
cally defines a preconditioned system associated with the splitting. Note that if the pre-
conditioner is intended to be used with the preconditioned conjugate gradient method,
M must be symmetric and positive-definite.

The simplest preconditioner is the Jacobi preconditioner, where M−1 = D−1 the in-
verse of the diagonal of A. This preconditioner is effective at reducing the condition
number of the preconditioned system. It is easy and cheap to calculate and it has the
efficient property that the diagonal of the preconditioned matrix consists of only ones,
which saves N multiplications per matrix vector product.

The Relaxed Gauss-Seidel preconditioner is similar with M = D −ωE . An important
thing to mention is that it is also possible to use the Symmetric Gauss-Seidel method,
described in section 5.5.3 which is already of the form M = PP T and thus SPD.

5.8. PARALLEL PRECONDITIONERS

5

59

5.8.3. MULTIGRID AS A PRECONDITIONER
The multigrid algorithm is theoretically optimal for certain classes of problems when
implemented properly. However its performance is highly problem specific and often
requires fine-tuning of the smoothing to coarsening ratio. Using Multigrid as a precon-
ditioner instead to obtain a rough solution which is then subsequently improved by a
solver may yield convergence rates similar to a full multigrid method while being more
robust [53] [54].

In [51] an explicit form is derived for the two-grid preconditioner which is called B−1
T G

to avoid confusion:

B−1
TG = [

M
(
M +M T − A)−1)M T]−1 + (

I −M−T A
)

I A−1
c I T (

I − AM−1) (5.50)

Where M is the chosen Basic Iterative Method splitting from A = M − N , Ac the once
coarsened matrix A with dimensions N

2 × N
2 in the case of a 1 dimensional problem and

I is the intergrid transfer operator with the property that Ac = I AI T

The full Multigrid preconditioner can then be defined recursively as

B−1
k = [

M
(
M +M T − A)−1)M T]−1 + (

I −M−T A
)

I k
k+1B−1

k+1

(
I k

k+1

)T (
I − AM−1) (5.51)

Where at the coarsest level k = 1 we take Bl = Al , the matrix A coarsened l times.

According to [55] the multigrid method is very well suited as a preconditioner for the
conjugate gradient method as it preserves the symmetry and positive definitiveness of
the system. Using multigrid as a preconditioner for CG retains the O(N) convergence
rate but is more robust than pure multigrid, making it an attractive preconditioning
choice.

5.8.4. SPARSE APPROXIMATE INVERSE PRECONDITIONERS
The idea behind the sparse approximate inverse preconditioner is its suitability for par-
allel computing. It involves finding a sparse inverse of the problem matrix A, which is
equivalent to finding

min
M∈P

‖I −M A‖ (5.52)

Where P is defined as the subset of N ×N matrices that fit some chosen sparsity pattern.

It can be shown [56] that the Frobenius norm is optimal, which is defined as

‖A‖2
F =

N ,N∑
i , j=1

a2
i , j = tr ace

(
AT A

)
(5.53)

It follows that

min
M∈P

‖I −M A‖F =
N∑

j=1
min

m j ∈P j

∥∥e j − Am j
∥∥2

2 (5.54)

5

60 5. PARALLEL SOLVERS ON THE GPU

Where m j is the j-th column of M and P j is the sparsity pattern of column j

This means that finding a sparse approximate inverse equations to solving N least
squares problems in parallel, which are cheap as long as P is sparse.

In the paper [57] it is stated that if A is a discrete approximation of a differential op-
erator, it is very likely that the spectral radius of the matrix G = I −A is less than one, and
it then follows that

(I −G)−1 = I +G +G2 +G3 + ... (5.55)

It follows that the approximate inverse is a truncated form of this power series.

The inverse of a non-diagonal matrix is generally dense, and thus a sparse approxi-
mate inverse can never be a perfect matrix inverse. Despite this, a sparse approximate
inverse is a good preconditioner if the significant elements of A−1 is well approximated
by the chosen sparsity pattern P , but in practice it is hard to predict this which makes an
optimal choice of P a matter of trial and error.

5.8.5. POLYNOMIAL PRECONDITIONERS
The idea of a polynomial precondtioner is to accelerate a Krylov subspace method by
first finding a polynomial that encloses the eigenvalue spectrum of A. The aim is to
make sure the zeroes of the polynomial lie close to the matrix eigenvalues in the com-
plex plane, so that the preconditioning will make these eigenvalues small. Once such a
polynomial is found either the Chebychev or Richardson’s iterative method [58] is used
to construct the preconditioner. In practice this is done by starting with the standard
Krylov subspace method until the Ritz values can be computed
Then the Ritz values from the first stage are used to compute parameters for the precon-
ditioning polynomial, and finally solve the preconditioned system using the same Krylov
subspace method as in the first stage.

[57] states a polynomial preconditioner is of the form

M−1
m =

m∑
j=0

y j ,mG j (5.56)

It then follows that the approximate inverse is a preconditioner with all coefficients set
to 1.

From the definition of the polynomial preconditioner it follows that

M−1
m A =

m∑
j=0

y j ,mG j A = δ0,m A+δ1,m A2 + ...+δm,m Am+1 = pm(A)A (5.57)

Where pm(A) is some polynomial in A.

So the preconditioned matrix M−1
m A is some polynomial in A and its spectrum is

given by λi pm(λi) where λi is an eigenvalue of A.

5.8. PARALLEL PRECONDITIONERS

5

61

It is then possible to define the polynomial qm+1(y) = y pm(y) and this polynomial
vanishes at y = 0 and has the property that qm+1(y) for λmi n ≤ y ≤λmax is a continuous
approximation of the spectrum of M−1

m A.

The objective then becomes to find

min
q∈Qm+1

maxλmi n≤y≤λmax q(y)

mi nλmi n≤y≤λmax q(y)
(5.58)

Where Qm+1 is the set of polynomials of degree m +1 or less which are positive on the
interval [λmi n ,λmax] and vanish at zero.

It can be proven [57] that the Chebychev iterative method minimizes this function
and also that least-squares Legendre polynomial weights are a viable alternative to Cheby-
chev polynomial weights.

5.8.6. BLOCK JACOBI PRECONDITIONERS
The Block-Jacobi preconditioner can be interpreted as a domain decomposition precon-
ditioner.
This idea arises from the fact that sparse matrices can often be written in block form. A
block matrix is a matrix whose elements themselves are matrices.
In this instance domain decomposition is achieved by defining block matrix that splits
the domain of computation into (almost) independent blocks. The advantage here lies
in the fact that the block splitting can make it easy to identify matrix parts that are inde-
pendent and thus can be solved in parallel.

For example a 5-point difference scheme for a two dimensional system will result
in an N × N matrix A that has five diagonals, a tridiagonal inner part plus two outer
diagonals. This same system matrix can be written in tridiagonal block matrix form:

D1 E2

F2 D2 E3

. . .
. . .

. . .
Fm−1 Dm−1 Em−1

Fm Dm

 (5.59)

Where the D matrices are tridiagonal k×k matrices and E and F diagonal k×k matrices,
and N is mk

Here, every diagonal block represents a part of the domain and the off-diagonal en-
tries represent dependencies between domains.

The simplest domain decomposition preconditioner is the block-Jacobi precondi-
tioner, which is defined as

M =

D1

. . .
Dm

 (5.60)

5

62 5. PARALLEL SOLVERS ON THE GPU

In this preconditioned matrix the off-diagonal terms are discarded which makes the in-
dividual D matrices independent and thus invertible in parallel.

One of the problems with block-Jacobi is that it exhibits poor scaling behaviour, the
number of iterations increase with the number of subdomains [59]. One strategy to solve
this is to use a certain overlap between subdomains to improve propagation of informa-
tion. Care should be taken for the variables in the overlapping domains as they will re-
ceive corrections from both domains they belong to.

A possible solution to the poor scaling of the block-Jacobi preconditioner is to con-
struct the block matrix using completely independent blocks, which are perfectly paral-
lelizable, and subsequently performing a coarse grid correction to compensate for the
error of disconnecting the subdomains.

5.8.7. MULTICOLORING PRECONDITIONERS
As explained in section 5.5.1 for the Gauss-Seidel algorithm a multicoloring turns the
sequential Gauss-Seidel method into a highly parallel scheme. The Red-Black ordering
plus incomplete LU factorization of the problem matrix is also a form of preconditioning.

A more advanced coloring scheme is for example the RRB-method, that can serve as
a preconditioner for the CG method. A nice implementation was done by De Jong [60]
[61], and a performance analysis of the RRB accelerated CG method for the shallow wa-
ter equations is presented in chapter 10.

RRB stands for repeated red-black ordering. A normal Red-Black ordered matrix has
two levels that are independent and thus can be LU-factorized in parallel. The repeated
red black ordering algorithm extends this by defining multiple levels depending on do-
main size and the preconditioner can then be constructed level-wise in parallel. On
these levels an incomplete factorization is then performed.
An illustration of RRB numbering on an 8×8 grid can be observed in figure 5.7

5.8. PARALLEL PRECONDITIONERS

5

63

Figure 5.7: Illustration of the seven RRB numbering levels on an 8×8 grid.
Source: [60]

5

64 5. PARALLEL SOLVERS ON THE GPU

As can be observed, every successive RRB level becomes smaller, and thus the gain
from adding this small extra level of parallelism also becomes smaller. At some point it
might be beneficial to stop the RRB numbering at some chosen level, and proceed by
computing a full Cholesky decomposition of the remaining nodes. The stopping level
should be chosen such that using the Cholesky decomposition on the remainder is not
much larger than incompletely factorizing it with the RRB method.

It should be mentioned that the level-wise LU decomposition algorithm described in
section 5.4.1 is also a form of multicoloring where every parallel level corresponds to a
color.

5.9. SOLVER SOFTWARE PACKAGES
Programming on a GPU is not as straightforward as classical CPU programming. As
mentioned in chapter 4 it can be difficult to properly take advantage of the parallel ar-
chitecture of a GPU without running into memory limitations. In many cases carefully
optimizing a GPU method can yield as much of a performance improvement as the ini-
tial switch from CPU to GPU. Often a beginner trying to reinvent the wheel on a GPU will
observe less than optimal performance.

Fortunately in order to make it easier for programmers with limited GPU program-
ming experience to still be able to accelerate methods using a GPU many solver software
packages exist that will provide acceptable results without the often frustrating optimiza-
tion process.

5.9.1. PARALUTION
Paralution is a C++ library for sparse iterative methods that focues on multi-core CPU
and GPU technology. It has a dual license model with either an open-source GPLv3 li-
cense and a commercial one. It has support for both OpenMP, OpenCL and CUDA, with
plug-ins for FORTRAN, OpenFoam, MATLAB others [62]

One of the key selling points of the Paralution package is that it provides seamless
portable integration which will run on the hardware it detects. Thus if a Paralution ac-
celeration method intended for a GPU is written and then is used on a system without a
GPU available the code will simply use the CPU instead.

The Paralution package contains the following solvers:

• Basic iterative methods: Jacobi, Gauss-Seidel and relaxed variants

• Chebyshev iteration

• Mixed precision defect correction

• Krylov subspace method: CG, CR, BiCGStab, Gmres

• Deflated preconditioned CG

5.9. SOLVER SOFTWARE PACKAGES

5

65

• Both Geometric and Algebraic Multigrid

• Iterative eigenvalue solvers

Every solver method can also be used as a preconditioner, but additionally it sup-
ports a wide array of incomplete factorization preconditioners, approximate inverse pre-
conditioners and colouring schemes. The preconditioner and solver design is such that
you can mix and match preconditioners and methods as desired since everything is com-
patible and based on a single source code.

5.9.2. CUSOLVER & CUSPARSE
CuSOLVER and cuSPARSE are libraries developed and published by Nvidia and are in-
cluded in the CUDA toolkit package in C and C++ language. CuSPARSE is a library that
consists of mostly basic linear algebra subroutines that are optimized for sparse matri-
ces, and is a useful library to consider when building a parallel program in CUDA. It is
mentioned because it also contains a sparse triangular solver, tridiagonal solver and in-
complete LU and Cholesky factorization preconditioners.

CuSOLVER is a high level package based on cuBLAS and cuSPARSE. The intent of
cuSOLVER is to provide LAPACK-like features. This includes LU, QR and Cholesky de-
composition. Unfortunately cuSOLVER is limited to direct solution methods [63].

5.9.3. AMGX
AmgX is an open source software package that offers solvers accessible through a simple
C API that completely abstracts the GPU implementation. It contains a number of alge-
braic multigrid solvers, PCG, GMRES, BiCGStab and flexible variants. As preconditioners
Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial and dense LU are available [64].

In addition it supports MPI and OpenMP which makes it very suitable for multi
GPU systems, and as with Paralution the flexible implementation allows nested solvers,
smoothers and preconditioners.

5.9.4. MAGMA
Another library that is freely available is MAGMA, which stands for Matrix Algebra on
GPU and Multicore Architectures. It was developed by the team that also created LA-
PACK and it aims to provide a package that dynamically use the resources available in
heterogeneous systems. It achieves this by using a hybridization methodology where al-
gorithms are split into tasks of varying granularity and their execution is scheduled over
the available components, where non-parallelizable tasks will often be assigned to the
CPU while larger parallel tasks will be assigned to the GPU [65]

All MAGMA features are available for CUDA while most features are available in OpenCL
or Intel Xeon Phi. The package includes

• LU, QR Cholesky factorization

5

66 5. PARALLEL SOLVERS ON THE GPU

• Krylov subspace methods: BiCG, BiCGStab, PCG, GMres

• Iterative refinement

• Transpose free quasi minimal residual algorithm

• ILU, IC, Jacobi ParILU, Block Jacobi and ISAI preconditioners

6
IMPLEMENTATION OF THE

STELLING & DUINMEIJER SCHEME

In the process of developing either an implicit or explicit model for the shallow water
equations, the first step is to implement the Stelling & Duinmeijer scheme described in
chapter 3. Implementing a method on a GPU is a highly complex matter, and thus it has
been decided to first implement an explicit form of the scheme in MATLAB in order to
familiarize with it, and subsequently implementing a CUDA C++-version.

The first test case is a square domain with an initial homogeneous water level of
1 meter and reflective boundary conditions. This system will be perturbed by a water
droplet modeled by a Gaussian function.

6.1. EXPLICIT IMPLEMENTATION IN MATLAB
As mentioned in chapter 3 an explicit scheme involves updating the solution vector by a
matrix-vector product every time step. Storing this matrix however uses (costly) mem-
ory and it is often non-trivial to construct. It is also possible to implement an explicit
method in a so called matrix-free form, which is more intuitive as it simply follows the
discretised equations. A disadvantage of a matrix-free form is that it is harder to move
from an explicit solution method to an implicit one, as constructing a matrix free im-
plicit solution method is less intuitive.

As a first attempt at implementing the scheme explicitly the matrix-free approach
has been chosen.

6.1.1. STAGGERED GRID
Before the scheme can be implemented it is first necessary to define a grid with bound-
ary and initial conditions. The Stelling & Duinmeijer scheme uses an Arakawa-C grid as

67

6

68 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

described in chapter 3 and thus this will be the grid of choice. As before the water level
H is defined on the centres of the grid squares while the velocities U and V are defined
on the borders of the squares.

In order to construct the grid it is first important to consider the half-indices that
occur due to the staggered nature of the grid, as matrix and vector indices in any pro-
gramming language must be integers.

The solution is redefining the grid in the following way:

Figure 6.1: Shallow-water Arakawa C-grid with shifted velocity indices

This numbering amounts to all velocity-related indices being shifted by −1/2.

BOUNDARY CONDITIONS

This numbering becomes especially important when considering boundary conditions.
If the grid consists of N squares, it is easy to deduce from figure 6.1 that the number of
H variables is N ×N , the number of U variables is (N +1)×N and the number of V vari-
ables is N × (N +1).

In order to keep the three variable arrays the same size we introduce dummy rows
and columns, which have been schematically represented in figure 6.2

6.1. EXPLICIT IMPLEMENTATION IN MATLAB

6

69

Figure 6.2: 1×1 Arakawa-C grid with dummy rows and columns introduced to allow U and V to be defined at
the left and bottom boundaries. Note that the red coloured variables are the dummy variables which are not
used in calculations.

