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Despite recent advances in robot-assisted training, the benefits of haptic guidance on

motor (re)learning are still limited. While haptic guidance may increase task performance

during training, it may also decrease participants’ effort and interfere with the perception

of the environment dynamics, hindering somatosensory information crucial for motor

learning. Importantly, haptic guidance limits motor variability, a factor considered essential

for learning. We propose that Model Predictive Controllers (MPC) might be good

alternatives to haptic guidance since they minimize the assisting forces and promote

motor variability during training. We conducted a study with 40 healthy participants to

investigate the effectiveness of MPCs on learning a dynamic task. The task consisted

of swinging a virtual pendulum to hit incoming targets with the pendulum ball. The

environment was haptically rendered using a Delta robot. We designed two MPCs:

the first MPC—end-effector MPC—applied the optimal assisting forces on the end-

effector. A second MPC—ball MPC—applied its forces on the virtual pendulum ball to

further reduce the assisting forces. The participants’ performance during training and

learning at short- and long-term retention tests were compared to a control group who

trained without assistance, and a group that trained with conventional haptic guidance.

We hypothesized that the end-effector MPC would promote motor variability and

minimize the assisting forces during training, and thus, promote learning. Moreover, we

hypothesized that the ball MPC would enhance the performance and motivation during

training but limit themotor variability and sense of agency (i.e., the feeling of having control

over their movements), and therefore, limit learning. We found that the MPCs reduce

the assisting forces compared to haptic guidance. Training with the end-effector MPC

increases the movement variability and does not hinder the pendulum swing variability

during training, ultimately enhancing the learning of the task dynamics compared to the

other groups. Finally, we observed that increases in the sense of agency seemed to be

associated with learning when training with the end-effector MPC. In conclusion, training

with MPCs enhances motor learning of tasks with complex dynamics and are promising

strategies to improve robotic training outcomes in neurological patients.

Keywords: motor learning, neurorehabilitation, robotic assistance, variability, effort, haptic rendering, model

predictive controllers

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.600059
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.600059&domain=pdf&date_stamp=2021-02-02
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:oezhan.oezen@artorg.unibe.ch
https://doi.org/10.3389/fnins.2020.600059
https://www.frontiersin.org/articles/10.3389/fnins.2020.600059/full


Özen et al. Promoting Motor Variability Enhances Learning

1. INTRODUCTION

Robotic devices provide new possibilities for understanding and
accelerating motor (re)learning (Lum et al., 2012; Williams and
Carnahan, 2014). One of the most common robotic assistance
methods employed in motor (re)learning studies is haptic
guidance—i.e., physically guide the participants’ limbs, e.g.,
with PD controllers, through a pre-calculated “ideal” movement
trajectory (Marchal-Crespo and Reinkensmeyer, 2009). Although
haptic guidance was found to enhance learning in low-skilled
participants and in rather simple and artificial tasks that do not
incorporate task dynamics (Marchal-Crespo et al., 2010, 2013),
in more skilled participants and in tasks that require learning the
tasks’ dynamics, haptic guidance was found to hamper learning
(Powell and O’Malley, 2012; Marchal-Crespo et al., 2015).
However, an important part of activities of daily living consists
of manipulating objects with complex (non-linear and under-
actuated) dynamics, for example, carrying a cup of coffee or
watering plants (Mayer andKrechetnikov, 2012).We hypothesize
that the problem associated with haptic guidance might be
twofold: first, participants might rely on the robotic assistance,
which in turn limits the perception of the dynamics of the
training environment (Powell and O’Malley, 2012; Pezent et al.,
2019), and secondly, by enforcing a predefined trajectory, haptic
guidance limits motor variability, crucial in motor learning (Wu
et al., 2014).

Interacting with complex dynamical systems relies on
somatosensory (i.e., proprioceptive and tactile) information
(Milner et al., 2007) to convey essential information for fine
motor control, such as carrying a virtual cup of coffee (Hasson
et al., 2012), tasks that require identifying the natural oscillation
frequency of an object (Huang et al., 2007), or learning to
manipulate non-rigid objects (Danion et al., 2012). Importantly,
manipulating objects with complex dynamics, compared to
simple dynamics, revealed stronger activation in brain areas
associated with the processing of somatosensory information
and the formation of internal models—namely the cerebellum
(Milner et al., 2007). Therefore, enhancement of somatosensory
information through haptic rendering of virtual environments
during robotic training might elicit better motor (re)learning
of complex dynamic tasks (Gassert and Dietz, 2018). However,
applying assisting forces through haptic guidance in dynamic-
dependent tasks might deteriorate the received somatosensory
information, and therefore, hamper learning (Powell and
O’Malley, 2012). Furthermore, training with haptic guidance
was shown to decrease participants’ physical effort (Marchal-
Crespo and Reinkensmeyer, 2008; Reinkensmeyer et al., 2009),
crucial to promote neuroplasticity (Cramer et al., 2011). The
assisting forces may even be perceived as disturbance by
skilled participants (Marchal-Crespo et al., 2015), hindering
the participants’ sense of agency—i.e., the feeling of having
control over their ownmovements (Endo et al., 2020). Therefore,
it would be beneficial to develop new robotic strategies that
minimize the assisting forces to prevent slacking and reduce
the interference with the haptic rendering, while still allowing
participants to achieve high task performance to promote
motivation (Saemi et al., 2012; Widmer et al., 2016).

The second limitation associated with haptic guidance is
that by physically constraining the movement to an ideal,
yet fixed, trajectory reduces motor variability—i.e., the trial-
to-trial variability in muscle activation while performing a
motor task (Duarte and Reinkensmeyer, 2015; Ivanova et al.,
2020). While motor variability was initially thought to be
an undesired product of neuromotor noise, indicating low
expertise in the motor task (Harris and Wolpert, 1998), recent
literature suggests that it is a desired feature on which the
sensorimotor system relies to operate and learn (Wu et al., 2014;
Dhawale et al., 2017). While it may be straightforward and
intuitive to quantify the motor variability as the performance
variability (e.g., end-point accuracy in reaching tasks), it may
be more informative to evaluate the variability of the performed
movement—i.e., movement variability—especially in redundant
tasks that incorporate multiple movement solutions to achieve
the same goal (Singh et al., 2016; Levac et al., 2019). Furthermore,
the movement variability with respect to the internal dynamics of
under-actuated tasks (e.g., the pendulum swing variability) may
play a crucial role in learning complex dynamic tasks (Muller
and Sternad, 2004). Therefore, robotic assistance should not
only avoid restricting the variability of the performed movement
but also the movement variability with respect to the internal
dynamics of the task to optimally support the exploration of the
task dynamics and promote learning.

We propose that Model Predictive Controllers (MPC) might
be a good alternative to haptic guidance in order to minimize the
assisting forces and allow (and even promote) motor variability
during training. An MPC is an optimal control method that
employs the dynamical model of the environment to predict
the future states of the system and to minimize the assisting
forces (Morari and Lee, 1999). The optimization of MPC is
redone at each time point to increase the controller performance
under unpredictable disturbances, such as the interaction with
humans. The online optimal nature of MPCs results in flexible
movement trajectories that may promote task exploration while
still providing sufficient assistance to perform the task.

We conducted a between-subject study with 40 healthy young
participants to investigate the effectiveness of using MPCs as
assistance strategies during learning of a complex dynamic
task. The task consisted of swinging a virtual pendulum to hit
incoming targets with the pendulum ball, which was haptically
rendered on a Delta robot (Force Dimension, Switzerland,
Figure 1). The participants could move the pendulum pivoting
point by moving the robot end-effector (EE) in a vertical plane
to indirectly control the pendulum ball through a rigid rod.
Mastering the pendulum task requires the precise manipulation
of its states, which have chaotic behavior, and familiarization
with its under-actuated non-linear dynamics, similar to holding
and moving a cup of coffee without spilling it (Mayer and
Krechetnikov, 2012). The challenge was further increased by
selecting the positions of the incoming targets to promote
movements with swinging frequencies away from the natural
oscillation frequency of the pendulum.

