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ABSTRACT 1 

This paper presents a sequential personalized menu optimization problem in the context of a Smart 2 

Mobility system that offers personalized menu of travel alternatives for each incoming traveler. 3 

The Smart Mobility system of interest is considered to combine together existing and emerging 4 

public and private transport alternatives. This paper extends existing literature on personalized 5 

menu optimization which was a static optimization problem to a sequential decision making under 6 

uncertainty problem. It unifies the preference learning and personalized menu optimization so that 7 

each time the traveler makes a choice, preference parameters are improved and the next menu 8 

optimization is done based on the updated preferences. In order to solve this problem, we propose 9 

a novel algorithm based on existing multi-armed bandit studies that address the trade-off between 10 

exploitation (offer optimal menu based on current belief) and exploration (experiment other menus 11 

if the current optimum is wrong). Numerical experiments show that our approach performs better 12 

than the classical heuristic. In addition, we compare it against static personalized menu 13 

optimization solution and find that exploration is needed under disturbance with inter-and intra-14 

consumer heterogeneity. 15 

 16 

Keywords: Smart Mobility, recommender systems, personalized menu optimization, sequential 17 

decision making under uncertainty, multi-armed bandit 18 

  19 



Song, X., Atasoy, B., Ben-Akiva, M.   3 

 

INTRODUCTION AND MOTIVATION 1 

Advances in information and communication technology (ICT) have been speeding up the 2 

emergence of innovative app-based transportation systems that provide different flexibilities. Uber, 3 

Lyft, and Zipcar are examples of such app-based services that distinguish themselves from 4 

traditional mobility systems with different characteristics. As they have addressed important travel 5 

needs they have been successful in attracting travelers (1). These types of innovative services are 6 

also named under the concept of Smart Mobility as the operations are automatized and real-time 7 

data is used for real-time decisions (2).  8 

In order to design Smart Mobility systems, an innovative recommender system which can 9 

integrate both travel behavioral modeling and optimization techniques is often needed to achieve 10 

both personalization and efficiency. Such an innovative recommender system often offers 11 

individual traveler a personalized and optimized menu and we call such model as personalized 12 

menu optimization model. These models, though relatively new to transportation, have been 13 

developed and successfully applied in Smart Mobility systems such as Flexible Mobility on 14 

Demand (FMOD) and Tripod. Flexible Mobility on Demand (FMOD) is an app-based 15 

transportation service that is designed to provide personalized and optimized travel menus in real-16 

time (3). FMOD includes both private and public alternatives and is tested with simulation 17 

experiments and the presentation of optimized menus based on different objectives is shown to 18 

improve operator’s profit and/or users’ benefit (4). Tripod is an app-based smart mobility system 19 

that incentivizes travelers based on energy savings in order to increase the utilization of more 20 

energy efficient options (5). Travelers make trip requests on Tripod app, and the user level 21 

optimization generates personalized menus as a list of travel options including mode, departure 22 

time, route alternatives together with trip-making as well as driving style. Those alternatives are 23 

presented with energy usage and travel incentives in the form of tokens to incentivize user for 24 

green travel options. The travel menu on Tripod app is presented in FIGURE 1 where alternatives 25 

under different mode groups are presented on different tabs together with various information. 26 

This figure also serves as an example about what we mean by a travel menu in the context of a 27 

Smart Mobility system. 28 

 29 

FIGURE 1 An example travel menu (5) 30 

In order to enhance the performance of Smart Mobility using a personalized menu 31 

optimization model, advance behavioral models are crucial which can better capture real-life 32 

travelers’ preferences by taking into account heterogeneity. A widely used type of choice models 33 

that consider inter-consumer heterogeneity is known as logit mixture (or mixed logit). Studies (6,7) 34 
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have shown with simulation experiments and real data case study that the personalized menu 1 

optimization outperforms models that do not capture consumer heterogeneity well. Lately, a more 2 

advanced type of choice models, which captures both inter- and intra-consumer heterogeneity has 3 

been introduced and applied in economics, marketing and transportation (8, 9,10).   4 