6.1.2. STELLING & DUINMEIJER SCHEME

In order to aid the reader in understanding the implementation process, we first repeat
the Shallow-Water equations and then the corresponding discretized Stelling & Duin-
meijer scheme with θ = 0, first described in chapter 3:

∂H

∂t
+ ∂

∂x
(Hūx)+ ∂

∂y

(
Hūy

)= 0

∂ūx

∂t
+ ∂ūx

∂x
ūx + ∂ūx

∂y
ūy + g

∂ζ

∂x
+ g ux ||u||

C 2H 2 = 0

∂ūy

∂t
+ ∂ūy

∂x
ūx +

∂ūy

∂y
ūy + g

∂ζ

∂y
+ g uy ||u||

C 2H 2 = 0 (6.1)

6

70 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un

i+1/2, j −h′n
i−1/2, j un

i−1/2, j

∆x
+

h′n
i , j+1/2vn

i , j+1/2 −h′n
i , j−1/2vn

i , j−1/2

∆y
= 0

(6.2)

un+1
i+1/2, j −un

i+1/2, j

∆t
+un

→
un

i+1/2, j −un
i−1/2, j

∆x
+ vn

↑
un

i+1/2, j −un
i+1/2, j−1

∆y

+ g
ζn

i+1, j −ζn
i , j

∆x
+ c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

= 0 (6.3)

vn+1
i , j+1/2 −un

i , j+1/2

∆t
+un

→
vn

i , j+1/2 − vn
i−1, j+1/2

∆x
+ vn

↑
vn

i , j+1/2 − vn
i , j−1/2

∆y

+ g
ζn

i , j+1 −ζn
i , j

∆y
+ c f

vn+1
i , j+1/2

∣∣∣∣∣∣u=n
i , j+1/2

∣∣∣∣∣∣
(h−y)n

i , j+1/2

= 0 (6.4)

Where as before h′ is the upwinded water level depending on flow direction,
∣∣∣∣∣∣u=n

i+1/2, j

∣∣∣∣∣∣
the magnitude of the averaged velocity vector at step n at i +1/2, j , and u→ and v↑ the
velocity advection terms that can be chosen accordingly to the scheme’s desired conser-
vation properties, as explained in chapter 3.

The first problem here is that this scheme is not fully explicit. However, the implicit
bottom friction terms can be easily calculated as they are completely independent and
thus can be inverted at low cost:

un+1
i+1/2, j −un

i , j

∆t
= F

(
un ,hn)− c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

un+1
i+1/2, j = un

i , j +∆t

F
(
un ,hn)− c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

un+1

i+1/2, j

1+∆tc f

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

= un
i , j +∆tF

(
un ,hn)

un+1
i+1/2, j =

(
un

i , j +∆t F
(
un ,hn))

/

1+∆tc f

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

(6.5)

Where F (un , H n) represents the other explicit terms in equations 6.4.

6.1. EXPLICIT IMPLEMENTATION IN MATLAB

6

71

6.1.3. EXPLICIT TERM FORMULATION
Now that the grid and relevant equations are properly defined it is also necessary to write
all terms in equations 6.4 in terms of U ,V or H , which are the water level and velocities
in computer memory.
The first is

h′n
i+1/2, j = H xi , j =

(
Ui , j > 0

)
Hi , j +

(
Ui , j < 0

)
Hi+1, j + (Ui , j == 0)max

(
H(i , j), Hi+1, j

)
(6.6)

With h′n
i , j+1/2 is defined analogously with dynamic upwinding in the y-direction. Note

that this definition can be vectorised by defining the comparative terms as boolean ar-
rays. Also note that this term is undefined at the boundaries i = n +1 in the x-direction
and j = n +1 in the y-direction. In these cases we take it equal to Hi , j .

The averaged water level in the x direction is defined as:

(
h−x)n

i+1/2, j =
Hi , j +Hi+1, j

2
(6.7)

Next is ζn
i , j . Since ζ = h +d the sum of the bathymetry term and the water level, we

simply set d = 0 for the initial implementation to obtain ζn
i , j = Hi , j

For the friction term we define

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣=
√

U 2
i , j +

(
Vi , j +Vi , j−1 +Vi+1, j +Vi+1, j−1

4

)2

(6.8)

With
∣∣∣∣∣∣u=n

i , j+1/2

∣∣∣∣∣∣ defined analogously

VELOCITY INTERPOLATION

The final term is un→. This term can be chosen to make the scheme either momentum
conservative or energy-head conservative, the necessity of which depends on the veloc-
ity gradient.
The momentum conservative approach is quite complex while the energy-head conser-
vative approach is simply the mean of the adjacent velocities, and thus has been chosen
for a first implementation:

un
→ = Ui , j +Ui−1, j

2
(6.9)

With vn
↑ defined analogously.

For the momentum conservative formulation we have

un
→ = (q−x

u)i , j

(h−x)i+1/2, j
(6.10)

Where

(q−x
u)i , j =

H xi , jUi , j +H xi−1, jUi−1, j

2
(6.11)

6

72 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

VARIABLE FLOW DIRECTION

It is important to note that the set of equations 6.4 is only well defined for positive flow
directions. The aim is to implement a scheme that is suitable for variable flow direc-
tions, and thus it needs to be modified. The correct approach then is to substitute each
term that depends on flow direction by both its positive flow and negative flow counter-
part, and multiply them with boolean values that represent whether the flow is actually
positive or negative.

There exists another solution to the problem of variable flow directions in the velocity
advection terms: central difference, which is symmetric:

∂un
i , j

∂x
= Ui+1, j −Ui−1, j

2∆x
(6.12)

With the y−direction defined analogously.

In this case for the advection terms we take un→ =Ui , j and vn
↑ = Vi , j +Vi , j−1 +Vi+1, j +Vi+1, j−1

4
in the u equation of 6.4 and analogously in the v equation.

6.1.4. ADVECTIVE VELOCITY UPWINDING
As mentioned, the momentum advection terms in equations 6.4 are defined for pos-
itive flow directions only. In the case of the U term, or unidirectional advection, the
expression for negative flow directions is straightforward. In the case of positive flow
the expression is left looking, e.g. in the direction the information is coming from, so
∂Ui

∂x
= Ui −Ui−1

∆x
.

For negative flow directions this simply changes to
∂Ui

∂x
= Ui+1 −Ui

∆x
.

The cross advection terms are a little more complicated, however. In this case the
sign of the advective term decides the direction of the derivative, for positive directions
the U derivative is taken in the direction of the V -flow, and then multiplied with the av-
erage of the adjacent V -velocities:

∆t

∆y

(
Ui , j −U j−1,i

) (
Vi , j−1 +Vi+1, j−1

)
2

(6.13)

For negative V the U -derivative is upward looking and the upward V -terms are aver-
aged:

∆t

∆y

(
Ui , j+1 −U j ,i

) (
Vi , j 1 +Vi+1, j

)
2

(6.14)

6.1.5. RESULTING EXPLICIT UPDATE SCHEME FOR POSITIVE FLOW DIREC-
TIONS

If these definitions are substituted into equation 6.4 the following explicit update expres-
sion is obtained for the energy head conservative scheme for positive flow directions:

6.1. EXPLICIT IMPLEMENTATION IN MATLAB

6

73

Ui , j =Ui , j − g
∆t

∆x

(
Hi+1, j −Hi , j

)
− ∆t

∆x

(
Ui , j −Ui−1, j

) (
Ui , j +Ui−1, j

)
2

− ∆t

∆y

(
Ui , j −U j−1,i

) (
Vi , j−1 +Vi+1, j−1

)
2

/

1+
2∆tc f

√
U 2

i , j +
(

Vi , j +Vi , j−1 +Vi+1, j +Vi+1, j−1

4

)2

Hi+1, j +Hi , j

 (6.15)

Vi , j =Vi , j − g
∆t

∆y

(
Hi , j+1 −Hi , j

)
− ∆t

∆x

(
Vi , j −Vi−1, j

) (
Ui−1, j +Ui−1, j+1

)
2

− ∆t

∆y

(
Vi , j −Vi , j−1

) (
Vi , j +Vi , j−1

)
2

/

1+
2∆tc f

√
+

(
Ui , j +Ui , j+1 +Ui−1, j +Ui−1, j+1

4

)2

+V 2
i , j

Hi , j +Hi , j+1

 (6.16)

Hi , j = Hi , j

− ∆t

∆x

(
H xi , jUi , j −H xi−1, jUi−1, j

)
− ∆t

∆y

(
H yi , j Vi , j −H y j−1,i V j−1,i

)
(6.17)

(6.18)

The complete scheme uses the sum of the negative and positive upwinding terms
multiplied with boolean values that activate the corresponding term when the velocity
in that grid node is positive or negative.

The scheme is integrated using the Sielecki method [66] [67], which is a form of the
semi-implicit Euler method. First Ut+1 is calculated using Ut ,Vt , and Ht . Then Vt+1 is
calculated which uses Ut+1, and finally Ht+1 which uses both Ut+1 and Vt+1.

MATLAB GPU IMPLEMENTATION

Matlab is able to perform elementary linear algebra and arithmetic operations on an
Nvidia GPU device. In order to instruct the Matlab compiler to perform calculations on
a GPU, simply define the variables to be use in the calculations as a so called gpuArray.

6

74 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

Matlab takes care of the rest in the sense that the variables reside in device memory
and are dynamically copied back and forth between device memory and host memory
depending on where they are used.

The benchmark results of this implementation are presented in chapter 7.

6.2. GPU CUDA C++ IMPLEMENTATION
The goal of the project is to build an acceptably optimized solution method in the Cuda
C++ language, as Matlab is known to be non-optimal for GPU programming.

In order to translate the Matlab program to C++ a number of things should be taken
into consideration, which are discussed in this section.

GRID OPERATIONS

The first important thing about a Cuda program is that when doing operations on the
grid this is not done through vectorisation or by using a for loop, but instead thread-wise
where every thread handles a single grid point.
As described in chapter 4 a Cuda kernel will launch with a grid size and a block size,
which can both have up to three spatial dimensions. Depending on the GPU an optimal
block size must be chosen after which the grid dimensions will be set to the number of
grid points in that dimension divided by the block size in that dimension.

Every grid point will have access to both its block index and thread index in both
dimensions, and because of this the global array index can be reconstructed from these
indices:

j = bl ockI d x.y ∗bl ockDi m.y + thr ead I d x.y

i = blockI d x.x ∗bl ockDi m.x + thr ead I d x.x

g l obal I d = (j +1)∗m + i +1

(6.19)

Where n is the number of grid points in the x-direction.

As mentioned before, the grid has a dummy array at the boundary in order for the
derivatives to be well defined at the nodes next to the boundary. Therefore only the in-
ternal nodes need to be calculated and not the boundary nodes, hence the offset on the
global index. This also means that modifying and loading the boundary elements on the
GPU needs to be done by threads on the computational domain as the boundary nodes
do not get threads assigned to them.

CONSTANT DECLARATION

If certain variables are unchanging constants that are used during calculations on the
GPU, such as the gravitational acceleration g , it is beneficial to store them in the GPU’s

6.2. GPU CUDA C++ IMPLEMENTATION

6

75

constant memory. This is also discussed in chapter 4.

The reason for this is that constant memory is built in such a way that it is very ef-
ficient at broadcasting data across a warp in a block. Therefore if all threads in a warp
read the same adress it is more efficient than global memory.

In order to have a constant available in GPU memory, first declare it as a constant
using const float or const int and assign a value.
Then declare its GPU counterpart with __constant __float/int .
Finally copy the host constant to the GPU memory adress using the function
"cudaMemcpyToSymbol".

INITIALIZING AND FILLING STORAGE ARRAYS

Much like the constants the arrays of H ,U and V also need to be available on the GPU
device. Before declaring the arrays, it is important to make sure that depending on the
problem size they all fit on the GPU. The arrays that need to be stored are H ,U ,V ,U+
and V +, where U+ and V + are boolean arrays that indicate whether the velocity value
on that grid block is positive or negative. The first three arrays are composed of single
precision floating point numbers.
A single precision floating point number takes up 4 bytes of memory, and a boolean 1
byte.
This means that for an n ×m grid we use (12+2)×n ×m bytes of device memory.

Every array must be initialized on device memory using "cudaMalloc". Next they
need to be filled with the initial conditions. There are two methods to this: construct the
arrays in host memory first and copy them to the GPU, or construct them directly on the
GPU.
Since the transfer of data between host and device can take a long time as problem size
increases, it has been chosen to fill the arrays directly on the device using a Cuda kernel.

In this kernel, every thread assigns the initial conditions to the variables at its respec-
tive gridpoints, while the boundaries are taken care of by their neighboring threads using
an if- statement.

VECTOR UPDATE

The vector update procedure is the exact same as in its Matlab counterpart, except for
a few details. As with the array fill function boundary elements must be loaded by their
neighbors since they do not have their own dedicated thread.

Shared memory arrays are declared into which the global arrays are copied, since
loading from and writing to shared memory is much faster.

Finally all operations that are not dependent on each other are calculated in parallel.
For example the calculations of H x can happen as soon as U finishes updating, and V

6

76 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

can start updating at the same time and does not depend on H x which means these
calculations can be performed in parallel. Also the newly calculated values of U can
already be written to global memory while the calculations for V and H are still pending.

6.3. MULTITHREADED C++ IMPLEMENTATION
After initial benchmarking which is discussed in chapter 7, it was concluded that the
Matlab implementation described in section 6.1 was not suitable for performance bench-
marks and that it was necessary to write a multithreaded C++ program in order to com-
pare GPU speedup more fairly.

When translating the CUDA program into regular C++, the first difficulty encoun-
tered was the fact that in the Cuda program every grid point is handled by a single thread.
For large grid sizes this means a lot of threads which the GPU is optimized for, but unfor-
tunately the CPU thread scheduler is not designed for such thread counts and this will
incur a large performance penalty.

The solution was to divide the domain into a number of parts equal to the number
of threads, which are launched using the "std:thread" built in C++ command.
Since every thread handles multiple grid points every grid operation was enclosed in a
double for-loop iterating through the part of the domain assigned to the thread. Coa-
lesced memory access was unsurprisingly important for CPU code as well, as changing
the loop order after initially having the y-direction be the inner loop sped up the code by
a factor 10. When dividing the domain into multiple threads this means that the borders
of the subdomains need to be exchanged by the threads every timestep.

This was easy to implement however, since the the "Onlyborders" CUDA kernel does
the exact same thing except the border is exchanged between blocks instead of between
threads.

The CUDA kernels make heavy use of the "cudasyncthreads" command to ensure all
threads have completed the previous vector update before reusing them. Unfortunately
C++ has no built in thread synchronisation function. A thread synchronization function
was developed using Mutex, a C++ object that can be modified by only one thread at a
time. If a thread acquires the Mutex modification privileges, it checks whether all other
threads have completed their work. If this is not the case it goes to sleep to wait for the
last thread to wake it up.

6.4. IMPLICIT MATLAB IMPLEMENTATION
Implementing a complex scheme such as the shallow water equations implicitly may
seem like a daunting task. Nonlinear equations can be solved explicitly but implicit so-
lution methods are best suited for linear systems of equations and the Shallow-Water
equations are highly nonlinear.

A simple solution to this problem is to follow the Stelling & Duinmeijer scheme with

6.4. IMPLICIT MATLAB IMPLEMENTATION

6

77

θ set to 1, which is a linearised form:

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un+1

i+1/2, j −h′n
i−1/2, j un+1

i−1/2, j

∆x
+

h′n
i , j+1/2vn+1

i , j+1/2 −h′n
i , j−1/2vn+1

i , j−1/2

∆y
= 0

(6.20)

un+1
i+1/2, j −un

i+1/2, j

∆t
+un

→
un

i+1/2, j −un
i−1/2, j

∆x
+ vn

↑
un

i+1/2, j −un
i+1/2, j−1

∆y

+ g
ζn+1

i+1, j −ζn+1
i , j

∆x
+ c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

= 0 (6.21)

vn+1
i , j+1/2 −un

i , j+1/2

∆t
+un

→
vn

i , j+1/2 − vn
i−1, j+1/2

∆x
+ vn

↑
vn

i , j+1/2 − vn
i , j−1/2

∆y

+ g
ζn+1

i , j+1 −ζn+1
i , j

∆y
+ c f

vn+1
i , j+1/2

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−y)n

i , j+1/2

= 0 (6.22)

In this case, only the ζ and bottom friction terms in the velocity equations and the
velocity terms in the continuity equation are linearised and taken implicitly. The advec-
tive velocity terms remain explicit.