We designed two MPCs that differ in terms of the application
point of the assisting forces. A first MPC—end-effector
MPC—applied the optimal assisting forces directly on the robot
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FIGURE 1 | Experimental setup with Delta.3 robot (Force Dimension, Switzerland). The photograph was taken by Adrian Moser for ARTORG Center.

end-effector (i.e., the pendulum pivoting point). We developed a
second MPC—ball MPC—that applied its forces directly on the
virtual pendulum ball. Applying the assistance on the pendulum
ball has a direct impact on the pendulum dynamics and is less
prone to be affected by the human-robot interaction forces,
and thus, only small assisting forces are needed to reach good
task performance (Özen et al., 2019). The participants still felt
the projected forces from the pendulum ball in the robot end-
effector. However, the indirect application of the assisting forces
might degrade the perception of the pendulum dynamics and
reduce the participants’ sense of agency (Özen et al., 2019), which,
in turn, might hamper motor learning.

The participants’ performance during training and learning
at immediate and delayed retention tests were evaluated and
compared to a control group that trained without assistance and a
group that trained with a conventional haptic guidance controller
(PD controller) with fixed trajectories. The participants’ task
performance was evaluated using measurements of target
hitting success, pendulum swing frequency, and three different
measures of motor variability: (i) performance variability,
i.e., variability in the task score, normally associated to low
expertise in the motor task (Harris and Wolpert, 1998), (ii)
movement variability, i.e., the variability of the participant’s
movement, a desired feature that might promote motor
learning (Dhawale et al., 2017), and (iii) pendulum swing

variability, i.e., the variability of the pendulum angle (internal
degree-of-freedom), which might be especially important
to promote the exploration of the task dynamics (Muller
and Sternad, 2004). We also evaluated the effect of the
different controllers on subjective measures of motivation
and sense of agency. Transfer of learning was evaluated
in a transfer task (inverting the pendulum) with the same
pendulum dynamics.

We hypothesized that participants in the end-effector MPC
group would reach comparable hitting performance to the
haptic guidance group during training and would enhance the
movement variability and not hamper the pendulum swing
variability compared to the other assisting training strategies. We
further hypothesized that training with the end-effector MPC
would enhance motor learning compared to the other training
strategies. We expected that the superior learning associated with
the end-effector MPC would be more evident in the performance
metrics reflecting learning of the task dynamics (e.g., higher
deviation from the pendulum natural frequency). Moreover, we
expected that applying the assisting forces on the pendulum
ball would enhance participants’ performance and motivation
during training, but limit their movement variability and sense
of agency, and ultimately, hamper motor learning. Finally, we
expected a positive association between the sense of agency
and learning.
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2. MATERIALS AND METHODS

2.1. Experimental Setup
A Delta.3 robot (Force Dimension, Switzerland) was used as a
haptic interface in the study (Figure 1). The robot was positioned
on a table next to an LCD screen where the visual elements
of the game were presented. The robot motion control was
implemented in C++ and run at 4 kHz. The game visuals were
implemented using Unity (Unity Technologies, US).

The experiment required controlling the motion of a
pendulum in the virtual environment. By moving the robot end-
effector in the vertical plane, participants controlled the motion
of the pendulum pivoting point (a black ball, Figure 2) and
indirectly the pendulum mass (red ball). Participants could feel
the forces from the pendulum through the robot end-effector
(haptic rendering).

2.2. Pendulum Dynamics
The implementation of the pendulum dynamics was described in
detail in Özen et al. (2019). Here, only a brief summary is given
for completeness.

The pendulum was constrained to a vertical plane with a
stiff PD controller, allowing for two degrees-of-freedom (DoF)
movements in y (horizontal axis) and z (vertical axis, Figure 2).
The pendulum internal DoF (θ) is defined with respect to its
pivoting point. The pendulum mass m and rod length l were set
to 0.6 kg and 0.25m, respectively. The gravity coefficient g was set
to 1/3 of the real earth gravity and the damping coefficient c was
set very low (3e−6 N.s/rad) to prevent the pendulum to stabilize
itself and to keep the task challenging. These values result in a
pendulum natural frequency (i.e., how the pendulum angle, θ ,
oscillates when uninterrupted) of 0.57 Hz.

The equation of motion that rules the swing of the pendulum
ball (θ) based on the robot end-effector movement (y, z) is of
the form:

θ̈ = −
1

l

(

(z̈ + g) sin θ + ÿ cos θ

)

−
c

ml2
θ̇ . (1)

The haptic rendering forces transmitted through to the robot EE
were calculated with the following equation:

Frod = m

(

(z̈ + g) cos θ − ÿ sin θ + θ̇2l

)

. (2)

2.3. The Pendulum Task
The task to be learned consisted of moving the pendulum
pivoting point (i.e., black ball, Figure 2) in the horizontal and
vertical axes to swing the pendulum in a way that the pendulum
mass (i.e., red ball, Figure 2) hits vertical targets (i.e., orange
vertical lines onwalls)moving toward the participants at constant
velocity (Figure 3A). There was a 1 s interval between targets.
The positions of the targets on the walls were randomly presented
either at the center of the screen, 12 cm on the right, or
12 cm on the left. A small amount of random displacement (σ :
1.25 cm) was added to these three mean positions to increase the
task difficulty.

Depending on the distance—along the y-axis—between the
red ball and each target at hitting time (Figure 3B), a score

FIGURE 2 | Pendulum dynamics and assisting forces from the haptic
guidance controller (FHG), end effector MPC (FeeMPC), and ball MPC (FballMPC).

(between 0 and 100) was calculated:

Score = 100− Distance(mm) ∗ 0.5. (3)

This performance score was visually presented to the participants
in green color—or red if score was 0—each time a target was
passed, right above the target location (Figure 3A). The score
disappeared after 0.5 s.

A second task with the same pendulum dynamics was
included to test the transfer of learning. This transfer task
consisted of swinging the pendulum from the stable equilibrium
point (θ = 0 ◦ and θ̇ = 0 ◦/s) to invert it and maintain the
unstable vertical configuration with the red ball on top (θ = 180 ◦

and θ̇ = 0 ◦/s). The participants were instructed to keep the
pendulum inverted as long as possible. A score—adapted from
Smith et al. (2020)—was presented on the screen to provide
feedback during the transfer test. The score was reset at the
beginning of the test and increased according to the equation:

Scoretransfer =

∫ invend

invbegin

k zdiff dt, if zdiff > 0. (4)

The inversion began (invbegin) each time the height of the
pendulum red ball exceeded the height of the pivoting point
(zdiff > 0), and ended when it fell below (invend). The score
increased as long as the pendulum was inverted (zdiff > 0),
proportional to zdiff and an arbitrary unit-less constant k. If the
ball fell below the height of the pivoting point (zdiff < 0), the
score was retained until a new inversion was achieved.

2.4. Training Strategies
Participants trained the pendulum target hitting task with one
of four different training strategies: (i) No guidance (Control):
only the pendulum dynamics were haptically rendered, (ii) End-
effector MPC (eeMPC): the online calculated optimal assisting
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FIGURE 3 | The virtual training environment. (A) Participants’ point of view. The walls with vertical targets (in red) approach toward the participants with 1 s between
walls. The performance score (proportional to the distance to target along the y-axis) is visually presented above the targets for 0.5 s, indicating how close the
previous target was hit. (B) Top view of two consecutive targets. Example trajectories for the pendulum red ball and the black ball are depicted as red and black
dashed lines, respectively.

forces were applied at the end-effector, (iii) Ball MPC (ballMPC):
the online calculated optimal assisting forces were applied at
the pendulum ball, and (iv) Haptic guidance (HG): fixed-
trajectory based assistance was applied at the end-effector. The
assisting forces were applied in the y axis (Figure 2). We did
not provide assistance in the z axis as it was sufficient to move
the end-effector in the y axis to successfully hit the targets.
Furthermore, applying assisting forces in the z axis would have
further masked the perception of the pendulum mass while
mostly providing arm weight support. The controllers were
implemented using ACADO Toolkit (Houska et al., 2011). For
detailed technical information about the controllers, please refer
to the Supplementary Material.

