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Abstract
With the energy transition already underway in the Netherlands, one of the largest obstacles currently
facing this process is the widespread grid congestion. To deal with this grid congestion, many different
flexibility solutions have been proposed. One of these solutions is the use of non-firm grid connections,
which dynamically allocate grid capacity to connected parties based on the free space available on
their specific part of the grid. A key design parameter of this flexibility options is the manner in which
the available capacity is allocated across the non-firm connections. In this work, a comparison is made
between five methodologies for allocating capacity among non-firm grid connections: a contract age
based methodology (and a variation upon it which also takes into account the location of a connection
in the grid), a rotating priority list, a pure mathematical optimisation of total allocated capacity as well as
a proportional allocation methodology which tries to allocate equally between loads. To compare these
different methodologies, a set of metrics is devised, which attempt to capture the three key dimensions
of relevance in this space, each representing a stakeholder: the customer/connection side, the grid
operator side and the societal/wider grid user side. It is found from this comparison across these
metrics that each of the methodologies excels at different metrics, making each of them viable in their
own respect.
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1
Introduction

In an effort to reduce greenhouse emissions, the Dutch government has established the goal of 70%
of total electricity production being renewable by 2030 (Rijksoverheid, 2019). As part of this energy
transition, major changes are occurring in the production and consumption of electricity. On one side,
a lot of renewable generation is appearing spread throughout the grid, including the distribution grid,
and on the other side we see technologies like electric vehicles and heat pumps increasing demand
on the electricity grid. These developments create a serious need for investment in the electricity grid,
as well as a significant shift in the utilisation of this grid, especially on the distribution level. These
challenges are critical to grid operators, which are responsible for creating the infrastructure necessary
to achieve the energy transition in the electricity grid. One of the key issues that grid operators are
dealing with is distribution network congestion. This phenomenon, its characteristics, and solutions will
be the focus of our research. Let us discuss the origins of this issue, what the consequences are, and
how stakeholders are attempting to overcome it.

1.1. Grid Congestion
Grid congestion, especially on the distribution networks, primarily occurs due to increased load as
a result of electrification and the proliferation of technologies like heat pumps and electric vehicles.
However, as the energy transition leads us away from fossil fuel electricity generation and towards
renewable sources, we can also observe a shift in the patterns of electricity flow in the grid which the
existing infrastructure is not equipped for. The cause of this shift can be found in large part due to four
changes in the electricity grid.

Firstly, the location of generation in the grid has changed. In the past, electricity grids were designed
with large, centralised power generation facilities in mind, like coal power plants (Netbeheer Nederland,
n.d.-b). This meant that the structure of the electricity grid was specifically tailored for this. Namely, it
was designed to transport energy in one direction, from a large, centralised producer to many smaller
consumers at the ends of the distribution grid. Thus, the further upstream one went, the higher the ca-
pacity of the various power lines and transportation equipment were in order to cope with the increased
amount of power that was transported there. With renewable generation sources however, this pattern
of generation is starting to shift. Renewable generation sources like wind and solar, also known as
Distributed Energy Resources (DERs), do not need to be (and most commonly are not) centralised in
nature. Wind turbines are spread across the grid in the most convenient and high yield locations, and
solar panels are placed in a plethora of places, ranging from rooftops to fields where animals can graze
under them (Doyob & Fischer, 2021). This spread of DERs means that the historical assumptions that
were made when sizing the grid do not always apply anymore. The location where generation occurs
is shifting away from the places where big power plants can be built towards the places where the rel-
evant energy resource can be harvested (be it wind, sun, hydro, etc.). Furthermore, the generation is
now also spread widely throughout the grid, as opposed to occurring in a limited number of centralised
locations. All of this leads to larger energy flows in parts of the grid that were not historically sized for
it.

Next, we have the change in the direction that electricity flows. This second difference mostly
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1.1. Grid Congestion 2

applies to smaller DERs like rooftop solar, but is also relevant to other types of generation to a limited
extent. Where in the past, lower voltage distribution grids solely saw electricity flows in a single direction
—from the substation to the consumers—these days, with the rise of prosumers (consumers who also
produce electricity (Office of Energy Efficiency & Renewable Energy, n.d.)), electricity flows are no
longer only variable in magnitude but also in direction. In the past equipment like circuit breakers and
busbars only had to be sized to deal with issues like undervoltage and excessive flows in one direction.
These days, they have to also consider loading in the opposite direction in their design and layout as
well as additional functionality requirements like providing smart grid functionality. Furthermore, energy
might now also be transported between different parts of the distribution grid, leading to issues which
were quite uncommon in the past (e.g. overvoltage on long lines as a results of many rooftop solar
installations feeding in). It is important to note that congestion can be separated in direction: supply
congestion (ODN, Ontvangst Door Netbeheerder) is due to an excess supply leading to issues, whilst
demand congestion (LDN, Levering Door Netbeheerder) is due to excessive loads on the system.

Next, the temporal aspect also plays a role. Because the generation of DERs like wind and solar
are heavily dependent on external conditions like the weather, time of day, and time of year, there
is a significant difference between their peak and average output. Therefore, grid sizing for these
generators is significantly different than for controllable generation sources like gas, coal, and nuclear.
Although this is primarily an issue for balancing the grid (matching demand and supply), these issues
also lead to a lot of unused capacity on the grid during times where there is a limited amount of sun or
wind. This capacity is currently left unused, as any new connections (or increases in transport capacity
for existing connections) would have to be matched by an increase in the capacity of the lines and
other components in the system to accommodate the peak loads. This means that there is a lot of
”capacity” currently left unused during the times between peaks for which, until recently, there was no
clear solution. However, it is important to distinguish this ”unused capacity” from the capacity that might
not be used due to grid performance requirements, like the N-1 criterion. The N-1 criterion is a constraint
that requires transmission grid operators to design the grid in such a way that: ”according to which the
elements remaining in operation within a TSO’s control area after occurrence of a contingency are
capable of accommodating the new operational situation without violating operational security limits”
(Commission, 2017). Although not mandatory for distribution network operators, many do follow this
rule (Commission, 2017). An illustration of this unused capacity is presented in Figure 1.1.
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Figure 1.1: An illustration of the ”unused capacity” available in the grid. The green area is the unused grid capacity that can be
used by loads, whilst the red area is capacity reserved for grid performance requirements like N-1 reserves.

Finally, another major factor at play in the appearance of congestion is the way in which the reg-
ulatory framework for grid operators has been set up in the Netherlands (van Hest & Kleinnijenhuis,
2022). Due to their unique position as semi-monopolistic parties and the fact that electricity is a so-
cial commodity, grid operators in the Netherlands are closely monitored by the government and the
national regulatory authority Autoriteit Consument & Markt (ACM). This entails that certain aspects like
the prices they are allowed to charge their customers, the amount of profit that they can make, and their
investment plans are all subject to the scrutiny of the regulator. At the close of the previous century,
there was a societal desire to make the grid operators as efficient as possible, which drove them to
limit investment into the grid to those areas where it was essential. Even though grid operators saw the
writing on the wall with respect to the issues that would arise as a consequence of the energy transi-
tion, they were limited in their ability to prepare adequately due to the way the incentive structure was
designed for these companies. This is not to say that the rationale behind the incentive structure was
not sound when it was originally devised, but rather that the operating conditions have changed over
the years, with the associated consequence being a grid which is not completely prepared for a fast
transition to sustainable energy sources (van Hest & Kleinnijenhuis, 2022).

All of the above factors contribute to the phenomenon that is called ”network congestion”. Network
congestion means that there is insufficient capacity in the grid to accommodate all of the transport
of electricity that various consumers and producers request. However, it is important to distinguish
between the issue of short-term/real-time congestion, which takes place due to short-term variations
like a sunny day, and longer-term congestion as a result of insufficient grid capacity to accommodate
new connections. Whereas the former entails primarily a safety concern about the loading and perfor-
mance of the grid, which must stay within thermal and voltage limits, the latter is more relevant when
considering the grid from a societal perspective. We can now discuss these two types in more detail
to determine why they are so relevant for our research.

1.2. Consequences of congestion
The consequences of longer-term congestion on the electricity network for society are readily apparent.
Firms trying to electrify their operations (Netbeheer Nederland, n.d.-a), new neighbourhoods being
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constructed to deal with the housing shortage which require a connection to the grid (NOS Nieuws,
2023), and new renewable energy projects (Netbeheer Nederland, 2024) are all examples of important
societal projects that are being delayed or even postponed due to a lack of grid capacity leading to
congestion.

Aside from these straightforward implications, the energy transition and the associated appearance
of grid congestion have also forced a significant shift in the responsibilities of the distribution network
operator. In the past, the operation of distribution networks was a relatively narrow responsibility which,
combined with the fact that until 1998 grid operators still functioned as energy suppliers in the Nether-
lands, meant that operators were mostly concerned with running a top-down, efficient grid (Joosten,
2019). These days however, the role of the distribution grid operator (DSO) has significantly shifted,
making them a key player not only in the larger national energy strategy, but also in areas like flexibility
services and congestion management (van Werven & Scheepers, 2005). In the past, distribution grid
operators were mostly concerned with asset management, whilst these days their focus has shifted
to also include aspects like capacity management. All of these new responsibilities entail significant
expansions of their operations, as well as a lot of experimentation on how to most efficiently respond
to the potential opportunities and challenges brought forth by problems like grid congestion. Although
congestion is, at face value, certainly a net negative, it has also forced a societal reevaluation of how
we perceive and use our energy system. This means that when it comes to grid congestion, distri-
bution grid operators have a lot of challenges on their plate while trying to navigate these issues in a
satisfactory fashion.

Furthermore, the scope of these congestion issues is quite extensive. Netbeheer Nederland, which
is an association of Dutch grid operators, publishes maps of the capacity available for new or larger
grid connections which can be seen in Figure 1.2 below.

Figure 1.2: Capacity map production (left) and consumption (right) for connections >3x80A (Netbeheer Nederland, 2024)

In the red areas, no transport capacity is available at all, requiring significant expansions into the
grid before new connections larger than 3𝑥80𝐴𝑚𝑝𝑒𝑟𝑒𝑠 can be connected. In the yellow zones, there
is only limited capacity available, with long waiting times. Finally, in the orange zones, congestion
management is being applied, in order to cope with the limited capacity of the grid. This is currently
considered to be the most fruitful approach to dealing with congestion in the foreseeable future. Let us
discuss this topic in more detail.

1.3. Solutions to Long-Term Congestion
To overcome longer-term congestion in the electricity grid, a host of solutions have been proposed.
Of course, the most straightforward solution is grid expansion and reinforcement. By increasing the
capacity of the lines and equipment in the grid, congestion issues can be alleviated, allowing new and



1.3. Solutions to Long-Term Congestion 5

larger connections to the grid. However, as Spiliotis et al. (2016) underlines, there are a multitude of
issues with this solution. Primarily, the process of constructing grid infrastructure takes a long time and
costs a lot of money. Netbeheer Nederland produced the illustrations presented in Figure 1.3 presented
below which provide a an insight to how long some grid expansions can take.

Figure 1.3: Area, time and costs of different parts of the grid infrastructure (left) as well as lines (right) (Netbeheer Nederland,
n.d.-b)(Netbeheer Nederland, 2024)

It is apparent from looking at this figure in combination with Figure 1.2 that the extent of the required
investment, as well as the space and time associated, is significant. Another factor that needs to be
considered, beyond the capital requirements as well as the multi-year lead time, is the shortage of
trained personnel to work on these grid expansions (de Boer, 2023). The Netherlands as a whole
is dealing with a technical-skilled labour shortage, which is especially felt by grid operators, who are
critically dependent on this group of people for their operations. Therefore, although grid operators in
the Netherlands are working on expanding and reinforcing the grid in order to deal with congestion and
increasing demand on the system, this work will only start to bear fruit on a longer time scale, leaving
the issue of grid congestion on the agenda for the near future.

In addition, even though it is already underway, it might also be beneficial to consider if such a
”brute force” approach is really worth it as it would, to a certain extent, return us to the situation in
which we found ourselves two decades ago. As Skok et al. (2022) mention in their work, transitioning
to a more flexible, responsive, and efficient energy system by incorporating solutions like the ones we
will discuss below, is a development which in spirit aligns itself with the fundamental goal of the energy
transition: the adoption of a sustainable system of production of consumption of energy. They argue
that ”flexibility is of particular importance to the DSOs because most of the distributed generation and
new loads are connected directly at the distribution level (20kV and lower). In essence, if the DSO [sic]
use of flexibility would make the current grid last longer by requiring less infrastructure upgrades or
reinforcements, while at the same time achieving better voltage quality and continuity of supply, there
is the potential to better utilize and efficiently develop the distribution system.”

With the above in mind, there is a need to consider solutions which are focused more on the short-
term resolution of congestion issues, in a less capital intensive manner as well as those that lead to
a more efficient utilisation of the current grid capacity. Utilising the ’unused capacity’ as presented
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in Figure 1.1 would allow for more efficient use of the grid without requiring expansion. This leads
us to four main avenues of dealing with network congestion (aside from grid reinforcement) by more
efficiently utilising the grid, outlined in Figure 1.4 below:

Figure 1.4: An overview of the solutions to grid congestion as presented by CEER (Distribution Systems Working Group, 2023)

Firstly, there is the rules-based approach. In this solution, flexibility for the grid operator is derived
through relevant instruments like the grid code and other similar rules. An example of this would be
the installation of a facility at the customer connection point to the grid which would allow the operator
to reduce the available capacity to the customer on a need basis. Of course, this is a solution that
requires a comprehensive framework regarding the manner of the execution, communication, and so
forth. In their research on this topic, the Distribution Systems Working Group (2020) already outlined
that ”imposed rules under this approach should not be unduly restrictive and should only be considered
if other possible solutions cannot be implemented at lower system cost.” Thus, there is significant
scrutiny of the implementation of such extensive measures.

On the other end of the spectrum are network tariffs, which take a significantly more voluntary
approach to procuring flexibility from customers. Under such a scheme, a financial incentive (or penalty)
is created for parties to offer flexibility services in return for lower (or higher if they fail to do so) grid
connection costs. For large customers, these discounts can already be quite significant, in the order
of tens of thousands of euros for large consumers or producers (Liander, n.d.). This approach does
preclude a larger uncertainty for the grid operator, especially as some customers might ”show different
behaviours than expected or may not be able to shift or reduce their demand for network capacity”
(Distribution Systems Working Group, 2023).

Taking a step back, the next solution concerns market-based procurement of flexibility services.
This system combines the previous two solutions and tries to internalise the certainty from the former
with the financial incentive of the latter. In the Netherlands, this market solution is mostly run through
the GOPACS platform where congestion management services are traded on multiple time scales. As
stated in Distribution SystemsWorking Group (2020), this method of procuring flexibility is the preferred
option of the EU ETC. However, for this solution to succeed, there is a need for a sufficient amount of
liquidity and information transparency available to all parties involved (Distribution Systems Working
Group, 2023)]. Furthermore, such a platform requires potential flexibility providers [i.e. grid customers]
to either have a dedicated team for organizing this or relying on a dedicated broker which interacts with
the market in their name. Reducing the need for this additional complexity is where the final solution
comes in.

This final presented solution is flexibility through the use of connection agreements. These agree-
ments are established between the grid operator and the customer directly, reducing the need for in-
termediaries. They can take different forms with regards to their implementation, but normally entail an
agreement wherein the grid operator can specify how much capacity the customer can use at a certain
moment in time subject to the contract conditions. One of the most straightforward implementations of
these contracts in the Netherlands is the Non-Firm ATO (Connection and Transport Agreement). Under
this agreement, a customer agrees to a reduction in grid tariffs in return for not being guaranteed a firm
connection (i.e. Non-Firm)(Hennig et al., 2023). This arrangement can take many forms, but the four
main ones are described below (Netbeheer Nederland, n.d.-a):

• Time based: The customer has certain time windows (be it based on time of day, week, month,
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etc) in which they are not guaranteed capacity.

• Capacity based: The customer is guaranteed a certain volume of transport capacity.

• Limited availability based: The grid operator has a limited amount of time per time window (week,
month, year, etc) in which they are allowed to limit the transport capacity of the customer.

• No guaranteed capacity: The grid operator allocates capacity to the customer based on availabil-
ity limitations in their network.

All of these methods are relatively straightforward and can be agreed upon in the form of standard
contracts (Netbeheer Nederland, n.d.-a). They are also optional for existing customers and are offered
as an option to new customers as well as those parties who wish to expand their grid connection in a
congested area of the grid. However, there are some limitations to these methods.

Firstly, most customers prefer firm connection agreements (Hennig et al., 2023). The rationale be-
hind this is very clear: the potential added uncertainty in firms’ business processes add an additional
degree of risk to projects, unless significant reductions in tariffs are offered. Furthermore, not all cus-
tomers have the ability to adjust their consumption or production to the capacity available on the grid,
nor is it always desirable. This limitation was clearly a relevant factor when developing this option of
providing flexibility, as the way it is being formulated currently in Distribution Systems Working Group
(2023) and Autoriteit Consument &Markt (2024), these kinds of contracts are only possible for commer-
cial and industrial customers, and outside of the scope of residential customers or societally essential
connections like hospitals.

Secondly, there is the issue of effectiveness. The fundamental goal behind using flexibility services
and contracts like these is to do more with the grid that is already there, using the ’unused capacity’
illustrated in Figure 1.1. If these contracts are not sufficiently attractive to potential customers, both in
their implementation and in their incentive framework, they will not lead to significant gains in reducing
congestion and achieving higher grid utilisation. On the other hand, increasing the incentive structure
excessively without incorporating sufficient safeguards might also risk gaming by connected parties, as
well as becoming a potential burden to firm customers, who then might risk paying a disproportionate
contribution to the operation of the grid. The implementation of this flexibility option with an excessive
incentive structure could also lead to a reduced supply of flexibility available for real-time congestion
management, leading to a significant market distortion there.

Finally, andmore fundamentally, the non-firm contract is inherently limited in scope. In a specific part
of the network with a given capacity, the more customers are connected through a non-firm connection,
the less capacity there is for each individual customer. The division of the available capacity is therefore
also a key aspect of the implementation of these agreements, which can make or break them in terms
of their appeal to potential customers as well as to grid operators themselves.

This last uncertainty was underlined by Boehme et al. (2010), who wrote that: ”Many non-firm
connections may operate under a ‘last-in first-out’ arrangement wherein earlier connected plant has
some degree of priority over newer applications (...). This arrangement has some similarities with firm
connections operating on a ‘first come first served’ basis and work to investigate the impact of priority
schemes on the ability of the network to accommodate generating capacity appears to be warranted.
” We have thus arrived at the focus of our research, and can therefore formulate our research gap:

There is a lack of exploration into the implication of different priority schemes for the allo-
cation of capacity among non-firm connection agreements in the context of distribution grid
congestion.

Our focus thus lies on the long term grid congestion that we identified previously, which will struc-
turally lead to insufficient grid capacity to accomodate more firm loads. From this follows our research
question:

“What strategies and mechanisms can be employed by grid operators to efficiently allocate
and distribute the available capacity among non-firm grid connection agreements (ATO) in the
distribution grid, ensuring fair treatment of customers whilst improving grid utilisation?”

This thesis is structured to provide a comprehensive investigation into this research question. It is
structured as follows.
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In chapter 2 we discuss the state of the art concerning the topic of distribution network congestion
and the applications of non-firm connection agreements through a review of relevant literature. In this
chapter, we will attempt to reframe the research question and research gap described above in their
proper context in scientific research. Finally, we will also investigate the prioritisation methods under
consideration, as well as the indices that we use to determine the effectiveness of these methods.

Subsequently in chapter 3, we describe the methodology that we followed in our research. We will
cover the modelling approach that we adopted to answer our research question, as well as the data that
we drew upon. In addition, in this chapter we also go over the implementation of the different method-
ologies, scenarios, and indices. The limitations and assumptions of our research are also introduced
here.

This will be followed by chapter 4, where the results of our research are presented. We will interpret
these findings and attempt to contextualise them in order to determine their relevance to our research
question. We will also discuss the sensitivity analysis and its outcomes to determine the impact of our
assumptions.

Finally, chapter 5 will round off this work, where we will attempt to synthesise our findings and draw
overarching conclusions that address the research question and objectives outlined in the introduc-
tion. Furthermore, this chapter will offer recommendations for future research endeavors, highlighting
avenues for further exploration within the field.



2
State of the Art Literature

With the establishment of the research gap and our research question in the previous chapter, in this
chapter we can now focus on establishing the current state of knowledge surrounding mechanisms to
resolve grid congestion, and specifically those mechanisms based on non-firm connection agreements.
Thus, the relevant areas that we are looking into are as follows: the application of congestion manage-
ment, research on the use of non-firm connection agreements, methodologies of allocating capacity as
well as determining relevant indicators for measuring the effectiveness of these methodologies.

2.1. Congestion Management
Before we discuss current research on our specific gap, we must first clearly establish the scope of the
problem that we will be looking at. The topic of congestion management has seen abundant research,
both in terms of studying the issue and potential solutions. In their work Hennig et al. (2023) include
an extensive typology of congestion issues. They identify that congestion in the electricity grid has four
main parameters which describe the nature of the problem:

• Location: Congestion can occur on low, medium, or high voltage parts of the grid, with a resultant
variation in affected grid area, ranging from a highly localised issue to an extensive bottleneck
with an impact across the system.

• Timing (Predictability): With regards to timing, according to Hennig et al. (2023) there is ”struc-
tural” congestion which is regular and predictable long in advance, and “sporadic” congestion
which is irregular and predictable only in the near term or near real-time.

• Type of Network Limitation: The nature of congestion can be due to thermal, voltage, or reactive
power constraints. The cause (i.e. the direction: supply or demand originated) is also relevant,
namely whether the issues are a result of excessive consumption or production on the relevant
part of the grid.

• External Factors: Hennig et al. (2023) also identified that external circumstances can play a
significant role in the nature of congestion issues. They state that factors like ”the existence
of and need for new flexibility resources, the organizational structure of network operation (e.g.,
number of customers per DSO and interactions between DSOs with each other and the TSO), the
regulatory landscape and pre-existing approaches for CM [congestionmanagement]” all influence
the nature and severity of congestion issues.

It is therefore important to clearly identify the type of congestion that this thesis is focusing on.
We will discuss this in our research in chapter 3. For now, let us review which approaches there are
to congestion management, such that we may properly position the topic of our research question:
non-firm contracting agreements.

In chapter 1 we introduced the main techniques for grid operators to access flexibility through de-
mand response for the purpose of dealing with grid limitations. However, congestion management

9
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methods go beyond this type of flexibility. Gumpu et al. (2019) created an extensive overview of the dif-
ferent methods that grid operators might choose to adopt in their congestion management processes,
presented in Figure 2.1. However, many of these methods do not apply to Low Voltage or Medium
Voltage grids.