In recent transportation related studies (3, 7), personalized menu optimization (PMO) was 5 

studied where a customer’s choice behavior is captured by a discrete choice model and the 6 

parameters of the choice model are inputs to the optimization model. However, in practice, the 7 

parameter value of choice model is often not known and has to be learnt gradually. Previously, we 8 

applied a preference updater (11) that is based on hierarchical Bayes (HB) estimator of logit 9 

mixture (10) to provide personalized menu optimization up-to-date estimates of. There, we didn’t 10 

consider the learning of uncertain parameters when making the recommendation decision. 11 

However, there might be cases where current estimates from HB estimation procedure indicate car 12 

is the optimal alternative and PMO always offers car alternative but actually train is the favorite 13 

alternative of the consumer. In such a case, we need to go beyond exploit-only strategy, which is 14 

to offer an “optimal” menu based on current estimates of the parameters and explore other menus 15 

that may turn out to be optimal. Such problems that involve trade-off between exploration and 16 

exploitation is often formulated as a multi-armed bandit (MAB) problem.  17 

In this paper, we propose a novel method called UCB-Bayes in order to learn the preference 18 

parameters of consumers while making travel decisions (on a smartphone app) in the context of a 19 

Smart Mobility system on a continuous basis. As the Smart Mobility system potentially includes 20 

emerging and innovative public and private alternatives, the learning of those parameters is critical 21 

to understand the response of travelers to those alternatives and provide them personalized travel 22 

menus. UCB-Bayes is built upon classical upper confidence bound (UCB) algorithm (12). 23 

Particularly, we focus on the problem with menu size one in order to provide a proof-of-concept. 24 

The proposed method is novel with respect to existing MAB algorithm as its exploitation (or 25 

expected reward) is estimated by an HB estimator of logit mixture which differs from simple 26 

empirical mean in classical UCB algorithm (12). Overall, we provide a unified framework for 27 

preference learning and personalized menu optimization that can be used in several Smart Mobility 28 

systems that are visited by travelers dynamically for travel recommendations.   29 

The remainder of the paper is organized as follows. First, we review relevant literature and   30 

in the third section, we introduce the static and sequential personalized menu optimization problem 31 

along with logit mixture with inter-and intra-consumer heterogeneity. In the fourth section, we 32 

propose a novel solution algorithm along with benchmark solution algorithms. In the fifth section, 33 

numerical experiments are presented to illustrate the added value of the proposed method. We 34 

conclude our work and provide future directions in the last section. 35 

 36 

LITERATURE REVIEW 37 

In this section, we introduce relevant literature including consumer heterogeneity and choice 38 

models, assortment optimization and personalized menu optimization and multi-armed bandit 39 

problem.  40 

 41 

Consumer Heterogeneity and Choice Models  42 

Choice models that can well account for consumer heterogeneity is crucial for recommender 43 

systems. There exist various recommendation techniques that account explicitly for heterogeneity 44 

in consumer preferences (13,14).  45 

In the literature it is common to focus on the inter-consumer heterogeneity where the 46 
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assumption is that consumers have stable individual preferences. However, consumer choices from 1 

repeated menus in laboratory and market experiments often deviates from neoclassical theory. 2 

There are a number of possible reasons including preferences may be situational, anchored or 3 

adapted to the status quo, and sensitive to context (9). 4 

Therefore, when we are doing dynamic demand forecasting that follows individuals over 5 

time, we need consumer models with both inter- and intra- consumer heterogeneity. There are a 6 

number of papers that introduce a structural system with both inter- and intra-consumer 7 

heterogeneity (8, 9,10,12). 8 

  9 

Assortment Optimization and Personalized Menu Optimization 10 

We have already seen a few papers in transportation, such as FMOD (3,4), where the 11 

recommendation problem can be formulated as an assortment optimization problem. Assortment 12 

optimization is an important problem in operations management and becomes popular in many 13 

practical settings such as retailing and online advertising (16). In assortment optimization, different 14 

discrete choice models have been used to model the choice behavior of consumers including 15 

multinomial logit, nested logit, and logit mixture (16,17,18). The goal of assortment optimization 16 

is to select a subset of items to offer from a universe of substitutable items in order to maximize 17 

the expected revenue when consumers exhibit a random choice behavior. We refer to Kök et al. 18 

(19) for more details of assortment optimization literature and industry practice. 19 