To obtain a matrix equation we substitute the u and v equations into the h equation
after bringing the explicit terms to the right side similar to equation 6.5:

un+1
i+1/2, j =

(
−g∆t

ζn+1
i+1, j −ζn+1

i , j

∆x
+un

i , j +∆t F
(
un ,hn))

/

1+∆tc f

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x)n

i+1/2, j

 (6.23)

Where again F (un ,hn) represents the velocity advection terms. The next step is sub-
stituting the velocity expressions into the continuity equation, so for readability we will
call the bottom friction term B fi , j and the explicit u terms FU n

i , j to obtain:

un+1
i+1/2, j = B fi , j

[
−g∆t

ζn+1
i+1, j −ζn+1

i , j

∆x
+un

i , j +FU n
i , j

]
(6.24)

Substituting this and its v counterpart into the h equation and using that ζ = h −d
we obtain:

hn+1
i , j = hn

i , j

+ g
∆t 2

d x2

[
h′n

i+1/2, j B fi , j

(
hn+1

i+1, j −hn+1
i , j +FUi , j

)
−h′n

i−1/2, j B fi−1, j

(
hn+1

i , j −hn+1
i−1, j +FUi−1, j

)]
+ g

∆t 2

d y2

[
h′n

i , j+1/2B fi , j

(
hn+1

i , j+1 −hn+1
i , j +FV n

i , j

)
−h′n

i , j−1/2B fi , j−1

(
hn+1

i , j−1 −hn+1
i , j−1 +FV n

i , j−1

)]
(6.25)

6

78 6. IMPLEMENTATION OF THE STELLING & DUINMEIJER SCHEME

The bottom terms resulting from the substitution ζ = h −d are also absorbed into
FUi , j resulting in the expression:

FUi , j = un
i+1/2, j − g

∆t

∆x

(
di+1, j −di , j

)−un
→
∆t

∆x

(
un

i+1/2, j −un
i−1/2, j

)
− vn

↑
∆t

∆y

(
un

i+1/2, j −un
i+1/2, j−1

)
(6.26)

Where un→ and vn
↑ can be various expressions depending on which qualities are de-

sired in the scheme, discussed in the previous sections.

Now that the substitution is complete it can be rearranged into Ax = b form. When
observing equation 6.25 the stencil representing A can be constructed quite easily. As
before we rename B fi , j h′n

i+1/2, j = H xi , j and B fi , j h′n
i , j+1/2 = H yi , j

A = g
∆t 2

∆x2

 H yi , j−1

H xi−1, j Hsum H xi , j

H yi , j

 (6.27)

With Hsum = H yi , j−1 +H xi−1, j +H xi , j +H yi , j

This is a stencil very similar to the 2d-Poisson equation which produces a pentadiag-
onal system, except in this case the terms are weighted with Hx and Hy .

The linear system that now needs to be solved at every timestep becomes

(I − A)hn+1 = b (6.28)

Where

b = hn − ∆t

∆x

[
H xi , j FUi , j −H xi−1, j FUi−1, j

]− ∆t

∆y

[
H yi , j FVi , j −H yi , j−1FVi , j−1

]
(6.29)

In this case H x, H y,FU and FV are all vectors, however indices are still necessary
because the expression contains a discretized differential equation and thus the vectors
need to be left-shifted by one index in their respective directions.

After hn+1 is calculated un+1 and vn+1 can be obtained by adding the missing implicit
term to FU and FV

un+1 = FU − g
∆t

∆x
B fi , j

(
hn+1

j ,i+1 −hn+1
j ,i

)
(6.30)

6.4.1. CRANK-NICOLSON METHOD
As described in chapter 3, the implicit system formulation in this section amounts to an
implementation of the Backwards Euler method, which is known to approximate the so-
lution with an error of order O(∆t).

In practice this implementation was seen to greatly dampen the total amount of en-
ergy in the system for timesteps larger than prescribed by the CFL condition. This means

6.4. IMPLICIT MATLAB IMPLEMENTATION

6

79

that while a larger timestep could be taken, doing so is a tradeoff between numerical ac-
curacy and speed.

An easy improvement here is to modify the system to a Crank-Nicolson scheme,
which is also suggested by Stelling & Duinmeijer. As described in chapter 3 equation
3.2 a discretized differential equation is of the form

φn+1 −φn

∆t
= aF (φn+1)+ (1−a)F (φn) (6.31)

The Euler Backwards method uses a = 1 while Euler forward uses a = 0. Crank-
Nicolson uses a = 1/2 which produces second order accuracy in time with an error of
order O(∆t 2).

This means the extra explicit terms must be added to 6.26:

FUC N = FU − g
∆t

2∆x
B fi , j

(
hn

j ,i+1 −hn
j ,i

)
(6.32)

This results in AC N = A
2 and that

un+1
C N = FUC N − g

∆t

2∆x
B fi , j

(
hn+1

j ,i+1 −hn+1
j ,i

)
(6.33)

It should be noted that using this Crank-Nicolson implementation to solve the Shallow-
Water equations will not produce results second-order accurate in time, as only the parts
relating to the continuity equation are solved with this scheme. The nonlinear advective
velocity terms are still solved explicitly and thus have an O(∆t) error, and the bottom
friction is taken fully implicitly also with an O(∆t) error.

7
BENCHMARK RESULTS OF THE

PRELIMINARY EXPLICIT

IMPLEMENTATION

As mentioned in chapter 6, the explicit Stelling & Duinmeijer scheme has been imple-
mented in Matlab on a square grid with reflective boundary conditions and a Gaussian
perturbation simulating a water drop as initial condition.

After this was done and it was confirmed that the scheme was stable and performed
adequately a Matlab GPU implementation was built as well as a Cuda C++ implementa-
tion, as described in chapter 6.

It is however important to note that this implementation is not perfect. At the bound-
aries the differential equations will be unbalanced due to zero terms from the ghost
points, and there is a not-insignificant degree of numerical dissipation. The bottom pro-
file is not implemented yet and the model is unable to deal with drying and wetting.
Currently the model calculates with only a fixed time step of .01 seconds instead of a
CFL condition limited timestep.

Implementing these features was the next research step and is the reason the method
discussed in this section is called a preliminary implementation.

Since the scheme itself is already numerically dissipative, it has been chosen to set
the bottom friction coefficient to 0, as the natural dissipation has an effect similar to a
friction term

It should be noted that the explicit CUDA C++ implementation benchmarked in this
section was later found to have some serious design flaws, which will be discussed in
chapter 8.

81

7

82 7. BENCHMARK RESULTS OF THE PRELIMINARY EXPLICIT IMPLEMENTATION

In figures 7.1 and 7.2 both the computation time and the speedup of 100 timesteps
are presented for the Matlab CPU implementation benchmarked on an Intel i7 8086k,
Matlab GPU implementation and three different versions of the Cuda C++ implementa-
tion, benchmarked on an Nvidia RTX 2080 Ti and an Nvidia Quadro K1000M.

The Intel i7 8086k is operating at 5000 Mhz.
The RTX 2080 Ti has 68 streaming multiprocessors with a total of 4235 Cuda cores

operating at 2160 Mhz. It can handle up to 1024 threads per block, 1024 threads per SM
and 64 registers per thread. It has 11 GB of DDR6 Vram with a 352 bit memory bus with a
maximum bandwidth of 616 GB/s. Furthermore it has a maximum of 64 Kbyte of shared
memory per SM.

The Quadro K1000M has 1 streaming multiprocessor with a total of 192 Cuda cores
operating at 850 Mhz. It can handle up to 1024 threads per block, 2048 threads per SM
and 32 registers per thread. It has 2 GB of DDR3 Vram with a 128 bit memory bus with a
maximum bandwidth of 28.8 GB/s. Furthermore it has a maximum of 48 KByte of shared
memory per SM.

The three Cuda kernels differ in the following way:

UPDATE

This kernel is a direct translation of the Matlab implementation described in chapter
6 into Cuda C++. Every iteration the variables H ,U ,V ,Upos and V pos are loaded into
global memory and every time a variable is finished updating it is written back to global
memory while the rest of the thread executes.

UPDATENOBOOL

Initial benchmarking showed high memory utilization compared to computational uti-
lization of the GPU device, implying a possible memory bottleneck. Since the booleans
Upos and V pos are comparatively cheap to calculate, in this kernel they are now only
calculated within a thread.
If a neighboring value is needed, the neighboring velocity U or V is loaded from shared
memory to calculate the boolean value. This local calculation does result in a small in-
crease in the necessary number of registers per thread.

UPDATEBORDERS

The writing of updated variables to Global memory is necessary when the data needs to
be in global memory after every iteration, for example to update boundary conditions or
to visualize it in a surface plot. However when multiple timesteps are performed without
this requirement, it makes no sense to perform costly global memory reads and writes.
Global memory writes cannot be completely eliminated however, since shared memory
is only accessible to threads within the same block. Every iteration threads on the edge
of the block need data from their neighbors, which belong to a different block.
Therefore in this kernel version only the block borders are written and read from global
memory every iteration and only after all iterations are done is the entire grid written to
global memory.

7

83

Figure 7.1: Computation time of 100 iterations vs grid size for Matlab CPU implementation, Matlab GPU im-
plementation and 3 different Cuda kernels running on an Nvidia RTX 2080 Ti (GPU1/Cuda1) and an Nvidia
Quadro K1000M (GPU2/Cuda2)

7

84 7. BENCHMARK RESULTS OF THE PRELIMINARY EXPLICIT IMPLEMENTATION

Figure 7.2: Speedup of 100 iterations vs grid size for the Matlab GPU implementation and 3 different Cuda
kernels compared to the Matlab CPU implementation running on an Nvidia RTX 2080 Ti (GPU1/Cuda1) and
an Nvidia Quadro K1000M (GPU2/Cuda2)

DISCUSSION

As can be observed in figure 7.1, the Matlab CPU implementation is the slowest for grid
sizes above 1 million. The Matlab GPU implementation exhibits high startup times in
the order of a few seconds, but provides a moderate speedup for larger grid sizes even
for the Quadro K1000M device which is relatively old and slow. It is important to note
that for smaller grid sizes the CPU implementation will be faster as the GPU device over-
head will outweigh the added GPU parallelism and computation power.

7

85

Another notable observation is that the Matlab GPU implementation exhibits poor
scaling, with computation times increasing superlinearly on a log-log scale, while it would
be expected to scale linearly with problem size once the full device is being utilized, as
can be observed for both the CPU implementation and the Cuda C++ implementations.
The reason for this probably has to do with the way Matlab internally translates CPU to
GPU code.

Another thing to note is that the matlab GPU implementation consumed signifi-
cantly more memory than the Cuda C++ implementation, leading to a maximum prob-
lem size of (40×96)2 on the Quadro and (80×96)2, while the RTX 2080 Ti. The Cuda C++
implementation could handle up to (240×96)2 grid points before running out of mem-
ory.

The Cuda C++ implementation benchmarked RTX 2080 Ti provides an extraordinary
speedup of up to 3000 times, which is so much that it had to be double checked whether
this speedup even lies within the theoretical capabilities of the device.
For verification the values of H have been compared after 100 iterations for a grid of
32×32 for all Cuda C++ kernels on both GPU devices and were found to be equal to the
Matlab CPU result up to a satisfactory precision.
For larger grid sizes it has only been checked whether the kernels had water heights that
lay between 0 and 2 unequal to the initial water level and no ’NaN’ values.

However it is important to note that it is unfair to compare a Matlab implementation
to a Cuda C++ program, as the Matlab language is inherently slower than C++. Future
benchmarks will be performed with a C++ CPU implementation for fair comparison.

When comparing the three different Cuda kernels, it is clear that the "onlyborder"
kernel is the fastest, followed by the "nobool" kernel and finally the naive "update" ker-
nel. This is to be expected as the "onlyborder" kernel has a significant reduction in the
amount of global memory traffic, while the "nobool" kernel has a small reduction in
global memory traffic. This also means that global memory traffic is a factor significantly
limiting the kernel execution speed.

7.0.1. BLOCK SIZE

Using the Nsight compute visual profiler it is possible to profile the warp occupancy as
a function of the number of threads per block. This has been done for the only-border-
exchanging update kernel on the RTX 2080 Ti GPU. The results can be observed in figure
7.3.

7

86 7. BENCHMARK RESULTS OF THE PRELIMINARY EXPLICIT IMPLEMENTATION

Figure 7.3: Nsight profiler results for the border exchanging update kernel

As can be observed, maximum occupancy is achieved for kernels of size 256, 512 and
1024, which result in block sizes of 16×16, 32×16 and 32×32 respectively.

The kernel requires 16 Kilobyte of shared memory per block and a maximum of 64
registers per thread to achieve a warp occupancy of 32. We see that the kernel uses 57 reg-
isters with an achieved occupancy of 99.84% and 31.95 out of 32 achieved active warps
per SM.

We see that both the amount of available registers and the maximum warps per block
are limiting the maximum of parallel blocks active per SM to 2. Since a high occupancy
is achieved and there are multiple factors limiting the active blocks it can be concluded
that 2 active blocks per SM is optimal for this Kernel.

In figure 7.4 the computation time result for all three kernels for varying blocksizes
are presented:

7

87

Figure 7.4: Computation time of 100 iterations vs grid size for 3 different Cuda kernels running on an Nvidia
RTX 2080 Ti with a block size of 256, 512 and 1024 threads.

The data is very clustered making it hard to read the figure. This is to be expected as
the occupancy analysis predicted a warp size of 32 threads for all three configurations. It
is however interesting to look at the outliers.

For smaller grids the naive update kernel with a block size of 512 performs the worst,
while the "borders" kernel with a block size of 1024 is the fastest by a significant margin.

7

88 7. BENCHMARK RESULTS OF THE PRELIMINARY EXPLICIT IMPLEMENTATION

For larger grid sizes the borders1024 kernel is first overtaken by borders256 and fi-
nally by borders512 for the fastest spot. Also the update1024 kernel performs the worst
for in this scenario followed closely by update256 making update512 the fastest of the
update kernels.

The conclusion here is that for small problem sizes for all three kernels a block size
of 1024 threads is optimal, while for large problem sizes a block size of 512 threads is
optimal. The reason for this is currently unknown. It is important to note that these
optimal block sizes are generally GPU architecture specific.

7.0.2. INITIALIZATION TIME
When looking at the speedup of a GPU versus a CPU program it is also important to in-
vestigate startup costs in addition to raw computation time, as a large startup cost can
easily outweigh the benefits of a smaller computation time. In figure 7.5 the startup
times for various grid sizes of the Matlab CPU and GPU implementations as well as the
Cuda C++ implementation for both GPU devices is presented.

For smaller grid sizes the CPU is faster but for larger grids it is the slowest, presum-
ably since the initialization phase can be executed in parallel too. For grid sizes above 1
million points we observe a linear relationship on a log-log scale between startup time
and grid size. The CPU and Cuda C++ implementations have the same gradient, while
the Matlab GPU implementation scales worse.

Figure 7.5: Startup time vs grid size for the Matlab CPU, Matlab GPU and Cuda C++ implementations. GPU1 is
the RTX 2080 Ti and GPU2 is the Quadro K1000M.

8
IMPLEMENTATION OF THE

MODIFIED STELLING &
DUINMEIJER SCHEME

As mentioned in chapter 7, the initial implementation had a number of room for im-
provement, such as a lack of a drying and wetting mechanic for grid points, a lack of
bathymetry and relatively high numerical dissipation.

A second version has been implemented aiming to improve in these areas and ulti-
mately mimic Deltares’ Delft3D-Flow as closely as possible.

It was also found that the three CUDA kernels described in chapter 7 had various
issues with thread synchronization which were previously overlooked. These flaws and
their solutions are discussed at the end of this chapter.

8.1. IMPROVEMENTS OF THE SCHEME

8.1.1. VELOCITY ADVECTION
Evaluating the behaviour of the Stelling & Duinmeijer scheme and its observed numeri-
cal dissipation it was suggested that this dissipation could be reduced by modifying the
velocity advection terms described in subsection 6.1.4. The velocity advection terms use
first order upwinding which is great for stability but also introduces numerical dissipa-
tion.

It was chosen to calculate the length advection term with central difference and
the cross advection term by second order upwind, also called the Reduced Phase Error
Method by G.S. Stelling [68]. This leads to:

U
∂U

∂x
=Ui , j

Ui+1, j −Ui−1, j

2∆x
(8.1)

89

8

90 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

and

V
∂U

∂y
= 3Ui , j −4Ui−1, j +Ui−2, j

4∆y

(
Vi , j−1 +Vi+1, j−1

)
,V j ,i > 0 (8.2)

V
∂U

∂y
= −3Ui , j +4Ui+1, j −Ui+2, j

4∆y

(
Vi , j +Vi+1, j

)
,V j ,i < 0 (8.3)

8.1.2. CONTROL BOOLEANS
One of the problems with the initial implementation is that the derivatives are not well
defined at the boundaries of the domain. Ghost points have been implemented in order
to make sure the difference equations all use readable memory adresses, but without
setting the correct values on the ghost points the difference equations will be incorrect.

There are a number of possible solutions to this. The first is to simply use differ-
ent equations at the boundary. For example a point on the left boundary of the domain
could use right-looking forward differencing instead of central.

A problem with the aforementioned method is that the boundary points need to be
treated separately from the internal points. Delft3D-Flow is written for execution on vec-
tor computers which means it is beneficial for every grid point to evaluate the exact same
expression. Coincidentally the same holds for GPU since they calculate 32 grid points at
the same time and a single divergent thread will slow execution speed by 50%.