Figure 2.1: Overview of ”Conventional Congestion Management Methods” (Gumpu et al., 2019)

From Figure 2.1 it is apparent that the first main divide can be found between technical and non-
technical methods. With regard to the former, Gautam et al. (2023) also described these methods as
”cost-free methods” as these can be performed by the grid operators without increasing operational
cost (which would be required for congestion management by auction, for example). They identify
that all of these technical or cost-free methods in some form or another include a ”modification of the
system topology, installing transformer taps, and implementing phase shifting transformers and flexible
AC transmission system (FACTS) device”.

However, FACTS devices and the outaging of congested lines are both methods that are of only
limited applicability to DSO’s, as their networks consist of mostly lower voltage lines with limited re-
dundancy (Hadush & Meeus, 2018). Transformer tap changes and network re-configuration are both
methods that are within the purview of the DSO, and can be used in situations with limited congestion
(Pal et al., 2015).

On the other hand, non-technical solutions are further divided between market-based methods and
non-market-based methods. When comparing these methods with the four types of demand response
delineated in Distribution Systems Working Group (2020), which are identical to the ones we identified
in chapter 1, it can be seen that a different aggregation method is chosen. The rules-based approach
from this publication aligns itself best with the non-technical, non-market-based methods. Knops et
al. (2001) gives the following explanation for these two methods: ”first-come-first-serve (capacity is
allocated in the order of requests), (...) and pro rata (all capacity requesting market parties receive an
amount of inter-connector capacity proportional to their share of the total requests)”. These methods
have extra relevance for us, as wewill discuss later. Themarket-basedmethods, which are described in
more detail in Pantoš (2020), are an amalgamation of the network tariffs andmarket-based procurement
approaches. Things like nodal and zonal pricing fall more under the category of tariffs, while re-dispatch
and auction are more market-based. Explicit counter trading and redispatching are ”corrective actions
more or less separate from the market” (Knops et al., 2001), but still fall within the category of market-
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based procurement.
Just like with the technical methods, not all of the non-technical methods are actually available to

DSO’s. For example, the nodal and zonal pricing congestion methods are the purview of the TSO,
which is responsible for these decisions. Similarly, market splitting (which in essence is a reframing of
zonal and nodal pricing) is also not a method that a DSO can adopt. Finally, counter trading is also
outside of the scope of the DSO’s responsibilities.

It should be noted that none of the above publications except for Distribution Systems Working
Group (2020) make reference to the concept of non-firm connection agreements as a method. What
is more, Knops et al. (2001) explicitly states that ”congestion management should (...) provide firm
capacity and not curtail contracts”. The concept is discussed in more detail however in Distribution
Systems Working Group (2023) and Hennig et al. (2023), where in the former it is mentioned that non-
firm contracts are ”agreements that deviate in one or more attributes from the traditional firm connection
agreements”, whilst the latter defines them as agreements where ”the network access capacity is dy-
namically dependent on the network state and may be reduced during network congestion. In this latter
case, specifications may also include the maximal allowable number and duration of load reductions”.

Although most of these methods go beyond the scope of our research, it is important to underline
their existence to illustrate that although demand response will be the main focus in this review of
literature moving forward, there exist several other methods which are relevant for grid operators.

If we thus update Figure 2.1 to better reflect the framing of Distribution Systems Working Group
(2023) and remove those methods that are not applicable to DSO’s, we arrive at Figure 2.2.

Figure 2.2: Overview of congestion methods applicable to the DSO, framed according to the structure in (Distribution Systems
Working Group, 2023).

In Figure 2.2 we can see that the different methods discussed in Figure 2.1 have been reorganised,
and now are more specific to those that are available to distribution grid operators. This gives a good
overview of the methods to which we should compare non-firm grid connection agreements, as these
are the actual valid alternatives.

2.2. Non-Firm Grid Connection Agreements
This brings us to the specific focus of our research: non-firm grid connection agreements. As Gómez
et al. (2020) mentions, ”conventionally, grid operators have granted network access on a firm basis
to both consumers and generators. Thus, network users were entitled to inject or withdraw as much
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power to and from the grid as they wanted, provided that they did not surpass the maximum capacity
allocated”. This has advantages and disadvantages: ”the main benefit of firm access is its simplicity,
as it eliminates the need for real-time management of injections and withdrawals.”(Gómez et al., 2020)
However, they also state that ”firm access may result in an inefficient capacity allocation and/or inef-
ficient grid expansion, as grid operators tend to follow excessively conservative criteria. As a result,
some network components are only used at their rated values for a few hours of the year, if ever. Ad-
ditionally, the need to provide new users with firm network access often results in denial of the right to
connect to the network due to lack of firm hosting capacity.” (Gómez et al., 2020) Non-firm grid connec-
tion agreements are therefore an alternative which only recently have come under consideration in the
Netherlands (Autoriteit Consument & Markt, 2024). Similarly, in Distribution Systems Working Group
(2023), it is mentioned how until the passing of EU Directive 2019/944, grid operators were only allowed
to offer firm grid connections to customers (“Directive (Eu) 2019/944 of the European Parliament and
of the Council of 5 June 2019 on common rules for the internal market for electricity and amending
Directive 2012/27/EU”, 2019). This new directive, however, aimed at creating “incentives for the use of
flexibility in distribution networks”, one of which was the procurement of flexibility through non-firm grid
connections (“Directive (Eu) 2019/944 of the European Parliament and of the Council of 5 June 2019
on common rules for the internal market for electricity and amending Directive 2012/27/EU”, 2019). An
important note to add to this, however, is that this system has only been approved for commercial and
industrial grid connections (Autoriteit Consument en Markt, 2024). Residential and similar grid connec-
tions are required to remain firm at all times. As Skok et al. (2022) argues, however, this is a sensible
decision as a non-firm connection requires ”a certain degree of flexibility from system users, and might
not be an interesting or viable option for all system users as their supply and/or demand is inflexible;
e.g. Ofgem (UK) did not consider flexible connections suitable for small, domestic households.” An im-
portant consideration to add to this however is that the proliferation of electric vehicles, heat pumps and
solar generators connected to battery might actually allow for more flexibility in residential consumption
patterns than expected.

In the United Kingdom and Scotland specifically, however, these connection agreements have al-
ready received significant research as a result of large levels of distributed generation in areas like
the Orkney Islands, where significant wind generation was installed, leading to significant feed-in con-
gestion (Boehme et al., 2010). Under the system of firm connection agreements, however, there was
no incentive against installing more generation in this area (Newberry, 2021; Simshauser & Newbery,
2023). Simshauser and Newbery (2023) argues that ”with a single zonal wholesale price, no Marginal
Loss Factors (MLFs) and curtailment risks borne by consumers – unsurprisingly – there has been an
excess entry result in the north of Great Britain (Scotland) where wind resources exceed network trans-
fer capacity to the south where major load centres are located.” The introduction of these non-firm grid
connections therefore allow for the internalisation of these costs, and to create a signal towards DER
investors to take the capacity of the grid into their calculations. Similarly, Newberry (2021) argues, ”in
congested areas offering non-firm connection offers to new entrants until cost-effective reinforcement
relaxes the export constraint (...), and would provide a good locational signal.”

Through the use of non-firm grid contracts, the grid operator can ”maximize the net active power ex-
port from the distribution network, at the interconnection point with the higher voltage network”(Džamarija
& Keane, 2013). An important consideration in achieving this objective is to allocate the capacity in
a way that gives sufficient margin for uncertainty in aspects like grid voltage and security (Ault et al.,
2006). Furthermore, as discussed in Muller and Cadoux (2023) ”non-firm connections make economic
sense in situations where connecting the new generator to the grid would create a mild constraint, that
is to say a constraint that would not be too deep nor too frequent. In such a case, grid reinforcement can
be avoided by curtailing only a limited amount of energy, hence by incurring a limited and acceptable
loss-of-gain for the producer.”

The appeal of non-firm grid connections to customers lies in the fact that the grid operator can
charge lower network tariffs (Hennig et al., 2023). For example, Anaya and Pollitt (2014) presented a
case study in Ireland where ”non-firm access, which is subject to interruptions, generators are usually
offered cheaper connection costs, and in many cases without any compensation when curtailment is
required.” An important consideration therefore is the amount of requested capacity that cannot be
allocated. For example, in France, the following rule is used: ”... at the request of the (...) connection
applicant, the grid operator proposes, if the network capacities allow it, an alternative connection offer
(...) [for which] the minimum non-guaranteed power for injection is less than or equal to 30% of the
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requested connection power; [and] the annual curtailed energy does not exceed 5% of the annual
production of the generator.” (Muller & Cadoux, 2023)

Next, as discussed in chapter 1, the methodology that is used to divide the available capacity be-
tween the non-firm grid connections is also key (Danzerl et al., 2016). We shall now discuss this in
more detail.

2.3. Methodologies for Dividing Capacity Among Connections
As mentioned above, one of the key questions that is relevant when implementing non-firm grid con-
nections is the division of available capacity among multiple parties with such a contract. The selection
of the methodology for dividing the available capacity has a significant impact on the attractiveness of
such contracts, with different strategies benefiting different parties (Jupe et al., 2010). Sun and Harrison
(2013) states that ”inappropriately chosen priority of curtailment resulted in reduced hosting capacity,
lower overall energy capture and lower benefits from [non-firm grid connections]”.

An important point to note is that most of the research concerning prioritisation methodologies for
non-firm grid connections takes a curtailment, rather than an allocation approach. The difference be-
tween the two is straightforward: whereas with curtailment the baseline assumption is the availability
of the full connection capacity, subject to changes by the grid operator, with allocation the baseline
is zero transport capacity available at the connection, subject to changes by the grid operator (Anaya
& Pollitt, 2014). Thus, although the methodologies found in the literature have similar applicability in
both the curtailment and allocation cases, it should be considered that these were designed with a cur-
tailment frame of reference. To take an example, Last In First Out (LIFO) gives priority to generators
based on the length of time that they have been connected. In the curtailment framing, this generator
gets curtailed last, if and only if all of the other generators have already been fully curtailed. With the
capacity allocation framing, the generator that was connected to the grid the earliest, gets allocated
their requested capacity first, independent of the requests of other generators.

Currie et al. (2011) presented an extensive list of methodologies for Active Network Management
(ANM) through non-firm connections. The methodologies, named ”Principles of Access (POA)”, are as
follows:

• Last In First Out This POA curtails the last generator added to the ANM scheme first. Adding a
new generator connection to the Last In First Out priority-list (in the position of least priority) does
not alter the priority position of existing generator units with interruptible contracts.

• Generator Size This POA curtails the largest generator that is contributing to a constraint first.
The total amount of curtailment required to alleviate a constraint is allocated in order of size.
Generator Size may refer to the installed rated capacity of the generator unit or the power output
at any given time when constraints arise.

• Greatest Carbon Benefit This POA aims to minimise the carbon emissions associated with
actively managed generation by curtailing the largest carbon emitting generators first. Based on
a carbonmetric such as CO2/MWh per generator the network operator could prioritise generation.

• Shared Percentage The Shared Percentage POA divides the required curtailment equally be-
tween all generators contributing to the constraint. The total amount of curtailment would be
shared by each of the generators based on the ratio of rated or actual generator output to total
required curtailment.

• Market Based Under a Market Based POA, generators with interruptible contracts could pay for
access to the network for a period and capacity allocated to those offering the highest payment.
Alternatively, generators may offer a price to be curtailed with a market mechanism to proportion
curtailment accordingly.

• Technical Best A Technical Best POA aims to curtail the generators in order of contribution to
the prevailing constraint or based on which generator(s) response characteristics are deemed
best for meeting the prevailing constraint. This may vary for different types of constraints and
network configurations.
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• Most Convenient The POA based on Most Convenient allows system operators to curtail the
generator they know to be the most convenient for responding to network constraints. This as-
sessment may be influenced by system operator (or control room engineer) preference.

However, in their identification of thesemethodologies they also indicate that some of thesemethod-
ologies are difficult to implement, like for example the Greatest Carbon Benefit methodology for which
”Determining the real carbon footprint of each generation technology in a clear, open and fair manner
is not a simple task”(Currie et al., 2011).

Sun and Harrison (2013) used three of these methodologies in their work, where they investigated
their impact on network hosting capacity. These were Last In First Out (LIFO), proportional curtailment
(Shared Percentage) and optimal curtailment (Technical Best). In addition, they expanded LIFO into two
versions, one which which prioritised connections closest to the Grid Supply Point (GSP, the connection
to the higher voltage grid levels), and one which prioritised connections farthest from the GSP. They
found that the selection of priority methodology could lead to a difference in revenue for generators of
up to 20%.

In Anaya and Pollitt (2014) the LIFO, Pro Rata (Shared Percentage) and Market Based are re-
viewed across different projects, where the advantages and disadvantages presented in Figure 2.3
were identified.

Figure 2.3: Comparison between three different methodologies of curtailment (Anaya & Pollitt, 2014)

As mentioned in Section 2.1, this research concerned curtailment of capacity, however, rather than
the allocation of it.

Because LIFO is already extensively in use, this methodology has also received significant amounts
of research (Andoni et al., 2017; Georgiopoulos & Graham, 2014). Danzerl et al. (2016) investigated
the effect that the LIFO method had on the connection of distributed wind generation. They found
that ”when applied under voltage constrained situations it can lead to a reduction in renewable energy
levels.” This was in addition to their finding that ”applying LIFO POA rule that gives high priority to
generators located at weak sections of the network can impose significantly, greater curtailment on
other generators regardless of their own local network strength and as a result may lead to reduced
energy yields”.

Pro Rata has also been investigated by multiple publications as a result of being incorporated into
UK Power Networks’ ”Flexible Plug and Play” programme (Andoni et al., 2017; Hubert & Coley, 2021;
Kane & Ault, 2015). Anaya and Pollitt (2014) mentions how ”the Pro Rata arrangement ensures an
equal allocation of curtailment across all generators contributing to the constraint, which is considered
by some to be a ’fairer’ way to assign curtailment.” On the other hand, Andoni et al. (2017) mention a
few key drawbacks: ”all participating generators are curtailed at all times when curtailment is required,
leading to increased disruption. Pro Rata might not always be desirable (technically speaking, it may
require modified pitch-controlled wind turbines, such that their output can be adjusted as needed, which
may be more expensive), as in several occasions, it is technically preferable to curtail a larger amount
of power from one generator than smaller amounts from all generators at a single event.”

Finally, one additional method was mentioned by the publications on the ”Flexible Plug and Play”
project. This method was called the ”Rota” method, where generators are curtailed on a rotational basis
or at a predetermined rota specified by the system operator. The advantages of using this methodology
lies in that the ”Rota arrangement brings an element of ’fairness’ to the PoA choice by changing the
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position on the priority stack of each non-firm wind generator every 24 h. This sees an 8% increase in
output of the most curtailed generator in the case study when compared to LIFO” (Kane & Ault, 2015).
Furthermore, Kane and Ault (2014) mention how ”as the level of generation connected under a rota
arrangement increases, the level of curtailment may increase however the length of time spent at the
bottom of the priority stack would decrease”. This is a definite advantage when compared to Pro Rata
and LIFO, where an increase in connections is usually perceived as a pure negative. However, a big
drawback is that ”the Rota scheme is a simple approach which does not take into account the size of
the generator or its actual contribution to the network constraint. This results in disproportionate losses
of revenue, especially to smaller sized generators” (Andoni et al., 2017).

From all of these works mentioned above, we can see that significant research effort has been
focused on the identification and comparison of this expansive list of methods. However, most of this
work has been qualitative in nature, and where the work has been quantitative, like in Danzerl et al.
(2016) and Dolan et al. (2014), the comparison has usually been focused on a single parameter, such
as cost or energy yield.

We can now use Figure 2.3 as a basis, and expand it with the additional methods we have discussed.
The results of this can be seen in Table 2.1. In the left column, we have the methodology, in the middle
column and the right column the advantages and disadvantages as discussed above.

Table 2.1: Advantages and disadvantages of different methodologies of allocating capacity.

Methodology Advantages Disadvantages

Last In First Out 1. Simple
2. Marginal cost to last connected party

1. Disincentives later connections
2. Reduction in total connected capacity

Generator Size 1. Simple 1. Disincentivises larger connections

Greatest Carbon Benefit 1. Conceptually straightforward
2. Aligns with goal of energy transition 1. Difficult to implement (hard to quantify)

Shared Percentage/Pro Rata 1. Incentives later connections
2. ”Fair”

1. Marginal cost to all connected parties
2. Increased technical requirements

Market Based 1. Optimal economic allocation
1. Transaction costs
2. Increased risk
3. Subject to market conditions

Technical Best 1. Efficient 1. Complex to implement
Most Convenient 1. Simple 1. Disincentives non-firm grid connections

Rota 1. ”Fair”
2. Time spent at bottom of allocation divided equally

1. Lower amount of allocation
2. Does not take into account
size of generator or contribution to network constraint

With these methodologies now established, we can now build further by investigating how we can
further compare them.

2.4. Measuring the Effectiveness of Each Methodology
As we mentioned above, research into the effectiveness of different methodologies has used several
different performance indicators as indices. These indices allow for the side-by-side comparison of
methodologies to determine which methodology for dividing non-firm grid capacity is most appropriate.
We have divided these parameters into three large categories. Firstly, we have indices that are relevant
for grid customers. Thus, these place emphasis on the factors that are important to customers who
are eligible to participate in these connection agreements, like industrial or commercial customers with
large grid connections. Secondly, there are the indices that focus on societal value. These indices
try to measure which methodology is societally the most desirable, by using the infrastructure to the
fullest extent for example. Finally, there are the relevant indices for grid operators. These try to capture
specific factors that are crucial in maintaining and building a reliable and resilient electricity grid.

2.4.1. Relevant Indices for Customers
The first and most obvious measure relevant to customers is how much of their requested capacity
is allocated. The importance of this measure is underlined even further by how, according to Muller
and Cadoux (2023), in French legislation: “... at the request of the (...) connection applicant, the grid
operator proposes, if the network capacities allow it, an alternative connection offer (...) [for which] the
minimum non-guaranteed power for injection is less than or equal to 30% of the requested connection
power; [and] the annual curtailed energy does not exceed 5% of the annual production of the generator.”
Sedzro et al. (2021) discusses how a methodology which prioritises maximum allocation is found to
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be more attractive to new connections to the grid than a prioritisation scheme such as LIFO, where
connection age gives priority. In their work, Anaya and Pollitt (2015) performed a cost-benefit analysis
for a new DER connection in a congested grid area to decide between a non-firm and firm connection,
and found that higher allocation directly corresponded to an increase in value for a non-firm connection.
Finally, Muller and Cadoux (2023) underlines the importance for DER developers of maximising the
output of their installations and thus having minimum curtailment.

Aside from the absolute level of allocation, another important index is the relative levels of alloca-
tion. As Muller and Cadoux (2023) discusses, the perceived fairness of a specific methodology is very
important, both for the perception of the customer themselves, as well as to meet the requirements set
out by regulators for non-discriminatory approaches. This fairness also presents itself in the work of
Sun and Harrison (2013), where it is mentioned that fairness can be quantified by comparing how much
each customer gets allocated proportionally to their requested capacity. Improving the ”fairness” of a
methodology was also the driver behind the work of Sedzro et al. (2021), who developed an adapted
version of the LIFO methodology which takes into account the location of a connection in the grid as
a factor in their prioritisation. Finally, Ault et al. (2006) also discussed how fairness was an important
factor in the operation of active network management, which needed to be taken into account as an
additional consideration outside of maximising allocated capacity. An important note to consider with
this index is the potential for gaming. As Anaya and Pollitt (2014) discusses, innovative arrangements
for distributing network capacity can be vulnerable to gaming, and thus should be closely scrutinised.
This problem is underlined in Hennig et al. (2023), which identified that local flexibility markets (like
non-firm connection agreements) are vulnerable to gaming by the manipulation of their consumption
levels.

One other factor which is key to investors and existing customers is the predictability of allocation.
Newbery (2023) discusses how for DER investors ”the more predictable and certain are the costs and
revenue streams after the final investment decision, the higher the share of debt:equity and the lower
the [weighted average cost of capital]”. This makes the investment more attractive for them, leading
to increased DER penetration. Currie et al. (2011) follows this, stating how a methodology is more
attractive to customers when “it is transparent to all network stakeholders and achieves consistency
for both existing generation units and new generation units by not impacting on their connection agree-
ments. This de-risks the interruptible contract for the investor as the long-term impact of curtailment
can be modelled based on a fixed position in a priority stack for access to capacity.” The higher the
predictability (and thus the lower the risk), the more attractive these non-firm grid connections become
(Simshauser & Newbery, 2023). This is affirmed by Eicke et al. (2020), who underline the importance
of predictable grid access, and thus investment returns. They also mention how ”the effect of many of
the locational instruments on investment decisions is reduced due to lack of predictability, low levels
of transparency, and insufficient spatial and temporal accuracy”(Eicke et al., 2020). This locational
signalling was determined to be significant in our discussion of non-firm grid connections Section 2.2,
therefore by association making the predictability of allocation significant. Of course, this predictability
also aids the grid operator. As Savelli et al. (2022) discusses, more predictable investment allows grid
operators to run their operations (like reinforcing the grid and procuring market based flexibility) more
efficiently. The main takeaway of this factor is therefore that although congestion is not always pre-
dictable for grid operators but, the more predictable the methodology of allocation, the more attractive
a non-firm grid connection may be (Currie et al., 2011; Eicke et al., 2020; Hennig et al., 2023)

2.4.2. Relevant Indices for Society
The second dimensions for indices that we identified in literature were those parameters that measured
the value that different methodologies have from a social perspective.