The working principle of anMPC is to predict the future states
of the system (i.e., the trajectories of the pendulum red ball and
end-effector) using a model of the system (i.e., the pendulum’s
equation of movement), and calculate the control input (i.e.,
assisting force) according to an optimization problem, where a
cost function is designed and minimized. The Cost function we
designed had the form:

Cost =
t+N
∑

k=t

h⊤k Wkhk (5)

hk =





Distance to Target Along the y Axis
Ball Linear Speed
Assisting Forces



 (6)

where t is the current time, N is the predicted horizon length
(i.e., how far the future trajectories are considered) and k is
the time step along the predicted horizon which ranges from
t to t + N. The Cost function was quadratic in terms of
the penalization vector hk, so that it was convex and smooth.
Minimizing the Cost function corresponded to simultaneously
minimizing: the distance to target along the y axis—i.e., how
far the pendulum ball was to the target in the moment of wall

impact—, the speed of the pendulum ball—required to maintain
a stable pendulum movement—, and the magnitude of assisting
forces. The simultaneous minimization of these three elements
was counteractive to each other as the motion of the pendulum
could be controlled more accurately with more assisting forces.
The optimization trade-off was adjusted dynamically at each time
step by the 3x3 diagonal weight matrix Wk. The weight matrix
changed along the predicted horizon in order to keep the assisting
forces low while the pendulum plane is far from the walls of the
targets, and therefore, increase participants’ movement freedom
when far from the incoming wall. Specifically, the penalization
of the assisting forces was set inversely proportional to the
distance from the target plane. Thus, as the targets approached
toward the vertical plane of the pendulum, the cost function
became more restrictive. The optimization is recalculated at
each time step (at 80 Hz), which provides robustness against
unpredictable disturbing elements arising from the interaction
with the participants.

2.4.1. End-Effector MPC

The assisting forces from the end-effector MPC were applied to
the robot end-effector—in the y axis (Figure 2). The assisting
forces were limited to 8 N. This value was chosen based on
previous tests, such that the assisting forces are sufficient to guide
a passive participant to accurately hit the targets (Özen et al.,
2019).

2.4.2. Ball MPC

The ball MPC was implemented following the same principle
as the end-effector MPC, with the difference that the calculated
assisting forces were applied at the pendulum ball rather than
directly on the robot end-effector. Applying the assisting forces
on the pendulum ball had a direct impact on the pendulum swing
since participants could only apply forces on the robotic end-
effector and could not directly counteract the assisting forces. We
set the limit for the controller force to 1 N based on preliminary
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FIGURE 4 | Experimental protocol. Participants were randomly allocated to one of four training groups: Control, End-effector MPC, Ball MPC, and Haptic Guidance.
Participants completed two sessions, with 1–3 days between sessions. Training blocks (x32) and catch-trials blocks (x8) were used to analyze the effect of training
with different assistance strategies on the metrics considered. Motor learning was evaluated according to changes in the metrics from baseline (BL) to short-term
retention (STR) and long-term retention (LTR). Furthermore, transfer learning was evaluated according to changes in the transfer task performance from transfer
baseline to transfer short-term retention and long-term retention. After baseline, after training and after long-term retention, participants responded to a selection of
statements from the Intrinsic Motivation Inventory (IMI) and agency section of the embodiment questionnaire (Ques.).

studies where we observed that this amount was sufficient to
achieve high task performance (Özen et al., 2019).

2.4.3. Haptic Guidance

The haptic guidance strategy was implemented as a conventional
PD controller (P: 100 N/m.kg, D: 20 N.s/m.kg), which is
commonly employed to follow fixed trajectories in robot-assisted
therapy (Marchal-Crespo and Reinkensmeyer, 2009). In order
to have a fair comparison with the MPC controllers, the
desired trajectory was calculated following a similar optimization
principle. However, while in eeMPC a new optimization was
run at each time step resulting in a new trajectory 80 times
per second, the HG trajectory was calculated only once for each
target (i.e., right after passing the previous target). A cubic B-
spline was fitted to the resulting optimal trajectory and fed in the
PD controller. The assisting forces—dependent on the deviation
from the fixed trajectory—were applied at the end-effector. To
keep the comparison with the end-effector MPC fair, the assisting
forces were also limited to a maximum of 8 N.

2.5. Study Protocol
The study was approved by the Cantonal Ethics Committee
and the Swiss Agency for Therapeutic Products (Swissmedic)
and conducted in compliance with the Declaration of Helsinki.
Forty-one healthy young participants provided written consent
to participate in the study (19 females, age mean: 34, std.: 11).
Three participants were left-handed, according to the Waterloo
handedness questionnaire (Bryden, 1977). One participant
did not finish the study, and therefore, was excluded from
data analysis.

Participants were randomly allocated to one of four training
groups of ten participants each (between-group design: no

guidance [Control], end-effector MPC [eeMPC], ball MPC
[ballMPC], and haptic guidance [HG]). Participants were
informed about the possibility that the robot could assist them
during the task, but did not know in which training group they
were assigned. The overview of the study protocol is shown in
Figure 4.

The study consisted of two experimental sessions, separated
by 1–3 days. At the beginning of the first session, the position and
orientation of the robot and the screen were adjusted on the table
depending on the handedness of the participant. The dominant
hand of the participant was attached to the robot end-effector
with Velcro R© straps (Figure 1). Participants were instructed
to rest the elbow on the table during the whole experiment.
The experiment started with verbal/visual instructions about the
pendulum and the haptic rendering of its dynamics, followed by
a familiarization period (1 min) without assisting forces, when
the participants were allowed to move the pendulum to feel
its dynamics.

Participants were then instructed about the main task to
be learned (i.e., moving the robot end-effector to move and
swing the pendulum to hit incoming targets with the pendulum
ball). After task instruction, participants performed a baseline
test block (with only the haptic rendering of the pendulum
dynamics), where they were requested to hit the targets as close
as possible. The baseline test included 40 consecutive targets.
Participants were then verbally and visually instructed about the
transfer task (i.e., inverting the pendulum). The transfer baseline
test lasted 1 min.

After a short break, the training blocks for the main task
started (with a short reminder about the task goal). There was
a total of 32 training blocks, each consisting of 20 targets, with an
optional break after the first 16 blocks. The duration of this break
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was not fixed. During training, the robot assisted participants
allocated in the eeMPC, ballMPC, and HG groups while
participants in the control group only felt the haptic rendering
of the pendulum dynamics. The assistance was unexpectedly
removed in eight over the 32 training blocks (catch-trial blocks).
The catch-trial blocks acted as a reference (Assistance: OFF)
to compare the effects of the assisting forces (Assistance: ON)
on the performance metrics. The order of the catch-trial blocks
was pseudo-randomized (half before the break) and fixed for
all participants.

A non-assisted wash-out block of 20 targets was performed
right before the short-term retention test (STR) in order
to diminish the potential transient effects of training with
the assisting controllers (e.g., “slacking”). The short-term
(immediate) retention test followed the same structure as the
baseline (i.e., same target location order, no assistance). The
first experimental session finished with a transfer test—i.e.,
participants tried to invert the pendulum for 1 min without
assisting forces. The first session of the experiment lasted around
30 min. Participants returned after 1–3 days to perform the long-
term (delayed) retention test (LTR) and a second transfer test
(with the same structure as on the first session).

The targets’ location order was identical for the baseline,
short-term, long-term retention test blocks, and catch-trial blocks
(baseline, STR and LTR were a repetition of two identical catch-
trial blocks). The targets’ order in the training blocks was different
between blocks, but identical across participants. The average
score after each test or training block was visually presented to
participants to increase their motivation.

We assessed the participants’ subjective motivation and
sense of agency after baseline, the last training block, and the
long-term retention test (Figure 4). We employed 12 statements
(see Supplementary Material) from the well-established
Intrinsic Motivation Inventory (IMI, Ryan et al., 1990). We
focused on assessing interest/enjoyment, perceived competence,
effort/importance, and pressure/tension (three statements
per subscale). Participants ranked their agreement with the
statements on a Likert scale between 1 and 7 points; 1 indicated
“not at all” and 7 indicated “very true”. The sense of agency
was assessed employing three questions from the embodiment
questionnaire used in Piryankova et al. (2014). The agency
questions were adapted to the pendulum task. A Likert scale
between −3 and 3 points was used for ranking; −3 indicated
“strongly disagree” and 3 indicated “strongly agree.” The
questionnaire was presented in English. Answers from the same
questions at different experimental times were always visible,
to exclude the effects of the differences in participants’ memory
skills on the results (Marchal-Crespo et al., 2019). For a complete
list of questions, please refer to the Supplementary Material.