Thread expression homogeneity is achieved by introducing so called control booleans,
kenmerkarrays in Dutch, which are multiplied with parts of the difference equation to
dynamically modify it depending on whether the neighboring velocity points have de-
fined values. The control boolean for the x-velocity is called k f u. For example, the cen-
tral difference equation for the velocity advection then becomes:

U
∂U

∂x
= k f ui+1, jUi+1, j −k f ui−1, jUi−1, j +

(
k f ui−1, j −k f ui+1, j

)
Ui , j(

1+k f ui−1, j k f ui+1, j
)
∆x

k f ui , jUi , j (8.4)

This may seem like a complicated expression at first, but if either k f ui+1, j = 0 or
k f ui−1, j = 0 is substituted it becomes either a forward or backward difference equation.

8.1.3. WETTING AND DRYING
The first implementation of the Stelling & Duinmeijer scheme had no way of dealing
with very low water levels, as they could easily become negative due to numerical inac-
curacies which is both non-physical and highly unstable.

Delft3D-FLOW solves this using the control booleans from the previous subsection.
If the water level interpolated at a velocity point falls below a certain threshold, the corre-

8.1. IMPROVEMENTS OF THE SCHEME

8

91

sponding k f u or k f v is set to zero. If it rises above another threshold it is set back to one.

Additionally, the expressions for calculating U and V at the next timestep are mul-
tiplied with k f u and k f v respectively, which means that if the interpolated water level
falls below the threshold the velocity becomes zero in that point.

This also means that if the interpolated water levels on all four velocity points sur-
rounding a water level point fall below the threshold, all four velocities also become zero
and thus the water level will remain constant.

8.1.4. BATHYMETRY
Usually the problem of wetting and drying only arises when some form of bathymetry is
introduced. For example when simulating a tide on a beach there is an area where the
water level approaches zero and the beach begins.

The introduction of a bathymetry into the scheme follows from the expressions

H = ζ+D (8.5)

Where H is the water surface level from reference point, ζ the total water height and D
the bathymetry from reference point. The bathymetry term D can have two possible
orientations, where a positive term can either mean the bathymetry level lies above or
below reference point. Since H is defined in the positive direction in seemed most intu-
itive to also define D in the positive direction.

Figure 8.1: Illustration of the relationship between H , ζ and D .

Additionally we have the relation

∂H

∂t
= ∂ζ

∂t
+ ∂D

∂t
= ∂ζ

∂t
(8.6)

and

8

92 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

∂H

∂x
= ∂ζ

∂x
+ ∂D

∂x
(8.7)

Which means that when switching from H to ζ in the scheme it is only necessary to
add the spatial D derivatives in the calculation of the velocity terms as the bathymetry is
time invariant.

8.2. TEST CASES
CASE 1
As mentioned in chapter 7, the initial test consisted of a square grid with reflective bound-
ary conditions and a Gaussian perturbation of the water level to simulate a water drop.

For the updated scheme it was necessary to also test the wetting and drying and thus
a Gaussian bathymetry was added that rises 3 cm above the water level in order to simu-
late a small island.

Figure 8.2: Surface plot of test case 1 after 330 iterations of .1 second on a 200m by 200m grid and an initial H
of 1m.

CASE 2
The second test case is a reproduction of the case tested by L. Peeters in her thesis "Salt
marsh modelling implemented on a GPU" which was also conducted in collaboration
with Deltares [69].

8.2. TEST CASES

8

93

Unfortunately in her case the maximum stable timestep was significantly lower than
the timestep imposed by the CFL condition. The purpose of reusing this test case is to
see if the scheme developed in this project does not suffer from this limitation and to
compare it with the earlier Delft3D-Flow result that were also used by Peeters for com-
parison.

This test case consists of a square domain with a width and length of 600 meters. The
bathymetry imposed starts at 0 on the leftmost boundary and increases linearly to 4.5
meters for 250 meters in the x-direction and is uniform in the y-direction.

A tidal water level is imposed on the leftmost boundary, modeled as a sinusoidal
function that varies between 1 and 5 meters with a period of 12 hours, and with an initial
water level of 3 meters.

Since all variables are initialized uniformly in the y-direction the y-velocity will re-
main 0 for the entire period of the test case which means it is a pseudo-1D case.

An illustration of test case 2 can be observed in figure 8.3.

Figure 8.3: Surface plot of test case 2 on a 200 × 200 grid after 100 seconds.

8

94 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

In figure 8.4 a 2D flow velocity vector plot is shown of an adjusted test case 2, adding
two islands to make the case two dimensional. Observe the flow velocity curves around
the two islands placed in the domain with the largest velocities located in the channel
between the islands as expected and velocities tapering off when they hit the dry bed on
the right side of the domain.

Figure 8.4: 2D flow velocity vector plot of test case 2 after 102.6 seconds on a 50 × 50 grid. Arrow size represents
relative velocity magnitude.

8.3. CUDA C++ IMPLEMENTATION

8

95

8.2.1. TIMESTEP SIZE

Using the CFL condition it is possible to calculate the maximum stable timestep for the
scheme at the beginning of each iteration, which was done in the MATLAB implemen-
tation of the scheme. However the maximum stable timestep depends on the maximum
of the water level ζ across the entire grid, and finding the maximum value of ζ on the
GPU array requires writing a separate maximum function kernel which is not trivial. Af-
ter some testing it was found that for test case 1 the maximum timestep under the CFL
condition remains fairly constant, and thus it has been chosen to not use a dynamically
calculated time step for test case 1.

For test case 2, it is expected that the maximum timestep is very closely related to
the tidal boundary condition. Thus the timestep for case 2 is calculated dynamically by
assuming the maximum value of ζ does not exceed the tidal level by more than 10% and
substituting this maximum into the CFL condition.

8.3. CUDA C++ IMPLEMENTATION

8.3.1. BRANCH AVOIDANCE

In the CUDA implementation the computational grid is partitioned into blocks 32×32
threads as this is the maximum allowable block size on most GPU devices. It has been
chosen to have the maximum allowable size as boundary values need to be communi-
cated between the block, and the ratio of internal points to boundary points is better
when the block size is large.

Every block thus has a 32×32 block of computational points and another 4 rows and
4 columns of boundary points that overlap with neighboring blocks, as the second order
upwind scheme uses information up to two grid points away.

Since only the internal points have threads assigned to them, this means that the
loading of the boundary points from memory must be handled by internal points as well.
It would be intuitive to let the boundary points be handled by their closest neighbor, i.e
the leftmost computational column with threadId.x = 0. This however clashes with the
way a GPU operates. In chapter 4 it was stated that the GPU executes a thread block 1
warp consisting of 32 threads at a time. The important thing here is that the warps are
taken row-wise, so in a 32×32 block the first warp will execute the first row of 32 threads.

Now if during execution of a warp threads within a warp diverge, the entire warp is
executed multiple times, once for every instance of thread divergence. If the left and
rightmost boundary are handled by the first and last column of computational points,
this means that every warp on the grid will have to execute twice. Once for the boundary
points and once for the internal points, which is very inefficient.

On the top and bottom boundary the system is better, only the top and bottom warps
execute twice as a single warp handles the entire boundary. Thus to improve the effi-
ciency of the boundary handling the second thread row was assigned to both the left and

8

96 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

right boundary through a coordinate mapping. This results in the left and right bound-
ary columns being initialized by a single warp of threads each without any performance
loss.

To reduce complexity this restricts the Cuda kernel to having symmetric thread block
sizes, but since testing in chapter 7 concluded that the performance difference between
a 32×32 block size and a 32×16 block size was negligible this was deemed an acceptable
compromise.

8.3.2. GRID CORNERS
During the initial implementation it was concluded that since the difference equations
only use information from neighboring points in the x-direction or the y-direction but
never diagonally it was not necessary to load the 16 corner ghost-point values from
global memory into shared memory as the values would never be used.
However after implementing the second order velocity upwinding it was quickly found
that the second order upwind term does require these corner values, and therefore it is
necessary to load them from global into shared memory.

Unfortunately these 16 corner points are not loaded by a single warp without branch-
ing, making it an inefficient operation.

8.3.3. BLOCK-LEVEL SYNCHRONIZATION
A serious problem with the initial implementation described in chapter 6 is the lack of
block-level synchronization. As mentioned in chapter 7 the validation of the results
consisted of inspecting array values from the command line and checking for anoma-
lies. This proved to be insufficient as further testing by surface plotting the data revealed
anomalous behaviour.

The solution was found to be non-continuous along thread block boundaries. Af-
ter investigation it was concluded that this is the result of a lack of block-level synchro-
nization in the kernel. To avoid excessive loading from global memory the only border
communicating kernel was developed as described in chapter 6. The problem with this
approach is that due to a lack of a block-level synchronization there is nothing that en-
sures that different blocks are calculating the same time step. When the computational
grid becomes large not all threads will reside on the device at the same time, which leads
to blocks becoming desynchronized.

CUDA Cooperative Groups introduced in CUDA 9 would allow for in-kernel synchro-
nisation, but restricts CUDA grid size with respect to device capabilities leading to higher
code complexity. Cooperative groups are well suited for problems with high initialization
costs such as this one.

Cooperative groups restrict the CUDA grid size to the maximum number of active
threads of the device. The reason for this once a block is assigned to an SM, it will keep it
occupied until all block threads finish execution as there is unfortunately no way for an
active block to become inactive again.
This means that a block-level synchronization where the number of blocks exceeds the

8.3. CUDA C++ IMPLEMENTATION

8

97

number of multiprocessors will result in a deadlock: The active blocks are waiting for the
inactive blocks to reach the synchronization point and keeping the SMs occupied, and
the inactive blocks are waiting for available SMs to start execution on.

There is however one other way to ensure all blocks execute in sync. Host launched
Cuda kernels execute sequentially on the device unless asynchronicity is specified. This
means that if every timestep consists of a separate kernel launch it is ensured that all
blocks are calculating the same point in time. As explained in chapter 6, at every kernel
launch the entire grid must be loaded from global memory into shared memory, so mov-
ing back to one kernel per iteration introduces significant memory overhead which was
tested to incur a performance penalty of about 15-20% as described in chapter 7 for the
initial implementation.

SUB-ITERATION SYNCHRONIZATION

After reverting the kernel architecture to one kernel per iteration, small anomalies still
occurred when waves crossed block boundaries, especially in the 1-D case where the
anomalies consisted of partially reflected waves that would eventually grow catastroph-
ically large. After a long time investigating possible causes it was eventually found to
be fairly obvious. Since the shallow water equations are a coupled system of differential
equations, trying to solve them using the Euler forward method described in chapter 3
results in an unstable scheme. To improve stability every variable update uses the most
recent available information during calculation.

The update scheme consists of updating first U , then V and finally H . This means U
is calculated fully explicitly and after Ut+1 is calculated the newly updated value is used
in the calculation of Vt+1. Finally both updated values Ut+1 and Vt+1 are used to calcu-
late Ht+1.
This also means that every time a variable is updated, a block-level synchronization is
necessary after which boundary values must be exchanged again. The initial implemen-
tation however only exchanged boundary values once at the beginning of the iteration,
while it turns out three exchanges are necessary per time step.

This means that to ensure all blocks use updated values from their neighbors, every
timestep must be split into three kernels, one for every variable that needs to be updated.
As every kernel requires a complete load and subsequently write of the computational
grid out of and into global memory, doing this three times per timestep is very inefficient
and the performance impact of this will be further investigated in chapter 9.

One possible solution is surmised to be padding every block with additional ghost
points which can be used to calculate the otherwise out of sync velocities within the
thread block and thus eliminating the need for communication or synchronization. This
will be part of possible future research.

One possible alleviation of this problem is the fact that the shallow-water scheme is
also stable under the CFL condition if both U and V are calculated fully explicitly and

8

98 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

then after synchronisation calculate H with the updated U and V . This method would
require one fewer synchronisation operations per timestep.
This is also called the Hansen [70] scheme.

It should be noted that the CPU C++ implementation is less hampered by this phe-
nomenon, as CPU threads are able to go to sleep and then later resume execution. This
means the barrier immediately synchronizes at block level as opposed to CUDA’s thread
level synchronization.

8.3.4. COMPARISON OF CODE COMPLEXITY
Code complexity and readability are important factors when considering moving pro-
duction code from a CPU to a GPU platform. If GPU code is extremely complex and has
poor readability then translation, integration and maintenance is difficult.

Below are two code snippets that calculate Hx, Hy, kfU, kfV and finally U. The first
is MATLAB code, the second GPU Cuda C++ code. Unfortunately due to formatting the
longer code expressions are poorly legible, but the takeaway is that the two are very sim-
ilar.

A major difference, however, is that in GPU code updating the U values requires a
separate kernel. This means the kernel requires pointers to the vectors in device mem-
ory, then shared memory must be allocated and the relevant variables must be copied
into the shared memory. Finally the main variables are stored in device memory in one
dimensional arrays and thus requires a coordinate mapping for 2D access.

The update expressions themselves do not differ substantially, and the conclusion is
that when translating a Matlab program into Cuda C++ the main difficulty lies in design-
ing the overarching program structure and the device specific considerations.

8.3. CUDA C++ IMPLEMENTATION

8

99

1 %%% MATLAB
2

3 %define computational domain
4 i =3:n+1;
5 j =3:n+1;
6

7 % Define Hx and Hy
8 Hx(j , i) = (U(j , i) >0) . *H(j , i) + (U(j , i) <0) . *H(j , i +1) +
9 (U(j , i) ==0) . *max(H(j , i) ,H(j , i +1)) ;

10 Hy(j , i) = (V(j , i) >0) . *H(j , i) + (V(j , i) <0) . *H(j +1 , i) +
11 (V(j , i) ==0) . *max(H(j , i) ,H(j +1 , i)) ;
12

13 % wetting and drying
14 kfu (j , i −1) = Ones − (Hx(j , i −1)< droogval) ;
15 kfv (j −1, i) = Ones − (Hy(j −1, i) < droogval) ;
16 kfh (j , i) = (1−(1−kfv (j , i)) .*(1− kfv (j −1, i)) .*(1−kfu (j , i)) .*(1−kfu (j

, i −1))) ;
17

18 %% Update Vectors
19

20 % Update U
21

22 U(j , i) = (kfu (j , i) . * (U(j , i) −g* dt /dx* (H(j , i +1)−H(j , i) +(D(j , i +1)−D(
j , i))) . . . %Gravity term

23

24 −dt . / (dx*(1+ kfu (j , i −1) . * kfu (j , i +1))) . * (kfu (j , i +1) . * (U(j , i +1)−U(j , i)
)

25 +kfu (j , i −1) . * (U(j , i)−U(j , i −1))) . *U(j , i) . . . % Central d i f f length
advection

26

27 +(V(j , i) >0) .*(− dt . / ((1 + kfu (j −2, i)) *dy) . * kfu (j −1, i) . *
28 ((1+2* kfu (j −2, i)) . *U(j , i) −(1+3*kfu (j −2, i)) . *U(j −1, i)
29 +kfu (j −2, i) . *U(j −2, i)) . * (V(j −1, i) +V(j −1, i +1)) /2) . . . %advection V+
30

31 +(V(j , i) <0) .*(− dt . / ((1 + kfu (j +2 , i)) *dy) . * kfu (j +1 , i) . *
32 (−(1+2* kfu (j +2 , i)) . *U(j , i) +(1+3* kfu (j +2 , i)) . *U(j +1 , i)
33 −kfu (j +2 , i) . *U(j +2 , i)) . * (V(j , i) +V(j , i +1)) /2))) . . . %advection V−
34

35 . / (1 + kfu (j , i) . * dt * cf * sqrt ((U(j , i) . ^ 2 + ((V(j , i) +V(j −1, i)) /2) . ^ 2))
36 . / (max(droogval /1000 ,Hx(j , i)))) ; %Bottom f r i c t i o n (i m p l i c i t)

8

100 8. IMPLEMENTATION OF THE MODIFIED STELLING & DUINMEIJER SCHEME

1

2%%%%% CUDA C++
3

4__global__ void
5__launch_bounds__ (MAX_THREADS_PER_BLOCK , MIN_BLOCKS_PER_MP)
6updateUorV (float *h, float *U, float *V, float* Utemp , float* Vtemp ,
7float *D, float dt)
8{
9

10__shared__ float s_h[BLOCK_SIZE_y + 4][BLOCK_SIZE_x + 4];
11__shared__ float s_U[BLOCK_SIZE_y + 4][BLOCK_SIZE_x + 4];
12__shared__ float s_V[BLOCK_SIZE_y + 4][BLOCK_SIZE_x + 4];
13__shared__ __int8 s_kfU[BLOCK_SIZE_y + 4][BLOCK_SIZE_x + 4];
14__shared__ __int8 s_kfV[BLOCK_SIZE_y + 4][BLOCK_SIZE_x + 4];
15