Anaya and Pollitt (2014) directly addressed this dimension in their work, discussing how the goal
of any smart grid arrangement like non-firm grid connections should aim to be ”(1) cost-effective for
DNOs and generators, (2) economically efficient (making the best use of the network—reduce costs of
given DG for consumers), and (3) socially efficient (maximising social welfare and the social value of
more connected renewables)”. To achieve this token of economic efficiency, they argue that the system
should be allocating the maximum amount of capacity, as upgrade costs are borne by the larger group
of grid users (thus leading to the highest ”bang for the buck”). The importance of using the network
as efficiently as possible is also affirmed by Currie et al. (2011), who state that any prioritisation mech-
anism should support efficient network operation. For example, they criticise LIFO, arguing that ”this
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[methodology] could also limit the technical utilisation of the distribution network”. In the same manner,
Simshauser and Newbery (2023) states that in the case of non-firm curtailment, ”if a wind generator
is curtailed for any reason, they are compensated for the lost profit of the curtailed energy, paid by
consumers. British consumers therefore (currently) bear the risk and financial consequence of renew-
able plant curtailment—including poor locational decisions.” To rephrase thus, an important societal
consideration when evaluating different methodologies is how efficiently the network is used, and thus
maximising the allocated capacity. An additional consideration to this societal value is presented by
Simshauser and Newbery (2023), who mention the importance of also differentiating the marginal and
average curtailment. The latter is straightforward, being a function of the allocation among all of the
generators. The former, however, quantifies exactly how much an additional MW of capacity or new
connection would be curtailed. Both the average and marginal allocation are therefore important. A
final note is the discussion by Anaya and Pollitt (2014). They mention the following: ”a key question
is what is the socially optimal approach to curtailment? LIFO is an approach where each generator
is exposed to their marginal curtailment cost to the system. Pro Rata exposes each generator to the
average cost of curtailment. If the marginal benefit to the system of each additional unit of capacity is
constant (i.e. if all wind generators behind a constraint had the same subsidy regime and the same
technology) the marginal system benefits would include the value of the energy produced and the value
of the subsidy net of production costs. For social optimality this marginal benefit should reflect all of the
social benefits of additional wind capacity (i.e. the subsidy should reflect the environmental benefits).”
This note adds additional consideration to the comparison between different methodologies, as quan-
tifying how much exact social benefit is created by the additional capacity allocated by a methodology
is difficult. Following this line of thinking, purely looking at the total allocated capacity is insufficient
to determine which methodology would be most desirable, as the way of achieving that capacity is
paramount. This underlines the need for all indices to be taken into consideration, not just those that
are straightforward and easily understandable.

2.4.3. Relevant Indices for Grid Operators
The final dimension that should be taken into account when comparing different methodologies of
allocating capacity among non-firm grid connections is the one focused on the parameters relevant for
grid operators.

As we mentioned previously, one of the key considerations that grid operators need to take into ac-
count when allocating this capacity is the uncertainty inherent in the forecasting of the grid. Therefore,
the methodology should be able to cope with these uncertainties. To that effect, Muller and Cadoux
(2023) explained that allocation should take into account parameters like the voltage of the grid supply
point when allocating capacity. This is corroborated by Danzerl et al. (2016), who identify that method-
ologies like LIFO struggle when dealing with an area of the grid that is voltage constrained, as the
methodology does not take the location of the grid limitation into account when allocating capacity.
Following the same line of reasoning, Sedzro et al. (2021) developed an alternative to pure LIFO which
took into account the electrical distance to a network limitation. Thus, a critical parameter when com-
paring methodologies is how these methodologies deal with uncertainty leading to issues with regard
to ”voltage control, power flow management, fault level management and network security” (Ault et al.,
2006).

Looking at this from another perspective, it is important for the grid operator that a methodology
allows them to service all customers in as efficient a manner as possible. To this end, Skok et al.
(2022) argues ”if the DSO use of flexibility would make the current grid last longer by requiring less
infrastructure upgrades or reinforcements, while at the same time achieving better voltage quality and
continuity of supply, there is the potential to better utilize and efficiently develop the distribution system.”
In the same vein, Džamarija and Keane (2013) indicates that the optimal methodology allows the grid
operator to ”maximize the net active power export from the distribution network, at the interconnection
point with the higher voltage network. The net active power export is maximized by formulating a trade-
off between the active power output of the allocated generation and the power losses.” This is affirmed
by Sun and Harrison (2013), who state that a risk with LIFO, for example, is that ”the [oldest] connection
may be located at a network position where managing the output of DG has limited impact on relieving
network constraints whereas the same voltage or thermal control effect could provided by other DG
connections for less curtailment.”



3
Methodology

Based on the research question that we have now formulated, as well as the relevant state of the art
on research surrounding the topic of non-firm connection agreements in distribution grids, we can now
discuss the methodology that we will be adopting in our research.

This chapter will cover our research approach in Section 3.1, including the more extensively for-
mulated research question. Here we will also touch upon what kind of recommendations and outputs
we looked to develop. In Section 3.2 we will go into depth on how we translated the different aspects
of the research approach into a specific modelling approach, and how we implemented those in code.
Finally, in Section 3.3 we will go over the different assumptions that we made throughout our research,
and what impact we expect these to have on our final results. In addition, we will also touch upon the
limitations imposed on our outcomes by our research and modelling approach.

3.1. Research Approach
To answer our research question, we adopted an experimental research approach, where we simulated
a specific substation in the Dutch electricity grid. We performed our research in an internship for the
Dutch distribution grid operator Liander.

3.1.1. General Overview of Approach
With the background of our research now clearly established in the previous chapters, let us discuss
what the high level approach was that we adopted to answer our research question. Before we do this
however, let us revisit the research question that we posed in the previous chapter, and divide this into
sub-questions that capture the different aspects of the main question.

RQ: “What strategies and mechanisms can be employed by grid operators to efficiently al-
locate and distribute the available capacity among non-firm grid connection agreements (ATO)
in the distribution grid, ensuring fair treatment of customers whilst improving grid utilisation?”

• SQ1: What mechanisms have been devised for allocating capacity in the context of non-firm grid
connection agreements?

• SQ2: How can we measure the performance of these different mechanisms to ensure fair treat-
ment of customers and improved grid utilisation?

• SQ3: How do the different mechanisms score on these measures when compared to each other?

• SQ4: What is the effect of the forecast uncertainty in these results?

• SQ5: What are the implications of this comparison for grid operators when selecting their ap-
proach to dividing non-firm capacity among connected parties?

Our research approach for answering these questions will follow the process presented in Fig-
ure 3.1.
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Figure 3.1: An overview of the research approach adopted in this work.

Based on the literature review in chapter 2, we can answer the first two sub-questions in the next
two sections. These are then used as inputs to perform our case study, which is described in the
subsequent section after. Out of our case study came the different scores for the methodologies as
well as the effect of the forecast uncertainty on these scores, which combined informed our analysis
for the final sub-question. After synthesising all of this information, we could then come up with the
relevant implications for the grid operator and allow us to answer our main research question.

An important note to discuss before we move further, is the meaning of the terms capacity and
utilisation in the context of our work. In our research, when we use the term capacity, we are referring
to the ability of components of the distribution grid to accommodate power running through them. For
example, the capacity of a line is defined as its operational voltage level multiplied by its current limit.
Utilisation on the other hand, is a measure of how close the actual power running through a component
is to the maximum power (i.e. the capacity of the component) that it can accommodate. An utilisation
of fifty percent thus means that the actual power is half of the maximum power that the component can
accommodate. When a methodology allocates capacity to a customer, what it is actually doing is giving
that customer the opportunity to use a certain amount capacity of the grid. An allocation of capacity of
5 MW for example, means that there is capacity in the system for at least 5 MW, which can be used
by that specific customer. A full utilisation of the allocated capacity by a customer does therefore not
automatically mean a full utilisation of the system components, as other customers might also have
been allocated capacity but are not using it at that moment. The term capacity and utilisation therefore
apply to both system components and customers/connected parties, and have different implications for
each of them.
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3.1.2. Methodologies Under Consideration
From our investigation into the literature on the topic of capacity allocation, the following five method-
ologies were found to be the most prevalent and worthy of inclusion. The main reasoning behind their
inclusion is also stated. The selection of methodologies was based upon the scope of our research,
choosing those methodologies which were both feasible in reality as well as realistic in the time frame
of our research.

• Technical Best/ Maximal Allocation (Mathematical Optimum): This methodology is meant to
give us an indicator of how much capacity could be allocated and among which sources.

• Last In, First Out (LIFO): This methodology is the most straightforward, has been implemented
in other countries and does not lead to existing non-firm connections losing their value with the
addition of new ones.

• Adapted LIFO: Takes into account topology of grid as additional factor combined with duration
of contract allowing for more nuanced allocation.

• Rota/Carousel: A ”fair” option that also ensures that all non-firm grid connections still get value
out of their contract, no matter the duration that they have been connected.

• Pro Rata/Proportional: The ”fairest” option, that allows all connections to participate proportion-
ally.

For Mathematical Optimum (MO), the approach is rather straightforward conceptually, but harder to
implement practically. This methodology pays no heed to allocating the capacity in a fair or consistent
manner, but rather considers the relevant system as a whole and determines what the maximal allo-
cation of capacity is given the different constraints of the system. As we mentioned in the justification
for the methodology above, this method of allocating capacity should give us a baseline of how much
capacity could be allocated at the most. We can then compare the other methodologies to it to see how
close they get to this ’maximum’ solution. It is important to underline here that ’optimal’ allocation in
the context of our research is allocating as much capacity to customers as possible taking into account
grid limitations, both physical and regulatory.

The second methodology is the LIFO approach, where capacity is allocated on the basis of a fixed
priority-list, where the age of the connection agreement determines the position in the list (from oldest
to newest). The rationale for this methodology is to ensure that the connection agreement does not
diminish in value over time, as more non-firm connection agreements are added. As mentioned in the
justification, this methodology has already been widely implemented for allocation of curtailment rather
than capacity, and it is therefore interesting to see how it performs in this flipped context.

The third methodology builds on the previous concept by following the same rationale but giving
priority to grid connections that are located closer to the upstream network, i.e. located at a higher
voltage level. This is especially relevant for non-firm grid connection agreements that are connected
to long lines with multiple customers on them, however this is not applicable in our research as we will
discuss in Section 3.1.4. We included this methodology here primarily to compare it to the pure LIFO
approach, and to determine if even in our selected case study it could increase LIFO’s attractiveness.

Next, there is the Carousel methodology, which involves a similar priority-list as in LIFO but shifts
that priority-list after a fixed amount of time. This leads to a ’fairer’ approach than pure LIFO, and
ensures that all connections are guaranteed the first spot in line at least sometimes. Including this
methodology was mostly done as it provides an interesting trade-off for grid operators, whilst still being
pretty transparent for customers.

Finally we have Pro Rata. This methodology attempt to maximise the ’fairness’ of the allocation,
adding an additional constraint to themathematical optimumby requiring the ratio between the allocated
and requested capacity to be identical across all non-firm loads. This means that although the capacity
might vary in absolute numbers, each customer will get a proportional amount of their requested capac-
ity. As is probably apparent already, this methodology is sensitive to ’gaming’ by customers, requiring
the cost-structure to be set up in such a way to discourage excessive capacity requests. We reflect on
this at the end of this thesis.
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3.1.3. Evaluation Parameters Used
Similarly to the methodologies above, our selection of relevant evaluation parameters, hereafter called
Key Performance Indices (KPI’s), was based on the finding in the State of the Art section. These KPI’s
are as follows:

• Fairness

– Howmuch do the connected parties get to use their requested capacity (as a % of requested
capacity)

– Howmuch do the connected parties get with respect to each other (difference in % of highest
allocated vs lowest allocated requested capacity)

– How predictable is the allocation of capacity (the variance of the allocation of capacity)

• Grid Utilisation

– How much is the total capacity of the grid used more when compared to the base scenario
per allocated unit of capacity (average load allocated (MWh) per % loading increase of lines)

– How much total load/demand is unable to be allocated (sum of capacity unable to allocated
in MW/MWh)

• Grid Performance

– How regularly does the allocated capacity still have to be curtailed in the real time operation
of the grid (# of exceedances)

– And to what extent does the allocated capacity need to be curtailed (average size of ex-
ceedance (MW))

Once again, these KPI’s have been split into three main categories. Firstly, there are those primarily
of relevant to customers currently considering or already having a non-firm connection agreement. As
was mentioned in chapter 1, the perception that customers have of a certain tool like non-firm connec-
tion agreements is paramount in its attractiveness and thus in its adoption. It is therefore desirable that
allocation of capacity occurs in a predictable, transparent and consistent manner. To quantify this de-
sirability we use three KPI’s, the first of which straightforwardly evaluates how much of their requested
capacity connected parties get allocated. Secondly, there is the relative difference in allocated capacity
as a percentage of requested capacity. A large disparity in this measure of ’fairness’ might strongly dis-
suade connected parties and potentially lead to less efficient grid utilisation. Finally, the predictability of
the allocation is important. Connected parties need to evaluate their risk when considering a non-firm
connection agreements, and a higher predictability increases the attractiveness of such a product as
the uncertainty lowers.

The second category takes the societal perspective, and tries to utilise grid resources (which are
payed for by all users on the grid) as efficiently as possible. We split this into two metrics: first, how
much extra capacity can be allocated per increase in the loading on the system, and secondly, how
much of the requested capacity is unable to be allocated. This latter metric captures to a certain extent
how much potential output or value is lost by the customers with the non-firm connection agreements,
which entails an inefficient grid.

Finally, in the third and last category we find the metrics that the grid operator cares about: what is
the effect on the grid. Namely, how does each methodology contribute to potential grid exceedances,
where the operator would have to step in and either curtail allocated capacity or perform corrective
actions somewhere else in the grid through congestion management. We split this interest into two
KPI’s measuring the number of exceedances as well as their severity. This aids us in determining
which of these methodologies reduces the amount of active congestion management that has to be
performed by grid operators.

3.1.4. Case Study Description
To investigate the effectiveness of these different methodologies, we selected a case study which we
could use to experimentally simulate these different methodologies and their way of allocating capacity.
In addition, the case study allowed us to develop experience with implementing these methodologies,
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giving us a good insight into some of the considerations that might be relevant for a grid operator when
implementing such methodologies themselves.

The case study itself is a representation of the Heerhugowaard-Noord substation, located in the
grid of the dutch grid operator Liander. This specific scoping was chosen as it allowed us to have
two potential voltage levels for our loads, which is relevant for the Adapted LIFO methodology. The
substation consists of a few core components, which are as follows.

• A 20kV bus, to which one customer is connected.

• 3 lines from the 20kV bus to the upstream network grid supply point, which is considered the
’source’ in our case study.

• Two 10kV busses (A and B), with 6 and 4 customers connected respectively.

• 2 Transformers, which each connect one of the 10kV busses to the 20kV bus.

A source/grid supply point is a virtual representation of an upstream network which provides the
voltage reference and can absorb or dispense power as needed. We have visualized these different
components in the network graph Figure 3.2 below.

Figure 3.2: Network Graph of the case study.
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In Figure 3.2, the different components of the system may be observed. Firstly, at the top we have
the grid supply point (GSP), which is a representation of the upstream network. It is connected to the
20 kV bus by three upstream lines (UL1 through UL3). Below this, we find the 20 kV bus to which one
load is connected (identifier 202, non-firm connection. Additionally, two transformers are connected to
this bus. The first transformer connects to the first 10 kV bus, bus A, with two non-firm and four firm
connections (FC), whilst the second transformer connects to 10 kV bus B. This bus has one non-firm
and three firm connections.

This grid in reality only has firm connections currently. To represent the non-firm load, loads 105,
116, 117 and 202 were assigned as non-firm connections. This choice was made as these loads
were the only direct connections to customers, with all of the other loads representing a line which
connected multiple other customers to the substation. Although representing these in our model might
have enhanced our outputs, the decision was made to represent these lines as single loads to keep
the research within scope of the thesis.

Furthermore, it should be mentioned that this grid is currently appropriately sized to accommodate
all of the connections on it, and thus experience relative little to no congestion. To create this congestion,
the line limits were artificially lowered of the three lines to the upstream network. It should be underlined
that the limiting factor to the capacity of the system is based on the constrained capacity of the lines.
Therefore issues like voltage exceedances or transformer overloading were not taken into account in
the allocation of capacity. We did however measure the outputs of these parameters, to verify the
validity of these decisions.

With respect to the ’capacity’ therefore, we are referring to the unused capacity already shown in
Figure 1.1. In Figure 3.3 we have combined this with what the non-firm loading could look like, using this
available capacity. The total available grid capacity (thus without firm loads) is therefore the product
of the line capacity (in Amperes) and the voltage of the system. The exact formula is presented in
Equation 3.1 below.

Figure 3.3: An illustration of the same system shown in Figure 1.1 but with added non-firm loads. The unused capacity is not
fully utilised by the non-firm loads.

A note to take from Figure 3.3 is that the allocation of non-firm capacity does not automatically mean
that there will be no more unused capacity, as this is highly dependent on the requested capacity of all
of the non-firm loads. Simply, the unused capacity should be smaller with the addition of the non-firm
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load.

3.1.5. Expected Outcomes and Recommendations
With the overall research approach now outlined, we can now discuss what our expected outcomes
are, and which kind of recommendations could be drawn from them. The validity of these expectations
are touched upon again in chapter 5.

The primary outcome of our research is intended to be a comparison of different methodologies for
allocating capacity to non-firm grid connections in a medium voltage distribution station. The method-
ologies would give, if not a comprehensive, at least a thorough overview of the possible ways that
a grid operator might perform this allocation process. The comparison would be based on a set of
KPI’s which captured three relevant dimensions, each primarily of interest for a respective stakeholder.
These stakeholders were:

• The customer that uses a non-firm connection agreement.

• The grid operator who provides such a non-firm connection agreement.

• The larger set of customers who pay for the operation and maintenance of the grid through the
connection and transport tariffs.

The KPI’s would therefore try to capture what measures are important to each of these stakeholders.
Based on them, a comparison between the methodologies could be made, allowing us to identify which
of the methodologies scores best, both in absolute terms as well as per relevant group of stakeholders.
It is important to underline here that these KPI’s would allow us to make a relative evaluation of the
methodologies, i.e. with respect to each other. The scores do not (and arguably cannot) provide
an absolute evaluation on the effectiveness or merit of the methodologies by themselves. What is
more, the comparison itself would also only be valid for the given boundary conditions that we have
stated above, as well as the assumptions and decisions that we will state below. To extrapolate larger
conclusions from this comparison would necessitate a substantial consideration of the limiting factors
of the analysis.

The secondary outcome of our research would be an analysis of the sensitivity of the comparison
to important parameters like the forecast uncertainty that the grid operator, as well as the level of
congestion present on the considered grid. With regards to the former, it would allow us to determine
how each methodology compares both to itself under more ideal circumstances, as well as with the
other methodologies in their manner of dealing with higher levels of uncertainty. On the later sensitivity
to the congestion on the grid, it would allow us to determine how much the ’unused capacity’ left on the
grid plays a role in how effective each methodology is.

Based on the outcomes mentioned, the main recommendation of our work would centre around
the considerations that should be relevant to grid operators, both when choosing which methodology
to adopt in their own grids, but also when implementing these methodologies. Thus our research
should give a first indication on what the different methodologies require, and do well on. In addition to
this, we would be able to indicate what the potential effects of forecast uncertainty would be on these
considerations, as well as what the level of congestion means for the performance of the different
methodologies.

Aside from these operator focused recommendations, we would also be looking to use our research
as a basis to reflect on the current implementation of the concept of non-firm grid connections in the
Netherlands, and to identify where there might be room for improvement.

3.2. Modelling Approach
Based on the description of the research approach, we can now go into the actual modelling imple-
mentation of our research, specifically on the workflow that we adopted to achieve our findings. In
Figure 3.4 below, a top-level overview of the modelling approach is given, with the process subdivided
into three main parts. These are the external inputs to our modelling, the calculations and actions
that we performed, and then the outputs that we were looking to deliver. On the bottom we find the
assumptions and decisions that were made or taken, which influenced the process in their respective
ways.



3.2. Modelling Approach 25

Figure 3.4: A Top Level View of The Modelling Approach

As can be seen from the left hand side of Figure 3.4, we are dependent on two primary inputs for
our research. The first of these, the grid structure data, contains most of the information we need to
run our simulations, like the line and transformer characteristics, as well as the different connections
between the loads and the busses. The second set of input data are the measurement data that we use
both for generating our forecasts as well as running the simulations (these are trapezoidal in nature,
i.e. ramping up and down). This measurement data runs from May 2023 to January 2024, described
in more detail in the next section.

In the middle of the figure we find the process of our research, namely three distinct steps. These
are the generation of forecast based on the measurements, the allocation of capacity based on these
forecasts, and then finally the translation of this allocated capacity to the real time measurement calcu-
lations in the third step of the process. For both the allocation and the calculation steps we make use
of the Python Package Power Grid Model, which is a library for steady state distribution power system
analysis. It is developed and used by Alliander, which was the main reason for our decision to use the
library. Similarly, the generation of the forecasts based on the measurements was done through the
Open STEF tool (Short Term Energy Forecasting) which is an open source library, partly developed by
Alliander.

Finally, at the end of the figure we find the outputs, where we can use the KPI’s output from the
calculations step to compare the different methodologies to each other, as well as determine the effect
of the forecast uncertainty and the congestion levels in the grid. Based on all of these, we can then base
our recommendation to grid operators on which methodology would be most appropriate depending on
the relevant considerations.

3.2.1. General Setup
Before we zoom into each of the three phases described above, we must first establish the general
setup of our modelling approach. This is as follows: based on the measurement data we generate
a backcasted forecast with a resolution of 15 minutes (the standard time unit for most energy mar-
kets). This forecast can use all of the measurements up to the day-ahead market close at 6AM the
preceding day (thus for the forecast of Monday from 12AM to 12PM the forecast is generated with the
measurements up to Sunday morning 6AM).

This forecast is then used to allocate the capacity to the non-firm loads, based on the unused
capacity on the grid after the the forecast consumption profiles of the firm loads. The forecasted values
of the non-firm loads are taken to be the their ’requested’ capacities, as in reality non-firm loads would
have to indicate their expected consumption. Based on this, the selected methodology is used to
allocate the capacity to the different non-firm loads. The allocated capacity gives a bound for transport
capacity, thus both supply and demand, This data is then passed to the calculation phase.
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In the calculation phase, for the firm loads themeasurement data is used. For the non-firm loads, the
allocated capacity is used as an upper boundary for the measurement data of these loads. This means
that the measurement data is used when it is within the bounds of the allocated capacity, otherwise the
allocated capacity (positive or negative bound depending on value of measurement) is used. We have
illustrated this in Figure 3.5, where we compare the measurement data and the allocated capacity for
one of our non-firm loads.

Figure 3.5: The merging of measurement data and the allocated capacity for a non-firm load.

We can clearly see in the upper figure that where the measurement data exceeds the allocated
capacity, the calculation data is cut off at the allocated capacity bound. This calculation input data
represented in the bottom figure is then used for the next phase, where the calculation data is used in
the Power Grid Model power flow calculations, the outputs of which are used to determine the KPI’s.
Let us now go into more detail on each of the phases of the process.

3.2.2. Forecasting
The first step in our modelling approach concerns the generation of forecasts. As mentioned previ-
ously, these forecasts are generated by back-casting using the measurement data as an input for the
Open Short Term Energy Forecast library. Back-casting means that we train the forecast model on
the measurement data, and then use this model to predict ahead. In our specific case, the model was
allowed to use all data until the allocation moment (day-ahead, at 6AM) and then generated a forecast
18 hours ahead for a full 24 hours. This is then done for each day of the dataset. Like in all of the
other parts of our research, a resolution of 15 minutes was used. The reason for using this tool, and
not simply taking a random variation of the measurements is because this tool is actually used by a
distribution grid operator (Alliander) and gives us a good indication of the uncertainty that we could
expect in real life forecasts.