2.6. Data Processing
Different metrics were selected to evaluate the learning of the
task goal (i.e., accuracy in the hitting task), learning to control
the pendulum dynamics (i.e., deviation from pendulum natural
frequency), performance variability, movement variability and
pendulum swing variability.

We selected the score (proportional to the deviation between
the pendulum ball and the target along the y axis at the hitting
time, Equation (3), Figure 3) as the main performance metric
to evaluate the target hitting performance (i.e., accuracy). The
metric is similar to the hitting error of Marchal-Crespo et al.
(2013), but adapted for our task. The average score for each
test/block was taken as a data point for the analysis.

In order to evaluate if participants learned how to control
the pendulum dynamics, we chose the deviation from the

pendulum natural frequency as the second performance metric
(PSD % around ωn). In order to skillfully hit the targets,
participants need to control the motion of the pendulum ball
to follow an aperiodic trajectory, since the target locations were
randomized and did not follow a periodic order. This required
shifting the swing/angle frequency of the pendulum away from
its natural frequency—i.e., to compensate the natural periodic
swing of the pendulum. In order to quantify this frequency
deviation, we first calculated the power spectral density of the
pendulum angle data for each test/block. We then calculated
how much percentage of the power spectral density was around
the pendulum natural frequency (ωn = 0.57 Hz), alike in
Huang et al. (2007). Since the lowest resolution of our data
corresponds to 0.05 Hz (the catch-trials were the shortest blocks;
20 s), we selected the bandwidth ωn±0.05 as the pendulum
natural frequency. The percentage value (PSD % around ωn) was
calculated for each block for the data analysis.

The way in which the motor variability affects learning was
found to be task-specific and dependent on how the variability is
quantified (He et al., 2016). One straightforward way to quantify
the motor variability is as the performance variability, which is
expected to reduce with higher expertise (Harris and Wolpert,
1998). Therefore, to evaluate the performance variability (i.e.,
how variable the score was) the standard deviation of the score,
std(score), was calculated for each block. On the other side,
the variability of the performed movement was found to drive
exploration of task dynamics and therefore motor learning
(Wu et al., 2014). To analyze the movement variability (i.e.,
how variable the participants’ movements were) the standard
deviation of the end-effector horizontal position during each
block, std(eePos), was calculated for each block. However, since
the pendulum dynamics are under-actuated, the end-effector
movement does not capture the whole aspect of the movement.
The variability in the internal movement of a task may be an
essential contributor to the exploration of the task dynamics
(Muller and Sternad, 2004). The internal movement of our task
dynamics is the pendulum swing. Therefore, in order to analyze
the pendulum swing variability, the standard deviation of the
pendulum θ angle, std(Theta), was calculated for each block.

The absolute assisting forces applied by the different
controllers at the robot end-effector in the y direction—directly
on the EE by the eeMPC and HG controllers or projected
through the rod from the ballMPC—were compared across
training groups. Additionally, in order to evaluate the controllers’
behavior during training, the human-robot interaction forces

between the participants’ hands and the robot end-effector were
estimated using Reaction Torque Observers (Murakami et al.,
1993). Only the interaction forces in the y axis were considered
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TABLE 1 | Results from the multiple comparisons tests to evaluate the effects of the training strategies on the performance metrics during training.

Comparison Interaction Assisting Hitting Deviation from Performance Movement Pendulum swing

forces forces performance pendulum ωn variability variability variability

Control:ON - Control:OFF 0.004 1.0 0.106 <0.001 0.693 0.953 <0.001

eeMPC:ON - eeMPC:OFF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.115

HG:ON - HG:OFF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ballMPC:ON - ballMPC:OFF <0.001 0.289 <0.001 <0.001 0.001 0.223 <0.001

(Control:ON - Control:OFF) - (eeMPC:ON - eeMPC:OFF) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.162

(Control:ON - Control:OFF) - (HG:ON - HG:OFF) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

(Control:ON - Control:OFF) - (ballMPC:ON - ballMPC:OFF) 0.002 0.383 <0.001 <0.001 <0.001 0.419 0.001

(eeMPC:ON - eeMPC:OFF) - (HG:ON - HG:OFF) <0.001 <0.001 0.095 0.029 0.333 0.471 <0.001

(eeMPC:ON - eeMPC:OFF) - (ballMPC:ON - ballMPC:OFF) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

(HG:ON - HG:OFF) - (ballMPC:ON - ballMPC:OFF) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.837

ON stands for the robot-assisted training blocks (AssistanceON ), while OFF stands for the catch-trial blocks without assistance (AssistanceOFF ). The white-shaded rows are within-group

differences, and gray-shaded areas rows are the interaction contrasts (between-group differences), performed when there was a significant Group x AssistanceON/OFF interaction as a

result of ANOVA. Significant p-values are indicated in bold font.

since y is the axis along which participants move to fulfill the
target hitting task.

Finally, we evaluated the transfer task performance using
the scoretransfer variable calculated during the inverted pendulum
transfer tests (Equation 4).

2.7. Statistical Analysis
In order to evaluate if the random allocation of participants
within the four training groups resulted in differences in
baseline performance, we compared the baseline data between
groups using one-way ANOVA. The association between the
hitting task performance (score) and the deviation from the
pendulum natural frequency (PSD % around ωn) was evaluated
with repeated-measures correlation (Bakdash and Marusich,
2017), which accounts for the within-subject dependence of
observations. Participants’ performance data during baseline,
short-/long-term retention, and training blocks were used for
this correlation.

We used linear mixed models (LME) to evaluate the effect
of the different training strategies (Group: Control, eeMPC,
ballMPC, and HG), and time on the performance variables. We
employed the mean values of each performance variable during
each test/block as dependent variables (i.e., each block/test had
one data point for each performance metric and participant).
We used the lmerTest package in R (Kuznetsova et al., 2017).
The model assumptions (i.e., normality and equal variance)
were visually inspected with Q-Q plots and residual vs. fitted
value plots for each variable. The emmeans package with FDR
correction was used for all multiple comparisons (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001). The significance
level was set to α = 0.05.

In order to analyze the effect of enabling the robotic assistance
on the performance metrics, we analyzed the differences between
training blocks with assistance (24 blocks) and blocks where
the assistance was unexpectedly removed (8 catch-trial blocks,
Figure 4). We note that the control group did not receive
assistance during the training blocks. The following LME model

was used to analyze the data during training:

PM ∼ Group∗AssistanceON/OFF ∗Time+(1+Time|Subject) (7)

where PM represents the analyzed performance metric, Group
(categorical) corresponds to the different training strategies, and
AssistanceON/OFF (categorical) corresponds to the status of the
assisting controller (ON during training blocks, OFF during
catch-trials). The Time (continuous) corresponds to the order
of the block within the Training (Figure 4, from 1 to 32). The
Time variable was included to take into account the order of
the training (T) and catch-trial (CT) blocks since this order
was randomized within the Training (but the same for all
participants). Finally, a random intercept for the Subject and a
random slope for the Time was included in the model to account
for the dependency of the data and account for the variance
attributed to the differences in participants’ personal abilities. The
evaluation of the data was performed as follows:

• In order to assess if the training strategies had an effect on
the performance metrics, the effect of AssistanceON/OFF (i.e.,
robotic assistance ON vs. OFF) per each training strategy was
tested (i.e., comparison of the estimated marginal means of the
robot-assisted training blocks and the catch-trial blocks). This
resulted in four multiple comparisons (i.e., one per training
strategy, Table 1, white rows).

• In order to compare the effects of the different training
strategies on the performance metrics, we checked if there
was a significant interaction effect between the training
group and the controller status (Group x AssistanceON/OFF)
with ANOVA tests. Post-hoc comparisons were performed
if the interaction was significant. This corresponded to six
comparisons (Table 1, gray-shaded rows).

In order to analyze whether the different training strategies had
an effect on short- and long-term learning—for both the main
task of hitting targets and the inverted pendulum task (i.e.,
transfer task)—we employed the following LME model (Time:
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TABLE 2 | Results from the multiple comparisons tests to evaluate the effects of the training strategies on short- and long-term learning.