16unsigned int j = blockIdx .y* blockDim .y + threadIdx .y;
17unsigned int i = blockIdx .x* blockDim .x + threadIdx .x;
18unsigned int si = threadIdx .x + 2; // local i for shared memory access
19unsigned int sj = threadIdx .y + 2; // local j for shared memory access
20unsigned int globalIdx = (j + 2) * n_d + i + 2;
21

22float s_hymin ; float s_hxmin ; float s_hx; float s_hy;
23

24// load from global memory
25s_U[sj][si] = U[globalIdx];
26s_V[sj][si] = V[globalIdx];
27s_h[sj][si] = h[globalIdx];
28

29// Borders
30** load border values **
31

32// Calculate hx and hy
33s_hx = (s_U[sj][si] > 0) *s_h[sj][si] +
34(s_U[sj][si] < 0) *s_h[sj][si + 1] +
35(s_U[sj][si] == 0) *fmaxf(s_h[sj][si], s_h[sj][si + 1]);
36

37s_hy = (s_V[sj][si] > 0)* s_h[sj][si]
38+ (s_V[sj][si] < 0) * s_h[sj + 1][si]
39+ (s_V[sj][si] == 0) * fmaxf(s_h[sj + 1][si], s_h[sj][si]);
40

41__syncthreads ();
42

43// wetting / drying
44s_kfU[sj][si] = 1 - (s_hx < droogval);
45s_kfV[sj][si] = 1 - (s_hy < droogval);
46

47__syncthreads ();
48

49// update U
50Utemp[globalIdx] = s_kfU[sj][si] * (s_U[sj][si] +
51-g * dt/dx * (s_h[sj][si+1]- s_h[sj][si] + D[globalIdx +1]-D[globalIdx])

+
52-dt / (dx *(1+ s_kfU[sj][si -1]* s_kfU[sj][si +1]))*(s_kfU[sj][si +1] *
53(s_U[sj][si +1] - s_U[sj][si]) + s_kfU[sj][si -1]
54* (s_U[sj][si] - s_U[sj][si -1]))* s_U[sj][si] +
55

8.3. CUDA C++ IMPLEMENTATION

8

101

56(s_V[sj][si] > 0) *
57-dt / ((1 + s_kfU[sj -2][si])*dy) * s_kfU[sj -1][si] *
58((1 + 2 * s_kfU[sj -2][si])*s_U[sj][si] - (1 + 3 * s_kfU[sj - 2][si])*
59s_U[sj -1][si] + s_kfU[sj -2][si] * s_U[sj -2][si]) *
60(s_V[sj -1][si] + s_V[sj -1][si +1]) / 2+
61

62(s_V[sj][si] < 0) *
63-dt / ((1 + s_kfU[sj + 2][si])*dy) * s_kfU[sj + 1][si] *
64(-(1 + 2 * s_kfU[sj + 2][si])*s_U[sj][si] + (1 + 3 * s_kfU[sj + 2][si])

*
65s_U[sj + 1][si] - s_kfU[sj + 2][si] * s_U[sj + 2][si]) *
66(s_V[sj][si] + s_V[sj][si + 1]) / 2);
67

68/(1+ s_kfU[sj][si]*dt*cf*sqrtf ((s_U[sj][si]* s_U[sj][si]+
69((s_V[sj][si]+ s_V[sj -1][si]) /2) *(s_V[sj][si]+ s_V[sj -1][si]) /2)))
70/(fmaxf(droogval *.01 , s_hx)))

9
BENCHMARK RESULTS OF THE

MODIFIED STELLING &
DUINMEIJER SCHEME

As described in chapter 8 the initial Stelling & Duinmeijer scheme described in chapter 6
was modified in order to mimic Deltares’ Delft3D-FLOW as closely as possible. In addi-
tion a C++ CPU implementation has been done in order to be able to compare CPU and
GPU performance more fairly.

9.1. COMPUTATION TIME
In this section the computation time and speedup for two test cases are compared in
order to provide a measure of the speedup that can be obtained by doing shallow-water
simulations on a GPU. The two test cases are described in section 8.2.

GPU KERNELS

In subsection 8.3.3 it is described that after additional research it was concluded that the
initial implementation of the scheme described in chapter 6 needed to communicate
subgrid borders more than once per timestep, which the initial implementation lacked.

Subgrid communication is a very expensive operation on a GPU as it involves writing
the contents of the shared memory to global memory for all thread blocks, followed by
writing the updated values back into shared memory. In order to measure the perfor-
mance impact of this additional synchronisation, two different GPU kernels were devel-
oped as described in 8.3.3:
One that uses the original Sielecki scheme which requires three synchronisation opera-
tions per timestep, and the Hansen that calculates both U and V fully explicit requiring
only two synchronisation operations per timestep. Comparing execution times of these

103

9

104 9. BENCHMARK RESULTS OF THE MODIFIED STELLING & DUINMEIJER SCHEME

two kernels will then provide a measure of the performance impact of a single synchro-
nisation operation.

MULTITHREADING

A common criticism of studies that measure GPU acceleration is that a highly parallel
GPU program is compared with a single threaded CPU program which is not very fair.
Nowadays most computer systems have a minimum of four cores but higher core counts
are becoming increasingly common. Additionally server computers often sacrifice sin-
gle core performance for a vastly increased core count.

Because a comparison with a multi-threaded CPU program is both relevant and more
fair such a program has been implemented as described in chapter 6, together with all
modifications to the scheme described in chapter 8. Similar to a GPU implementation,
multithreading requires additional synchronisation steps that add overhead to the pro-
gram, and as such multi core performance is not simply a matter of dividing the single
core performance by the number of cores. Therefore in order to compare multi-core
scaling benchmarks for various thread counts have been performed.

Since both test systems described in the next subsection can use hyperthreading al-
lowing for more concurrent active threads than there are physical cores on the CPU,
benchmarks include the case where the thread count is twice the physical core count of
the processor. To see if there is any benefit to be gained by increasing thread count above
the maximum amount of concurrent threads benchmarks also include this scenario.

TEST SYSTEMS

The benchmarks have been performed on two different computer systems, the same as
described in chapter 7. System one is a high-end consumer desktop that contains top of
the line components at the time of writing. The second system is a 7 year old laptop that
would be considered low-end by todays standards.

The first system uses a 6 core, 12 threads Intel i7 8086k together with an Nvidia RTX
2080 Ti. The Intel i7 8086k is operating at 5000 Mhz with 32 GB of DDR4 DRAM operat-
ing at 3200 Mhz with Cas Latency 14. The RTX 2080 Ti has 68 streaming multiprocessors
with a total of 4235 Cuda cores operating at 2160 Mhz. It can handle up to 1024 threads
per block, 1024 threads per SM and 64 registers per thread. It has 11 GB of DDR6 Vram
with a 352 bit memory bus with a maximum bandwidth of 616 GB/s. Furthermore it has
a maximum of 64 Kbyte of shared memory per SM.

The second system has a 4 core, 8 thread Intel i7 3610QM an Nvidia Quadro K1000M.
The Intel i7 3610QM is operating at 3100 Mhz with 8GB of DDR3 Dram operating at
1600Mhz Cas Latency 11. The Quadro K1000M has 1 streaming multiprocessor with a
total of 192 Cuda cores operating at 850 Mhz. It can handle up to 1024 threads per block,
2048 threads per SM and 32 registers per thread. It has 2 GB of DDR3 Vram with a 128 bit
memory bus with a maximum bandwidth of 28.8 GB/s. Furthermore it has a maximum

9.1. COMPUTATION TIME

9

105

of 48 KByte of shared memory per SM.

9.1.1. VALIDATION
As no analytical solution exists for the Shallow-Water equations except for specific cases,
it is not possible to validate the model results by comparing the numerical solution to an
analytical one. We do know however, that the spatial discretizations described in chap-
ter 6 and the improvements in chapter 8 give the numerical scheme first order accuracy
in time because of the Euler forward scheme, first order accuracy in space for the initial
implementation and second order accuracy in space for the improved implementation.

The results from the MATLAB implementation and both the GPU CUDA C++ and
CPU C++ have been compared by exporting the computed values to a .txt file and then
importing them into Matlab. Results were the same up to acceptable accuracy. Single
precision floating point arithmetic is only guaranteed to be accurate to up to 6 digits,
and observed numerical differences were smaller.

All three implementations were also validated by visual inspection through plotting
the resulting velocities and water levels using MATLAB and checking for discontinuities
and general subjective "water like" behaviour.

9.1.2. TEST CASE 1
In figure 9.1 and table 9.1 the test system 1 CPU vs GPU comparison graph is presented
for test case 1, described in section 8.2. Surprisingly the GPU already outperforms the
CPU on a 100×100 grid, which is so small that it only occupies 9 out of the 68 multipro-
cessors on the device. From the curvature in both GPU graphs can be concluded that
computation time does not linearly scale with problem size for grids smaller than 105.
For the CPU kernel the highly multithreaded C PU 12 and C PU 24 runs also do not scale
linearly for the smallest two grids. This is expected as dividing the problem into many
threads introduces a significant synchronisation overhead, which is only compensated
for when computational load is large, similar to a GPU. If we inspect table 9.1 we can
observe that both CPU and GPU scale almost linearly with problem size for the larger
grids which is to be expected.

In figure 9.2 we can observe that for grids larger than around 4 million points the
fastest GPU kernel provides a speedup of around 45 times compared to the fastest CPU
implementation.

When comparing the performance of the CPU C++ implementation for various thread-
counts, it can be observed that for the smallest chosen grid the additional overhead in-
duced by increasing the threadcount to 12 or 24 hampers computation time. For larger
grids we see that 12 threads has the best performance, closely followed by 24 and 6
threads. This means that Intel Hyperthreading does offer a small performance gain over
1 thread per core, but increasing thread count beyond the CPU’s maximum concurrent
thread count has no positive effect.

9

106 9. BENCHMARK RESULTS OF THE MODIFIED STELLING & DUINMEIJER SCHEME

If the single and multi threaded computation times are compared it can be observed
that increasing the number of threads from 1 to 2 provides an almost 2x speedup for most
grid sizes. Moving from 2 to 3 also provides a near 1.5 times speedup. However when
moving from 3 to 6 threads the scaling falls short of being linear, seemingly independent
of problem size. This indicates that for high thread counts a significant overhead is in-
troduced.
The thread barrier function that is used to synchronize the different threads is self-written
and probably nowhere near maximum efficiency, which could be a possible explanation
for the suboptimal multicore scaling. Another possible factor is that the L3 cache on this
CPU is shared between all cores, which means there is less L3 cache per core available as
the number of active cores increases.

SYSTEM 1

Figure 9.2: Plot of speedup versus grid length in both directions, comparing the Hansen Cuda kernel with the
12 thread CPU C++ implementation for test system 1

9.1. COMPUTATION TIME

9

107

Figure 9.1: Plot of computation time of 1000 time steps in seconds for test case 1 on system 1 for various grid
sizes. Cuda Hansen is the modified kernel that exchanges borders twice per timestep, Cuda Sielecki exchanges
three times. The CPU rows are the computation times for the C++ CPU implementation for various thread
counts.

p
N 100 196 388 772 1540 3076 6148 12292

Hansen 0.018800 0.019270 0.034192 0.10853 0.38058 1.44965 5.7570 24.589
Sielecki 0.022322 0.023685 0.042107 0.13113 0.47666 1.81252 7.2415 30.543
CPU1 0.305687 1.20825 4.76128 21.5301 76.5302 308.639 1222.5
CPU2 0.172804 0.632221 2.39847 9.93223 39.3897 161.265 630.70
CPU3 0.127358 0.438293 1.64414 6.86199 27.5986 109.936 441.34
CPU6 0.074952 0.246507 0.929399 4.23524 19.9891 76.0721 291.55
CPU12 0.102501 0.26558 0.875854 3.99464 17.1241 68.1345 264.36
CPU24 0.158379 0.314748 0.939437 3.90622 17.3451 70.3667 271.53

Table 9.1: Table of computation time of 1000 time steps in seconds for test case 1 on system 1 for various grid
sizes. Hansen is the modified kernel that exchanges borders twice per timestep, Sielecki exchanges three times.
The CPU rows are the computation times for the C++ CPU implementation for various thread counts.

9

108 9. BENCHMARK RESULTS OF THE MODIFIED STELLING & DUINMEIJER SCHEME

SYSTEM 2

In figure 9.3 and table 9.2 the computation times of test case 1 for system 2 can be ob-
served. Two additional GPU results are present: The first two kernels use a 32×32 block
size for a total of 1024 threads per block, which means that it is possible for two active
blocks per SM. The 16×16 kernels have 256 threads per block which allows for 8 active
blocks on the SM.

If we compare the 4 GPU kernels, it is no surprise that again the Hansen kernel is
superior to the Sielecki kernel.
When observing table 9.2 it can be noted that the 16×16 kernel is superior to the 32×32
one. However, for test system 1 there was no discernible difference between the two con-
figurations. One possible explanation is that since the GPU from test system 2 is of an
older generation it might lack some scheduling optimizations.
Another possible explanation could be that since the Quadro K1000M only has a single
SM, block scheduling becomes more important. If the two resident blocks for the 32×32
kernel finish at the same instant, the device idles while two new blocks are initialized.
However with 8 resident blocks the initialization could be hidden through block switch-
ing. The 2080 Ti contains 68 SMs instead of a single one, which would make it much less
sensitive to this kind of scheduling problems.
It must be noted that block-size performance dependency can be seen as guesswork as
the inner workings of a GPU device are very complex. Official Cuda programming guides
generally advise to optimize for block size through trial-and-error. Therefore there is a
fair chance that the performance differences between the 16×16 kernel and the 32×32
kernel on both devices have different origins than theorized above.

When we observe figure 9.3 core scaling and grid scaling is similar to that of system
1. The GPU results lie much closer to the CPU results, but that is to be expected as the
system has a relatively weak GPU and strong CPU. Observing table 9.2 we see both CPU
and GPU performance approximately linear with problem size, apart from the 100×100
grid. This is to be expected as the Quadro GPU is only able to have 2048 concurrently
active threads, which means we expect linear scaling starting at around a 70×70 grid.

When observing the speedup in figure 9.4 the best-case GPU implementation pro-
vides a roughly 1.7 times speedup compared to the best case scenario 8-thread CPU
implementation. This leads to the conclusion that a moderate GPU speedup can be ob-
tained even without dedicated high-end graphics cards.

9.1. COMPUTATION TIME

9

109

Figure 9.3: Plot of computation time of 1000 time steps in seconds for test case 1 on system 2 for various
grid sizes. Cuda Hansen32 is the modified kernel with a block size of 32 × 32 that exchanges borders twice
per timestep, Cuda Sielecki16 uses a 16 × 16 block size and exchanges three times. The CPU rows are the
computation times for the C++ CPU implementation for various thread counts.

p
N 100 196 388 772 1540 3076

Hansen32 0.163908 0.511419 1.94641 7.55688 30.0658 119.98
Sielecki32 0.195926 0.685671 2.63318 10.2788 41.0195 163.975
Hansen16 0.161542 0.480747 1.80186 6.89172 27.4649 109.595
Sielecki16 0.176315 0.615512 2.3326 9.00504 35.936 143.347
CPU1 0.724834 2.61743 10.9859 42.3639 167.968 708.631
CPU2 0.454378 1.37038 5.81773 22.1663 87.4908 372.718
CPU4 0.343363 1.14705 4.93875 13.1716 52.532 208.498
CPU8 0.330632 0.780039 3.11883 11.896 46.7138 188.548
CPU16 0.374418 0.855233 3.11677 12.1545 47.3572 192.824

Table 9.2: Table of computation time of 1000 time steps in seconds for test case 1 on system 2 for various grid
sizes. Hansen32 is the modified kernel with a block size of 32 × 32 that exchanges borders twice per timestep,
Sielecki16 uses a 16 × 16 block size and exchanges three times. The CPU graphs are the computation times for
the C++ CPU implementation for various thread counts.

9

110 9. BENCHMARK RESULTS OF THE MODIFIED STELLING & DUINMEIJER SCHEME

Figure 9.4: Plot of speedup versus square root of grid size, comparing the GPU162ex kernel with the 8 thread
CPU C++ implementation for test system 2

9.1.3. TEST CASE 2
Test case 2 as described in section 8.2. Instead of calculating a fixed number of timesteps
as in test case 1, it uses a dynamic timestep depending on the tidal level and terminates
after 24 simulated hours, or 86400 seconds. This means the amount of work to be done
no longer scales linearly with problem size. The CFL condition and thus the timestep
scales with the root the grid size, while the computation time for a single iteration scales
linearly. This a combined factor of t ∼ N 1.5. For example this means that when increas-
ing grid size from N = 100×100 to 1000×1000 the grid is 100 times larger and the timestep
is 10 times smaller for a combined workload increase of a factor 1000.