 20 

Multi-armed Bandit Problem 21 

Multi-armed bandit approach deals with the trade-off between exploitation (offer best alternatives 22 

based on current belief) and exploration (learning consumer’s uncertain preferences of some 23 

alternatives) where recommendation decision is endogenous to preference updates. A typical MAB 24 

problem can be stated as follows (20): there are N arms, each having an unknown success 25 

probability of emitting a unit reward. The success probabilities of the arms are assumed to be 26 

independent of each other. Many policies have been proposed under independent-arm assumptions 27 

(21,12). Related with personalized menu optimization, the arm is the offered menu which is a list 28 

of alternatives and the success means an alternative being chosen by the consumer.  29 

In this paper, we focus on the case where the menu size is one and therefore the arms are 30 

independent. If menu size is greater than one, the success probability of one arm/menu will depend 31 

on utility of multiple alternatives which means its reward is dependent on some of the other arms 32 

which has same alternatives on the menu. It is a combinatorial bandit problem where existing 33 

techniques such as UCB do not work directly on these functions (22). We leave this more 34 

complicated case for future studies.  35 

There are different types of MAB problems including stochastic, adversarial, and 36 

Markovian depending on the assumed nature of reward process (23). MAB problems usually do 37 

not have exact solutions except for some special cases (24) and many researchers have proposed 38 

different solution algorithms to different types of MAB problems: 1) First explore then exploit 39 

used by Rusmevichientong et al. (25) and Saure and Zeevi (26) to solve dynamic assortment 40 

optimization problems. 2) Epsilon-greedy with epsilon probability, choose a random arm to 41 

explore, otherwise exploit. 3) Gittins index, compute a Gittins index for each arm and choose the 42 

arm with highest index (20). 4) Randomized probability matching (RPM), randomly choose an arm 43 

with the probability that this arm is the best. A well-known special case of RPM is Thompson 44 

sampling (TS). 5) Upper confidence bound (UCB), choose an arm with the highest upper 45 

confidence bound. It has been applied in many fields including personalized recommendation in 46 
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news articles (27) and digital coupon (28). 1 

Most existing literature in MAB field does not deal with discrete choice models but often 2 

assumes choice behavior follows simple Beta distribution (28). In operations management, there 3 

exists literature proposing online policy depending on a priori knowledge of length of horizon 4 

(25,26) such as “first explore then exploit” policy. In MAB paradigm, Agrawal et al. (29, 30) 5 

propose an adapted TS method and a UCB method that can deal with multinomial logit choice 6 

model but relying on specific exploration phases.  7 

The above-mentioned methods are not suitable for sequential personalized menu 8 

optimization setting where logit mixture is the underlying choice model. In this paper, we focus 9 

on proposing a method which adapts the classical UCB algorithm by utilizing the HB estimator 10 

for logit mixture of inter- and intra- consumer heterogeneity. 11 

In transportation, there are a few studies about MAB problems which focus on different 12 

types of sequential decision-making problems. Chancelier et al. (31) have modeled route choice 13 

as a one-armed bandit problem (choice between a random and safe route) under different 14 

information regimes. They showed that risk neutral individuals tend to select risky routes while 15 

risk-averse individuals choose safe routes more frequently. Ramosa et al. (32) model the route 16 

choice problem as a multi-agent reinforcement learning scenario. They analyzed how travel 17 

information provided from a mobile navigation app would impact the agent route choice decision 18 

using epsilon-greedy strategy that minimizes difference between chosen route and best route.  19 

 20 

MODEL AND SOLUTION 21 

In this section, we first describe sequential personalized menu optimization problem, and then 22 

introduce its solution methods. 23 

 24 

Sequential Personalized Menu Optimization 25 

Assume T is the operational horizon. At each time period, there are N arriving consumers. The 26 

operator needs to decide which menu to offer (or in our case which alternative to offer) based on 27 

choice/menu history. After the operator offers the menu, the consumers need to decide whether to 28 

choose the alternative or opt out (reject the menu). After consumers make their choices, the 29 

operator needs to update the history particularly the estimates of choice model parameters.  30 