Comparison Hitting Deviation from Performance Movement Pendulum swing Transfer task

performance pendulum ωn variability variability variability performance

Control:STR - Control:BL <0.001 0.451 <0.001 <0.001 0.476 <0.001

Control:LTR - Control:BL <0.001 0.848 <0.001 <0.001 0.844 <0.001

Control:LTR - Control:STR 0.823 0.514 0.88 0.461 0.565 0.191

eeMPC:STR - eeMPC:BL <0.001 <0.001 <0.001 <0.001 0.476 0.036

eeMPC:LTR - eeMPC:BL <0.001 <0.001 <0.001 <0.001 0.476 <0.001

eeMPC:LTR - eeMPC:STR 0.96 0.848 0.88 0.275 0.624 0.007

HG:STR - HG:BL <0.001 0.848 <0.001 <0.001 0.476 0.006

HG:LTR - HG:BL <0.001 0.250 <0.001 0.275 0.476 0.013

HG:LTR - HG:STR 0.96 0.295 0.34 0.007 0.844 0.697

ballMPC:STR - ballMPC:BL <0.001 0.848 <0.001 0.082 0.476 0.078

ballMPC:LTR - ballMPC:BL <0.001 0.397 <0.001 0.012 0.573 <0.001

ballMPC:LTR - ballMPC:STR 0.445 0.514 0.88 0.451 0.82 0.028

(Control:STR - Control:BL) - (eeMPC:STR - eeMPC:BL) 0.067 0.156

(Control:LTR - Control:BL) - (eeMPC:LTR - eeMPC:BL) 0.02 0.01

(Control:LTR - Control:STR) - (eeMPC:LTR - eeMPC:STR) 0.643 0.237

(Control:STR - Control:BL) - (HG:STR - HG:BL) 0.469 0.88

(Control:LTR - Control:BL) - (HG:LTR - HG:BL) 0.263 0.156

(Control:LTR - Control:STR) - (HG:LTR - HG:STR) 0.644 0.176

(Control:STR - Control:BL) - (ballMPC:STR - ballMPC:BL) 0.643 0.156

(Control:LTR - Control:BL) - (ballMPC:LTR - ballMPC:BL) 0.547 0.585

(Control:LTR - Control:STR) - (ballMPC:LTR - ballMPC:STR) 0.324 0.336

(eeMPC:STR - eeMPC:BL) - (HG:STR - HG:BL) 0.009 0.147

(eeMPC:LTR - eeMPC:BL) - (HG:LTR - HG:BL) <0.001 <0.001

(eeMPC:LTR - eeMPC:STR) - (HG:LTR - HG:STR) 0.469 0.014

(eeMPC:STR - eeMPC:BL) - (ballMPC:STR - ballMPC:BL) 0.02 0.004

(eeMPC:LTR - eeMPC:BL) - (ballMPC:LTR - ballMPC:BL) 0.093 0.002

(eeMPC:LTR - eeMPC:STR) - (ballMPC:LTR - ballMPC:STR) 0.547 0.83

(HG:STR - HG:BL) - (ballMPC:STR - ballMPC:BL) 0.643 0.176

(HG:LTR - HG:BL) - (ballMPC:LTR - ballMPC:BL) 0.067 0.337

(HG:LTR - HG:STR) - (ballMPC:LTR - ballMPC:STR) 0.15 0.026

The multiple comparisons accounted for changes of metrics from baseline (BL) to short-term retention (STR) and long-term retention (LTR). The white-shaded rows are within-group

differences, and gray-shaded rows are the interaction contrasts (between-group differences), performed when there was a significant Group x Time interaction as a result of ANOVA.

Significant p-values are indicated in bold font.

baseline, short-term retention, and long-term retention):

PM ∼ Group ∗ Time+ (1|Subject). (8)

The evaluation of the data was done as follows:

• We analyzed whether participants in each training group
improved their performance after training (from baseline to
short-term retention), and at long term (from baseline to long-
term retention), and whether they retained their performance
between experimental sessions (from short- to long-term
retention). This corresponds to 12 multiple comparisons
(three Time pairs per training group, Table 2, white rows).

• In order to evaluate whether training with the different
training strategies had different effects on the performance
changes over time, we checked for interaction effects (Group
x Time) with ANOVA tests. Post-hoc comparisons were
performed if the interaction was significant. This corresponds

to 18 pair-wise comparisons (three Time pairs and the six
Group pairs, Table 2, gray-shaded rows).

The changes in the answers from the questionnaires (intrinsic
motivation and agency) were analyzed using the LME in
Equation 8, with Time points: baseline, training, and long-term
retention. Furthermore, the association between the changes in
the sense of agency from baseline to training and the hitting
task performance from baseline to short-term retention was
investigated with Pearson correlation.

3. RESULTS

We did not find significant differences between training groups
during baseline in any of the metrics considered.

We found a significant correlation between the hitting
performance (score) and the deviation from the pendulum
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FIGURE 5 | Differences between Assistance ON and OFF in the estimated
human-robot interaction forces and applied assisting forces—both in y
axis—for each training strategy. The error bars indicate 95% confidence
interval. ∗∗p < 0.01, ∗∗∗p < 0.001.

natural frequency (PSD % around ωn, repeated-measures
correlation, r = −0.59, p < 0.001), supporting the idea that
mastering the hitting task is, in part, associated with better
control of the pendulum dynamics.

3.1. Robot-Human Interaction and
Assisting Forces During Training
When the assisting forces were turned on during the training
blocks, the interaction forces between the robot and the
participants increased significantly, compared to the catch-trials
blocks, in the groups eeMPC and HG, but decreased significantly
in the Control and ballMPC groups (Figure 5, Table 1). We
found a significant interaction effect between the training group
and trials with and without assistance on the interaction forces
[Group x AssistanceON/OFF : F(3,1200) = 661.2, p < 0.001]. Post-
hoc comparison (Table 1, gray-shaded rows) revealed that the
HG group increased the interaction forces significantly more
than the other groups. The interaction forces also increased
significantly more in the eeMPC group compared to the Control
and ballMPC groups. We also found that training with ballMPC
reduced the interaction forces to an even greater extent than the
Control group.

We also found a significant interaction effect between the
training group and trials with and without assistance on the
applied assisting forces [Figure 5, Group x AssistanceON/OFF :
F(3,1200) = 1321.9, p < 0.001]. The post-hoc comparison
(Table 1, gray-shaded rows) revealed that the assisting
forces applied by the haptic guidance controller were
significantly higher than those applied by the other training

strategies. The assisting forces in the eeMPC group were
also significantly higher compared to the Control and
ballMPC groups.

3.2. Performance During Training With
Different Training Strategies
All participants (except those in the Control group) significantly
increased their hitting performance, score, when the assisting
forces were applied during training (Figure 6A, Table 1). We
found a significant interaction effect between the training
group and the application of the assisting forces [Group x
AssistanceON/OFF : F(3,1200) = 299.4, p < 0.001]. In particular,
the increase of the score when the assistance was applied was
significantly higher in the ballMPC group compared to all
the other training groups (Table 1, gray-shaded rows). The
application of eeMPC also increased the task performance
significantly more than the Control group, and more than the
HG group, although the difference did not reach significance
(p = 0.09). Finally, the assisting forces from HG increased the
score significantly more than the Control group.

All participants increased the deviation from the pendulum

natural frequency (i.e., the PSD % around ωn decreased) when
the assisting forces were introduced during training (Figure 6B,
Table 1). The Control group also reduced the PSD % around ωn

with respect to the catch-trials, even if there were no differences
in the control strategy between those blocks/trials. We found
a significant interaction effect between the training group and
the addition of the assisting forces [Group x AssistanceON/OFF :
F(3,1200) = 97.9, p < 0.001]. Post-hoc comparison (Table 1,
gray-shaded rows) revealed that the reduction in the ballMPC
group was significantly larger than all the other groups. The
PSD % around ωn reduction was significantly larger in the HG
group, compared to eeMPC and the Control groups. Finally, the
reduction of the eeMPC group was significantly higher compared
to Control.

The performance variability, std(score), decreased when
the assistance was turned on in all groups except Control
(Supplementary Figure 1a, Table 1). We found a significant
interaction between the training group and the addition of the
assisting forces [Group x AssistanceON/OFF : F(3,1200) = 354.9,
p < 0.001]. In particular, the decrease in the ballMPC group was
significantly larger than in other groups (Table 1, gray-shaded
rows). The eeMPC group reduced the performance variability
significantly more than the Control. Finally, the decrease
associated with the HG was significantly larger compared
to Control.