Each forecast has a certain probability associated with them. For our baseline results, we took the
99th percentile for demand by a load and the 1st percentile for supply by a load. The reason that these
two have to be split is illustrated in Figure 3.6. In short, in the sign convention that is used by grid
operators, when a customer draws power from the grid, it is considered a positive value (+) load, whilst
if a customer supplies power to the grid, it is considered a negative value (-) load.
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Figure 3.6: A comparison of the 10th and 90th percentile forecast

As can be seen in the figure, the 90th percentile in orange gives us a high predicted load (which
is positive in the sign convention) whilst the 10th percentile in green gives us a ’low’ predicted load
(which is negative in the sign convention). Because the loads in our case study are both suppliers and
consumers, we use the 90th percentile forecast when the mean forecast is positive, whilst we use the
10th percentile when the mean forecast is negative. This way we can ensure we have sufficient margin
in our forecast for both directions that power might flow from a customer.

Aside from the baseline results, for sub-question 4 we also investigated the effects of different
levels of forecast uncertainty, i.e. different percentiles instead of the 99th/01st mix that we adopt in the
baseline scenario. To determine these effects, we generated a sampling of forecast percentiles for all
of our loads, ranging from the 99/1st percentile all the way to the 45/55th percentile, which means that
in the last of these forecasts, the loads are even assumed to be of a smaller magnitude than the mean
(which would be the equivalent of the 50/50th percentile). In total, we tested our methodologies under
a range of 50 forecasts, with the exact values presented in Appendix A.

Although a larger sampling would have enhanced our analysis, as we already mentioned in Sec-
tion 3.2.1, each individual run was already reaching close to two hours. Due to the limited time available
to us therefore, we drew upon this smaller sample size of forecast percentiles. An important note to
add to this however, is that additional forecast percentiles would not necessarily result in a finer anal-
ysis, as these would simply mean that our outputs would get closer and closer to their true averages.
Furthermore, the large amounts of assumptions inherent in our work, as we will explain in Section 3.3,
means that any additional effort put towards our sensitivity analysis would only be of limited effect, as
those assumptions were much more significant in our outputs. We therefore chose to stick with 50
forecast percentiles for our research, in a balance between time invested and payoff.

The final point worth mentioning is our comparison between the measurement and forecast data.
We found that although the forecast was quite capable of achieving similar averages for each load,
it was unable to predict the timing of peaks in the system with a high certainty. As we will discuss
in chapter 4 this led to many exceedances being the result of peaks in the firm loads rather than the
non-firm allocated capacity as the forecasts could not appropriately predict these peaks.

With all of the above in mind, let us nowmove on to the next section and discuss how these forecasts
were used to allocate the available capacity to the non-firm loads.

3.2.3. Capacity Allocation & Methodologies
Referring back to Figure 3.4, we now move on to the capacity allocation phase of our modelling ap-
proach. In this stage, the forecasts and the grid structure data is used to determine the available
capacity in the grid as illustrated in Figure 3.7. Then the selected methodology is applied to divide this
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capacity among the loads. Subsequently, the resultant allocated capacities are passed to the solution
checker which runs a Power Grid Model power flow calculation to determine if the allocated capacities
indeed do not exceed the limits of the system. If this is indeed true, the allocated capacities are then
passed to the next phase in the process.

Figure 3.7: A diagram of the allocation phases of our modelling approach.

There are a few key points to notice in Figure 3.7. Firstly, this is where we encounter the first of
our important assumptions and decisions. To determine the available capacity, we require the line limit
of the grid, the non-firm multiplier and the assumed power factor, as well as the chosen methodology
for this specific iteration. We will explain these parameters in Section 3.3. Secondly, it might stand out
that the division of capacity in the methodology block does not mention any power flow calculations
in Power Grid Model. This is because one of the large limitations of our research was our inability to
incorporate the power flow calculations in the optimisation library which varies the allocated capacities
until the maximum total allocated capacity is reached. Therefore, the available capacity was calculated
using Equation 3.1:

𝐶𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝐹 ∗ (((2 ∗ 𝐼𝑀𝑎𝑥𝐿𝑖𝑛𝑒) ∗ 𝑉𝐿𝑖𝑛𝑒 ∗ √3) − 𝑃𝐹𝑖𝑟𝑚) (3.1)

The elements of this formula to calculate the available capacity (𝐶𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (which we calculated
in two directions to determine both the capacity for supply and demand) are simple. It is Ohm’s law
substituted with our variables. The line limit (𝐼𝑀𝑎𝑥𝐿𝑖𝑛𝑒 ) is multiplied by two to ensure our three lines are
N-1 secure, whilst the Grid Supply Point voltage (𝑉𝐿𝑖𝑛𝑒 is taken as for the voltage as this is where the
limiting factor of the system takes place. We multiply this by the square root of three as we have a
three phase system where the voltage is given in line to neutral rather than line to line (ratio equal to
square root 3). Finally, we subtract the capacity already taken up by the sum of all of the firm loads,
both positive and negative (𝑃𝐹𝑖𝑟𝑚). Finally, the whole results is multiplied by the assumed power factor
(PF).

Because this equation is an over simplified representation of the actual system, we include the
Solution Checker step in our capacity allocation, which is completely external to the the methodologies
and can therefore run a power flow simulation in Power Grid Model. This way we ensure that the
allocated capacity is always valid for at least the forecast data.

With all of this established, let us now look into how the methodologies were implemented in the
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model, and what steps they each followed. The full detailed step-by-step implementation can be found
in Appendix B. We only discuss the top-level approach here.

Mathematical Optimum

The first methodology is MO, in which we tried to formulate the allocation of non-firm capacity as a
convex optimisation which we could then solve. For this purpose, we chose the python library CVXPY,
which allows us to formulate our problem in a convex fashion, and then implement a solver to give us our
results (Diamond & Boyd, 2016). The extensive step-by-step approach we implemented is explained
in detail in Appendix B. For now, we will briefly go through the main points in the process. An import
note to add is that the methodology is applied per time step (per 15 minute segment), and not over the
whole dataset at once.

• Step 1: We first calculate the total firm capacity (apparent power) forecasted to be used at this
time step.

• Step 2: We then combine this with Equation 3.1 to calculate the capacity in both the LDN (demand)
and ODN (supply) direction 12.

• Step 3: For each of the non-firm load, the requested capacity is split into requested LDN capacity
and requested ODN capacity. Each of the two is taken to be an optimisation variable, with a range
from 0 to the requested capacity as constraints.

• Step 4: An additional constraint is formulated that specifies that the sum of the allocated capacities
in the LDN direction may not exceed the LDN capacity calculated previously, and similarly the sum
of the ODN capacities that are allocated may not exceed the ODN capacity calculated previously.

• Step 5: We then formulate the objective statement, which is split into two equally weighed maxi-
mize objectives, one trying to maximise the sum of the LDN capacities and one trying to maximise
the inverse of the ODN capacities3.

• Step 6: We can then finally specify our problem, with the constraints and objectives as discussed,
and solve this problem with a discrete solver. We used the MOSEK solver as it was more robust
and faster than the default ECOS solver normally used by CVXPY. The output of this optimisation
are then the allocated capacities for each of our non-firm loads, specified as a range between the
maximum LDN and ODN capacity available for that load.

As we mentioned above, we do not incorporate power flow calculations to more accurately estimate
the available capacity here, not even in an iterative manner. This was done because the optimisation
library only allows users to incorporate built-in atomic functions but not external functions like the power
grid model functions that we use (Diamond & Boyd, 2016). This detracts from the accuracy of our
results, and to mitigate some of the drawback of this, we incorporated the solution checker mentioned
previously, which does check the allocated capacities in a power flow calculation once to ensure it is
at least within the limits of the system. However, this means that we were never able to fully ’optimise’
the system, which is a significant limitation in our research. With this limitation in mind, power flow
calculations were not incorporated into any of the other methodologies, and the same Equation 3.1
was used to determine the available capacity.

LIFO

The implementation of the LIFO methodology is significantly simpler than MO, and is very similar
to the other two list-based priority schemes (Adapted LIFO and Carousel). The process is split into
two parts: the generation of the priority-list, and the allocation of capacity based on this priority-list.
1It should be noted that the total firm capacity can actually increase the capacity of the system in the opposite direction, e.g.
a large amount of firm demand means we can allocate more supply as this will be consumed locally rather than having to go
upstream through the limiting cables.

2A second point to note is that if the available capacity is negative for LDN or ODN, all of the requested capacities in that
respective direction are required to be set to zero.

3This split was necessary to cope with the requirement to formulate our problem as a convex optimisation. More information is
available at Diamond and Boyd (2016)
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This second part is re-used in the other two list-based priority schemes. Once again, the full step-by-
step process can be found in Appendix B. The process for the generation of the priority-list is very
straightforward: the priority order is generated based on the ages of each contract. This priority-list is
then passed to the list-to-allocation converter, which then follows the steps below.

• Step 1: Similarly to theMOmethodology, first we calculate the total firm capacity (apparent power)
forecasted to be used at this time step.

• Step 2: This is then combined with Equation 3.1 to determine the available capacity in the LDN
and ODN direction.

• Step 3: Then for every load in the priority-list, in the order of the priority-list, the requested capacity
(both in LDN and ODN direction) is allocated. If insufficient capacity is available, the allocated
capacity is equal to the remaining capacity. If no capacity is available, the allocated capacity is
equal to 0.

In addition to the allocated capacities, the sign of the forecasted capacity is passed to the solution
checker, which uses the positive or negative allocated capacity maximum based on the sign in its power
flow calculation.

Adapted LIFO

Adapted LIFO is similar to LIFO but creates a separate priority-list for every voltage level. These
priority-lists are then combined in order of descending voltages. The allocation of capacity happens in
an identical manner as with the LIFO methodology described above.

Carousel

The Carousel method is different from the two other priority-list based methodologies in that it does
not remain fixed throughout the run. It takes a rotating priority-list, which shifts one position for every
fixed number of time steps. For our baseline run we set this time step equal to 1, i.e. the priority-list
shifted every 15 minutes. We also investigated the effect of changing this variable, which we discuss
in chapter 4. The allocation of capacity happens in an identical manner as with the LIFO and Adapted
LIFO methodology described above.

Pro Rata

Similarly to the Mathematical Optimum methodology, Pro Rata tries to formulate the division of
capacity among the non-firm loads as a convex optimisation problem. The main difference between
Pro Rata andMO is the addition of onemore constraint: the ratio between each load’s allocated capacity
and its requested capacity needs to be equal. In practice this could not be implemented exactly, as
the optimisation library was unable to find a solution for this constraint. Therefore the constraint was
formulated as presented in Equation 3.2.

∀𝑛 ∈ 𝑛𝑜𝑛_𝑓𝑖𝑟𝑚_𝑖𝑑𝑠 ∶ 𝐶𝑎𝑝𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑛/𝐶𝑎𝑝𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑛 − 𝐶𝑎𝑝𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑛+1/𝐶𝑎𝑝𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑛+1 <= 0.0001
(3.2)

Where 𝐶𝑎𝑝𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑛 is the allocated capacity for the nth load, and 𝐶𝑎𝑝𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑛 is the requested
capacity for the nth load. Thus, instead of having to be exactly zero (which is something the library can-
not deal with (Diamond & Boyd, 2016)), the difference between the ratios (which should be somewhere
between 0 and 1) should be small. The effect of this exact value is analysed in chapter 4.

Following the same constraint, if there is no available capacity in one of the directions that power
may flow (LDN or ODN), no capacity can be allocated at all, since all of the ratios still need to be equal
or very small. This was hard coded into the optimisation, where the requested capacities were set
equal to 0 if either of the available capacities were equal to or smaller than zero.

Aside from these limitations, all of the other steps are identical to the ones performed in the MO
methodology, after which the allocated capacities are passed to the solution checker, which subse-
quently outputs the allocated capacities to the next stage in the modelling process, the power flow
calculations with measurement data.
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3.2.4. Power Flow Calculations & Key Performance Indices (KPI’s)
This brings us to the last part of Figure 3.4: the power flow calculations with the allocated capacities and
measurement data to determine our KPI outputs. From the previous phase, we receive the allocated
capacities for the non-firm loads. This is then combined with the measurement data as described in
Section 3.2.1. This final calculation input data is then passed to Power Grid Model together with the
grid structure to output the relevant power flows. This allows us to then calculate each of our KPI’s, as
well as collecting additional data that might be of interest. The KPI’s are measured as follows.

• % of Requested Capacity: This KPI was obtained by taking the average of the ratio of the allocated
capacity over the requested capacity.

• % Difference in Allocated Capacity: The percentage difference was derived from the difference
between the percentages of the highest allocated load and the lowest allocated load.

• Standard Deviation of Allocated Capacity: The Standard Deviation was taken of the percentages
of requested capacity.

• Allocated Capacity per % Line loading”: The total allocated capacity was divided by the line
loading.

• Total Load Unable to be Allocated: The difference between the requested capacity and the allo-
cated capacity was summed over the whole run.

• # of Exceedances: The number of exceedances was determined from the output of the Power
Grid Model, where a line loading larger than 2/3 was considered an exceedance (to maintain N-1
security).

• Average Size of Exceedance: The average size of the exceedances followed the same line as
above, taking the average exceedance where the line loading was higher than 2/3.

In addition to these KPI’s, we also collected the following data for the baseline run:

• Total Load Unable to Be Used: This was the sum of the time steps where the measurement data
was higher than the allocated capacities.

• Number of Voltage Exceedances: The amount of times that the node voltages exceeded their
limits (higher than 22.2kV or lower than 19.4 kV for the 20kV bus and higher than 11.1 kV or
lower than 9.7 kV for the 10kV busses).

• Number of Times Measurement Data was Higher than Allocated Capacities: The amount of times
that the allocated capacity was smaller than the measurement data.

• Average Line Loading: The average line loading from the output file of the power flow calculations.

• Free Space Average: The average amount of unused capacity left on the lines, obtained by
multiplying the voltage times the difference between the line limit and the actual line loading.

• Free Space Peak: Similar as above, except the highest value.

For the forecast sensitivity runs we collected the averages and the variances of the KPI’s rather
than the values for every run. For the line limit run, the average of the variance between the different
methodologies per KPI’s was measured, as well as the averages and the variances per methodology
across all of the line limits.

3.3. Assumptions and Limitations
To round-off this chapter, we can now discuss the various assumptions and limitations that we made in
our research. We have split this section into two parts: Section 3.3.1 covers the assumptions and limi-
tations of our more general research approach, whilst Section 3.3.2 details the assumptions that were
made in our modelling implementation of our research as well as the limitations that we encountered. In
both of these sections, we will only touch upon the most significant assumptions and limitations, whilst
the comprehensive list of assumptions and limitations can be found in Appendix A.
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3.3.1. Assumptions and Limitations in Research Approach
The following assumptions and limitations apply to our more general research approach and what
problem we sought to investigate.

The first major assumption concerns our selected case study. The issue of grid congestion is a
rather complex one, as we discussed in chapter 1, which means that for different parts of the grid,
congestion will present itself in different ways. Therefore, whilst we might be able to achieve an ac-
ceptable answer to our research question for the characteristics and features of our current case study
in our research, the wider applicability of these findings is uncertain. For example, we represented the
source of congestion in our case study as insufficient capacity of the upstream lines towards the GSP.
However, as we discussed in Section 3.1, we achieved this limitation by lowering the actual limits of
the system, which implies that the same might be done by for example lowering the limits for voltage
fluctuations, or even the tolerance of the transformers connecting the different busses. Moreover, the
limited applicability of our findings will be even more significant if the topology of the grid changes, e.g.
when the system includes another line to which multiple loads are connected. It is therefore paramount
for our findings to be properly contextualised, based on which we might explore which of them would
still be applicable if a different topology or limitations was of relevance when implementing non-firm
gird connections in a real grid situations.

Secondly, and perhaps even more importantly, we must consider that even the answers to our
research question, i.e. which methodologies are optimal for the considered case study, are very de-
pendent on which KPI’s are held to be the most important or relevant. If for example one of the method-
ologies is found to be significantly more ’fair’ than the others, it might be more attractive for potential
customers and grid operators (for whom it would increase acceptance among customers) but might be
less interesting from a societal perspective, where the less efficient usage of the grid might be a more
relevant drawback. Therefore, although we assume that our research can yield a recommendation
for which methodologies are optimal under which conditions, we must conclude that the actual ’best’
methodology is highly dependent on the priority the grid operator places on the different KPI’s.

3.3.2. Assumptions and Limitations in Modelling Approach
For the translation of our research to a specific modelling implementation, we had to make certain
assumptions and decisions. The full list of these are presented in Appendix A. In this section, we
will further touch upon five of these assumptions and decisions, which we felt deserving of further
explanation.

Selection of Non-Firm Loads

The first main assumption that we made was the selection of our non-firm loads. As it stands, the
substation that we modelled in our research is a real-life part of the grid, to which there are real, firm
loads connected. For our analysis, non-firm loads needed to be included. We chose to convert firm
loads into non-firm loads, with their firm capacity forecasts becoming non-firm, requested capacities.
However, we also needed to include firm loads, as these would create our ’baseline’ load, which would
determine how much available capacity there was.

In the end, we based this decision on the grid topology that we were provided by Liander. Namely,
the decision was made to make all of the loads that were individual, discrete customers non-firm, and
all of the loads that were aggregated loads connected to a downstream line to be firm. This meant
that out of the 11 loads connected to the substation as illustrated in Figure 3.2, 4 would be considered
non-firm, whilst the other 7 were considered firm.

Selection of Line Limit

Next, we have the selected line limit. As we discussed in Section 3.2.1, the grid that we aremodelling
is appropriately sized in real life, with sufficient capacity to accommodate all of the loads connected to
it. To simulate congestion therefore, we needed to lower one of the limits of the system, depending
on which type of congestion we wanted to simulate. We chose to lower the upstream line’s limits
(thus creating congestion), which normally have a limit of 575 Amperes (times 3 for the three lines as
illustrated in Figure 3.2. The reason for this decision was that this would require the least amount of
changes to the system, and would not require us to change any of the other associated parameters
(which would be required when changing the limits of the transformers for example).
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However, deciding what level of line limit would give us a case study with sufficient variation in our
outputs to perform an analysis was more difficult than it initially seemed. We started out by calculating
the line limit based on the total firm load, i.e. removing all of the non-firm loads and doing power
flow calculations with ever decreasing line limits until the line loading was equal to or smaller than
our requirement (2/3, thus N-1 compliant). This gave us the results presented in Table 3.1 for our
measurement and forecast data.

Table 3.1: Table of Recommended and Average Line Limit

Recommended
Line Limit (Amperes)

Average Line
Loading (%)

Measurement Data 243.8244 0.1987
Forecast Data 103.7951 0.2891

As can be seen in Table 3.1, the average line loading is significantly lower than the peak values.
This means that except for in the rare cases where the firm loads peak, there will never be congestion
in the system. We therefore had a choice between the firm peaks sometimes exceeding the limits, but
having congestion or the peaks staying within the limits of the system but no congestion and therefore no
possibility to compare methodologies. We chose the former, but to support our decision we performed
a sensitivity analysis for this parameter. The outcome of these runs, which ran from a line limit of 75 all
the way to 225 Amperes, are presented in Figure 3.8.

Figure 3.8: A comparison between the average unallocated load (in MWh) and the Log10 of the average variance of all of the
KPI’s both as a function of the line limit in Amperes.

From Figure 3.8, it was apparent to us that the ideal line limit was somewhere in the range between
80 and 120 Amperes line limit, to have sufficient differentiation between the methodologies. If the line
limit is too high, although the unallocated load (the requested load that could not be allocated) quickly
goes down, so does the difference between the KPI’s, whilst a line limit that is too high will mean a
high average unallocated load. In the end, we chose to go forward with a line limit of 100 Amperes.
which would give us a sufficient amount of difference between our methodologies whilst still being able
to allocate a significant amount of the requested capacity.

Non-Firm Multiplier

Next, we included a parameter called the non-firm multiplier. This parameter, which multiplies both
the forecast and measurement data for the non-firm loads, was included because of the relative dif-
ference between the firm and non-firm load. This is illustrated in Figure 3.9, where the purple graph
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indicates the non-firm load, the teal graph is the firm load and the green and yellow give the loading
respectively in terms of relative loading (as a percentage of the line capacity) and absolute loading (in
MVA).

Figure 3.9: A comparison between non-firm multiplier value 1 (Top) and 1.5 (Bottom) with a line limit of 200 Amperes.

As is apparent from the figure, the difference between the non-firm and firm loads is very significant.
To determine exactly how big this difference was, we wrote a short script to compare both the peaks
between the two as well as the averages, which can be found in Appendix A. We found the ratios to
be as presented in the output in Table 3.2.

Table 3.2: The output of the non-firm multiplier script.

Variable Value
Max Firm 8280000.0
Max Non-Firm 5666666.666666666
Desired Ratio Peaks 1.4611764705882355
Desired Ratio Sums 1.549969550453075

We therefore chose a value for the non-firm multiplier between the two: 1.5. The effect of this
assumption is twofold. Firstly, the unused capacity available will have to be divided between a larger
amount of requested capacity, which should lead to more marked results as we discussed above about
the line limit. Secondly, this will lead to the non-firm loads also contributing to the peaks as opposed to
this behaviour only originating from the firm loads, once again as we discussed above.

Symmetrical Capacity Requests
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Another important consideration that we ran into in our research was the need for symmetrical
capacity requests. Symmetrical capacity requests means that if the forecast data (which we stated
to be the ’request’ for capacity by the load) is negative, it is matched by an identical positive request
and vice versa. This means that instead of a request being for capacity from 0 to 2 MW LDN, the
request now becomes from -2 (ODN) to +2 (LDN). Thus for every methodology, a request now meant
a reduction in the available capacity in both the LDN and ODN direction.

The underlying issue that led to the need for this assumption was the inability of the forecast to
adequately predict when the loads would be requested LDN or ODN. This is apparent in Figure 3.10,
where we did not include symmetrical capacity requests, but correctly merged the allocated capacities
and the measurement data.

Figure 3.10: Non-symmetrical capacity requests with proper merging of allocated capacities and measurement data.

It is clear from Figure 3.10 that very little capacity is actually used with this implementation, as
the forecast consistently fails to predict the direction of the load flow. To ensure our analysis would
actually focus on the comparison of the methodologies rather than on the shortcoming of the forecast,
we therefore made the decision to move to symmetrical capacity requests.