However, due to the extreme computational size of this test case computations will
be limited to the RTX 2080Ti GPU and grid sizes of 1 million points or less, which is simi-
lar to the grid sizes tested by Peeters [69]. In test case 1 it was observed that computation
time does not start to scale linearly with problem size until around 2×105 points. It is
then no surprise that the results in table 9.3 do not yet exhibit this scaling behaviour.
For the GPU2ex kernel the computation time increase from 100×100 to 1060×1060 was
roughly a factor 115, 10 times less than the predicted factor 1200. It follows that the over-
head for smaller problem sizes is large.

Another observation is that the number of iterations performed scale linearly with
the root of the problem size, which is expected behaviour.

If we compare the results from table 9.3 with the results from Peeters in table 9.4, we
see that both kernels on the RTX 2080 Ti outperform both the FirePro D700 and the HD
Graphics 4000. This is a meaningless comparison however, as it compares two differ-

9.1. COMPUTATION TIME

9

111

ent implementations on two different machines, making it impossible to ascribe perfor-
mance differences to either with any certainty.

It is however interesting to compare with the Delft3D-FLOW benchmark in table 9.5
with the results from table 9.3. Comparing the smallest grid we observe a speedup of
roughly a factor 7 or 8 accounting for the grid size difference. The most striking result is
a comparison of the largest grid sizes, which results in a speedup of a factor 126 when
accounting for the grid size difference.

p
N 96 192 384 1056

time steps 237670 465642 922757 2510297
Hansen 4.34653 8.89584 30.2175 503.034
Sielecki 5.07782 10.678 36.6837 659.177

Table 9.3: Table of computation time in seconds for 24 simulated hours for various grid sizes on test system 1.
The Hansen kernel exchanges borders twice per iteration and the Sielecki kernel three times.
The time steps row denotes the number of iterations required to simulate 24 hours.

p
N 96 128 256 1024

time steps 864000 864000 1728000 8640000
FirePro D700 32 32 152 6120
HD Graphics 4000 3960 4320

Table 9.4: Table of computation time in seconds for 24 simulated hours for various grid sizes benchmarked by
Peeters [69] on an AMD Radeon HD - FirePro D700 and an Intel HD Graphics 4000.

p
N 100 1000

time steps 22880 28800
Delft3D-FLOW 40 57600

Table 9.5: Table of computation time in seconds for 24 simulated hours for various grid sizes benchmarked by
Delft3D-FLOW by Lotte Peeters [69].

10
BENCHMARK RESULTS OF THE

IMPLICIT IMPLEMENTATION AND

PRECONDITIONERS

In section 6.4 the MATLAB implementation of the developed implicit shallow-water solver
is described. The Shallow-Water equations are split into an implicit gravity-wave sys-
tem and an explicit momentum-advection system. The CFL condition states the time
step is most stringently restricted by the gravity-wave system, and thus solving this sys-
tem implicitly allows for larger timesteps. Formulating and solving the implicit system
takes longer than solving the explicit system, and thus the question is whether the larger
timestep compensates for the additional work per iteration.

The implicit system was implemented in CUDA C++ using a Conjugate Gradient
solver, described in chapter 4. The Conjugate Gradient solver implemented uses NVIDIA’s
CUSparse and CUBlas libraries for vector operations.
The system matrix is constructed by a GPU kernel in CSR format. Theoretically the di-
agonal format is the most efficient for a pentadiagonal system, however the diagonal
format is not supported by the CUSParse library and thus the CSR format was chosen.

The performance of the CG method is highly dependent on the spectrum of the sys-
tem matrix. In the case of CG the convergence rate is tied to the ratio of the smallest
and largest eigenvalues of the system matrix. Therefore an efficient preconditioner that
brings the eigenvalues closer together without changing the solution is often used to
accelerate the method’s convergence. However, the construction of the preconditioner
plus the additional work of solving a preconditioned system also takes time.
Because of the preconditioner the CG algorithm will converge in fewer iterations, and
for a positive acceleration it is necessary that more time is saved by the reduction in CG
iterations than the cost of preconditioning.

113

10

11410. BENCHMARK RESULTS OF THE IMPLICIT IMPLEMENTATION AND PRECONDITIONERS

CUSP LIBRARY

As part of preconditioner testing, the CUSP solver library has been integrated into the
system. The library provides great compatibility with an externally constructed system
matrix and right-hand side. It provides an implementation of the CG algorithm and of-
fers the following preconditioners:

• Diagonal

• Smoothed Aggregation Algebraic Multigrid

• Scaled Bridson Approximate Inverse [71]

• Lin et al.[72] Approximate Inverse

CUSP documentation on the SAAMG preconditioner [73]:

"Smoothed aggregation is expensive to use but is a very effective preconditioning
technique to solve challenging linear systems. The default configuration uses a symmet-
ric strength measure, MIS-based aggregation in device memory, sequential aggregation
in host memory, Jacobi smoothing is applied to the tentative prolongator, Jacobi relax-
ation on each level of hierarchy and LU to solve the coarse matrix in host memory."

The scaled Bridson Approximate Inverse preconditioner uses Bridson’s [71] dropping
strategies, either static tolerance or a fixed number of non-zeroes per row. The Lin et al.
[72] uses the dropping strategy proposed by Lin to restrict fill in.

The CUSP library was chosen for benchmarking because it is a C++ template library,
which means source files need to be included but no CMake building is necessary, which
leads to very easy integration into existing programs. However, the latest release of the
library is targeted at CUDA 5.5. Attempting to use the library in a CUDA 10 project led
to build errors which thankfully were resolved by a GitHub forum user who provided a
solution.

MARIN REPEATED RED BLACK SOLVER

The Maritime Research Institute Netherlands, or MARIN has provided their Repeated
Red Black CG pentadiagonal solver developed by De Jong [60] [61] in order to compare
performance. The solver unfortunately only accepts host memory input which it then
copies to the GPU internally. As the SWE system matrix is constructed on the GPU, it
needs to be copied to the host in order to present it to the RRB solver, which then copies
it back internally. This is highly inefficient but it should be possible to modify the solver
to accept device input instead.

10.1. RESULTS

10

115

10.1. RESULTS

10.1.1. SOLVE TIME
In figure 10.1 and table 10.1 the average computation time per timestep is presented,
comparing the explicit implementation described in chapter 8, the CUBlas/CUsparse
implicit CG implementation, the MARIN RRB solver and the CUSP solver with various
preconditioners for test case 1. The implicit timestep was chosen to be a factor 100 times
larger than the explicit timestep, and the explicit results are thus the average computa-
tion time of 100 iterations for a fair comparison. For the CG method the starting solution
was taken to be the solution of the previous time step, and an absolute stopping criterion
of 1e−5 was used. Testing absolute and relative stopping criteria provided similar results.

From the results it is evident that the explicit solver is approximately 8 times faster
than the fastest implicit implementation. Among the implicit solvers we see the CUBlas/-
CUSparse implementation is the fastest method, but it is beaten by the RRB solver on
small grids. The Multigrid solver is competitive with CUSPs bare CG and diagonally pre-
conditioned CG, and all three AINV solvers have very poor performance. It should be
noted that the Bridson 1 preconditioner which uses a static 10 % dropping strategy did
not converge.

Finally it should be noted that the shown computation times for the Marin RRB solver
include unnecessary data transfer between CPU and GPU. The fact that the RRB solver
is faster than the CUBlas/CUSparse implementation on smaller grids is likely due to the
fact that the extra data transfer between host and device becomes more significant as
grid size increases.

10

11610. BENCHMARK RESULTS OF THE IMPLICIT IMPLEMENTATION AND PRECONDITIONERS

Figure 10.1: Average timestep calculation time in seconds versus grid length for various solvers. Implicit
timestep was 100 times the explicit timestep size.

10.1. RESULTS

10

117

p
N 96 192 384 768 1536 3072

explicit 0.00305674 0.00316147 0.00591104 0.0189923 0.0668797 0.197481
CUSparse 0.0405446 0.060885 0.0931468 0.16353 0.447088 1.51235
CUSP 0.103157 0.140323 0.179233 0.23392 0.983736 2.30398
Diag 0.0903021 0.125185 0.154624 0.198562 0.752405 1.82552
SAAMG 0.141092 0.180848 0.173174 0.310631 0.708295 2.2692
Bridson 2 0.0930085 0.23944 0.894763 2.98523 11.3594 46.9521
AINV 0.111692 0.217752 0.73924 2.37956 8.84294 37.6046
MarinRRB 0.0174882 0.028635 0.0867973 0.30004 1.16445 4.66386

Table 10.1: Average timestep calculation time versus grid length for various solvers. Implicit timestep was 100
times the explicit timestep size.

10.1.2. PRECONDITIONER ITERATIONS

In table 10.2 the average number of Conjugate Gradient iterations before the residual
was of the same order as the single machine precision are presented for various implicit
time step size factors on a grid of length 1536. If we observe the implicit and CUSP rows
we can see they require a similar number of iterations, which is to be expected as both
methods implement the bare CG algorithm. The number of iterations required scales
almost linearly with time step factor, which is expected behaviour as the system matrix
becomes less diagonally dominant as time step size increases which slows CG conver-
gence speed.

The Diagonal preconditioner had no effect for smaller time step sizes, but led to an
approximately 10% reduction for the larger step sizes. Since a diagonal preconditioner
can be implemented at very low cost, this means that for larger time steps it is preferred
over the bare CG implementation.

The best performer is the Marin RRB preconditioner, which reduces the required it-
erations by approximately 90 % for the largest time step size. It is closely followed by the
SAAMG preconditioner, which is seen to have similar scaling but requires 3-4 times as
many CG iterations before convergence.

The Bridson 1 preconditioner with a static drop tolerance did not produce a result for
larger time steps and thus can be concluded as ineffective. The Bridson 2 preconditioner
which allows 10 non-zero entries per row performed slightly better than the Lin et al.
AINV preconditioner.

10

11810. BENCHMARK RESULTS OF THE IMPLICIT IMPLEMENTATION AND PRECONDITIONERS

d ti mpl /d texpl 1 10 50 100
CUSparse 4 41 255 542
CUSP 3 41 254 541
Diag 3 42 231 496
SAAMG 2 8 16 20
Bridson 1 3 NaN NaN NaN
Bridson 2 1 12 69 148
AINV 2 16 88 187
MarinRRB 1 2 4 7

Table 10.2: Table of required number of Conjugate Gradient iterations required for residual ||r ||2 < 1e−5 for
various time step sizes on a grid of length 1536. The row d ti mpl /d texpl indicates the fraction between the
used implicit time step size and the explicit time step size.

10.1.3. PRECONDITIONER CONSTRUCTION TIME

In table 10.3 the average time in milliseconds necessary to construct the preconditioner
for various grid sizes is presented with a timestep of 100 times the explicit time step. It
should be noted that the preconditioner construction time was found be independent
of the time step size, which is to be expected.
When comparing the results the diagonal preconditioner is the fastest which is also ex-
pected behaviour.

While in the preceding subsection it appears that the SAAMG preconditioner and the
Marin RRB preconditioner were both highly effective, the RRB construction time beats
the SAAMG preconditioner by a factor 60. This is not surprising as the CUSP documen-
tation states the SAAMG preconditioner is partially constructed on the CPU, while the
RRB preconditioner is constructed fully on the GPU.

Comparing the three AINV preconditioners the static drop tolerance Bridson 1 pre-
conditioner is the fastest. Unfortunately it was found in the preceding sections to not
converge for larger time steps. The Lin et al preconditioner is 33% faster than the Brid-
son 2 preconditioner, and even though it requires more iterations before convergence as
seen in figure 10.1 it is still slower than the Bridson 2 preconditioner.

p
N 96 192 384 768 1536 3072

Diag 0.087776 0.28731 0.35554 0.44882 1.005 6.11632
MarinRRB 0.48714 0.55299 0.75062 3.5846 8.663 31.5106
SAAMG 57.287 74.278 113.38 212.15 565.81 1855.03
Bridson1 6.8364 23.101 86.778 331.13 1375.2 12669.5
Bridson 2 46.938 169.53 666.81 2692.1 10799 45607
AINV 30.447 121.41 474.48 1903 7819.8 33611.1

Table 10.3: Table of average preconditioner construction time in milliseconds for various grid sizes with a
timestep of 100 times explicit

10.1. RESULTS

10

119

The previous sections showed the Marin RRB preconditioner to be the fastest when
considering the combination of preconditioner setup time and CG iterations.
The question remains whether it is actually faster than the explicit method or the bare
CUBlas/CUSparse implementation. For this reason the benchmark was modified by
measuring the total time taken by all the copy operations between CPU and GPU and
subtracting it from the total run time.
This benchmark was performed for an implicit timestep size both 10 and 100 times the
explicit timestep. The results are presented in tables 10.4 and 10.5.

p
N 100 196 388 772 1540 3076 6148

explicit 0.0008568 0.0008954 0.002055 0.0075267 0.027688 0.103217 0.4100
CUSparse 0.036858 0.0403108 0.052227 0.0927517 0.255135 0.908019 3.5782
MarinRRB 0.01192 0.0159365 0.029711 0.0738711 0.167786 0.454324 1.5484

Table 10.4: Computation time of the equivalent of 100 time explicit time steps in seconds for various grid sizes
with an implicit time step 10 times the size of the explicit time step.

p
N 100 196 388 772 1540 3076 6148

explicit 0.004998 0.00448 0.010604 0.035240 0.12883 0.52132 1.8883
CUSparse 0.1571 0.232 0.309392 0.560343 1.71688 5.81244 22.4183
MarinRRB 0.0089 0.01059 0.019798 0.038388 0.090922 0.25789 0.88327

Table 10.5: Computation time of the equivalent of 500 time explicit time steps in seconds for various grid sizes
with an implicit time step 100 times the size of the explicit time step. 500 steps are taken as otherwise the
implicit method would only calculate a single timestep which is prone to error.

If we compare the computation times in table 10.4 it is evident that the explicit solver
outperforms the Marin RRB solver by about a factor 4 for the larger grid sizes. On the
other hand, the Marin RRB solver proved to be more than twice as fast as the CUS-
parse/CUBlas CG implementation on the larger grids. Comparing the smaller grid sizes
it is evident that the smaller grid sizes heavily favor the explicit method.

On the other hand, if we compare the computation times in table 10.5 we see that for
a very large time step of 100 times explicit the Marin RRB solver is about twice as fast as
the explicit method on the largest two grids, while on the smaller grids they are compa-
rable. The performance difference between the CUSparse/CUBlas implementation and
the RRB solver is also increased significantly compared to table 10.4. This is no surprise
as the CUSparse/CUBlas implementation goes from 40 to 550 required CG iterations per
timestep, while the RRB solver moves from 2 to 7 iterations.

Another interesting question is at which time step size the Marin RRB-solver and
the explicit solver have similar performance. In figure 10.2 and table 10.6 the average
computation time of the equivalent of 5 implicit timesteps is plotted for varying time
step sizes is presented. This means that if the timestep factor was 50, 5 implicit time

10

12010. BENCHMARK RESULTS OF THE IMPLICIT IMPLEMENTATION AND PRECONDITIONERS

steps were measured and 250 explicit time steps. Evident from the plot is that the ex-
plicit and implicit both suffer in performance as a larger timestep is taken. The explicit
method because it has to calculate more time steps to match the implicit solver, and
the CUSparse/CUBlas method suffers because the number of CG iterations per timestep
increases with time step, as seen in table 10.2. The RRB Solver, on the other hand, has
an almost constant computation time independent of timestep and thus overtakes the
explicit method in performance somewhere between 50 and 60.

Figure 10.2: Plot of average computation time in seconds of the equivalent of 5 implicit timesteps for varying
time step sizes

d ti mpl /d texpl 10 20 40 50 60 80 100
explicit 0.031132 0.058927 0.11742 0.14411 0.177161 0.2331 0.28858
CUSparse 0.284537 0.590082 1.24751 1.58977 1.92637 2.6366 3.3355
Marin RRB 0.140407 0.142916 0.15102 0.15478 0.158114 0.1618 0.1747

Table 10.6: Table of average computation time in seconds of the equivalent of 5 implicit timesteps for varying
time step sizes

10.1. RESULTS

10

121

The conclusion here is that the Marin RRB solver, when implemented without the
memory copy overhead, outperforms the explicit implementation on a large enough grid
large enough implicit time step.

However, the implicit method’s wetting and drying mechanism has been observed
to become unstable if the implicit timestep is taken too large. Additionally, the models
numerical accuracy is also dependent on timestep size, with large implicit time steps
having been observed to introduce significant damping.