 Let 𝑃𝑗𝑛𝑡 denote the choice probability of alternative j for consumer n at time 𝑡. 𝑥𝑗𝑛𝑡 is a 31 

binary variable, which is equal to 1 if alternative j is offered to consumer n at time 𝑡 , and 0 32 

otherwise. At time period t, operator needs to decide which alternative to be offered, among NC 33 

many alternatives, that will maximize the total expected hit. Note that, in order to represent 34 

previous and future time periods with respect to the current time 𝑡, we use the index 𝜏. 35 

max
𝑥𝑗𝑛𝜏,∀j,τ

∑ ∑ 𝑃𝑗𝑛𝜏𝑥𝑗𝑛𝜏

𝑁

𝑛=1

𝑇

𝜏=𝑡

 (1) 

subject to 36 

∑ 𝑥𝑗𝑛𝜏

𝑁𝐶

𝑗=1

= 1, ∀𝑛, ∀𝜏 (2) 

At time 𝑡, the operator actually just needs to decide on 𝑥𝑗𝑛𝑡 based on all the choice history 37 

until time 𝑡 − 1. Additionally, the choice probabilities in the future are estimated based on history 38 

including time 𝑡. This problem does not have an exact solution.  39 

We can also think of the objective function as an attempt to get as close as possible to the 40 
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optimal alternatives for each individual (given by a clairvoyant who knows all the true parameter 1 

values). Particularly, we want to choose a solution method that minimizes the discrepancy between 2 

the optimal menus by the clairvoyant (given by 𝑗𝑛𝑡
∗ ) and menu offered by the solution (jnt

solution). 3 

In other words, we maximize the matching rate as: 4 

max
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

∑
1{𝑗𝑛𝑡

∗ = jnt
solution}

𝑁

𝑁

𝑛=1

    (3) 

  5 

In this study, we assume that the choice behavior follows logit mixture. For logit mixture 6 

with inter- and intra-consumer heterogeneity, the choice probability of alternative j for consumer 7 

n at time t is as follows: 8 

𝑃𝑗𝑛𝑡(𝜂𝑛𝑡) =
exp(ujnt(ηnt))

1 + exp(ujnt(ηnt))
 (4) 

where ujnt(ηnt) denotes the utility based on individual-and choice situation -specific parameter 9 

ηnt.  10 

For logit mixture with inter- and intra-consumer heterogeneity, the posterior is given as 11 

follows: 12 

 

𝐾(𝜇, 𝜁𝑛 ∀𝑛, 𝜂𝑚𝑛 ∀𝑚𝑛, 𝛺𝑤 , 𝛺𝑏|𝑑𝑛∀𝑛)

∝  ∏ [∏ [∏[𝑃𝑗(𝜂𝑚𝑛)𝑑𝑗𝑚𝑛]

𝐽𝑚𝑛

𝑗=1

ℎ(𝜂𝑚𝑛|𝜁𝑛, 𝛺𝑤)]

𝑀𝑛

𝑚=1

𝑓(𝜁𝑛|𝜇, 𝛺𝑏)]

𝑁

𝑛=1

𝑘(𝛺𝑤)𝑘(𝜇)𝑘(𝛺𝑏), 

(5) 

where 𝜂𝑚𝑛 represents a menu-specific parameter for menu m and consumer 𝑛, which follows a 13 

(normal) distribution with mean 𝜁𝑛 and variance Ω𝑤 represented by h. 𝜁𝑛 represents individual-14 

level parameters for a specific consumer n, which follows a (normal) distribution with mean 𝜇 and 15 

variance Ω𝑏  represented by f. 𝑘  denotes prior distributions for parameters. 𝑑𝑗𝑚𝑛  indicates the 16 

chosen alternative as a binary term and 𝑑𝑛 is the choice history vector for consumer 𝑛. See more 17 

details in Becker et al. (10).  18 

The estimation of 𝜂𝑛𝑡 can be done based on previous 𝑡 − 1 time periods of choice history 19 

through five-step HB procedure presented in Becker et al. (10). Since each time period has its own 20 

posterior estimates, we use 𝜂𝑛𝑡
𝑡−1,𝑠

 denoting sth draw of (𝑡 − 1)th estimation, which will be used for 21 

personalized menu optimization at time period t. Note that we consider a total of S draws in order 22 

to represent the posterior estimates provided by the Bayesian procedure. 23 

 24 

Solution Methods 25 

Let 𝑟𝑗𝑛𝑡 = 𝑃𝑗(𝜂𝑛𝑡)  denote the expected reward or “revenue” for the operator. For 26 

clairvoyant who knows all the true parameter values 𝜂𝑛𝑡
∗ , the optimal menu for consumer n at time 27 

t will be  28 

𝑗𝑛𝑡
∗ = 𝑎𝑟𝑔max

𝑗
𝑃𝑗𝑛𝑡(𝜂𝑛𝑡

∗ )  (6) 