Themovement variability, std(EePos), significantly increased
only when the assisting forces were applied in the eeMPC andHG
groups (Figure 6C, Table 1). We found a significant interaction
between the training group and the application of the assisting
forces [Group x AssistanceON/OFF : F(3,1200) = 21.3, p < 0.001].
Post-hoc comparison (Table 1, gray-shaded rows) revealed that
the addition of the assisting forces in the HG and eeMPC groups
increased the movement variability to a significantly greater
extent than the ballMPC and Control groups.
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FIGURE 6 | Effect of the training strategies on participants’ performance during training (assisting forces ON and OFF ) and baseline and retention tests. (A) Hitting
performance (score). (B) Deviation from pendulum natural frequency (PSD % around wn). (C) Movement variability [std(EePos)]. (D) Pendulum swing variability
[std(Theta)]. Error bars indicate the 95% confidence interval.

The pendulum swing variability, std(Theta), significantly
decreased in all groups, except eeMPC, when the assisting
forces were applied (Figure 6D, Table 1). We found a significant
interaction between the training group and the application of the

assisting forces [Group x AssistanceON/OFF : F(3,1200) = 11.9, p <

0.001]. In particular, the HG and ballMPC groups decreased the
pendulum swing variability significantly more than the eeMPC
group (Table 1, gray-shaded rows). The variability decrease was
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significantly higher in the HG and ballMPC groups compared to
the Control group.

3.3. Effect of the Training Strategies on
Motor Learning
All participants improved their hitting performance (score) from
baseline to short- and long-term retention (Figure 6A, Table 2).
We did not find differences across groups.

Only participants who trained the complex pendulum task
with eeMPC increased significantly the deviation from the

pendulum natural frequency (i.e., the PSD % around ωn

significantly decreased) from baseline to short-term (Figure 6B,
Table 2) and long-term retention. We found a significant
interaction between the training group and Time [Group x Time:
F(6,80) = 4.71, p < 0.001]. In particular, participants in the
eeMPC group decreased the PSD % around ωn significantly
more than the ballMPC and HG groups at short-term retention
(Table 2, gray-shaded rows), while the difference with the
Control group did not reach significance (p = 0.07). The
eeMPC group also decreased the PSD % around ωn significantly
more than the HG and Control groups at long-term retention,
while the difference with the ballMPC group did not reach
significance (p = 0.09).

All participants reduced the performance variability,
std(score), significantly from baseline to short-term retention
(Supplementary Figure 1a, Table 2) and long-term retention.
We did not find significant differences between groups.

All groups, except the ballMPC, increased the movement

variability, std(EePos), significantly from baseline to short-term
retention (Figure 6C, Table 2), while all groups, except HG,
increased the movement variability significantly from baseline
to long-term retention. HG reduced the movement variability
significantly from short-term to long-term retention. We found a
significant interaction between training group and Time [Group x
Time: F(6,80) = 6.14, p < 0.001]. In particular, the eeMPC group
increased the movement variability significantly more than the
ballMPC at short-term retention, and significantly more than all
the other groups at long-term retention (Table 2, gray-shaded
rows). The increase of the movement variability from short-
term to long-term retention was significantly higher with eeMPC
compared to HG and higher with ballMPC compared to HG.

None of the participants changed the pendulum swing

variability, std(Theta), significantly from baseline to short-term
retention, from baseline to long-term retention or between
retention blocks (Figure 6D, Table 2). Although the eeMPC
group tended to increase the pendulum swing variability at short-
term, while the other groups tended to reduce it, we did not find
significant differences between groups [Group x Time: F(6,80) =

1.6, p = 0.15].

3.4. Effect of the Training Strategies on
Transfer
We evaluated the effect of the different training strategies
on the transfer task performance (i.e., learning to invert
the pendulum, scoretransfer). All groups, except the ballMPC,
improved significantly their performance from transfer baseline

to short-term retention (Supplementary Figure 1b, Table 2).
All groups improved significantly the score from transfer
baseline to long-term retention. Only the eeMPC and ballMPC
groups improved significantly the score from short-term to
long-term retention. However, the (Group x Time) interaction
only approached significance [F(6,80) = 2.05, p = 0.069].

3.5. Effect of Training Strategies on Agency
and Motivation
Participants in the eeMPC and HG groups reduced their sense
of agency during training, although the reduction in HG did
not reach significance (Figure 7A, Supplementary Table 1). The
sense of agency in these two groups increased significantly from
training to the second experimental session. However, we did not
find a significant interaction effect between the training group
and Time.

In order to evaluate the association between the sense of
agency during training and the improvement in the hitting
task accuracy (score) after training, we performed correlations
between the changes of agency and task performance from
baseline to short-term retention. When taking all groups
together, we only found a one-sided significant association
(Figure 7B, Pearson correlation, r = 0.262, p = 0.101).
Interestingly, when analyzing the correlation within each training
group, we observed a positive association between the sense
of agency and amount learned, especially in the eeMPC group
(eeMPC: r = 0.59, p = 0.07).

The overall mean interest/enjoyment remained high (∼ 5.5)
for all the groups during the whole experiment. None of
the training groups reported significant differences in their
interest/enjoyment from baseline to training, or from training to
the second experimental session (Supplementary Figure 2a).We
did not find significant interaction effects between the training
groups and Time.

All participants increased their perceived competence from
baseline to training, although only the HG and ballMPC
groups did it significantly (Supplementary Figure 2b,
Supplementary Table 1). All participants increased their
perceived competence from baseline to long-term retention.
The interaction between training group and Time did not
reach significance (Group x Time: p = 0.11). However, it is
interesting to note that while participants who trained with
ballMPC reduced their perceived competence from training to
the second experimental session, the others groups reported
higher competence levels during the second session.

In general, participants reported higher levels of
effort/importance after training, however differences only
approached significance in the Control, eeMPC and HG groups
(Supplementary Figure 2c, Supplementary Table 1). The
eeMPC reduced the effort/importance again from training to
the second session, although did not reach significance. It is
interesting to note that the ballMPC group seemed to report
systematically lower levels of effort/importance, compared to the
other groups. However, we did not find significant interaction
effects between the training groups and Time.

None of the training strategies changed the self-reported
pressure/tension significantly from baseline to after-training
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FIGURE 7 | (A) Effect of the training strategy on changes in responses to the agency questionnaire from baseline to after training and long retention test. (B)
Association between the change of sense of agency and score increase from baseline to short term retention. Error bars indicate the 95% confidence interval.

measurements and only in the eeMPC significantly decreased
from baseline to long-term retention (Supplementary Figure 2d,
Supplementary Table 1) and from training to long-term
retention. However, we did not find a significant interaction
effect between the training group and Time.

4. DISCUSSION

4.1. Training With MPCs Reduced the
Assisting Forces and Increased Task
Performance During Training
According to the Guidance Hypothesis, haptic guidance might
disrupt motor learning because participants rely on the assisting
forces, limiting the learning of correct muscle activation patterns
required to perform the task in the absence of assistance (Schmidt
and Bjork, 1992). Therefore, we hypothesized that MPCs could
be better training strategies, as they minimize the assisting
forces in real-time based on participants’ ongoing performance.
Furthermore, minimizing assisting forces using MPCs might
also reduce the interference between the assisting forces and
the haptically rendered dynamics, supporting the learning of
dynamic-dependent tasks (Powell and O’Malley, 2012; Pezent
et al., 2019).

In line with our expectations, the assisting forces of both
the MPCs, regardless of the point of application (end-effector
[eeMPC] or pendulum ball [ballMPC]), were significantly lower
compared to haptic guidance. Furthermore, training with both
MPCs resulted in significantly less human-robot interaction
forces than training with haptic guidance. When the assisting
forces were applied at the pendulum ball, the interaction forces
were even smaller than during non-assisted trials. These smaller

assisting forces did not come at the cost of task performance. In
fact, training with both the MPCs resulted in a higher increase in
task performance (score) during training compared to training
with haptic guidance. We also observed a significantly higher
task performance in the ball MPC, compared to the other
strategies. This is probably due to the fact that the assisting forces
applied to the pendulum ball could be less counteracted by the
participant, in contrast to the groups where assisting forces were
provided directly at the robot end-effector. Therefore, the MPCs
accomplished the aim of minimizing both the assistance and
interaction forces without degrading task performance.