Therefore, the choice between the RRB method and the explicit method becomes a
choice of model accuracy versus speed.

It should be noted that the benchmark cases simulate a very shallow depth. Large
implicit timesteps are expected to be more stable in deeper water, and this should be
tested in future work.

In real world scenarios Delft3D-FLOW uses implicit timesteps of up to 10 times the
CFL prescribed time step, which makes the explicit method the preferred choice in these
cases.

11
SUMMARY AND CONCLUSIONS

11.0.1. SUMMARY

The main research question of the project is “Which numerical method is best suited for
solving the shallow water equations on a GPU in terms of model accuracy, robustness
and speed?”

In order to answer this research question a number of numerical methods have been
implemented and their performance compared.

First a literature review was conducted in order to define the shallow-water equa-
tions and explore possible discretization methods and subsequently numerical methods
to solve them, which are chapter 1 through 3. In addition, possible GPU platforms and
architecture considerations were discussed in chapter 4. Finally some implicit parallel
solvers and their GPU suitability were discussed in chapter 5.

As a starting point for an implementation, the Stelling & Duinmeijer scheme [21] was
taken. After modifying it to an explicit Sielecki scheme [66] it was suitable for an initial
MATLAB implementation for testing. Next a GPU CUDA C++ translation of the MATLAB
code was implemented, which both are described in chapter 6. The results were bench-
marked, compared and discussed in chapter 7.

In order to mimic Deltares’ Delft3D-FLOW shallow water solver a number of mod-
ifications to the initial implementation were developed, described in chapter 8, and in
addition a CPU C++ implementation of the same code was developed in order to provide
a more meaningful CPU and GPU comparison.

Finally, an implicit scheme was developed and implemented in both Matlab and
Cuda C++ using the Conjugate Gradient method with various preconditioners from the
CUSP [73] library to solve the linear system of equations every time step. In addition, in

123

11

124 11. SUMMARY AND CONCLUSIONS

collaboration with MARIN their pentadiagonal solver developed by De Jong [60] [61] was
integrated and performance was compared.

11.1. CONCLUSIONS

11.1.1. RESEARCH QUESTIONS

WHAT ARE THE TRADEOFFS INVOLVED IN SOLVING THE SHALLOW WATER EQUATIONS ON A

GPU USING EXPLICIT METHODS COMPARED TO IMPLICIT?
From the results in chapter 10 it can be concluded that the fastest implicit solution
method was faster than the explicit method with a time step more than 50 times larger.
At such large time steps, the implemented wetting and drying mechanic has been ob-
served to cause instability. Also, numerical error resulting from such a large time step
was found to be significant for model behaviour.

The conclusion is that using explicit compared to implicit methods involves a trade-
off of accuracy and robustness versus speed, with the implicit method being faster but
less accurate and not able to incorporate wetting and drying properly.

HOW DOES THE PERFORMANCE OF EXISTING SOFTWARE PACKAGES COMPARE TO A SELF-
BUILT SOLVER?
The implementation of the solver software packages described in chapter 5, most no-
tably MAGMA, Paralution and AmgX, did unfortunately not succeed. However, the CUSP
GPU library has been successfully integrated and tested, described in chapter 10. The
CUSP bare CG implementation proved to converge to the desired tolerance in exactly
the same number of iterations as the self built solver. However, it was found to be slower
in general. Using CUSPS available preconditioners closed the gap, with the diagonal and
SAAMG preconditioners having the best performance. However neither of them came
remotely close to the RRB preconditioner developed by Marin. It might be possible for
other packages to reach the performance of a self-built solver, as the CUSP package is a
very small sample size. Thus more packages will need to be benchmarked for a definitive
verdict.

The conclusion is that using the CUSP library is not optimal but it does have accept-
able performance while being very easy to implement.

WHAT ARE THE TRADEOFFS INVOLVED IN SOLVING THE SHALLOW WATER EQUATIONS ON A

GPU IN 32-BIT FLOATING POINT PRECISION COMPARED TO 64 BIT AND 16 BIT?
During the course of the literature review it was concluded that a consumer GPU, such
as the RTX 2080 Ti used in the course of this project, has 32 times the 64-bit performance
when calculating in 32-bit, as explained in chapter 4. After some consideration it was
chosen not to test this in practice as 32-bit precision is sufficient for a shallow-water
model. 16 bit precision was proposed as Nvidia’s Tensor can do calculations faster in
16-bit precision when compared to 32-bit. However when it became apparent it was not
possible to utilize the Tensor cores in a shallow-water solver it was decided not to test 16
bit performance either.

11.1. CONCLUSIONS

11

125

WHICH METHOD OR SOLVER LIBRARY IS BEST SUITED FOR INTEGRATION INTO DELTARES’
EXISTING FORTRAN BASED SOLVERS?
Because it was chosen to develop an explicit and implicit method from the ground up,
Deltares’ Delft3D-FLOW implementation was not examined. This research question can
thus not be answered on the basis of the work done in this project. It is however highly
likely that it is possible to do pre- and post processing in FORTRAN and then call CUDA
C++ code to do the calculations. Whether this is indeed the case is recommended future
research.

WHICH NUMERICAL METHOD IS BEST SUITED FOR SOLVING THE SHALLOW WATER EQUA-
TIONS ON A GPU IN TERMS OF MODEL ACCURACY, ROBUSTNESS AND SPEED?
On the basis of the performance benchmarks of the implicit and explicit methods tested
in the course of this project it can be concluded that an explicit method is best suited for
GPU implementation on a high resolution grid with low water depth. For these cases the
explicit implementation was the most accurate, most stable and fastest method. How-
ever specific cases can exist with high water depth and no wetting and drying where a
large time step can be taken and then an implicit implementation will be preferable.

11.1.2. ADDITIONAL CONCLUSIONS

EXPLICIT IMPLEMENTATION

For an explicit time integration method it is possible to do the entire initialization phase
on the GPU device itself, as opposed to CPU construction followed by costly data trans-
fer between CPU and GPU.
In addition, the inherent parallelism of an explicit method makes it able to utilize a
multi-core GPU architecture very well.

The explicit time integration method is also compatible with the addition of drying
and wetting mechanics due to the small time step size it is restricted to by the CFL condi-
tion. An implicit method that uses larger time steps needs additional measures to ensure
stability with the wetting and drying, but the small explicit time step means wetting and
drying can be implemented at low cost.

However, after an initial CUDA C++ explicit implementation described in chapter 6
it was found that this parallelism is limited. Thread synchronization between vector up-
dates turned out to be necessary and this requires separate kernel launches inducing
significant overhead. In chapter 9 it was found that moving from 2 to 3 thread synchro-
nizations per time step induces a 15-20 % performance penalty.

CUDA Cooperative Groups introduced in CUDA 9 would allow for in-kernel synchro-
nisation, but restricts CUDA grid size with respect to device capabilities leading to higher
code complexity. Cooperative groups are well suited for problems with high initializa-
tion costs such as this one. Thus it is expected that an implementation utilizing it will be
faster, making it a good candidate for future research.

A GPU implementation was designed to have every thread executing the same ex-
pressions, achieved using control booleans described in chapter 8. Deltares’ Delft3D-

11

126 11. SUMMARY AND CONCLUSIONS

FLOW was designed for vector computers with the exact same restrictions, making it
well suited for GPU translation.

On the high-end test system 1 a speedup of a factor 45 was obtained when comparing
the explicit GPU implementation with the same CPU C++ code. Results will vary by sys-
tem but this illustrates significant speedups can be attained. On test system 2 a 1.7 times
speedup was observed, illustrating that even with a low-end GPU a positive speedup is
still possible.

A comparison with sequential semi-implicit CPU Delft3D-FLOW yielded a 120 times
speedup for a 24 hour simulation of a tidal test case.

IMPLICIT IMPLEMENTATION

An implicit implementation that lifts most stringent water-level dependent restriction
on the time step size was successfully developed. In this implementation described in
chapter 6 and 10 it was found possible to construct the system matrix directly on the
GPU in parallel, which is orders of magnitude faster than CPU construction plus transfer.
The implicit implementation was found to be compatible with the wetting and drying
mechanic introduced in chapter 8, given that the implicit time step was not taken too
large.

The implicit implementation was found to have similar performance when using a
CUSParse/CUBlas conjugate gradient method to solve the linear system when compared
to CUSPs CG solver.

For unpreconditioned CG, the number of iterations required to reach single preci-
sion tolerance was found to scale approximately linear with the time step size. This had
the consequence of a larger implicit time step only moderately improving performance.

A number of preconditioners were tested to see if CG performance could be im-
proved to a point where the implicit implementation outperformed the explicit.
CUSPs smoothed aggregation algebraic multigrid preconditoner and Marins repeated
red black preconditioner were both extremely effective. However, the SAAMG precon-
ditioner had a high construction time while the RRB preconditioner was very fast to
construct. All approximate inverse preconditioners tested had poor performance, and
a diagonal preconditioner had a small speedup at larger time steps.

The RRB preconditioned implicit implementation was found to outperform the ex-
plicit implementation for implicit time step that were more than a factor 55 larger than
the explicit time step.

Such a large implicit time step is rarely used in practice, making the explicit imple-
mentation the best performer on the GPU in most scenarios. However it could be pos-
sible that for scenarios with deeper water without the wetting/drying such a large time
step can indeed be taken which would make an implicit method the best option.

11.2. RECOMMENDATIONS FOR FUTURE WORK

11

127

11.2. RECOMMENDATIONS FOR FUTURE WORK
RESEARCH QUESTIONS

In the course of the project not every research question was properly answered. Some
of them turned out to be of a lower priority than initially thought. The comparison of
16- 32- and 64 bit precision was not made, only a single solver package was tested and
no research was conducted into integrating the implementations built in the course of
the project with Deltares’ existing software. These three research questions do remain
relevant, and answering them could be part of possible future work on the subject.

BENCHMARK CASES

During the evaluation of the benchmark results it became apparent that for the tested
cases the explicit method was superior. However the fact that for very large time steps
the implicit method was faster for very large time steps means a test case should have
been tested where such a large time step was a viable option. An example would be
a test case with deeper water without wetting or drying. A good recommendation for
future work is thus to benchmark new such test cases to verify the expectation that the
implicit implementation will be the optimal choice in these scenarios.

IMPROVEMENT OF THE RRB SOLVER

As mentioned in chapter 10, the Marin RRB solver assumes the system matrix is con-
structed on the CPU and then passed to the solver method. This leads to many super-
fluous copy operations between CPU and GPU memory when the system matrix already
exists on the GPU. For the benchmarking of the solver the copy time was simply mea-
sured and subtracted from the total run time. However a better solution would obviously
be modifying the RRB solver so that it can also accept pointers to arrays that are already
in GPU memory.

COOPERATIVE GROUPS

Both the implicit method and the explicit method suffer performance penalties that re-
sult from synchronization requirements. On a GPU thread synchronization is performed
by launching a new kernel with high initialization costs. Especially the conjugate gradi-
ent method suffers from this as every matrix or vector operation requires a separate ker-
nel, many of which occur every iteration of the method. As mentioned before a possible
solution to this could be CUDA cooperative groups. This feature introduced in CUDA
9 allows for easier synchronization of thread groups across blocks and even across de-
vices if so desired within a single kernel. A drawback of the cooperative groups feature
is that it will not work with a consumer graphics card in a Windows operating system
environment. Still the potential for a large reduction in synchronisation time is there
and certainly warrants further investigation. If cooperative group is not an option, the
introduction of ghost points similar to practices used in the MPI protocol could be in-
vestigated to reduce synchronization for the explicit method.

11

128 11. SUMMARY AND CONCLUSIONS

CURVILINEAR STRUCTURED AND UNSTRUCTURED GRIDS

As explained in chapter 2 it is possible to transform a rectangular grid as the one used
in the implementation from this project into a different shape, such as a river or a lake,
through a curvilinear transformation. This would enable comparison with a wider range
of shallow water models and benchmark cases.
Similarly for domains where certain parts of the domain require a very high grid density
a finite element implementation would be ideal.

ALTERNATIVE WETTING AND DRYING MODELS

As mentioned before the current wetting and drying approach is not suitable for large
time steps, as the approach is inherently explicit. Alternative solutions to the problem
exist, such as the one proposed by van’t Hof and Vollebregt [74]. Successfully implement-
ing an approach that is suitable for larger time steps would improve the versatility of the
implicit implementation.

A
BIBLIOGRAPHY

REFERENCES
[1] Delft Hydraulics and Rijkswaterstaat, “Storm surge barrier eastern scheldt; evalua-

tion of water movement studies for design and construction of the barrier,” Tech.
Rep., 1989.

[2] E. D. De Goede, “Historical overview of 2D and 3D hydrodynamic modelling of
shallow water flows in the Netherlands,” Ocean Dynamics, Jan 2020. [Online].
Available: https://doi.org/10.1007/s10236-019-01336-5

[3] A. B. d. Saint-Venant, “Théorie du mouvement non permanent des eaux, avec appli-
cation aux crues des rivières et a l’introduction de marées dans leurs lits,” Comptes
Rendus de l’Académie des Sciences, no. 73, pp. 147–154 and 237–240, 1871.

[4] D. J. Acheson, Elementary fluid dynamics. Oxford; New York: Clarendon Press ;
Oxford University Press, 1990, oCLC: 20296032.

[5] C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow, ser. Water
Science and Technology Library. Springer Netherlands, 1994. [Online]. Available:
https://www.springer.com/gp/book/9780792331643

[6] L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Elsevier, Aug. 1987, google-
Books-ID: eVKbCgAAQBAJ.

[7] R. Manning, “On the flow of water in open channels and pipes.” Transactions of the
Institution of Civil Engineers of Ireland , Vol. XX, pp. 161–207, 1891.

[8] A. Sommerfeld, Partial Differential Equations in Physics. New York: Academic
Press, New York, 1949.

[9] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, 1st ed. Wein-
heim: Wiley-VCH, Jan. 1989.

129

https://doi.org/10.1007/s10236-019-01336-5
https://www.springer.com/gp/book/9780792331643

130 REFERENCES

[10] J. Oliger and A. Sundström, “Theoretical and Practical Aspects of Some
Initial Boundary Value Problems in Fluid Dynamics,” SIAM Journal on Applied
Mathematics, vol. 35, no. 3, pp. 419–446, Nov. 1978. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/0135035

[11] J. v. Kan, F. Vermolen, and A. Segal, Numerical Methods in Scientific Computing.
Delft: VSSD, Mar. 2006.

[12] W. E. Hammond and N. M. F. Schreiber, “Mapping Unstructured Grid Problems to
the Connection Machine,” 1992.

[13] A. Arakawa and V. R. Lamb, “Computational Design of the Basic Dynamical
Processes of the UCLA General Circulation Model,” in Methods in Computational
Physics: Advances in Research and Applications, ser. General Circulation
Models of the Atmosphere, J. Chang, Ed. Elsevier, Jan. 1977, vol. 17, pp.
173–265. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780124608177500094

[14] H. Weller, “Numerics: The analysis and implementation of numerical
methods for solving differential equations,” University of Reading, Tech.
Rep. [Online]. Available: http://www.met.reading.ac.uk/~sws02hs/teaching/
PDEsNumerics/PDEsNumerics_2_student.pdf

[15] H. P. Gunawan, “Numerical simulation of shallow water equations and related mod-
els,” Ph.D. dissertation, Universit Paris-Est, 2015.

[16] L. Euler, Institutionum calculi integralis. imp. Acad. imp. Saènt., 1769, google-
Books-ID: cA8OAAAAQAAJ.

[17] J. C. Butcher, “Runge–Kutta Methods,” in Numerical Methods for Ordinary
Differential Equations. John Wiley & Sons, Ltd, 2008, pp. 137–316. [Online].
Available: http://onlinelibrary.wiley.com/doi/abs/10.1002/9780470753767.ch3

[18] J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions
of partial differential equations of the heat conduction type,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 43, pp. 50–67, 1947.

[19] P. E. Aackermann, P. J. D. Pedersen, A. P. Engsig-Karup, T. Clausen, and
J. Grooss, “Development of a GPU-Accelerated Mike 21 Solver for Water
Wave Dynamics,” in Facing the Multicore-Challenge III. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, vol. 7686, pp. 129–130. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-35893-7_15

[20] J.-L. Lions, Y. Maday, and G. Turinici, “A “parareal” in time discretization of PDE’s,”
Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, vol. 332, Jan.
2001.