The operator has posterior estimates based on 𝑡 − 1  periods of choice history.  The 29 

expected reward for menu j at time t for consumer n is then denoted by 𝑟𝑗𝑛𝑡̅̅ ̅̅̅(𝜂𝑛𝑡
𝑡−1) and given as 30 

follows: 31 
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𝑟𝑗𝑛𝑡̅̅ ̅̅̅(𝜂𝑛𝑡
𝑡−1) =

1

𝑆
∑

exp(𝑢𝑗𝑛𝑡(𝜂𝑛𝑡
𝑡−1,𝑠))

1 + exp(𝑢𝑗𝑛𝑡(𝜂𝑛𝑡
𝑡−1,𝑠))

𝑆

𝑠=1

 (7) 

 1 

If we consider exploit-only, we offer the alternative based on current knowledge to obtain 2 

the maximum immediate revenue as given in equation (8). We refer to this as typical personalized 3 

menu optimization (PMO). 4 

𝑗𝑛𝑡
PMO = 𝑎𝑟𝑔max

𝑗
𝑟𝑗𝑛𝑡̅̅ ̅̅̅(𝜂𝑛𝑡

𝑡−1) (8) 

However, since the parameter estimates include uncertainty, the offered menu may not be 5 

optimal. In addition, offering menu j will not give us information of alternative specific constants 6 

of other alternatives. We need to balance exploitation (offer the best menu based on current 7 

knowledge) and exploration (try other menus that may be optimal). Exploration will help us learn 8 

uncertain parameter values and will be beneficial for the objective of maximizing clicks across the 9 

whole operational horizon.  10 

In order to balance the exploration and exploitation, we borrow the idea from one of the 11 

most widely used MAB heuristic, UCB. It uses the sum of empirical mean and a confidence bonus. 12 

The empirical mean based on choice history is as follows: 13 

𝑟𝑗𝑛𝑡̅̅ ̅̅̅ =
1

∑ 𝑥𝑗𝑛𝜏
𝑡−1
𝜏=1

∑ 𝑟𝑥𝑗𝑛𝜏

𝑡−1

𝜏=1

 (9) 

where we abuse the notation of r to also denote the realization of reward based on the menu 14 

decision 𝑥𝑗𝑛𝜏. Note that here the denominator needs to be at least one, i.e., alternative j is offered 15 

at least once before time t. In our experiments, we take care of it by an initial set of iterations where 16 

we offer each alternative once. 17 

Our method uses not only the empirical mean, but also consider an additional term, which 18 

represents uncertainty about the alternative. We call this additional term the ‘confidence bonus’ 19 

term and therefore we offer a menu for consumer n at time t as follows: 20 

jnt
UCB = arg max

𝑗
{𝑟𝑗𝑛𝑡̅̅ ̅̅̅ +

1

𝑡 − 1
√

𝑐 𝑙𝑜𝑔(𝑡)

∑ 𝑥𝑗𝑛𝜏
𝑡−1
𝜏=1

} (10) 

where the second term presents the “power” of exploration and constant c is a tuning parameter 21 

which controls the magnitude of exploration.  22 

Given HB estimator for logit mixture, we replace 𝑟𝑗𝑛𝑡̅̅ ̅̅̅ by the estimated expected reward 23 

𝑟𝑗𝑛𝑡̅̅ ̅̅̅(𝜂𝑛𝑡
𝑡−1) and call the algorithm UCB-Bayes, which chooses the menu as follows: 24 

jnt
UCB−Bayes

= arg max
𝑗

{𝑟𝑗𝑛𝑡̅̅ ̅̅̅(𝜂𝑛𝑡
𝑡−1) +

1

𝑡 − 1
√

𝑐 𝑙𝑜𝑔(𝑡)

∑ 𝑥𝑗𝑛𝜏
𝑡−1
𝜏=1

} (11) 