Iterative Capacity Allocation

The final key assumption that wemade concerns a concept we dubbed ’iterative capacity allocation’.
In short, iterative capacity allocation would entail that capacity allocation in one direction (LDN or ODN)
would mean increased capacity in the opposite direction (ODN or LDN). Take for example a solar
installation which has requested a certain amount of transport capacity from the grid operator. This
could then be matched with a capacity request by for example a factory that is on the same busbar
or substation as this solar installation, even if there might be no capacity available for this request
(or if there is capacity available not take up this capacity). In short, iterative capacity allocation could
potentially allow for higher utilisation of the grid without risking increased congestion. However, as is
probably obvious, iterative capacity allocation would also bring some risk with it. Namely, when capacity
allocated by the grid operator, this is framed not as an obligation to use but rather an opportunity or even
a possibility to use this capacity. Therefore, if the solar installation outputs its full allocated capacity
but, for whatever reason, the factory does not use its full allocated capacity, this will lead to increased
loading on the system, perhaps even beyond what it can accommodate, leading to a significant risk
for grid operators. This is not even taking into account that customers are not always sure about
their requested capacity, like for example with the solar installation. The operator of this installation
cannot predict when exactly a cloud might pass by reducing their generation, thus leading to risk that
is passed on to grid operators unnecessarily. The concept of iterative capacity allocation is therefore
one that could be valuable to investigate, but serious tolerances in this allocation would be necessary
to accommodate the increased risk.

To translate this to our specific modelling implementation, however, we noticed in our first implemen-
tation of the model (i.e. no symmetrical capacity requests as mentioned above), that the mathematical
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optimisation methodology was using this concept to distribute more capacity than could be purely al-
located based on the available unused capacity. This was found to be significantly excessive due to
the uncertainty in the forecast, leading to exceedances far above expectations. We there chose to not
allow iterative capacity allocation, and to allocate capacity one time only per time step (and thus not
going back after allocating all of the capacities to determine if there was more unused capacity left).
This issue was also resolved with the addition of the symmetrical capacity requests mentioned above,
as there would be no possibility to compensate two loads if both loads already had identical mirrors in
the LDN or ODN direction. Therefore, no additional restriction had to be imposed.



4
Results & Discussion

This now brings us to the results of our research. We have split this chapter into three major parts,
followed by a final discussion in Section 4.4. In Section 4.1 wemake a comparison of themethodologies
under the baseline scenario, and rank them for the various KPI’s. In Section 4.2 we discuss the effects
of the forecast on these results, as well as analyse what the impact is on our methodology comparison.
Finally, in Section 4.3 we do the same for our selection of line limit.

4.1. Baseline Results & Discussion
Let us now discuss the set of results that we obtained. The baseline results were run with a line limit of
100 Amperes and a forecast uncertainty quantile of 99/01 (LDN/ODN). The effect of these parameters
are further explored in the next sections. The input parameters that were used for these runs are as
follows.

• Non-Firm Multiplier: 1.5.

• Length Simulation: 23516 Time Steps.

• Age Contracts: {102: 0, 105: 1, 106: 2, 111: 3, 113: 4, 114: 5, 115: 6, 116: 7, 117: 8, 118: 9,
202: 4}.

• Line Limit: 100 Amperes.

• Forecast Quantiles: 99th LDN, 01st ODN.

• Power Factor: 0.85.

• Carousel Time Steps Per Shift: 4.

• Pro Rata Equality Maximum Difference: 0.0001.

• N-1 Requirement: True.

With these parameters established, we can now look at the results for the various KPI’s.

4.1.1. Baseline KPI’s
The first set of results of interest are the Key Performance Indices of each methodology. In Table 4.1
the results of our simulation are shown in terms of the KPI’s. We have highlighted the scores from best
to worst per KPI in colour.

37
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Table 4.1: A Table of the Baseline KPI’s (Line Limit 100 Amperes, 99/01 Forecast Quantile)

% of Requested
Capacity
(Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation
of Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load
Unable to be
Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average Size
of exceedance
(Lower is Better)

Adapted LIFO 0.5157 0.3533 0.2420 0.1858 4806.7918 8267 0.8403
Carousel 0.5897 0.1891 0.3018 0.1559 5229.0888 8502 0.8269
LIFO 0.6287 0.5770 0.2345 0.1374 5297.6330 9039 0.8197
MO 0.5636 0.0898 0.1116 0.1896 4431.5073 8906 0.8313
Pro Rata 0.5267 1.9885e-05 0.2242 0.1651 5132.5879 10531 0.8537

The methodologies have been ranked in Table 4.1 according to the ranking outlined in Table 4.2.

Table 4.2: The colour ranking from best to worst used in the presentation of our results.

Best Second Best Middle Second Worst Worst

However, we should not purely look at these rankings to gain an overall ’best’ methodology, as there
are two major considerations when taking these rankings as scores:

• It assumes that all of the KPI’s are equally weighted, i.e. being the best at one category is con-
sidered equal to being the best at another.

• It assumes that the differences on a per KPI basis between methodologies is negligible. For
example, the fact that Pro Rata has practically no difference in its allocation is assumed to be the
same as a relatively small difference in the average size of the exceedance.

Instead, we will discuss these outcomes on a per KPI basis to analyse what might cause a certain
ranking and what the implications of this are.

% of Requested Capacity

The first, and one of the most important KPI’s, is the average allocated percentage of requested
capacity. This KPI kept track of how much a load, on average, will be allocated of its requested capacity
(as a percentage). This is an important measure of how attractive non-firm ATO’s are to potential
customers, and is therefore paramount when considering the effectiveness of this flexibility option next
to others like market-based and curtailment based flexibility contracts.

The best methodology for this KPI, with a small but significant lead over the others, is LIFO. Even
when varying the forecast quantiles and line limit as will be shown in the next sections, this remained
true for LIFO which continued to score the best on the requested capacity KPI. What is more, to our
surprise the Adapted LIFO methodology scored the worst for this metric, suggesting that giving priority
to the lower voltage levels actually increased the average allocation percentage. Aside from this priority
to higher voltage levels for Adapted LIFO, the two methodologies are identical, which suggests to us
that the lower voltage loads were consistently being under-allocated in the other methodologies.

With respect to the other methodologies, the differences between them are relatively small, on the
order of a 5 to 10% percent difference in allocated capacity. Surprisingly however, MO is only third,
which suggests that the priority-list based methodologies can be more efficient in achieving higher
allocated percentages. Pro Rata scored second lowest, which was within our expectations for this
methodology, as the additional equality constraint imposed upon it means that it will not always be able
to allocate the maximum capacity available.

% of Relative Allocated Capacity

Next we have the % of Relative Allocated Capacity. This KPI measured the average difference be-
tween the highest and lowest allocated load, reflecting how relevant the non-firm connection becomes
as more loads are connected and how ’fair’ the allocation is.

As expected, the average difference in allocation for Pro Rata is close to zero (but not exactly zero,
due to the way we implemented the equality constraint, as discussed in Section 3.2.3), putting it on
top for this KPI. More interestingly, we see that MO scores well on this KPI too, with only an average
difference in allocation of around 9%. This is significantly lower than the other three methodologies,
indicating that the most efficient allocation can also be a fair one.
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Next, we see a slight increase in percentage to around 19% for the Carousel methodology, which
combined with its excellent score on the previous KPI indicates once again that it is also possible to have
a high average allocation percentage whilst still achieving relative fairness. Thus both the Carousel and
Mathematical Optimum methodologies show a lot of promise here.

Following up after this, we see the Adapted LIFO and regular LIFO methodology, which score
worse on this metric. For the former, this lackluster score combined with the very low KPI score for
average allocated percentage shows that in our chosen case study, prioritising higher voltage levels
fails to noticeably improve the allocated capacity. For the latter, we must consider that on average this
methodology allocated almost 60% more to the highest allocated load. This underlines the effect that
using such a methodology will have on the adoption of non-firm contracts in a specific part of the grid:
for the first few connections the non-firmness will not be an issue at all, with high average allocated
capacities, and a guarantee of future preference. But as soon as there are a few in place, no more new
non-firm grid connections can be expected, as the attractiveness of the contract drops perilously.

Standard Deviation of Allocation

In addition to these two straightforward measures of the effectiveness of each methodology we also
have the standard deviation of allocation. This measure, although less apparently relevant at first, does
give another indication of how potential customers would perceive a non-firm grid connection. A low
standard deviation, even with a low average allocated capacity percentage, means a low uncertainty
for customers, and therefore a lower risk to adopting such a contract.

Just like before, there is one clear winner here: the Mathematical Optimum methodology, having a
deviation half as large as the runner-up. This means the MOmethodology performs well as a jack-of-all
trades with respect to the average allocated capacity and fairness, whilst doing so in a predictable and
regular fashion. As we will discuss later however, using such a methodology in practice does come
with a few trade-offs.

Next, we have the Pro Rata, LIFO and Adapted LIFO methodologies in order which all score quite
close to each other, indicating that although the predictability is slightly different between them, the
variation in allocation is probably subject to external factors, like the firm load, rather than their exact
allocation methodology.

Surprisingly, Carousel comes in last with a significant difference compared to the next one up. We
suspected this might be due to one of the key parameters of the Carousel methodology: the amount
of time steps before the priority-list shifted. To investigate this, we ran the same run for five different
amounts of time steps: a single time time step per shift, the baseline at 4 time steps per shift (an hour),
a daily shift at 96 time steps per shift, a weekly one at 672 time steps per shift, and a monthly one at
2880 time steps per shift (30 days/month). The results of this can be seen in Table 4.3 below:

Table 4.3: A Comparison of the Carousel Methodology Across 5 Different Time Steps (Line Limit 100 Amperes, 99/01 Forecast
Quantile)

Time per Shift
in priority-list
(Time Steps)

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

15 Minutes (1) 0.5834 0.1524 0.3032 0.1578 5176.0472 8658 0.8289
1 Hour (4) 0.5897 0.1891 0.3018 0.1559 5229.0888 8502 0.8269
1 Day (96) 0.5825 0.1526 0.3028 0.1570 5179.2377 8591 0.8316
1 Week (672) 0.5832 0.1414 0.3036 0.1578 5172.8781 8681 0.8274
1 Month (2880) 0.5849 0.1586 0.3035 0.1603 5166.7991 8469 0.8256

From table Table 4.3, it is apparent that the impact of the time per shift in priority-list parameter
on the standard deviation is negligible. It seems that the Carousel methodology by itself simply has
a high standard deviation in its load allocation. Looking at the other KPI’s, we see that these do not
show a clear pattern either, further underlining the lack of impact this input parameter of time per shift
in priority-list has on the output.

Allocated Capacity /% Line Loading

The allocated capacity per unit of line loading KPI takes a step away from the load focused metrics
and gives us an idea of how efficiently the system is used by each of the methodologies. Although a
higher line loading is acceptable (as long as it is within limits), allocating as much capacity per unit of
line loading gives us an indication how each of these methodologies handles the distribution of capacity.
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Once again, we see theMathematical Optimummethodology get the highest score, with 0,1896MW
allocated capacity per percent line loading. The difference between it and the runner-up Adapted LIFO
is very small however, with that one achieving a close 0,1858 MW per percent line loading. This shows
us that giving preference to the higher voltage loads does actually positively influence the efficiency of
the allocation, as the LIFOmethodology only allocates a meager 0.1374MWper percent of line loading.
Finally, we find the Carousel and Pro Rata methodologies hovering in the middle, with acceptable
efficiencies but failing to reach the high levels of the top two.

Total Load Unable to Be Allocated

We now arrive at the most important of the ’societal’ KPI’s: the total load that was unable to be
allocated. This gives us an indication of how effectively each methodology was able to allocate the
available capacity, and allow us to compare it to the first KPI to determine which of the methodologies
achieves both the highest average allocation percentage and the lowest load unable to be allocated.

As expected, the Mathematical Optimummethodology scores the best here, as this was specifically
its design purpose. It significantly outperforms the other methodologies, and combined with the scores
it has achieved on the previous KPI’s, it is hard to disagree that, in theory, this methodology provides
the most consistent performance across the board.

It is once again followed by the Adapted LIFO methodology, which shows that the prioritisation of
higher voltage loads when distributing capacity allows for more efficient usage of the system.

Behind it, we find the Pro Rata methodology, which once again is in the middle of the pack, due to
the additional constraint that is put upon it by the equality requirement.

At the bottom we find the Carousel and LIFO methodologies, which both fail to allocate almost
800MWh more than the MO methodology, underlining the inefficiency associated with a simple priority-
list based allocation mechanism.

# of Exceedances

We then end up in the third dimension of KPI’s, namely those of interest to the grid operator. The
number and the size of exceedances is a great metric to determine how well a methodology deals with
peak in the firm load, and the big difference between them shows that even when the firm load is high,
some methodologies still perform better than others.

At the top here we find the Adapted LIFO methodology, which, through its prioritisation of the higher
voltage levels clearly sidesteps a lot of the peaks in firm load. Following it closely behind is the Carousel
methodology, which seems to get it right some of the times. In the middle we find the LIFO and MO
methodologies, which perform noticeably worse than the other two, but still achieve similar levels of
exceedance. All the way at the bottom we find the Pro Rata methodology, which exceeds the line limits
almost 45% of the time. This indicates to us that the # of exceedances is not purely connected to the
load unable to be allocated, but is also dependent on the methodology of distributing capacity and the
assumed firm and non-firm loads.

Average Size of Exceedances

This now brings us to our last KPI: the average size of the exceedance. The importance of this
metric is twofold: firstly, any exceedance that is curtailed needs to be paid for by the grid operator (when
this exceedance falls within the firm or non-firm capacity available to a load), and an associated cost
is incurred in balancing the larger grid, both of which are dependent on the size of the exceedance.
Secondly, the average size of the exceedance also acts as an indicator, in conjunction with the #
of exceedances, to which extent grid reinforcements are needed, where once again the size of the
exceedance is a key parameter.

In our results, we see that the difference between the methodologies is relatively small, but notice-
able. The LIFOmethodology scores the best here, which aligns with the fact that is has the highest load
unable to be allocated. This pattern follows with the other methodologies, which score better or worse
depending on how they score in the Total Load Unable to be Allocated KPI. The difference between
them is small enough for us to conclude that this KPI does not clearly favour one methodology over the
other.

One thing we noted after reviewing these results is that because these Average Size of Exceedance
KPI’s were so close, increasing the line limit by this amount should lead to a marked decrease in
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the exceedances (unless of course these averages were strongly influenced by extreme values). To
investigate this, we determined that an exceedance of around 0.85 MW (or around 1 MVA) at 20kV
would require an increase in the line capacity of around 50 Amperes. We therefore increased the line
limit by 17 Amperes per line, and ran our simulation again, resulting in the results presented in Table 4.4.

Table 4.4: Output results for the exceedances and average size of exceedance KPI (Line Limit 117 Amperes, 99/01 Forecast
Quantile).

117 Ampere LL
99/01 Quantile

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 5101 0.8052
Carousel 5130 0.7855
LIFO 5557 0.7851
MO 5900 0.7948
Pro Rata 7409 0.8039

As we can see in Table 4.4, the increase of the line limit led to a significant decrease of the # of ex-
ceedances equal to about 3000 for each methodology. However, the average size of the exceedances
only changed by about 0.04 MW, leading to the conclusion that this average is very significantly influ-
enced by extreme values. We further investigated this in Section 4.3, where we experimented with line
limits up to 225 Amperes, allowing us to determine that at that point the averages have started trending
down.

4.1.2. Baseline Additional Outputs
Aside from the KPI’s, there are some additional outputs of interest that we believe to be valuable to
include in our discussion. Firstly, we would like to visualize the difference in allocation of the various
methodologies across a few representative weeks. Secondly, we included a visualisation of a full
run to show what the output loading actually looks like. Finally, we also include a discussion on the
measurement load that is curtailed by the allocated capacities.

Visual Comparison of Methodologies

For our visualisation of the different methodologies, we included representative four representative
weeks. For spring, we included Figure 4.1. For summer, we have Figure 4.2. For fall we have Figure 4.3
and for winter we included Figure 4.4. In each figure, the different methodologies from top to bottom are
LIFO, Adapted LIFO, Carousel, Mathematical Optimum and Pro Rata. In Orange we find the firm load
at that time step. Please note that both the positive and negative allocated capacity is included. Each
caption also mentions how many time steps from the beginning the simulation start date was shifted.

Figure 4.1: A visual comparison of the different allocated capacities per methodology for a week in May (Shifted 0 Time Steps).
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Figure 4.2: A visual comparison of the different allocated capacities per methodology for a week in August (Shifted 6720 Time
Steps).

Figure 4.3: A visual comparison of the different allocated capacities per methodology for a week in November (Shifted 16032
Time Steps).

Figure 4.4: A visual comparison of the different allocated capacities per methodology for a week in January (Shifted 22177
Time Steps).

It can be seen in these figures that the differences in allocation between the various methodologies



4.1. Baseline Results & Discussion 43

is rather significant, but all follow the pattern of the firm load. Where the latter increases in the LDN
direction, we see increased allocation in the opposite ODN direction by the methodologies, some more
than others. What also stands out here, is the effect the temporal aspect has on the allocated capacities.
Until now, we have only spoken of the ’unused capacity’ in abstract terms, not considering the fact that
the available capacity might vary dramatically throughout the year. To investigate this, we collected the
KPI’s for the January and August run which, theoretically should bemost different due to their respective
distance to each other in the year. The results of this are presented in Table 4.5 and Table 4.6.

Table 4.5: Output results for a week in August (Line Limit 100 Amperes, 99/01 Forecast Quantile).

% of Requested
Capacity
(Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation
of Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load
Unable to be
Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.5259 0.3930 0.2339 0.2036 125.6387 33 0.7510
Carousel 0.6570 0.6410 0.2129 0.2092 146.9859 39 0.7160
LIFO 0.6528 0.5849 0.2271 0.2114 140.6505 39 0.7202
MO 0.5765 0.0949 0.1083 0.2351 117.8533 32 0.7387
Pro Rata 0.5340 2.0141e-05 0.2314 0.1857 138.6975 108 0.7684

Table 4.6: Output results for a week in January (Line Limit 100 Amperes, 99/01 Forecast Quantile).

% of Requested
Capacity
(Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation
of Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load
Unable to be
Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.5345 0.3610 0.1683 0.2065 122.5744 264 0.7611
Carousel 0.6388 0.6297 0.1515 0.1303 140.7072 425 0.7782
LIFO 0.6376 0.5550 0.1684 0.1523 130.5606 401 0.7775
MO 0.5816 0.0949 0.0758 0.2057 117.3692 345 0.7747
Pro Rata 0.5943 2.1479-05 0.1097 0.1939 120.4372 385 0.7743

Comparing these two tables, it becomes apparent that the number of exceedances is an order of
magnitude higher for the January run. However, when comparing the rest of the KPI’s, the difference
between Summer and Winter seems very limited: the unallocated loads are similar, the average per-
centage of requested capacity are nigh identical, and the differences in allocation are also aligned. The
only other noticeable difference in KPI’s seems to be the standard deviation of allocation, which was
consistently higher across the board in August. It is hard to draw a conclusion from these two KPI’s
though, as all the other parameters seem similar. We therefore find that the season, although it will
influence in which direction the capacity will be primarily allocated, will not influence the KPI’s across
the board. We further confirmed this by running the simulation for the week before the August week
shown above. This gave us the results in Table 4.7

Table 4.7: Output results for week - 1 in August (Line Limit 100 Amperes, 99/01 Forecast Quantile).

% of Requested
Capacity
(Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation
of Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load
Unable to be
Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.5325 0.2633 0.2613 0.1983 134.6912 241 0.8464
Carousel 0.6542 0.5630 0.2270 0.1836 150.3531 213 0.8276
LIFO 0.6492 0.5332 0.2342 0.1850 147.4474 209 0.8306
MO 0.5620 0.0955 0.1150 0.1854 124.8707 236 0.8373
Pro Rata 0.4669 2.0425e-05 0.2784 0.1279 162.4514 379 0.9103

We see that with a shift of just one week, the exceedances are similar to the ones for January in
Table 4.6. We also see a significant, but smaller, shift in the standard deviation. We thus find that the
influence of the time of year is not significant enough to warrant being considered an important factor
in the comparison of the methodologies. This could be attributed to the methodologies all reacting
similarly to increased or decreased supply and demand in the firm loading as a result of differences
throughout the year.

Another point that stands out here when considering all of the tables presented above, is that the
ranking of the methodologies per KPI changes quite significantly between the different runs. In Sec-
tion 4.1.1 we argued that purely looking at a ranking of the methodologies based on their scores in the
KPI’s was insufficient. This is further reinforced now by the fact that these rankings vary significantly
from week to week, making a purely quantitative analysis of which methodology is ’best’ unsuitable,
and underlining the need for a qualitative analysis.
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Figure 4.5: Output of a full run (Carousel) with the inputs as specified in Section 4.1.

Visualising a Full Run

In addition to zooming in on a few representative weeks, we also looked into a visualisation of the full
run. The visualisation of the run is presented in Figure 4.5. This run uses the Carousel methodology,
and the input parameters as specified in Section 4.1. The top graph gives the line loading as a function
of the maximum capacity of the lines. The second graph takes into account the directionality of the
load. The third graph is the non-firm load whilst the bottom is the firm load. The figure is also repeated
in a larger format in Section A.3.

There are two key observations that can be taken from Figure 4.5. Firstly, the amount of ex-
ceedances that overshoot not only the N-1 requirement, but also the line limit that we imposed for
these runs. These types of exceedances are widespread across the run, and when comparing these
exceedances to the firm and non-firm load it becomes apparent that they are predominantly the result
of preexisting peaks in the firm load (which already exceeded the limits of the system). This underlines
one of the main limitations of our research, as we discussed in Section 3.3.2, namely that if there is
sufficient capacity to accommodate these peaks in the firm load, the comparison between the method-
ologies is rather limited. This is because the peaks of the load are four to five times larger than the
averages, leading to a lack of congestion in the system except during those extreme peak moments.
Another point of note with respect to these peaks is that almost all of the exceedances above the sys-
tem limit happen during the late spring, summer and early fall, where there are peaks in, what is most
likely, supply from solar based generation.

Secondly, it can be observed that even with the non-firm loads in the system, there is still a signif-
icant amount of capacity available, especially if the line limits were raised to accommodate the peaks
currently observed. Thus, introducing more load into the system through the use of a non-firm connec-
tion is still a real possibility, especially if it is in the form of load that is flexible i.e. an e-boiler or battery
storage system.

Load Unable to be Allocated versus Load Unable to Be Used

Finally, there was one additional parameter that we believed to be valuable to discuss before we
move on to the general baseline discussion. This is the Load Unable to Be Used metric, which keeps
track of how much of the measurement data is cut off by the merging of the allocated capacities with the
measurement data as discussed in Section 3.2.1. It thus gives us an indication how much ’real’ load is
curtailed because the allocated capacities were limited. Moreover, it also gives us an indication of how
good the forecast is at predicting when the measurement data will be high or low, which is also a key
consideration when evaluating the implementation of non-firm connection agreements. In Table 4.8
we have compared the two metrics for the five methodologies in the baseline scenario. It should be
underlined that these are two separate metrics, and they can therefore not be compared one to one,
rather it is important to consider that load unable to allocated is a limitation of the methodology, whilst
load unable to be used is a limitation of the methodology combined with the uncertainty of the forecasts.