4.2. Training With the End-Effector MPC
Decreased the Performance Variability,
Increased the Movement Variability, and
Did Not Hamper the Pendulum Swing
Variability During Training
An important limitation associated with haptic guidance is
that physically constraining the movement to a fixed trajectory
might reduce motor variability (Duarte and Reinkensmeyer,
2015; Ivanova et al., 2020). We hypothesized that the end-
effector MPC would overcome this problem as the optimal
trajectory is recalculated in real-time, and therefore, allows
for multiple trajectory solutions—i.e., better respecting the
participants’ natural motor variability, which is necessary for
learning (Dhawale et al., 2017).

In this paper, we distinguished between three different types
of motor variability: (i) performance variability, i.e., variability
in the task score, normally associated to low expertise in the
motor task (Harris andWolpert, 1998), (ii) movement variability,
i.e., the variability of the participant’s movement, a feature
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that might promote motor learning (Dhawale et al., 2017),
and (iii) pendulum swing variability, i.e., the variability of the
pendulum angle, whichmight be especially important to promote
the exploration of the task dynamics (Muller and Sternad,
2004). We hypothesized that the assisting forces from the end-
effector MPC would increase the movement and pendulum
swing variability during training while limiting the frustrating
performance variability (Duarte and Reinkensmeyer, 2015). On
the other side, we expected that the assistance from the ball
MPC would reduce not only the performance variability but
also the movement and swing variability. Since the assisting
forces from the ballMPC, albeit being lower, directly act on the
pendulum ball, the ball wouldmove accurately with onlyminimal
input from the participants, and therefore, they would not feel
prompted to explore new movement trajectories, limiting the
movement and pendulum swing variability.

As expected, participants significantly reduced their
performance variability when the robotic assistance was
applied. Our finding on increased task performance during
training with MPC-based robotic assistance is consistent with
previous research on the use of more conventional robotic
training strategies in motor learning (Marchal-Crespo and
Reinkensmeyer, 2008; Marchal-Crespo et al., 2017a). Both MPCs
reduced the performance variability during training significantly,
although the reduction in the ball MPC was significantly
more pronounced than both the end-effector MPC and haptic
guidance. On the other side, the movement variability increased
when the assisting forces from the haptic guidance and end-
effector MPC were applied, while it was not affected by the ball
MPC. The increase in movement variability may be explained
by the kinematic requirements of the complex dynamic task. In
order to successfully hit the targets while compensating for the
natural swing of the pendulum, large and variable end-effector
movements are needed. Therefore, applying assistance at the
end-effector to fulfill the hitting task results in more variable
movements. On the other side, when the assisting forces are
applied to the pendulum ball, participants hardly need to move
to achieve the task.

The fact that we could not detect a significant difference in
the movement variability between the end-effector MPC and
haptic guidance, despite the flexible trajectories promoted by
the MPC, might be due to the variable location of the targets.
The movement variability at each block was calculated from the
trajectories performed between two consecutive targets, and the
targets were located at different locations within a block—i.e.,
the diversity of trajectories between different targets increased
the inherent variability, even if the participants would follow
them without a deviation due to the inflexible HG trajectory
calculation. Thus, the participants’ trajectory freedom associated
with training with the end-effectorMPCmight have beenmasked
by the default high movement variability associated with skillful
task performance—i.e., the metric was not sensitive enough to
detect differences between groups.

Importantly, the end-effector MPC did not hamper the
pendulum swing variability when the assisting forces were
applied, contrary to the haptic guidance and ball MPC strategies.
This might be a result of the flexible trajectories promoted by

the end-effector MPC. In fact, the flexibility in the end-effector
trajectories might explain both, the increase in the end-effector
movement variability and the swing variability. Therefore, the
participants’ freedom of movement promoted by the end-effector
MPC was more apparent within the pendulum swing variability.

4.3. Training With the End-Effector MPC
Enhanced Learning of the Complex
Dynamic Task
Based on the idea that the end-effector MPC minimizes
the assisting forces depending on the participant’s ongoing
performance while promoting flexible trajectories that increases
movement and pendulum swing variability, we hypothesized that
training with the end-effector MPC would result in better motor
learning of the complex dynamic task. Our results only partially
confirm our hypothesis.

We quantified the learning of the complex dynamic task using
a metric directly linked to task success (i.e., the target hitting
performance [score]), and a second metric related to the control
of the pendulum dynamics (i.e., the deviation from the pendulum
natural frequency [PSD % around ωn]). We found a significant
correlation between both performance metrics, supporting the
idea that task success is associated, in part, with better control
of the pendulum dynamics. However, this correlation does not
imply a functional relation such that participants with a larger
deviation from the pendulum natural frequency would achieve
higher scores. Other ways of achieving higher scores might exist
in this specific chaotic system, besides increasing the deviation
from the pendulum natural frequency.

Only participants who trained the complex dynamic task
with the end-effector MPC increased significantly the deviation
from the pendulum natural frequency at short- and long-
term retention, and significantly more than the other groups.
This means that the end-effector MPC group got better at
controlling the pendulum swing movement by driving it away
from the frequency which the pendulum would naturally
swing without intervention—i.e., they learned better how to
control the dynamics of the pendulum. We also found that
training with the end-effector MPC resulted in significantly
more variable movements at long-term retention compared
to the haptic guidance group. Interestingly, although training
with haptic guidance increased the movement variability
at short-term retention, the benefit disappeared at long-
term retention. Thus, the benefit of haptic guidance on
movement variability seems to be only transitory, highlighting
the need to consistently test for long-term retention in
motor learning studies (Williams and Carnahan, 2014).
Overall, training with the end-effector MPC resulted in
more variable movements and better learning to control the
pendulum dynamics.

A potential rationale behind the superiority of the end-effector
MPC strategy may be the significantly lower forces applied
during training, compared to haptic guidance. Minimizing the
assisting forces probably reduced the potential slacking effect
observed in previous studies with haptic guidance (Schmidt
and Bjork, 1992; Marchal-Crespo and Reinkensmeyer, 2008).
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Furthermore, the smaller assisting forces probably allowed
participants to gain a better understanding of the pendulum
dynamics, as the potential interference of the assisting forces
with the haptically rendered dynamics was reduced (Powell
and O’Malley, 2012). Furthermore, increasing the movement
variability while not hampering the swing variability likely
encouraged the exploration of the pendulum dynamics (Muller
and Sternad, 2004).

However, training with lower assisting forces did not help
participants trained with the ball MPC to learn how to control
the pendulum dynamics. Although the assisting forces were
significantly lower than both the end-effector MPC and haptic
guidance strategies, the application point of the assistance
probably deteriorated the perception of the task dynamics. The
assistance on the ball corrupted the natural oscillation of the
pendulum (i.e., the magnitude of the gravitational forces that
drive the natural oscillation—in Equation (1)—were smaller than
the magnitude of the assisting forces), and probably hampered
the learning of the dynamic task.

Literature suggests that the amount and consistency of errors
during training modulate motor learning (Herzfeld et al., 2014).
Therefore, considering that the groups experienced different
errors during training, differences between groups in the
hitting performance and performance variability at short- and
long-term retention tests should be observed. In particular,
we hypothesized that the higher movement and pendulum
swing variability during training with the end-effector MPC
would result in better hitting performance, while the limited
movement variability and higher scores observed during training
with the ball MPC would hamper learning of the hitting
task. However, while all participants learned the task (i.e.,
all groups increased the score and reduced the performance
variability significantly), we did not find significant differences
between groups.