[21] G. S. Stelling and S. P. A. Duinmeijer, “A staggered conservative scheme for every
Froude number in rapidly varied shallow water flows,” International Journal for

https://epubs.siam.org/doi/abs/10.1137/0135035
http://www.sciencedirect.com/science/article/pii/B9780124608177500094
http://www.sciencedirect.com/science/article/pii/B9780124608177500094
http://www.met.reading.ac.uk/~sws02hs/teaching/PDEsNumerics/PDEsNumerics_2_student.pdf
http://www.met.reading.ac.uk/~sws02hs/teaching/PDEsNumerics/PDEsNumerics_2_student.pdf
http://onlinelibrary.wiley.com/doi/abs/10.1002/9780470753767.ch3
http://link.springer.com/10.1007/978-3-642-35893-7_15

REFERENCES 131

Numerical Methods in Fluids, vol. 43, no. 12, pp. 1329–1354, Dec. 2003. [Online].
Available: http://doi.wiley.com/10.1002/fld.537

[22] “General-purpose computing on graphics processing units,”
May 2019, page Version ID: 896005463. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=General-purpose_computing_
on_graphics_processing_units&oldid=896005463

[23] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans-
actions on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972.

[24] “NVIDIA GeForce RTX 2080 Ti Specs.” [Online]. Available: https://www.
techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305

[25] K. Lemmens, “Introduction to Parallel Programming on the GPU,” Delft Institute
for Applied Mathematics, Tech. Rep., 2019.

[26] “Texture Memory in CUDA: What is Texture Memory in CUDA program-
ming.” [Online]. Available: http://cuda-programming.blogspot.com/2013/02/
texture-memory-in-cuda-what-is-texture.html

[27] S. W. Williams, “Auto-tuning Performance on Multicore Computers,” Ph.D.
dissertation, EECS Department, University of California, Berkeley, 2008. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.
html

[28] “Roofline model,” May 2019, page Version ID: 896109879. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Roofline_model&oldid=896109879

[29] “r/nvidia - The new Titan V has both the highest FP64-performance as the best
FP64/price ratio on a Nvidia GPU ever.” [Online]. Available: https://www.reddit.
com/r/nvidia/comments/7iduuh/the_new_titan_v_has_both_the_highest/

[30] “NVIDIA Tesla V100 PCIe 16 GB Specs.” [Online]. Available: https://www.
techpowerup.com/gpu-specs/tesla-v100-pcie-16-gb.c2957

[31] “NVIDIA GeForce GTX TITAN Specs.” [Online]. Available: https://www.
techpowerup.com/gpu-specs/geforce-gtx-titan.c1996

[32] “NVIDIA GeForce GTX TITAN BLACK Specs.” [Online]. Available: https://www.
techpowerup.com/gpu-specs/geforce-gtx-titan-black.c2549

[33] “Radeon Pro,” May 2019, page Version ID: 897140975. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Radeon_Pro&oldid=897140975

[34] K. Freund, “Is NVIDIA Unstoppable In AI?” [Online]. Available: https://www.forbes.
com/sites/moorinsights/2018/05/14/is-nvidia-unstoppable-in-ai/

[35] “Programming Tensor Cores in CUDA 9,” Oct. 2017. [Online]. Available: https:
//devblogs.nvidia.com/programming-tensor-cores-cuda-9/

http://doi.wiley.com/10.1002/fld.537
https://en.wikipedia.org/w/index.php?title=General-purpose_computing_on_graphics_processing_units&oldid=896005463
https://en.wikipedia.org/w/index.php?title=General-purpose_computing_on_graphics_processing_units&oldid=896005463
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html
http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html
https://en.wikipedia.org/w/index.php?title=Roofline_model&oldid=896109879
https://www.reddit.com/r/nvidia/comments/7iduuh/the_new_titan_v_has_both_the_highest/
https://www.reddit.com/r/nvidia/comments/7iduuh/the_new_titan_v_has_both_the_highest/
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-16-gb.c2957
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-16-gb.c2957
https://www.techpowerup.com/gpu-specs/geforce-gtx-titan.c1996
https://www.techpowerup.com/gpu-specs/geforce-gtx-titan.c1996
https://www.techpowerup.com/gpu-specs/geforce-gtx-titan-black.c2549
https://www.techpowerup.com/gpu-specs/geforce-gtx-titan-black.c2549
https://en.wikipedia.org/w/index.php?title=Radeon_Pro&oldid=897140975
https://www.forbes.com/sites/moorinsights/2018/05/14/is-nvidia-unstoppable-in-ai/
https://www.forbes.com/sites/moorinsights/2018/05/14/is-nvidia-unstoppable-in-ai/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

132 REFERENCES

[36] N. Oh, “The NVIDIA Titan V Deep Learning Deep Dive: It’s All About The
Tensor Cores.” [Online]. Available: https://www.anandtech.com/show/12673/
titan-v-deep-learning-deep-dive

[37] A.-K. Cheik Ahamed and F. Magoulès, “Conjugate gradient method with graphics
processing unit acceleration: CUDA vs OpenCL,” Advances in Engineering
Software, vol. 111, pp. 32–42, Sep. 2017. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S096599781630477X

[38] “OpenACC Programming and Best Practices Guide,” p. 64. [Online]. Available:
https://www.openacc.org/resources

[39] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, “CUDA vs OpenACC: Perfor-
mance Case Studies with Kernel Benchmarks and a Memory-Bound CFD Applica-
tion,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, May 2013, pp. 136–143.

[40] NVIDIA/PGI, “Free Fortran, C, C++ Compilers & Tools for CPUs and GPUs.”
[Online]. Available: https://www.pgroup.com/

[41] “CUDA,” May 2019, page Version ID: 897356499. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=CUDA&oldid=897356499

[42] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2003.

[43] K. He, S. X. Tan, H. Wang, and G. Shi, “GPU-Accelerated Parallel Sparse LU Fac-
torization Method for Fast Circuit Analysis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 3, pp. 1140–1150, Mar. 2016.

[44] A. Duffy, “Creating and Using a Red-Black Matrix,” 2010. [Online]. Available:
http://computationalmathematics.org/topics/files/red_black.pdf

[45] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving
linear systems. National Bureau of Standards, 1952. [Online]. Available: http:
//archive.org/details/jresv49n6p409

[46] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain,” Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep., 1994.

[47] “Gradient descent,” May 2019, page Version ID: 897146259. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=897146259

[48] A. van der Sluis and H. A. van der Vorst, “The rate of convergence of Conjugate
Gradients,” Numerische Mathematik, vol. 48, no. 5, pp. 543–560, Sep. 1986.
[Online]. Available: http://link.springer.com/10.1007/BF01389450

[49] H. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems,” SIAM Journal on Scientific and
Statistical Computing, vol. 13, no. 2, pp. 631–644, Mar. 1992. [Online]. Available:
https://epubs.siam.org/doi/10.1137/0913035

https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive
https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive
https://linkinghub.elsevier.com/retrieve/pii/S096599781630477X
https://linkinghub.elsevier.com/retrieve/pii/S096599781630477X
https://www.openacc.org/resources
https://www.pgroup.com/
https://en.wikipedia.org/w/index.php?title=CUDA&oldid=897356499
https://en.wikipedia.org/w/index.php?title=CUDA&oldid=897356499
http://computationalmathematics.org/topics/files/red_black.pdf
http://archive.org/details/jresv49n6p409
http://archive.org/details/jresv49n6p409
https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=897146259
http://link.springer.com/10.1007/BF01389450
https://epubs.siam.org/doi/10.1137/0913035

REFERENCES 133

[50] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and
Statistical Computing, vol. 7, no. 3, pp. 856–869, Jul. 1986. [Online]. Available:
http://epubs.siam.org/doi/10.1137/0907058

[51] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, 2nd Edition, Jan.
2000.

[52] “Multigrid method,” Apr. 2019, page Version ID: 893614381. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Multigrid_method&oldid=893614381

[53] T. Washio and C. Oosterlee, “On the Use of Multigrid as a Preconditioner,” Ninth
International Conference on Domain Decomposition Methods, 1998. [Online].
Available: http://www.numerical.rl.ac.uk/reports/gsRAL95026.pdf

[54] P. Sanan, “linear algebra - How is Krylov-accelerated Multi-
grid (using MG as a preconditioner) motivated?” 2015.
[Online]. Available: https://scicomp.stackexchange.com/questions/19786/
how-is-krylov-accelerated-multigrid-using-mg-as-a-preconditioner-motivated

[55] R. D. Falgout, “An Algebraic Multigrid Tutorial,” Institute for Mathematics and its
Applications, Tech. Rep., 2010.

[56] N. I. M. Gould and J. A. Scott, “On approximate-inverse preconditioners,”
Computing and Information Systems Dpeartment, Rutherford Appleton Labora-
tory, Tech. Rep., 1995. [Online]. Available: http://www.numerical.rl.ac.uk/reports/
gsRAL95026.pdf

[57] O. G. Johnson, C. A. Micchelli, and G. Paul, “Polynomial Preconditioners for
Conjugate Gradient Calculations,” SIAM Journal on Numerical Analysis, vol. 20,
no. 2, pp. 362–376, 1983. [Online]. Available: http://www.jstor.org/stable/2157224

[58] M. van Gijzen, “A polynomial preconditioner for the GMRES algorithm,”
Journal of Computational and Applied Mathematics, vol. 59, no. 1, pp. 91–
107, Apr. 1995. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
037704279400015S

[59] ——, “Iterative methods for linear systems of equations,” Delft University of Tech-
nology, Tech. Rep., 2008.

[60] M. de Jong and C. Vuik, “GPU Implementation of the RRB-solver,” Reports of the
Delft Institute of Applied Mathematics, issn 1389-6520, volume 16-06, p. 53, 2016.

[61] M. de Jong, A. van der Ploeg, A. Ditzel, and C. Vuik, “Fine-grain parallel rrb-solver
for 5-/9-point stencil problems suitable for gpu-type processors,” Electronic Trans-
actions on Numerical Analysis, vol. 46, pp. 375–393, 2017.

[62] PARALUTION – Documentation. [Online]. Available: https://www.paralution.com/
documentation/

http://epubs.siam.org/doi/10.1137/0907058
https://en.wikipedia.org/w/index.php?title=Multigrid_method&oldid=893614381
http://www.numerical.rl.ac.uk/reports/gsRAL95026.pdf
https://scicomp.stackexchange.com/questions/19786/how-is-krylov-accelerated-multigrid-using-mg-as-a-preconditioner-motivated
https://scicomp.stackexchange.com/questions/19786/how-is-krylov-accelerated-multigrid-using-mg-as-a-preconditioner-motivated
http://www.numerical.rl.ac.uk/reports/gsRAL95026.pdf
http://www.numerical.rl.ac.uk/reports/gsRAL95026.pdf
http://www.jstor.org/stable/2157224
https://linkinghub.elsevier.com/retrieve/pii/037704279400015S
https://linkinghub.elsevier.com/retrieve/pii/037704279400015S
https://www.paralution.com/documentation/
https://www.paralution.com/documentation/

134 REFERENCES

[63] “cuSPARSE.” [Online]. Available: http://docs.nvidia.com/cuda/cusparse/index.
html

[64] “AmgX,” Nov. 2013. [Online]. Available: https://developer.nvidia.com/amgx

[65] “MAGMA: MAGMA Users’ Guide.” [Online]. Available: https://icl.cs.utk.edu/
projectsfiles/magma/doxygen/

[66] A. Sielecki, Mathematical Weather Rev. U.S. Department of Agriculture, 1968,
vol. 96.

[67] K. Lindenberg, K. Vuik, and P. W. J. van Hengel, “Stability analysis for numerical
methods applied to an inner ear model,” Involve, vol. 10, no. 2, pp. 181–196, 2017.
[Online]. Available: https://doi.org/10.2140/involve.2017.10.181

[68] G. S. Stelling, “On the construction of computational methods for shallow water
flow problems,” Ph.D. dissertation, Delft University of Technology, 1983.

[69] L. Peeters, “Salt marsh modelling: implemented on a gpu,” Master’s thesis, Delft
University of Technology, 2018. [Online]. Available: https://repository.tudelft.nl/
islandora/object/uuid%3Aab1242b2-72e9-4052-a7e8-bbe77a7a4d5a

[70] W. Hansen, Theorie zur Errechnung des wasserstandes und der Strömingen in Rand-
meeeren nebst Anwendungen. Tellus, 1956, vol. 96.

[71] R. Bridson and W.-P. Tang, “Refining an approximate inverse,” Journal of Computa-
tional and Applied Mathematics, vol. 123, pp. 293–306, 2000.

[72] C. Lin and More, “Incomplete cholesky factorizations with limited memory,” SIAM
Journal on Scientific and Statistical Computing, pp. 24–45, 1999.

[73] “Cusp documentation.” [Online]. Available: https://cusplibrary.github.io/
classcusp_1_1precond_1_1scaled__bridson__ainv.html

[74] B. van’t Hof and E. A. H. Vollebregt, “Modelling of wetting and drying of shallow wa-
ter using artificial porosity,” International Journal for Numerical Methods in Fluids,
vol. 48, pp. 1199–1217, 2005.

http://docs.nvidia.com/cuda/cusparse/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
https://developer.nvidia.com/amgx
https://icl.cs.utk.edu/projectsfiles/magma/doxygen/
https://icl.cs.utk.edu/projectsfiles/magma/doxygen/
https://doi.org/10.2140/involve.2017.10.181
https://repository.tudelft.nl/islandora/object/uuid%3Aab1242b2-72e9-4052-a7e8-bbe77a7a4d5a
https://repository.tudelft.nl/islandora/object/uuid%3Aab1242b2-72e9-4052-a7e8-bbe77a7a4d5a
https://cusplibrary.github.io/classcusp_1_1precond_1_1scaled__bridson__ainv.html
https://cusplibrary.github.io/classcusp_1_1precond_1_1scaled__bridson__ainv.html

	The Shallow water equations
	Introduction
	Derivation
	The Navier-Stokes Equations
	Boundary conditions
	Pressure approximation
	Depth averaging

	Linearised system
	Well posedness
	Domain boundaries
	Hyperbolic system
	Parabolic system
	Initial conditions

	Discretization
	Introduction
	Finite differences
	Finite volumes
	Finite elements
	Structured and unstructured grids
	Collocated and staggered grids

	Time integration methods
	Introduction
	Explicit time integration
	Stability

	Implicit time integration
	Mixed and Semi-implicit methods

	Runge-Kutta methods
	Parareal
	Stelling & Duinmeijer scheme

	The graphics processing unit (GPU)
	Introduction
	GPU structure
	Architecture
	Blocks & warps
	Memory

	Memory bandwidth and latency
	bandwidth
	latency
	bandwidth limitation example
	Roofline model

	Computational precision on the GPU
	GPU Tensor cores
	CUDA & OpenCl
	CUDA program structure

	Parallel solvers on the GPU
	Introduction
	Matrix structure and storage
	Construction formats
	Compressed formats
	Diagonal formats
	Block Compressed Row format

	Explicit methods
	Direct solution methods
	LU decomposition

	Iterative solution methods
	Basic iterative methods
	Convergence criteria
	Damping methods

	Conjugate gradient method
	The Krylov subspace
	The method of Gradient descent
	Conjugate directions
	Combining the methods
	Convergence behaviour of CG
	Parallel Conjugate Gradient
	Krylov subspace methods for general matrices

	Multigrid
	Algebraic vs Geometric Multigrid
	Error frequency
	Convergence behaviour

	Parallel Preconditioners
	Incomplete decomposition
	Basic Iterative methods as preconditioners
	Multigrid as a preconditioner
	Sparse Approximate Inverse preconditioners
	Polynomial preconditioners
	Block Jacobi preconditioners
	Multicoloring preconditioners

	Solver software packages
	Paralution
	cuSOLVER & cuSPARSE
	AmgX
	MAGMA

	Implementation of the Stelling & Duinmeijer scheme
	Explicit implementation in MATLAB
	Staggered grid
	Stelling & Duinmeijer scheme
	Explicit term formulation
	Advective velocity upwinding
	Resulting explicit update scheme for positive flow directions

	GPU Cuda C++ implementation
	Multithreaded C++ implementation
	Implicit Matlab implementation
	Crank-Nicolson method

	Benchmark results of the preliminary explicit implementation
	Block size
	 initialization time

	Implementation of the modified Stelling & Duinmeijer scheme
	Improvements of the scheme
	Velocity advection
	Control booleans
	Wetting and drying
	Bathymetry

	Test cases
	Timestep size

	CUDA C++ implementation
	Branch avoidance
	Grid corners
	Block-level synchronization
	Comparison of code complexity

	Benchmark results of the modified Stelling & Duinmeijer scheme
	Computation time
	Validation
	Test case 1
	Test case 2

	Benchmark results of the implicit implementation and preconditioners
	Results
	Solve time
	Preconditioner iterations
	Preconditioner construction time

	Summary and Conclusions
	Summary
	Conclusions
	Research questions
	Additional conclusions

	Recommendations for future work

	Bibliography
	titleReferences