4.2. Forecast Sensitivity Results & Discussion 45

Table 4.8: Output results for the Load Unable to Be Allocated KPI and the Load Unable to Be Used metric (Line Limit 100
Amperes, 99/01 Forecast Quantile).

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

Total Load Unable
to be Used (MWh)
(Lower is Better)

Adapted LIFO 4806.791787923881 1317.691038052671
Carousel 5229.0888 1308.3578916522267
LIFO 5297.632975419951 1272.3143002733113
MO 4431.507289008601 984.2069562637543
Pro Rata 5132.587867551674 1037.51370558713

The first thing that stands out in this table is the difference between the rankings. Take for example
the Adapted LIFO methodology. Whereas in the Load Unable to be Allocated column it is second best
with it allocating more than 300MWh more than the next methodology, in the Load Unable to Be Used
column it is last, curtailing almost 350MWh more than the Mathematical Optimum methodology. In
general, we see that the priority-list based methodologies have to curtail significantly more load in the
merging of the allocated capacities with the measurement data than the optimisation methodologies.
This suggests to us that the latter are better at allocating capacity closer to the measurement data than
the former. Furthermore, when considering that an important drawback of the Pro Rata methodology
was its inability to allocate as much capacity as the rest of the methodologies, it is apparent here that the
capacity it does allocate closely aligns with the measurement data. It does this with a small difference
of only around 50MWh from the top methodology, Mathematical Optimum. Mathematical Optimum
remains the most effective at both allocating the maximum capacity and minimising the curtailment of
the measurement data.

We find that all of the points discussed above are important to consider when comparing these
methodologies, as purely looking at the KPI’s might not lead to the conclusions if these considerations
are not taken into account. Both the effect of the temporal variation and the load unable to be used are
important secondary parameters that we should consider in our final recommendations.

4.1.3. Evaluating the Baseline Results
Having reviewed all of the results we presented in this section, let us go through the key points that we
should take forward.

Firstly, from the KPI’s we found that the Mathematical Optimum methodology scored the most con-
sistently, but only excelled in its ability to minimise the load that was unable to be allocated. The other
methodologies all had their advantages and drawbacks, scoring better on some of the KPI’s than oth-
ers. When considering the three dimensions, the customer focused KPI’s preferred the Mathematical
Optimum and Pro Rata methodologies. For the societal oriented KPI’s, Mathematical Optimum and
Adapted LIFO were the top methodologies, both significantly outperforming the rest and being quite
close to each other. For the grid operator relevant KPI’s, the methodologies were quite close across
the board, except for Pro Rata, which came in last for both KPI’s.

Aside from these scores, we also reviewed four representative weeks and determined that the allo-
cation of capacity rather closely followed the firm load, indicating a close match between the forecasted
values and the measurement data. We also found that the time of year was not an important factor
in our comparison of the methodologies, and that the ranking of methodologies did indeed change on
a per week basis. Finally, we looked at the Load Unable to be Used metric, and found that the opti-
misation methodologies are a lot better at allocating capacity close to the measurement data than the
priority-list based methodologies.

Concluding this section, we thus find that the Mathematical Optimum methodology provides the
most consistent performance, but that each methodology provides its own set of useful traits. The
comparison of methodologies based on the baseline results tells us that the ’best’ methodology is
significantly influenced by how one ranks the different KPI’s in terms of importance and relevance.

4.2. Forecast Sensitivity Results & Discussion
As we discussed in Section 3.2, for our baseline results we relied upon the 99/01 quantile forecast,
which can be argued to be a ’worst case scenario’, as it will assume that both the non-firm as well as
the firm loads would be significantly larger than can be reasonably expected. This decision was made
because it added a degree of margin to cope with the uncertainty associated with allocating capacity
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based on forecasts.
However, it is therefore important to determine the effect the selection of forecast has on the out-

put KPI’s as this might significantly influence the final recommendation. The output of the sensitivity
analysis, with the setup as described in Section 3.2.2 will be discussed in the next sections. In each
methodology’s section, we compare the average and the variance of the KPI’s over the whole range of
forecasts to the baseline results. The whole set of outputs will then be discussed in Section 4.2.6.

4.2.1. Forecast Sensitivity Adapted LIFO
Starting off with Adapted LIFO, Table 4.9 presents the average and variance of the set of outputs over
the whole range of forecasts.

Table 4.9: Forecast sensitivity results (average and variance) Adapted LIFO (Line Limit 100 Amperes).

ADAPTED
LIFO

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7416 0.3071 0.1948 0.1646 1440.4105 9475.52 0.8541
Variance 0.0121 0.0067 0.0002 0.0006 1199269.7925 382627.8896 6.4218e-05

We find that the average percentage requested capacity is significantly higher than for the baseline
results, with a variance of 0.0121 % (STD ≈ 0.11%) indicating a rather low spread as well. For the
difference in allocation, standard deviation and allocated capacity per unit of line loading KPI’s we only
see relatively small changes from the baseline results, with the former two improving slightly and the
latter experiencing a minor decrease. All three have low variations indicating that these results are
relatively stable across the forecasts, matching with the small difference between the average and the
pessimistic forecast in our baseline.

For the Load Unable to be Allocated KPI however, a very large decrease can be seen, with the
average being around 70% lower than the baseline. The variance of this result is quite significant
however, which suggests that this parameter is strongly influenced by the selection of forecast. We will
go into more detail on this in Section 4.2.6. The opposite effect can be seen for the # of exceedances,
which are higher on average although the difference when compared to baseline is not as large as for
the Load Unable to be Allocated) than the baseline results. This makes sense as the quantiles that
were used to obtain the baseline results are a worst case forecast, whereas the sensitivity analysis
forecasts were more optimistic on average. With respect to the spread of the exceedances, we can
observe that although the variance is still large when compared to the more consistent KPI’s, it is still
significantly smaller than the spread of the Load Unable to be Allocated KPI, with the # of exceedances
having a STD of around 600. Finally, we have the average size of the exceedance, which is quite
similar to the baseline results, and a variance which is almost negligible. This indicates that although
the number of exceedances is higher on average across the sensitivity analysis, the actual average size
of exceedances change very little, leading us to conclude that exceedances remain relatively small.

4.2.2. Forecast Sensitivity Carousel
The Carousel results can be found in Table 4.10.

Table 4.10: Forecast sensitivity results (average and variance) Carousel (Line Limit 100 Amperes).

CAROUSEL % of Requested
Capacity (Higher is Better)

% Difference in
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7945 0.0731 0.2297 0.1514 1510.3730 10195.96 0.8451
Variance 0.0084 0.0012 0.0014 0.0003 1448569.8104 305641.7983 3.6345e-05

Similarly to Adapted LIFO, we see that the average value over the forecast for the first 3 KPI’s is
improved over the baseline results for the Carousel methodology. The variance is even smaller for the
average allocated capacity and relative allocated capacity, whilst the variance for the standard deviation
is slightly higher. As will be seen from the next methodologies, this pattern will hold true across the
board, with significant improvement in the first three KPI’s and low variances. Carousel also sees the
same dip in the allocated capacity per unit of line loading, which we attribute to the additional allocated
load being transported upstream as opposed to meeting demand or supply locally, which we found to
be the case in the baseline. Finally, the same pattern with respect to the Load Unable to be Allocated is
also true here. A significant increase, but with a high variance, suggesting this KPI to be very sensitive
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to the forecast quantiles. The # of exceedances for Carousel are actually significantly higher compared
to both the baseline Carousel value as well as the Adapted LIFO value, indicating that this methodology
is less capable of allocating capacity around peak firm load moment then Adapted LIFO. The average
size of the exceedance, remains very close to the baseline, and has a low variance indicating this KPI
to be relatively stable across the forecasts.

4.2.3. Forecast Sensitivity LIFO
Once again, we find the results of the sensitivity analysis for LIFO in Table 4.11.

Table 4.11: Forecast sensitivity results (average and variance) LIFO (Line Limit 100 Amperes).

LIFO % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.8104 0.3607 0.1669 0.1461 1533.9141 10501.82 0.8425
Variance 0.0065 0.0127 0.0006 0.0002 1537839.7575 165298.1076 4.2877e-05

The same findings as previously described for Carousel and Adapted LIFO hold true here, with
improvements across the board, except for the number of exceedances and the allocated capacity per
unit of line loading KPI’s. What is interesting to note however, is that the variance of the difference in
allocation is an order of magnitude larger for LIFO than for the other two priority-list based allocation
schemes. This variance translates to a STD of around 0.11 percent, indicating that the difference in
allocation for LIFO (which is already the worst performing methodology for this KPI to start with) is also
rather sensitive to the selected forecast. The opposite is true for the number of exceedances, where
the LIFO variance and associated STD (≈ 400 exceedances) is lower and thus more predictable across
the forecasts. Finally, whereas in the baseline LIFO scores the worst on the Total Load Unable to be
Allocated KPI, the average value seems to be trending closer towards the other methodologies, as the
forecast becomes more optimistic.

4.2.4. Forecast Sensitivity Mathematical Optimum
The results for the forecast sensitivity analysis for the Mathematical Optimum methodology can be
found in Table 4.12.

Table 4.12: Forecast sensitivity results (average and variance) Mathematical Optimum (Line Limit 100 Amperes).

MO % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7906 0.044 0.1378 0.1567 1388.5058 10292.64 0.8454
Variance 0.0098 0.001 0.0002 0.0006 1024193.3317 261015.9104 4.1562e-05

Aside from the same finding that could be made about the previous three methodologies, a couple
of things stand out for the Mathematical Optimum methodology in the sensitivity analysis.

Firstly, we can see the gap between it and the top values for the average allocated capacity per-
centage KPI closing significantly. This suggest to us, as the forecast becomes more optimistic. the
methodologies start reaching a plateau, where the differences between them start to reduce. This is
in line with the assumption we made about the line limit in Section 3.3.2, where we found that as the
congestion in the system reduced, so did the difference between the methodologies. This same line of
thinking also hold true for the Total Load Unable to be Allocated KPI, where the Mathematical Optimum
methodology held a significant advantage in the baseline, the advantage start to diminish across the
forecasts.

Secondly, as opposed to the other three methodologies already discussed, MO actually sees an
increase in its standard deviation of allocation. The cause of this increase seems unclear, as the other
methodologies’ improvement in this KPI are also significantly larger when compared to the baseline.
From this, we conclude that the MO methodology finds itself at the bottom of the possible values for
this KPI. This can also be observed in Table 4.16 below, where we presented the results of the 45/55
(LDN/ODN) forecasts, and where it can be seen that all of the methodologies start reaching these
bottom values of this KPI.

4.2.5. Forecast Sensitivity Pro Rata
Finally, we have the results of the Pro Rata forecast sensitivity analysis in Table 4.13.
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Table 4.13: Forecast sensitivity results (average and variance) Pro Rata (Line Limit 100 Amperes).

Pro Rata % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7794 9.7689e-06 0.1936 0.1492 1537.6538 10972.84 0.8569
Variance 0.0104 3.8024e-11 0.0005 0.0004 1327586.2655 179984.3344 0.0002

We once again see the same results as described for the other methodologies, with improvements
for all the KPI’s but the allocated capacity per unit of line loading and the # of exceedances KPI’s.
With respect to the latter, it can be observed that the same pattern that was mentioned above on the
plateauing of the results is especially apparent here. Whereas the other methodologies see a significant
increase in their # of exceedances, the average # of exceedances for Pro Rata across the forecasts
is only slightly higher than in the worst-case scenario we simulated for the baseline results. Although
Pro Rata still performs the worst, the difference between it and the other methodologies is significantly
smaller, mitigating the detriment this has to its position in the comparison. Once again, this is also
reflect in its variance, which is rather low when compared to the other methodologies, except for LIFO,
which also has the same low spread in its # of exceedances. LIFO does this with a difference between
the average and the baseline that is twice as high as that for Pro Rata, underlining the latter’s relative
improvement in this KPI for our comparison.

4.2.6. Evaluating the Forecast Sensitivity
Bringing the results from all of the methodologies together, we compiled Table 4.14, which gives the
average values of the KPI’s for each methodology over the range of forecasts simulated.

Table 4.14: Forecast sensitivity results (averages) for all methodologies (Line Limit 100 Amperes).

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.7416 0.3071 0.1948 0.1646 1440.4105 9475.52 0.8541
Carousel 0.7945 0.0731 0.2297 0.1514 1510.3730 10195.96 0.8451
LIFO 0.8104 0.3607 0.1669 0.1461 1533.9141 10501.82 0.8425
MO 0.7906 0.044 0.1378 0.1567 1388.5058 10292.64 0.8454
Pro Rata 0.7794 9.7689e-06 0.1936 0.1492 1537.6538 10972.84 0.8569

Reviewing these results, and comparing them to Table 4.1, we can observe that although the values
changed, the rankings stayed identical for the most part. The only major change occurred in the Total
Load Unable to be Allocated KPI, where we now find Pro Rata at the bottom of the rankings, but the
differences between them are a lot smaller.

As discussed extensively now, the results of the forecast sensitivity analysis can be summarized as a
positive improvement for most KPI’s, with a slight deterioration for the Allocated Capacity per unit of Line
Loading and # of exceedances KPI’s. Although the number of exceedances was significantly higher
than for the baseline results, the total load unable to be allocated was around 70% lower, indicating
that our worst-case forecast gave a significant over-estimation of the loads. Therefore, we generated
outputs for two more forecast quantiles: an optimistic forecast, with 45th and 55th quantile (LDN/ODN)
and a more balanced 70/30 quantile forecast. The outputs of these runs are presented in Table 4.15
and Table 4.16 below.

Table 4.15: Outputs for the 70 LDN / 30 ODN forecast for all methodologies (Line Limit 100 Amperes).

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.7697 0.3100 0.2093 0.1585 969.2504 9463 0.8444
Carousel 0.8189 0.2295 0.2295 0.1493 973.7193 10477 0.8379
LIFO 0.8246 0.3485 0.1782 0.1473 972.5967 10778 0.8359
MO 0.8191 0.0341 0.1569 0.1498 951.6272 10218 0.8370
Pro Rata 0.7948 7.7773e-06 0.2331 0.1426 1085.0600 10982 0.8552

Table 4.16: Outputs for the 45 LDN / 55 ODN forecast for all methodologies (Line Limit 100 Amperes).

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.9158 0.1323 0.1612 0.1192 232.0383 10482 0.8480
Carousel 0.9365 0.0352 0.1531 0.1130 232.0385 10845 0.8437
LIFO 0.9438 0.1439 0.1168 0.1125 232.0383 10501.82 0.8449
MO 0.9395 0.006 0.1125 0.1108 231.7576 10876 0.8433
Pro Rata 0.9383 3.0524e-06 0.1277 0.1101 240.1426 10933 0.8456
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When comparing these results to the outputs in Table 4.1, we see a significant improvement in most
KPI’s, with higher scores for the requested capacity percentages, lower differences between the loads
as well as more consistent and predicable allocation. Most of all, the total load unable to be allocated is
significantly lower for all of the methodologies, indicating that as the forecasts get more optimistic, more
and more capacity can be allocated. The only two KPI’s that seem to be lower across the board on
average are the # of exceedances and the allocated capacity per unit of line loading. For the latter, this
might indicate the system was allocating capacity which would have been used to balance out local
demand or supply with the pessimistic forecast, whilst now the lines are being used more intensely
leading to a reduction in the relative efficiency. With respect to the former, we believe that this increase
for the most part can be attributed to the fact that the increase in allocated capacity is distributed evenly
over the run, leading to certain time steps, which previously were very close to the limit, now being over
the limit. This is supported by the fact that average size of the exceedance barely increased for the
various methodologies, as this suggests that the average is still strongly influenced by extreme values
rather than an overall increase in the exceedances across the board.

However, the reduction in unallocated load might only be occurring because the load was being
curtailed at the merging of the allocated capacities and the measurement data. We therefore also
investigated the Load Unable to Be Used metric, resulting in the outputs presented in Table 4.17. This
table could then be compared to Table 4.8 to determine howmuch additional capacity had to be curtailed
with the more optimistic forecast.

Table 4.17: Output results for the Load Unable to Be Allocated KPI and the Load Unable to Be Used metric for the 45/55
(LDN/ODN) quantile (Line Limit 100 Amperes).

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

Total Load Unable
to be Used (MWh)
(Lower is Better)

Adapted LIFO 232.0383 1238.9168
Carousel 232.0385 1201.9620
LIFO 232.0383 1201.7835
MO 231.7576 1187.5424
Pro Rata 240.1426 1192.4259

Surprisingly, the total load unable to be used is actually lower for all methodologies priority-list
based methodologies, and only around 15-20% higher for the optimisation based methodologies. This
indicates that the higher allocation occurring with the more optimistic forecast run, is taking place for the
most part at time steps where there was still available capacity left. Even the increase in load unable
to be used for the optimisation based methodologies is relatively little when considering that they were
able to allocate between 4000 to 5000 MWh more, making the increase of around 150 to 200 MWh
relatively minor.

From the forecast sensitivity analysis we can thus take away the following conclusions. Firstly,
because the baseline simulation uses a worst-case forecast, it significantly overestimates the firm load,
leading to an excessive reduction in the allocated capacities. This was further confirmed by the fact
that the merging of the allocated capacities with the measurement data for the most optimistic scenario
included (45/55 LDN/ODN) led to a Total Load Unable to be Used that was actually lower across all
methodologies. This improvement in results was also true for the allocated percentage of requested
capacity, difference in allocation percentage and standard deviation of load allocation KPI’s, which
saw significant, but smaller positive changes. The only KPI’s which were lower on average were the
allocated capacity per unit of line loading and the # of exceedances KPI’s. With respect to the latter, this
increase made sense as the more optimistic forecast led to increases in allocation across the board,
pushing certain time steps which were near to the limit over. However, an important consideration to
add to this was the lack of significant change in the average size of the exceedance, suggesting that
this value was mostly the result of extreme values.

Secondly, with respect to the comparison of the methodologies, the rankings changed very little,
with Mathematical Optimum still being the most consistent methodology across the board. The other
methodologies further solidified their positions in excelling at certain KPI’s whilst achieving underwhelm-
ing results for others. One thing that should be noted is that the relative position of the Pro Rata
methodology did improve as its KPI’s were much closer to the other methodologies, especially in those
areas were it previously scored insufficiently like the # of exceedances and the allocated percentage
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of requested capacity KPI.

4.3. Line Limit Sensitivity Results & Discussion
Just like with the forecasts, the selection of line limit is an important parameter when comparing the
methodologies. As we discussed in Section 3.3.2, we selected the line limit on the basis of retaining
sufficient variation between the different methodologies, whilst keeping the load that is unable to be
allocated, as well as the number of exceedances within reason. To determine the effect of this choice,
we performed a sensitivity analysis of the line limit input parameter, the results of which we can now
review in this section.

Once again, the average and variance per KPI is discussed in each methodology’s subsection,
followed by a general discussion of the rankings in Section 4.3.2. The sensitivity analysis ran from a
line limit of 75 Amperes all the way up to 220 Amperes, in steps of 5 Amperes.

4.3.1. Line Limit Sensitivity Results
Below, we find the limit results for the five methodologies. First, we have Adapted LIFO in Table 4.18,
followed by Table 4.19 presenting the Carousel results, after which we have LIFO in Table 4.20. Next
there is Mathematical Optimum in Table 4.21 and finally we have Pro Rata in Table 4.22.

Table 4.18: Line Limit sensitivity results (average and variance) Adapted LIFO (Forecast Quantiles 99/01).

Adapted
LIFO

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.6900 0.3330 0.2040 0.2791 2851.7749 3969.3667 0.7813
Variance 0.0230 0.0056 0.0012 0.0071 3030450.7092 16943463.6322 0.0041

Table 4.19: Line Limit sensitivity results (average and variance) Carousel (Forecast Quantiles 99/01).

CAROUSEL % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7465 0.1041 0.2455 0.2615 3055.2371 4150.8667 0.7723
Variance 0.0198 0.0052 0.0029 0.0088 3600708.3206 21039037.2489 0.0031

Table 4.20: Line Limit sensitivity results (average and variance) LIFO (Forecast Quantiles 99/01).

LIFO % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7588 0.4338 0.1755 0.2550 3121.7956 4379.5333 0.7683
Variance 0.0151 0.0153 0.0022 0.0107 3718753.8022 24782891.6489 0.0026

Table 4.21: Line Limit sensitivity results (average and variance) Mathematical Optimum (Forecast Quantiles 99/01).

MATHEMATICAL
OPTIMUM

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7308 0.0727 0.1231 0.2764 2698.8431 4402.7333 0.7768
Variance 0.0232 0.0005 0.0001 0.0063 2522721.4265 19463822.8622 0.0032

Table 4.22: Line Limit sensitivity results (average and variance) Pro Rata (Forecast Quantiles 99/01).

Pro Rata % of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Average 0.7223 1.1733e-05 0.1751 0.2635 3031.3557 5146.3333 0.7824
Variance 0.0322 3.5611e-11 0.0022 0.0078 3699147.3451 25880515.6889 0.0049

We once again see that the average value of the allocated percentage of requested capacity KPI is
on average higher than in the baseline results. The relatively high variation (e.g. STD ≈ 0.15 for Adapted
LIFO) does indicate that this parameter varies significantly depending on the line limit. The difference
in allocations is also slightly lower, and has a low variation associated with it as well, indicating that the
difference between the average and the baseline values are relatively insignificant. For the standard
deviation of allocation, we also see a minor improvement, with a very low variation, indicating that an
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increasing line limit should also slightly improve the predictability of allocation. All three of these KPI’s
were found to improve on average with more optimistic forecasts, but do so to a lesser extent with an
increasing line limit.

What is in contrast to the forecast sensitivity results is the noticeable uptick in the average allocated
capacity per unit of line loading, which was lower on average for the forecasts. This KPI is almost
50% higher on average when compared to the baseline results, with a STD of only 0.08. Thus, as the
line limit increases, the allocated capacity increases even quicker. This is in contrast to our findings
from the forecast sensitivity analysis, where we speculated the decrease there might be attributable to
more of the load going upstream. We now find that the more likely explanation is that as the forecast
becomes more optimistic, the allocated capacity goes up without an equivalent capacity improvement
of the lines, leading to increased loading. This is not true when raising the line limit as, inherently, the
increased available capacity of the system is matched by an increase in the capacity of the lines. We
can therefore hypothesize that this KPI is not only a measure of how efficiently the system allocates
capacity, but also of how much capacity the lines still have available.