Taking together, although training with the end-effector MPC
enhanced learning to control the pendulum dynamics (measured
by the deviation from the pendulum natural frequency), this
was not reflected in a more accurate hitting performance
(measured by score) when compared to the other training
strategies. Although the variability in the pendulum swing
frequency accounted for most of the variability in the target
hitting performance (the correlation coefficient was r =

−0.59), due to the chaotic nature of the task dynamics,
there were probably other factors as well—e.g., transient
pendulum movements after hitting the previous targets—that
affected the target hitting performance. Thus, the score metric,
although correlated with the deviation from the pendulum
natural frequency, was probably not sensitive enough to
fully capture the learning of the complex dynamic task. For
tasks/environments that are complex (e.g., non-linear, under-
actuated) and redundant (i.e., allowmultiplemovement solutions
to achieve the same result), it may not be sufficient to analyze
the end-result performance to fully capture the learning process.
Detailed kinematic analysis of such systems (e.g., movement of
the end-effector, pendulum swing frequency, etc.) may carry
important information regarding how participants’ movements

improve with learning (Zhang et al., 2018; Bazzi and Sternad,
2020).

4.4. The Benefit of the End-Effector MPC
on Learning the Dynamic Task Did Not
Generalized to the Transfer Task
We expected that better control of the pendulum dynamics
gained during training would result in better performance in
the transfer task—i.e., inverting the pendulum. Therefore, we
anticipated that training with the end-effector MPC, which
enhances the control of the pendulum dynamics and does not
hamper the pendulum swing variability during training, would
enhance transfer learning. However, while all training groups
improved their performance in the transfer task, we did not
find significant differences between strategies. These unexpected
results may derive from the substantial differences between
the training and transfer tasks. During the execution of the
target-hitting task, the experienced pendulum angles were mostly
around the stable equilibrium point (i.e., θ = 0 ◦). On the other
side, the aim of the transfer task shifted the experienced angles
toward the unstable equilibrium point (i.e., inverted pendulum
configuration θ = 180 ◦). In literature, differences in brain
activation, especially in the cerebellar activity, were observed
depending on whether the experienced complex manipulation
dynamics were around the stable or unstable states of a dynamic
system (Milner et al., 2006). Thus, a transfer task that requires
exploration of similar pendulum states as the target-hitting task,
such as the same task with slightly different pendulum dynamics
(e.g., different mass or gravity coefficient), or with different target
locations, might have been more sensitive to detect differences in
transfer between the training strategies.

4.5. Agency and Motor Learning Might Be
Associated, Especially When Training With
the End-Effector MPC
We hypothesized that training with the ball MPC would
negatively affect the sense of agency due to the indirect
application point of the assisting forces, compared to the end-
effector MPC. Lower agency associated with indirect application
point of assisting forces was observed on a preliminary
experiment with a similar task (Özen et al., 2019). In this study,
we observed a decrease in the agency when the participants
were assisted—compared to when they were not assisted—in all
assistance strategies. However, this decrease in the agency did not
significantly differ between groups; neither during training nor at
long-term retention.

Importantly, we observed a positive association between the
change of sense of agency and score from baseline to short-term
retention. When analyzing the correlation within each training
group, we observed a positive association between the sense of
agency and amount learned, especially in the end-effector MPC
group. However, we note that the sample size was small, and the
correlations above r > 0.5 depend on only a few data points.
Such correlations with small sample sizes can be variable across
samples, therefore, the interpretation of this finding should be
taken cautiously.
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A rationale behind the observed association could be the
increase in the predictability of the pendulum motion when
training with the end-effector MPC. Literature suggests that
high levels of agency are associated with high predictability
in the human-robot interaction forces (Ivanova et al., 2020).
Furthermore, it was shown on a similar pendulum task that
participants adapt their movements to achieve amore predictable
pendulum motion (Maurice et al., 2018; Bazzi and Sternad,
2020). Since the end-effector MPC group experienced more
flexible trajectories—especially compared to haptic guidance—
and higher pendulum swinging variability, participants who
better mastered the task may have been able to make
their movements more predictable during the training, which
increased their sense of agency. Alternatively, the adaptability
of the assistance from the end-effector MPC might have played
a role in the sense of agency. As the assisting forces from the
MPC are optimized based on participants’ performance, more
skilled participants required less assisting forces, and therefore,
participants might have felt more in control of their movements.
Although the haptic guidance forces were also smaller in the
participants who performed better, the fixed trajectories enforced
by the controller probably hampered their sense of agency. On
the other side, the unpredicted change of perceived dynamics
when training with the ball MPC may have affected the sense
of agency negatively by decreasing the congruency between the
participants’ movements and the pendulum movement (Endo
et al., 2020).

To conclude, an increase in the sense of agency might be an
indication of a more accurate prediction of the consequences
of participants’ actions, and therefore, reflect motor learning
(van der Wel et al., 2012). Furthermore, the sense of agency has
been shown to be fundamental for interacting with the external
world (Haggard and Tsakiris, 2009), and rely on brain areas
associated with motor control (Chambon et al., 2012). Therefore,
robotic assistance strategies that lead to increases in agencymight
be beneficial for motor learning.

4.6. No Differences in Motivation Across
Training Strategies
Although previous research has shown that motivation
can be modulated through robotic assistance (Duarte
and Reinkensmeyer, 2015; Marchal-Crespo et al., 2017b;
Bernardoni et al., 2019), we did not find significant differences
between training strategies in any subscale of the Intrinsic
Motivation Inventory. The lack of significant differences could
be due to the generally high overall interest/enjoyment and
effort/importance (i.e., ceiling effect) and the high variability
observed across participants.

We found a significant increase in the perceived competence
in all training groups after training and at long-term retention.
However, while participants who trained with the ball MPC
reported lower levels of perceived competence from training to
the second experimental session, all the other groups reported
higher competence levels (although the score after training with
the ball MPC was at the same level as the other groups).
This might be due to the high performance that the ball

MPC group experienced during training. Probably, when they
returned for the second session to test long-term retention, the
performance degradation resulted in a decrease in the perceived
competence. Therefore, caution should be put when designing
training strategies that result in almost perfect performance
during training, as it might have a negative long-lasting effect
on participants’ perceived competence when the assistance
is removed.

4.7. Study Limitations
The experimental design suffers from several limitations. First,
although the experiment was not excessively long (the first
session was around 30 min), the task was quite repetitive,
and therefore, it could potentially promote participants’ lack of
attention, especially toward the end of the session. However, we
note that participants’ interest/enjoyment and effort/importance,
as measured with the IMI questionnaire, were systematically high
during the whole experiment duration.

Secondly, participants were randomly allocated to one of the
four control strategies (parallel design). The random allocation
of participants into different training groups might result in
differences in baseline performance between groups—especially
in small population samples—that might bias the results—
e.g., participants’ initial skill level has been shown to play
an important role in the effectiveness of different haptic
methods (Marchal-Crespo et al., 2010, 2013, 2017a; Duarte and
Reinkensmeyer, 2015). In order to control for the personal
abilities to perform the task, we added a random intercept for
the Subject and a random slope for the Time in the linear mixed
model. We further confirmed that there were no differences in
the baseline performance between training groups.

Finally, the randomized location of the targets might have had
an unforeseen effect on the results. Although the randomization
kept the task challenging andmotivating, it made the comparison
of the movement variability between the training groups difficult,
as discussed above. Furthermore, the differences in the order
of the target locations between training and catch-trial blocks
could have affected participants’ movement and performance
to a certain degree. This is supported by the significant, albeit
small, differences observed in the human-robot interaction forces
and deviation of the pendulum natural frequency in the control
group between the training and catch-trail blocks, even though
no robotic assistance was provided during the training blocks.

5. CONCLUSION

We showed that training with novel robotic assistance strategies
based on Model Predictive Control enhances the learning of a
complex dynamic task. Training with the novel MPC strategy
(end-effector MPC) resulted in a significant reduction of the
assisting forces and more flexible trajectories when compared
to a conventional haptic guidance approach. Furthermore,
training with the MPC strategy resulted in higher task expertise,
reducing the amount of errors and performance variability
during training, and better control of the complex dynamic
system, reflected in enhanced movement and pendulum swing
variability. Further, training with the novel MPC approach,
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especially when participants are more skilled, seems to improve
the sense of agency. Attention should be given to the application
location of the assisting forces, since this location may affect the
perceived dynamics of the environment and the sense of agency.

Together, Model Predictive Controllers may be beneficial for
neurorehabilitation, since they could outperform haptic guidance
by reducing assisting forces and increasing the movement
variability while still keeping brain-injured patients’ motivation
and engagement high. Their benefits for the recovery of stroke
patients should be evaluated in a future clinical study.
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