 25 

NUMERICAL EXPERIMENTS 26 

 27 

Experimental Setup 28 

In this section, we present numerical experiments under different conditions to evaluate the 29 

performance of different solution methods: PMO, UCB, and UCB-Bayes. We use 5 alternatives, 30 

and the utility of alternative j for consumer n at time t is given as: 31 

ujnt(ηnt) =  (αjnt − exp(βtt,n,t) TTj,n,t − TCj,n,t)/ exp(βtc,n,t) (12) 
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where ηnt = (𝛼1𝑛𝑡 , … , 𝛼𝐽𝑛𝑡 , 𝛽𝑡𝑡,𝑛,𝑡 , 𝛽𝑡𝑐,𝑛,𝑡) denotes the menu-specific parameter vector for user n. 1 

Index t denotes menu as at each time period one menu is offered. (𝛼1𝑛𝑡 , … , 𝛼𝐽𝑛𝑡) is the vector of 2 

alternative specific constants. 𝛽𝑡𝑡,𝑛,𝑡 is the travel time coefficient and 𝛽𝑡𝑐,𝑛,𝑡 is the travel cost 3 

coefficient which are both lognormally distributed. Alternative 5 is considered to be the base and 4 

therefore 𝛼5𝑛𝑡 = 0 ∀𝑛, 𝑡. Utility is given in monetary value (willingness to pay space). 5 

 In the first five periods, we display alternative t for all the individuals (i.e., they see each 6 

alternative once) to warm up the system and obtain basic knowledge about alternatives. We 7 

construct a synthetic sample by drawing N times from the multivariate normal distribution 8 

associated with the individual-level parameters. For logit mixture with inter- and intra-consumer 9 

heterogeneity, we further draw the menu-specific parameters with individual-specific mean and 10 

covariance matrix for intra-consumer heterogeneity. At each time period, we offer one alternative 11 

for each consumer for different solution methods and compare whether the offered menu is the 12 

same as the optimal menu. Travel time and cost are drawn from Uniform [0,1] for every alternative 13 

j, consumer n, and time t. Tuning parameter, c, is set to 2 unless otherwise noted. 14 

 15 

Experimental Results 16 

Experiments comparing UCB-Bayes and UCB 17 

In this section, we first compare UCB-Bayes and UCB methods. Two different sample mean 18 

vectors including (0, 0.5, 1, 1.5, -1, -1) and (0, 0.5, 0.8, 1, -1, -1) are used. Remind that the first 4 19 

correspond to alternative specific constants of the first 4 alternatives and the last 2 parameters are 20 

time and cost coefficients, respectively. The covariances for inter- and intra- consumer 21 

heterogeneity are both represented by a diagonal matrix.   22 



Song, X., Atasoy, B., Ben-Akiva, M.   10 

 

 1 

FIGURE 2 UCB versus UCB-Bayes under logit mixture with inter-consumer heterogeneity 2 

In FIGURE 2 we compare UCB and UCB-Bayes where the y-axis denotes the matching 3 

rate (proportion of the cases where offered menus correspond to optimal menus) and x-axis denotes 4 

the time periods. Here, we consider logit mixture with inter-consumer heterogeneity only. The left 5 

column is associated with the set of parameters (0, 0.5, 1, 1.5, -1, -1) and right is with (0, 0.5, 0.8, 6 

1, -1, -1). The upper ones are obtained using N=100 and the bottom ones are with N=500. We 7 

observe that both algorithms learn what are the optimal menus. The performance of UCB-Bayes 8 

is in general better under different conditions with a gap of around 10%.  9 

Furthermore, we analyze logit mixture with inter- and intra-consumer heterogeneity, 10 

which means for a given individual, taste preferences vary across time periods, i.e., across different 11 

choice situations. It leads to a more difficult problem of learning the preferences. In FIGURE 3, 12 

we observe that UCB-Bayes outperforms UCB in general under different true sample mean vectors 13 

and sample sizes. However, the gap between the two methods in terms of matching rate is smaller 14 

than those under inter-consumer heterogeneity only. 15 

 16 

 17 

N=100 N=100 

N=500 N=500 



Song, X., Atasoy, B., Ben-Akiva, M.   11 

 

 1 

FIGURE 3 UCB versus UCB-Bayes under logit mixture with inter- and intra-consumer 2 

heterogeneity 3 

Experiments comparing UCB-Bayes and PMO 4 

In this section, we compare UCB-Bayes and PMO in order to evaluate the benefit of adding a 5 

confidence bonus term to explore beyond expected value predicted by the HB estimator.  6 

Figure 4 illustrates the comparison between UCB-Bayes and PMO under logit mixture. 7 