With respect to the next KPI, the Total Load Unable to be Allocated, we see a similar improvement
as for the other KPI’s., but with a high variation (e.g. STD ≈ 1750MWh for Adapted LIFO). This makes
sense as the increase in line capacity is directly correlated to how much capacity can be allocated.
We also note that is improvement is smaller than the one we saw in the forecast sensitivity analysis,
suggesting that both parameters are key when evaluating the most efficient way of allocating capacity.

With respect to the # of exceedances, we see a large drop of over 50%, which is sizeable, espe-
cially when compared to the result we found for the forecast sensitivity analysis. This result has a very
high variation however, with a STD ≈ 4000. This suggests that the low value of the average number of
exceedances is significantly influenced by extreme values at the ends of the line limit range, which is
in line with our findings in Section 3.3.2. There we observed that the difference between the method-
ologies tended to peter out after increasing the line limit beyond around 150 Amperes, indicating that
at this point, the number of exceedances was very low. The same can be concluded when reviewing a
full run in Section A.3, where the exceedances all seem to be of relatively equal magnitude. We thus
find that the low number of exceedances found here are caused by the segment at the upper limits
of the line limit range, which significantly drop the averages. This is reinforced by the average size of
the exceedances KPI, which has remained quite close to the baseline value. The exceedances in our
line limit sensitivity analysis are therefore mostly present in the lower line limits, which pull down the
averages, as the higher line limits have fewer exceedances to contribute to the average.

4.3.2. Evaluating the Line Limit Sensitivity
Taking the averages of the different methodologies together, we arrive at the resultant rankings as
presented in Table 4.23.

Table 4.23: Line Limit sensitivity results (averages) for all methodologies (Forecast Quantiles 99/01).

% of Requested
Capacity (Higher is Better)

% of Relative
Allocated Capacity
(Lower is Better)

Standard Deviation of
Allocation
(Lower is Better)

Allocated Capacity
/% Line Loading
(Higher is Better)

Total Load Unable
to be Allocated (MWh)
(Lower is Better)

# of
exceedances
(Lower is Better)

Average size
of exceedance
(Lower is Better)

Adapted LIFO 0.6900 0.3330 0.2040 0.2791 2851.7749 3969.3667 0.7813
Carousel 0.7465 0.1041 0.2455 0.2615 3055.2371 4150.8667 0.7723
LIFO 0.7588 0.4338 0.1755 0.2550 3121.7956 4379.5333 0.7683
MO 0.7308 0.0727 0.1231 0.2764 2698.8431 4402.7333 0.7768
Pro Rata 0.7223 1.1733e-05 0.1751 0.2635 3031.3557 5146.3333 0.7824

When comparing these rankings with Table 4.1 and even Table 4.14, it stands out that the rankings
remain very similar. Compared to the baseline, the Adapted LIFO andMOmethodologies switch places
in the Allocated Capacity per Unit of Line Loading KPI and the LIFO and MO methodologies switch
places in # of exceedances, but due to the small difference in both these instances we would argue
this change to be negligible.

Overall, the findings of the baseline results still stand therefore, with Mathematical Optimum re-
maining the most consistent performer on average across the different line limits. We also find that the
sensitivity of the KPI’s to the line limits is markedly less than their sensitivity to the selected forecast for
the most part, with only the average size of the exceedances and the allocated capacity per unit of line
loading KPI’s seeing a larger shift. This indicates that even in a part of the grid with high congestion,
selection of the appropriate forecast probability quantiles for allocating capacity is critical.
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4.4. General Discussion
Now that we have presented all of the results, and discussed them one by one, we will reflect on the
meaning of these results, and what the main takeaways are.

Firstly, we compiled multiple rankings of the methodologies and observed that the differences be-
tween them varied significantly depending on the input parameters, as well as across the KPI’s. We
would like to call back to our discussion in Section 3.3.1, where we argued that there is no such thing
as the ’best’ methodology, but rather that the selection of methodology is heavily influenced by the pref-
erences of KPI’s that one takes. For example, although the Mathematical Optimum methodology was
mentioned to be the most consistent repeatedly, it also scored consistently average on both the aver-
age allocated percentage of requested capacity, as well as the number of exceedances. Both of these
KPI’s are important to multiple stakeholders in this system, with the problem owner, the grid operator,
being heavily invested in keeping the latter of the two as low as possible. Furthermore, as we already
touched upon earlier, these non-firm connections cannot be considered in a vacuum, and must always
be compared to the alternatives that are available. In Figure 2.1 in chapter 2, we already identified the
plethora of alternative congestion management methods, all of which have their own advantages and
trade-offs. Therefore, leaning into one of the aspects of non-firm grid connections, like for example the
proportionality of Pro Rata or the guarantee of future preference of LIFO, can be the difference between
a non-firm ato being an attractive product, and being an edge solution looking for a problem. Thus,
when evaluating the various KPI’s, we should remember to also evaluate them individually, rather than
abstracting them into the ’best’ or ’worst’ across all KPI’s.

Secondly, in this chapter, we found a host of interesting results which did not seem readily apparent
at the beginning of the research:

• The number of time steps of the Carousel methodology does not significantly influence its stan-
dard deviation of allocation.

• The average size of the exceedances KPI was significantly influenced by extreme values.

• The variation of the allocated capacities across the different seasons matches the variation in firm
load.

• The variation of the KPI’s between different seasons is negligible however.

• We found that some of the exceedances that can be observed during a full run exceed even the
system limit, whilst still having a large amount of unused capacity in the system between peaks.

• We also found that the priority-list based methodologies’ advantage in total load unable to be
allocated is largely nullified by their inadequate performance on the Total Load Unable to be Used
metric, indicating that the capacity they might have allocated more actually remains unused after
merging with the measurement data. The optimisation based methodology on the other hand
score significantly better here.

• We initially speculated that the decrease in the average scores for the allocated capacity per unit
of line loading KPI in the forecast sensitivity analysis to be due to a less efficient matching of
demand and supply inside the system as the Total Load Unable to be Allocated went down.

• In the line limit sensitivity analysis we found that this was only partially true however, as the
decrease in Total Load Unable to be Allocated that was matched with an increase in line limit
actually led to an improvement in the Allocated Capacity per Unit of Line Loading.

• We also found that the average number of exceedances was significantly lower than the baseline
results, suggesting a consistent decrease with increasing line limit. However, the large variance
of this KPI suggest that this was not the case but rather that the number of exceedances was
relatively constant up till a certain line limit, at which point they dropped greatly to a very low
value leading to a lower average. This was confirmed by the visualisation of the full run, where it
could be seen that most of the exceedances were rather similar in magnitude.

• Another supporting result to this conclusion was the fact that average size of the exceedances
barely dropped when compared to the baseline results, indicating that there were a lot of line
limits where the number of exceedances were next to zero.
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Finally, as mentioned above we also performed sensitivity analyses for both the forecast inputs as
well as the line limit parameter.

From the forecast sensitivity analysis we concluded that the pessimistic forecast that was used in
the baseline scenario led to a significantly lower score for most of the KPI’s, with the only exception
being the allocated capacity per unit of line loading, as well as the number of exceedances. The latter
of which was relatively stable across the forecasts however, indicating that this was not so much a
feature of the optimistic forecasts but rather that the pessimistic baseline forecasts was able to slightly
reduce the number of exceedances. For all of the other KPI’s, performance improved significantly. This
was most noticeable in the Total Load Unable to be Allocated KPI, which saw an average value across
the forecasts which was around 70% lower than the baseline, a marked improvement. To ensure this
improvement was not at the expense of the Total Load Unable to be Used (which would indicate that
the extra allocated capacity was actually just curtailed during the merging of the allocated capacities
and the measurement data) we also investigated that metric for the most optimistic of our forecasts
(which should have the highest values). To our surprise, this metric was also on average lower than in
the baseline, indicating that the use of a pessimistic forecast consistently lead to an under allocation of
capacity whilst only slightly reducing the number of exceedances.

Aside from this consideration, we also found that the ranking of the different methodologies did not
change noticeably. The only major difference of note was that the methodologies on average laid closer
to each other than in the baseline results.

For the line limit sensitivity, a similar analysis was performed. Just like with the forecasts, we found
that the average values of most KPI’s were improved when compared to the baseline results. However,
the high variance of the various KPI’s indicated that these did change significantly as the line limit
changed. Furthermore, the improvement for all KPI’s but one was smaller than the improvement for
the forecasts. The one except was the number of exceedances, which was heavily influenced by
extreme values as mentioned above.

Similarly to the forecast sensitivity analysis, the ranking of the methodologies did not change ap-
preciably, with the differences between the methodologies becoming smaller.

Our overall takeaways from the sensitivity analysis therefore were that our baseline results are
relatively sensitive to these input parameters, but that our comparison between the methodologies still
holds water across the board.



5
Conclusions & Recommendations

Wenow arrive at the final chapter of this thesis, where will discuss the conclusion and recommendations
of our work. In Section 5.1 we will revisit our research gap and the associated research question, after
which we discuss the relevant answers that we identified in our research. This is then followed in
Section 5.2 by a discussion of the relevant recommendations that we identified with regards both to
our own work as well as implications with respect to the larger topic of grid congestion. Finally, we will
also reflect on our work and try to identify the limitations and shortcomings of our research, as well as
discussing recommendations for future research.

5.1. Conclusions
In the beginning of our work, we introduced how the current energy transition is leading to increasing
levels of grid congestion on the Dutch electricity network. As a consequence of this congestion, we
discussed how many important societal projects like the electrification of industry and the expansion
of the housing stock are being significantly hindered. To deal with this congestion, grid reinforcement
was identified as the most straightforward and effective long-term solution. However, due to the large
investment as well as the long throughput time required to implement grid reinforcement, this solution
would not become effective in the near future, requiring other avenues of alleviating congestion. An im-
portant way of achieving this was through the use of flexibility, allowing for more efficient grid utilisation
and the adjustment of consumption and supply to the available capacity on the network. We found four
way of achieving this flexibility: a rules-based approach, network tariffs, market based procurement and
finally through the use of non-firm connection agreements. Our research focused on non-firm connec-
tion agreements, where the grid operators dynamically allocates capacity to these connections based
on the available capacity in the network. One of the key aspects of this method of procuring flexibility
however is the manner in which the available capacity is divided among the non-firm grid connections.
This brought us to our research gap:

There is a lack of exploration into the implication of different priority schemes for the allo-
cation of capacity among non-firm connection agreements in the context of distribution grid
congestion.

From this followed our research question:
“What strategies and mechanisms can be employed by grid operators to efficiently allocate

and distribute the available capacity among non-firm grid connection agreements (ATO) in the
distribution grid, ensuring fair treatment of customers whilst improving grid utilisation?”

We split this research question into five sub-questions, as formulated below:

• SQ1: What mechanisms have been devised for allocating capacity in the context of non-firm grid
connection agreements?

• SQ2: How can we measure the performance of these different mechanisms to ensure fair treat-
ment of customers and improving grid utilisation?

54
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• SQ3: How do the different mechanisms score on these measures when compared to each other?

• SQ4: What is the effect of the forecast uncertainty in these results?

• SQ5: What are the implications of this comparison for grid operators when selecting their ap-
proach to dividing non-firm capacity among connected parties?

The answer to the first two sub-questions were obtained from our review of the state-of the art
literature. For the first sub-question, we found a host of methodologies for distributing the available
capacity among non-firm grid connections. From these, we selected the following five.

• Mathematical Optimum (MO: The Mathematical Optimummethodology formulates the capacity
allocation as an optimisation problem and tries to allocate highest possible total capacity.

• Last In, First Out (LIFO): The LIFOmethodology allocates capacity in order of the age of the con-
nection. The longer a non-firm grid connection has been connected, the higher in the allocation
order it will be.

• Adapted LIFO: Adapted LIFO is similar to LIFO but takes into account the topology of grid as an
additional factor combined with age, prioritising higher voltage connections.

• Rota/Carousel: A similar priority-list based methodology which rotates the priority order on a
fixed time schedule, ensuring all connections are at the front of the list at least some of the time.

• Pro Rata/Proportional: An adaptation of the MO methodology, Pro Rata also tries to optimise
the allocated capacity but adds the additional constraint that the allocated percentages are pro-
portional.

These five methodologies were selected based on their real-life application and their feasibility in
being implemented in our model. Each of these methodologies is formulated with a specific goal in
mind, with for example LIFO being the most effective at keeping the non-firm grid connection effective
for existing customers when more are added, whilst Pro Rata prioritises the ’fairness’ of the allocation.

To determine the effectiveness of these methodologies in order to compare them, we once again
drew on the available literature and came up with three primary dimensions of relevance for these
methodologies. These are customer-focused (fairness), societal focused (grid utilisation) and grid op-
erator focused (grid performance) measures of effectiveness. Based on these three dimensions, the
following Key Performance Indices (KPI’s) were obtained:

• Fairness

– Howmuch do the connected parties get to use their requested capacity (as a % of requested
capacity)

– Howmuch do the connected parties get with respect to each other (difference in % of highest
allocated vs lowest allocated requested capacity)

– How predictable is the allocation of capacity (the variance of the allocation of capacity)

• Grid Utilisation

– How much is the total capacity of the grid used more when compared to the base scenario
per allocated unit of capacity (average load allocated (MWh) per % loading increase of lines)

– How much total load/demand is unable to be allocated (sum of capacity unable to allocated
in MW/MWh)

• Grid Performance

– How regularly does the allocated capacity still have to be curtailed in the real time operation
of the grid (# of exceedances)

– And to what extent does the allocated capacity need to be curtailed (average size of ex-
ceedance (MW))
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With this combination of methodologies and KPI’s, we then performed an experimental case study
on a substation operated by the DSO Liander in order to answer the other three sub-questions. In our
case study, the source of congestion was a lack of capacity on the upstream lines to the grid supply
point. The core components were as follows:

• A 20kV bus, to which one customer is connected.

• 3 lines from the 20kV bus to the upstream network grid supply point, which is considered the
’source’ in our case study.

• Two 10kV busses (A and B), with 6 and 4 customers connected respectively.

• 2 Transformers, which each connect one of the 10kV busses to the 20kV bus.

Four of these customers were considered non-firm, and the other 7 were considered firm connec-
tions. The amount of capacity in the system was determined based on the line limit that was chosen
for the three upstream lines. The allocation of capacity was based on forecasts generated based on
the measurement data for the loads in the period from May 2023 to January 2024.

We found that the Mathematical Optimum methodology scores the most consistently across the
KPI’s, but that each of the methodologies excels at a set of KPI’s, leading us to the conclusion that the
’best’ methodology is highly dependent on the priority one gives to the different KPI’s.

We found that the Adapted LIFO methodology balanced the societal and grid operator dimensions,
scoring a low ’load unable to be allocated’ and ’# of exceedances’ KPI and a high ’allocated capacity
per unit of line loading’ KPI. Carousel on the other hand scored highly on the ’# of requested capacity’
KPI whilst having a significantly lower difference between the allocation of different loads KPI when
compared the other two priority-list based methodologies. LIFO scored the highest on the average
percentage of requested capacity, indicating its effectiveness for existing non-firm connections even
with more non-firm loads connected. Mathematical Optimum scores the most consistently across all
KPI’s and is able to allocate the highest amount of total capacity. Finally, Pro Rata ensures the ’fairest’
outcome, and does this in a predictable fashion with a low standard deviation of allocation.

Furthermore, we observe that the differences between the methodologies is rather small at times,
indicating that other methodologies could achieve similar performance for certain KPI’s. We found that
these rankings did stay relatively similar throughout the year, indicating that, at least for the baseline
conditions, the results are relatively consistent.

Aside from these main findings, we also investigated the impact of our selection of baseline con-
ditions. Namely, we performed a sensitivity analysis for the selected forecast probability, as well as a
sensitivity analysis of the line limit of the upstream lines.

We found that although the average values of the KPI’s across the sensitivity analyses are signif-
icantly higher than in the baseline conditions, the actual ranking between the methodologies remain
quite consistent, and each methodology scores well on their own respective set of KPI’s.

We thus conclude that although our baseline conditions assume a worst-case scenario both with
regard to the forecasted loads as well as the capacity available on the system (line limit), the comparison
and the associated analysis still hold true.

Aside from these primary findings, we also found the following secondary findings:

• The number of time steps of the Carousel methodology does not significantly influence its stan-
dard deviation of allocation.

• The average size of the exceedances KPI was significantly influenced by extreme values.

• The variation of the allocated capacities across the different seasons matches the variation in firm
load.

• The variation of the KPI’s between different seasons is negligible however.

• We found that some of the exceedances that can be observed during a full run exceed even the
system limit, whilst still having a large amount of unused capacity in the system between peaks.
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• We also found that the priority-list based methodologies’ advantage in total load unable to be
allocated is largely nullified by their inadequate performance on the Total Load Unable to be Used
metric, indicating that the capacity they might have allocated more actually remains unused after
merging with the measurement data. The optimisation based methodology on the other hand
score significantly better here.

• We initially speculated that the decrease in the average scores for the allocated capacity per unit
of line loading KPI in the forecast sensitivity analysis to be due to a less efficient matching of
demand and supply inside the system as the Total Load Unable to be Allocated went down.

• In the line limit sensitivity analysis we found that this was only partially true however, as the
decrease in Total Load Unable to be Allocated that was matched with an increase in line limit
actually led to an improvement in the Allocated Capacity per Unit of Line Loading.

• We also found that the average number of exceedances was significantly lower than the baseline
results, suggesting a consistent decrease with increasing line limit. However, the large variance
of this KPI suggest that this was not the case but rather that the number of exceedances was
relatively constant up till a certain line limit, at which point they dropped greatly to a very low
value leading to a lower average. This was confirmed by the visualisation of the full run, where it
could be seen that most of the exceedances were rather similar in magnitude.

• Another supporting result to this conclusion was the fact that average size of the exceedances
barely dropped when compared to the baseline results, indicating that there were a lot of line
limits where the number of exceedances were next to zero.

To return to the research question then, we can then finally answer the last sub-question. Our
findings suggest that themethodology used by the grid operator to allocate the available capacity across
non-firm connections does actually significantly influence the outcome of the system, and depending
on which metrics the grid operator values, the most effective methodology will vary. This conclusion
remains true across different levels of congestion in our considered system, as well as the forecast
uncertainty that is accepted.

This conclusion does need to be put in its proper context however, as these findings were developed
for a very specific case study. There are therefore a few considerations that need to be taken into
account when evaluating which methodology works best.

Firstly, in the selected case study the primary limitation of the system leading to congestion was
the capacity of the lines to the grid supply point, which was selected with an eye to achieving a rela-
tively simple system limitation. However, in reality the limitation on congested system can be due to
a host of reasons, ranging from voltage constraints to transformer overloading to even limitations in
the circuit breakers or other safety equipment in the system. Thus, whereas in our research we were
able to optimise or design towards a single limitation, in a real system, there would be multiple bound-
aries which need to be taken into account, which could significantly influence how each methodology
performs. To give a specific example of this, in a system where voltage constraints lead to a specific
line consistently being unable to be allocated capacity, a methodology like Pro Rata would need to be
significantly adapted or risk being useless. Therefore, we argue that the comparison methodologies is
primarily functional in its analysis, and that any holistic takeaways need to be avoided.

Secondly, we noticed in our research that the forecast has a significant effect on the performance
of the methodologies. Due to the way we designed our research, our forecasts were generated based
on back-casting measurement data, which by definition is impossible for real life grid operations. We
noticed in our results that the forecasts had a significant impact on the outputs, and that the selection of
a more optimistic or pessimistic forecast could significantly affect the differences between the method-
ologies (although, as mentioned above, the ranking remained similar). In reality, generating a forecast
that matches the average loading on the system seems feasible, however generating a forecast that
accurately predicts the peaks in the loading on the system is a lot harder. Predicting these peaks is
important for the allocation of capacity among non-firm loads, as these moments are the primary in-
stances in which little, if any, load can be allocated. It is thus important to consider when reviewing
our conclusions that these were found in a system where the forecasts were generated based on the
measurement data, leading to an improved ability to forecast the peaks in the system loading.
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Finally, we performed our research on a simplified case study, which consisted only of busbars and a
couple of transformers. In reality, substations where these methodologies might be applied will consist
of more components, which will have an effect on how the methodologies perform. For example, there
might be lines with multiple loads connected to them (think of a street for example), which requires the
methodologies to take into account spatial location and additional constraints. Furthermore, as substa-
tions get more complex, methodologies which are simpler (like Carousel or LIFO) might become more
attractive due to their straightforwardness and transparency, both to customers and to grid operators.
It is therefore important to underline once again, that our conclusions apply to our specific case study
with our specific selected set of KPI’s. Extrapolating these conclusions should be done with caution.

5.2. Recommendations & Future Work
Throughout this document, we have underlined specific points of note for grid operators. We have
compiled these points here, which serve as a recommendation for specific considerations should be
taken into account when implementing both the methodologies discussed in our research and non-firm
ATO’s in general. At the end of each recommendation we summarise the key takeaway in a box.

The first of the key recommendations from our research lays with one of the more fundamental
aspects of the non-firm connection agreement: the request for capacity. In our research, we modelled
these requests based on the forecast values of the non-firm loads. For every 15 minute segment/time
step, we assumed that the forecast value for the load was equal to the requested capacity by the load.
This is not possible (or at least not feasible) in real operations for a couple of reasons. Firstly, the fore-
cast is a prediction by the grid operator, not by the customer, of the expected capacity that is required
by a specific load at that moment. It being a forecast by the grid operator however, means that the
prediction is subject to serious assumptions. We believe, as confirmed by the first implementations of
the non-firm ATO’s, that it would significantly more effective if the customer estimates their required
capacity and passes this as a request to the grid operator. This brings us to the two prongs of this
specific recommendation however: how would the customer do that, and with what resolution. With
regard to the former, we recommend that grid operators evaluate if existing (or planned) infrastructure
can be adapted to enable these requests, like for example the real-time interface currently under devel-
opment by Netbeheer Nederland. The second sticking point where we recommend the grid operator to
investigate possible solutions, is the resolution of the requested capacity. As we mentioned, in our re-
search we used a resolution of 15 minutes, the standard time step in most electricity market processes.
However, the ability of a customer to estimate their requested capacity to such an extent is probably
dependent on the nature of the customer. We therefore recommend grid operators to investigate what
kind of resolution (e.g. an hour, a quarter of a day, etc.) would provide the most balanced trade-off
between easy of use and optimal performance. This specific choice is also significant for the method-
ologies, as the resolution will significantly impact how efficiently the grid can be utilised by maximising
the available capacity.

The resolution of requests (how many time blocks per day a customer needs to request)
should be carefully chosen such that customers can properly predict their needed ca-
pacity without having too be excessively detailed.

Following this line of thinking, we also recommend that the forecast used by grid operators to allo-
cate non-firm capacity is further investigated. As we found in our research, the selection of forecast has
a significant impact on the effectiveness of different methodologies but also on the value of non-firm
connections as a whole. It is therefore paramount that the choice of forecast is carefully weighed to bal-
ance the risk and uncertainty of more optimistic forecasts with the higher efficiency of lower forecasts.
Generating more accurate forecasts is also of great value, especially if those forecasts are better at
predicting the peaks in the firm capacity in the system. We determined in our research that although
the forecasts could reliably match the average utilisation of the system, predicting the peaks was still
difficult. This is especially critical for non-firm capacity allocation as it exactly these peaks that require
the methodologies to deny some loads their requested capacities. Furthermore, being able to deter-
mine the exact location of the limiting constraints in peak situations would also be highly beneficial to a
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methodology like Adapted LIFO, as well as optimisation methodologies like Mathematical Optimum. In
short, we recommend improving forecast accuracy, especially with regards to the peak moments and
the location of the limiting constraints, to further improve the comparison between methodologies.

Generating accurate forecasts of the firm loading is paramount to making the use of non-
firm grid connections feasible.

An another important recommendation, which we touched upon multiple times throughout our re-
search, and which connects to the above two recommendations is the balance between making the
flexibility option of a non-firm grid connection attractive enough and preventing gaming/excessive costs
for other grid users. As we discussed in our state-of-the-art chapter, non-firm grid connections are only
one of the plethora of options to creating flexibility in the electricity grid. Making it sufficiently attrac-
tive for customers to be used should therefore be an important consideration when implementing this
option. Of course, the current draw for this option is the lack of alternative in the form of a firm grid
connection for new connections or existing connections which wish to scale up. However, the use of
such a non-firm grid connection is still a significant change, potentially deterring otherwise perfectly
adequate connections which could actually contribute to grid stability. On the other hand, we also dis-
cussed that one of the risks with implementing non-firm grid connections is the possibility for gaming
by connections. One of the major advantages of a non-firm grid connection is the reduction in the
grid tariffs that customers have to pay, which for large connections can be a very significant financial
advantage. However, when implementing grid tariffs for these connections, the structure should be
so to disincentivise excessively large capacity requests where they are not needed, as well as min-
imising requested capacity that is not utilised. There are multiple ways to achieve this, by for example
putting a tariff on ’wasted’ capacity that is not utilised, or perhaps basing grid fees purely on requested
capacities. Regardless, we recommend further research into this topic, to determine how this delicate
balance between creating an attractive flexibility option whilst ensuring it is financially feasible and does
not pass grid operation fees onto other customers.

In our research, ensuring the attractiveness of non-firm connections was important. Fur-
ther research should be done on determining what measures could be adopted to ensure
this attractiveness without risking negative side-effects like for example gaming by con-
nected parties.

To further build on this point, we also recommend that the interaction between non-firm grid con-
nections and other congestion management tools is carefully evaluated. As we determined in our
research, the firm grid capacity that is utilised sets the stage for the different methodologies. Other
flexibility options, like for example connections which offer flexibility to grid operators on platforms like
GOPACS, should therefore be considered when allocating capacities. Determining the behaviour of
these flexibility options can be quite difficulty at times however, as their activity primarily takes places
during real-times grid operation, whilst the allocation of capacity should occur before the closing of
the day-ahead market. Evaluating the effects that this might have on the performance of the differ-
ent methodologies as well as non-firm grid connections in general is therefore key to ensuring these
different flexibility options do not hinder each other and perform in cooperation rather than competition.

The interaction between non-firm grid connections and other flexibility options should
be carefully studied to ensure that they do not interfere with each other’s operations.

This need for careful evaluation shows up in another important parameter of a grid that contains
non-firm grid connections: the maximum amount of non-firm grid connections or the scope at which the
methodologies are applied. We found in our results that for methodologies like LIFO, their performance
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is heavily dependent on the number of loads that it has to divide the available capacity over. As more
non-firm grid connections appear in a specific part of the grid, the less attractive the connection will
become if all other factors remain constant. Thus, when implementing these methodologies, it should
be considered how many loads should be taken into account when dividing the available capacity. If
one were to subdivide the grid into smaller parts, each with their own respective available capacities,
a methodology like LIFO might still work effectively. Other methodologies, like Mathematical Optimum
are better at dealing with this, as their allocation can take into account multiple constraints and balance
the capacities around that. However, it should be considered that as more non-firm loads are added to
the optimisation, or as the scope grows larger (thus leading to more possible constraints) the difficulty of
finding an optimal solution will increase. We therefore recommend further investigation into the optimal
scope upon which methodologies are applied, as well as how many loads should be included in this
division of capacity.

The scope at which the methodology for allocating capacity is applied can play a signif-
icant role in the effectiveness of that methodology.

One further consideration that we encountered in the methodology section of our research, was
the concept of iterative capacity allocation. Iterative capacity allocation meant that an allocation of
capacity in one direction (supply or demand) could be matched by an equivalent allocation of capacity
in the opposite direction, leading to a compound increase in allocated capacity without exacerbating
grid constraints. In our research, we decided to disallow this, as our allocation was based on forecasts
rather than requests. However, in reality, if the tariff structure is effective in ensuring requested capacity
is close to used capacity, iterative capacity allocation could potentially be effective. We thus recommend
further research in this direction, to determine the possible effects this might have, both positive as well
as negative.

Iterative capacity allocation could potentially increase grid efficiency but the increased
risk needs to be offset by an effective tariff structure or other framework to ensure allo-
cated capacities are matched closely by the used capacity of non-firm grid connections.

For the final recommendation, we would like to touch upon the outcome of our research, that we
presented in the conclusions above. As we mentioned there, there is no objectively ’best’ methodology
for allocating capacity among non-firm grid connections. Rather, the best methodology depends on
which KPI’s are found to be the most important. We recommend that this choice of what aspects
are important when evaluating ways to allocate capacity is further investigated, in the context of our
methodologies but also in the wider context of non-firm grid connections. Namely, we recommend
that grid operators evaluate how non-firm grid connections fit into the larger framework of creating a
sustainable and future-proof electricity grid, and use this as a basis to determine what aspects are key
for this flexibility option which cannot be provided by alternatives. This would be a strong foundation to
inform a selection of which KPI’s are the most important, thus aiding in selecting the most appropriate
methodology for the allocation of capacity among non-firm grid connections.

The ’best’ methodology is highly dependent on which metrics are most relevant to the
stakeholders involved in their implementation.

Finally,let us reflect on our research and its outcomes. As we mentioned in Section 5.1, the answer
to our main research question is not straightforward. In short, there are several ways of allocating non-
firm capacity, each with their own respective advantages and disadvantages. We investigated five of
these methodologies in a case study consisting of a relatively simple grid topology and using a set of
KPI’s to determine their performance.
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As was apparent, each of themethodologies has their advantages and drawbacks, and our research
has identified them for the specific case study under consideration. Extrapolating our findings to a wider
context, we expect the following:

• Adapted LIFO will probably become more effective than the other priority-list based methodolo-
gies as the grid topology becomes more intricate, as it is able to allocate capacity based on the
location of the grid constraints.

• Carousel’s variable ’time steps per priority list shift’ might become more relevant with a larger grid
topology with more components and loads, as the constraint might then be located somewhere
between loads.

• LIFO on the other hand is expected to deteriorate in performance based on our results, as its
simple prioritisation scheme will quickly fall apart as the system becomes more intricate due to
its inability to dynamically alter its priority preferences.

• Mathematical Optimum will quite likely remain the most consistent scorer across the board, but
finding an optimal solution might become more difficult as more complexity and additional con-
straints are added, as well as increased numbers of non-firm grid connections.

• Pro Rata will face these same issues, but will also become less effective as more non-firm con-
nections are added, as these all need to be proportional.

From all of this, we recommend further investigation into the effectiveness of these methodologies.
We do believe that such a deeper exploration would benefit from examining only one or two of these
methodologies at a time, as this would allow for more fine-grained analyses. In our own research, we
found that the combination of seven KPI’s and five methodologies lead to significant complexity already,
so balancing this complexity with the relevance of the research would be paramount.

Furthermore, we recommend further investigation into the recommendations that we outlined above.
Although these recommendations were mostly framed in terms of relevance to grid operators, further
research into aspects like balancing flexibility option attractiveness and internalising the costs of the
system or improved peak forecast generation would be worthwhile.

Bringing all of these findings together would ensure that this important avenue of stimulating and
reinforcing the energy transition is properly implemented, to the benefit of all.
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A.1. Table of Assumptions and Decisions
In Table A.1, we have presented the full list of assumptions and decision variables in our research. In
the right column we have also included our rationale behind these values.

Table A.1: A Table of the assumptions made in our research.

Assumption\Decision Value Rationale

Time Period Run 2023-05-24 00:00:00+00:00
2024-02-23 23:45:00+00:00 This was the time period that was available at the beginning of our simulations.

Non-Firm Load Multiplier 1.5 Multiplier added to increase non-firm load to proportionality with firm load.
Baseline Forecast Quantiles 99th LDN, 01st ODN Worst-Case Scenario for allocation of capacity.
Non-Firm Loads 105,116,117,202 Choice made based on which loads were individual customers rather than aggregated lines.
Ages Contract 102: 0, 105: 1, 106: 2, 111: 3, 113: 4, 114: 5, 115: 6, 116: 7, 117: 8, 118: 9, 202: 4 Arbitrary.

Baseline Line Limit 100 Amperes
Value based on variation in outputs across different line limits. Sufficiently low to ensure
difference between methodologies, but sufficiently high to ensure capacity unable to be
allocated is not excessive.

Power Factor 0.85 Worst-Case Scenario for allocation of capacity.

Forecast Quantiles for
Sensitivity Analysis

[[’01’,’99’],[’02’,’98’],[’03’,’97’],[’05’,’95’],[’06’,’94’],[’07’,’93’],[’08’,’92’],[’09’,’91’],[’10’,’90’],
[’11’,’89’],[’12’,’88’],[’13’,’87’],[’14’,’86’],[’16’,’84’],[’17’,’83’],[’18’,’82’],[’19’,’81’],[’20’,’80’],
[’21’,’79’],[’22’,’78’],[’23’,’77’],[’24’,’76’],[’26’,’74’],[’27’,’73’],[’28’,’72’],[’29’,’71’],[’30’,’70’],
[’31’,’69’],[’32’,’68’],[’33’,’67’],[’34’,’66’],[’36’,’64’],[’37’,’63’],[’38’,’62’],[’39’,’61’],[’40’,’60’],
[’41’,’59’],[’43’,’57’],[’44’,’56’],[’45’,’55’],[’46’,’54’],[’47’,’53’],[’48’,’52’],[’49’,’51’],[’50’,’50’],
[’51’,’49’],[’52’,’48’],[’53’,’47’],[’54’,’46’],[’55’,’45’]]

Randomly sampled forecat quantiles between 0 and 100.

Line Limit Range for
Sensitivity Analysis 75 to 225 Amperes Range within which there was a noticeable difference between values.

Carousel Time Steps Per
Shift 4 Every hour shift.

Pro Rate Equality Maximum
Differenc 0.0001 Trade-off between accuracy and computation time.

Line Voltage 20000 Volts Assumed to be fixed due to grid supply point creating stability.

A.2. Forecast Sensitivity Analysis Quantiles
For our sensitivity analysis of the forecasts, we drew a random sampling of forecast quantiles as shown
in the snippet from our code shown below in Figure A.1.

Figure A.1: A code snippet of the range of percentiles used in our forecast sensitivity analysis.

A.3. Full Run Output
A full run is presented in Figure A.2 below. This run uses the Carousel methodology, and the input
parameters as specified in Section 4.1. The top graph gives the line loading as a function of the
maximum capacity of the lines. The second graph takes into account the directionality of the load. The
third graph is the non-firm load whilst the bottom is the firm load.
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Appendix B

In this appendix, we will go through each of the methodologies, and discuss the step-by-step process
that they follow in their allocation procedure.

B.1. LIFO
Inputs:

• Non-Firm Ids

• Age Contract

• Grid Structure Data

• Forecast Data

• Firm Ids

• Limits

• Power Factor

Process
The process consists of two parts: the generation of the priority-list, and the allocation of capacity using
that priority-list.

1. The priority-list is generated by sorting the non-firm ids in the order of the ages of the contract.

2. This priority-list is then passed to the allocation of capacity process.

3. In this process, first the current firm capacity is calculated from the forecast data’s firm ids.

4. This is then multiplied by the inverse of the power factor to get the apparent capacity as opposed
to only the active capacity.

5. The available capacity is then calculated in both the LDN and ODN direction using Equation 3.1.

6. If the LDN capacity is smaller than 0 or the ODN capacity is larger than 0, they are set to 0 (these
conditions check if there is not already an exceedance).

7. The requested capacity for the non-firm ids is then obtained from the forecast data, and symmet-
rically mirrored (as discussed in Section 3.3.2).

8. Subsequently, in order of the priority-list, the following nested-if loop is followed:
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9. (a) If the current requested capacity is smaller than the current available capacity (in either
direction), the allocated capacities is set to be equal to the requested capacities in both the
LDN and ODN direction. The available capacities in both directions have the requested
capacity subtracted from them.

(b) Else if the current requested capacity in the LDN direction is smaller than the available LDN
capacity, but the requested ODN capacity is larger than the current available ODN capac-
ity, the allocated capacity in the LDN direction is set equal to the current requested LDN
capacity and the allocated capacity in the ODN direction is set equal to the available ODN
capacity (thus not the requested capacity). The available capacity in the LDN direction has
the requested capacity subtracted, and the available ODN capacity is set equal to 0.

(c) Else if the current requested capacity in the LDN direction is larger than the available LDN
capacity, but the requested ODN capacity is smaller than the current available ODN capacity,
the allocated capacity in the LDN direction is set equal to the current available LDN capacity
(thus not the requested capacity) and the allocated capacity in the ODN direction is set
equal to the requested ODN capacity. The available capacity in the ODN direction has the
requested capacity subtracted, and the available LDN capacity is set equal to 0.

(d) Else if the current requested capacity is larger than the current available capacity in both
directions, the allocated capacity is set equal to the available capacity in both directions.
Both available capacities are set to zero.

10. This set of allocated capacities for this specific time step is then passed back to the main process.

B.2. Adapted LIFO
Inputs:

• Non-Firm Ids

• Age Contract

• Voltage of the Non-Firm Ids

• Grid Structure Data

• Forecast Data

• Firm Ids

• Limits

• Power Factor

Process
The process consists of two parts: the generation of the priority-list, and the allocation of capacity using
that priority-list.

1. The priority-list is generated by sorting the non-firm ids in the order of the ages of the contract per
voltage level and then sorting by voltage level (higher voltage is higher in the priority-list)

2. This priority-list is then passed to the allocation of capacity process.

3. In this process, first the current firm capacity is calculated from the forecast data’s firm ids.

4. This is then multiplied by the inverse of the power factor to get the apparent capacity as opposed
to only the active capacity.

5. The available capacity is then calculated in both the LDN and ODN direction using Equation 3.1.

6. If the LDN capacity is smaller than 0 or the ODN capacity is larger than 0, they are set to 0 (these
conditions check if there is not already an exceedance).
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7. The requested capacity for the non-firm ids is then obtained from the forecast data, and symmet-
rically mirrored (as discussed in Section 3.3.2).

8. Subsequently, in order of the priority-list, the following nested-if loop is followed:

9. (a) If the current requested capacity is smaller than the current available capacity (in either
direction), the allocated capacities is set to be equal to the requested capacities in both the
LDN and ODN direction. The available capacities in both directions have the requested
capacity subtracted from them.

(b) Else if the current requested capacity in the LDN direction is smaller than the available LDN
capacity, but the requested ODN capacity is larger than the current available ODN capac-
ity, the allocated capacity in the LDN direction is set equal to the current requested LDN
capacity and the allocated capacity in the ODN direction is set equal to the available ODN
capacity (thus not the requested capacity). The available capacity in the LDN direction has
the requested capacity subtracted, and the available ODN capacity is set equal to 0.

(c) Else if the current requested capacity in the LDN direction is larger than the available LDN
capacity, but the requested ODN capacity is smaller than the current available ODN capacity,
the allocated capacity in the LDN direction is set equal to the current available LDN capacity
(thus not the requested capacity) and the allocated capacity in the ODN direction is set
equal to the requested ODN capacity. The available capacity in the ODN direction has the
requested capacity subtracted, and the available LDN capacity is set equal to 0.

(d) Else if the current requested capacity is larger than the current available capacity in both
directions, the allocated capacity is set equal to the available capacity in both directions.
Both available capacities are set to zero.

10. This set of allocated capacities for this specific time step is then passed back to the main process.

B.3. Carousel
Inputs:

• Non-Firm Ids

• Current step

• Steps per priority-list shift

• Grid Structure Data

• Forecast Data

• Firm Ids

• Limits

• Power Factor

Process
The process consists of two parts: the generation of the priority-list, and the allocation of capacity using
that priority-list.

1. The priority-list is generated by dividing the current step by the steps per allocation variable. The
number of steps to shift is then the integer value of this ratio. The priority-list is then shifted by
this result.

2. This priority-list is then passed to the allocation of capacity process.

3. In this process, first the current firm capacity is calculated from the forecast data’s firm ids.

4. This is then multiplied by the inverse of the power factor to get the apparent capacity as opposed
to only the active capacity.
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5. The available capacity is then calculated in both the LDN and ODN direction using Equation 3.1.

6. If the LDN capacity is smaller than 0 or the ODN capacity is larger than 0, they are set to 0 (these
conditions check if there is not already an exceedance).

7. The requested capacity for the non-firm ids is then obtained from the forecast data, and symmet-
rically mirrored (as discussed in Section 3.3.2).

8. Subsequently, in order of the priority-list, the following nested-if loop is followed:

9. (a) If the current requested capacity is smaller than the current available capacity (in either
direction), the allocated capacities is set to be equal to the requested capacities in both the
LDN and ODN direction. The available capacities in both directions have the requested
capacity subtracted from them.

(b) Else if the current requested capacity in the LDN direction is smaller than the available LDN
capacity, but the requested ODN capacity is larger than the current available ODN capac-
ity, the allocated capacity in the LDN direction is set equal to the current requested LDN
capacity and the allocated capacity in the ODN direction is set equal to the available ODN
capacity (thus not the requested capacity). The available capacity in the LDN direction has
the requested capacity subtracted, and the available ODN capacity is set equal to 0.

(c) Else if the current requested capacity in the LDN direction is larger than the available LDN
capacity, but the requested ODN capacity is smaller than the current available ODN capacity,
the allocated capacity in the LDN direction is set equal to the current available LDN capacity
(thus not the requested capacity) and the allocated capacity in the ODN direction is set
equal to the requested ODN capacity. The available capacity in the ODN direction has the
requested capacity subtracted, and the available LDN capacity is set equal to 0.

(d) Else if the current requested capacity is larger than the current available capacity in both
directions, the allocated capacity is set equal to the available capacity in both directions.
Both available capacities are set to zero.

10. This set of allocated capacities for this specific time step is then passed back to the main process.

B.4. Mathematical Optimum
Inputs:

• Non-Firm Ids

• Grid Structure Data

• Forecast Data

• Firm Ids

• Limits

• Power Factor

Process
The Mathematical Optimum methodology goes through the following steps.

1. Firstly, the total firm load is calculated based on the forecast data and the firm ids list.

2. This is then converted to apparent power by multiplying by the inverse of the power factor.

3. The available power in both the LDN and ODN direction is then calculated using Equation 3.1.

4. Then the optimisation parameters are specified as follows.

5. (a) The number of variables is equal to twice the amount of non-firm loads, with each non-firm
load having a LDN variable and an ODN variable associated with them.
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(b) The first constraint for every variable is that their value must lie between 0 and their respec-
tive requested capacity (be it LDN or ODN)

(c) If the available capacity in the LDN or ODN direction is smaller than zero (indicating that there
is already an exeedances in that direction according to the forecast), all of the variables that
have a requested capacity in that direction (be it LDN or ODN) will be constrained to be
equal to 0.

(d) The final constraint is that the sum of the LDN variables should be smaller than the available
LDN capacity and vice versa for the ODN variables and the available ODN capacity.

(e) The objective statement is then split into two, and is formulated as a weighted sum of two
objective statements with equal weights.

(f) • The first objective is to maximise the sum of the LDN variables.
• The second objective is to maximise the sum of the ODN variables.

6. The optimisation is then ran with the problem statement containing the objectives and constraints
discussed above with the MOSEK solver.

7. This set of allocated capacities for this specific time step is then passed back to the main process.

This splitting between two objective statements is due to the fact that ODN capacity is formulated
as a negative value in the formulation of Power Grid Model. This means that a maximisation of these
variables would be equal to 0.

B.5. Pro Rata
Inputs:

• Non-Firm Ids

• Current step

• Steps per priority-list shift

• Grid Structure Data

• Forecast Data

• Firm Ids

• Limits

• Power Factor

Process
The Pro Rata methodology goes through the following steps.

1. Firstly, the total firm load is calculated based on the forecast data and the firm ids list.

2. This is then converted to apparent power by multiplying by the inverse of the power factor.

3. The available power in both the LDN and ODN direction is then calculated using Equation 3.1.

4. Then the optimisation parameters are specified as follows.

5. (a) The number of variables is equal to twice the amount of non-firm loads, with each non-firm
load having a LDN variable and an ODN variable associated with them.

(b) The first constraint for every variable is that their value must lie between 0 and their respec-
tive requested capacity (be it LDN or ODN)
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(c) Secondly, the equality constraint is formulated. It specifies that the difference between the
ratio of the allocated capacity and the requested capacity for every variable and the ratio
between the allocated capacity and the requested capacity for every next variable with a
similar direction (be it LDN or ODN) must not be larger than the equality value. This equality
value is set to be equal to 0.0001.

(d) If the available capacity in the LDN or ODN direction is smaller than zero (indicating that there
is already an exeedances in that direction according to the forecast), all of the variables will
be constrained to be equal to 0.

(e) The final constraint is that the sum of the LDN variables should be smaller than the available
LDN capacity and vice versa for the ODN variables and the available ODN capacity.

(f) The objective statement is then split into two, and is formulated as a weighted sum of two
objective statements with equal weights.

(g) • The first objective is to maximise the sum of the LDN variables.
• The second objective is to maximise the sum of the ODN variables.

6. The optimisation is then ran with the problem statement containing the objectives and constraints
discussed above with the MOSEK solver.

7. This set of allocated capacities for this specific time step is then passed back to the main process.

This splitting between two objective statements is due to the fact that ODN capacity is formulated
as a negative value in the formulation of Power Grid Model. This means that a maximisation of these
variables would be equal to 0.
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