The sample mean vector used is (1, 3, 5, 7, 1, -1). The top two shows cases where the variance is 8 

equal to the identity matrix (I). The bottom two show cases where variance is large (100 I). The 9 

left two show cases where the true choice model is logit mixture with inter-consumer heterogeneity. 10 

The right two show cases where the true choice model is logit mixture with inter-and intra-11 

consumer heterogeneity. 12 
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FIGURE 4 Comparison between UCB-Bayes and PMO 2 

In FIGURE 4, we observe that PMO is better than UCB-Bayes when the true choice 3 

behavior has inter-consumer heterogeneity only, which means nullifying the confidence bonus (i.e., 4 

setting c=0) would be the best case for UCB-Bayes. One reason may be that PMO has collected 5 

enough information about each alternative and there is no need to explore beyond estimated best 6 

alternatives. UCB-Bayes’ exploration makes it deviate more from the clairvoyant. When variance 7 

becomes large, the performance of both methods gets worse. With inter- and intra-consumer 8 

heterogeneity, the performances of the two methods are similar.  9 

There might be cases where the optimal alternative is under disturbance for a certain period 10 

of time so that its attributes, e.g., travel time and travel cost, may be much worse than other 11 

alternatives. An exploit-only strategy, like PMO, might get trapped within suboptimal alternatives. 12 

In order to evaluate the benefits of exploration, we propose an alternative setting where optimal 13 

alternative is under disturbance and an exploit-only strategy would not be able to offer it. 14 

Particularly, in the first BT time periods, we draw the travel time and travel cost of alternative 4 15 

(which is the most preferred alternative on average according to sample-level alternative specific 16 

constants) to be from Uniform [5,10] whereas they are drawn from Uniform [0,1] for other 17 

alternatives. Then, as of time period BT+1, we start to draw time/cost from Uniform [0,1] as other 18 

alternatives. FIGURE 5 illustrates the comparison under disturbance with logit mixture with inter-19 

consumer heterogeneity. The left figure shows a case where the true variance matrix is assumed to 20 

be 0.1 I and for the right figure it is assumed to be I. 21 

Inter only – low variance 

Inter only – high variance 

Inter&intra – low variance 

Inter&intra – high variance 
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FIGURE 5 UCB-Bayes versus PMO under disturbance using logit mixture with inter-2 

consumer heterogeneity, BT=30 3 

During the disturbance, both methods rarely choose alternative 4. When the disturbance is 4 

over, both methods have big drops in their matching rates. For UCB-Bayes, the drop is quickly 5 

recovered and it performs better than PMO for several periods. It takes more time periods for PMO 6 

to recover and eventually both methods reach similar matching rates though PMO performs 7 

slightly better. The recovery is easier for PMO when variance is larger.  8 

Furthermore, we consider cases where the true underlying choice model is logit mixture 9 

with inter- and intra-consumer heterogeneity. FIGURE 6 presents the comparison under 10 

disturbance with inter- and intra- consumer heterogeneity. The left and right four plots show cases 11 

where true variance is 0.1I and I, respectively. The four rows use different values of c as 0.5, 2, 5, 12 

and 10.  13 

Different than cases with only inter-consumer heterogeneity, PMO may get trapped with 14 

suboptimal alternatives when there is also intra-consumer heterogeneity and therefore UCB-Bayes 15 

performs better. The performance gap between PMO and UCB-Bayes also depends on the level of 16 

variance, i.e., lower variance has negative impact on the performance of PMO. 17 

When c=0, UCB-Bayes reduces to PMO. The magnitude of c controls how much we want 18 

to explore beyond PMO results. Large values of c may explore too much and result with bad menus. 19 

Therefore, under disturbance with inter- and intra-consumer heterogeneity, there would be an 20 

optimal value of c. In FIGURE 6, we observe that under different variances, different values of c 21 

perform the best. Under variance of 0.1I, both c=2 and c=5 perform better than larger or smaller 22 

values of c. Similarly, under variance of I, c=2 performs the best. In real life, the optimal tuning 23 

parameter can be found through splitting user traffic and experimenting different values of c to 24 

determine the degree of exploration. 25 
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FIGURE 6 Comparison between UCB-Bayes and PMO under disturbance with logit 2 

mixture with inter-and intra-consumer heterogeneity, BT=30 3 

CONCLUSIONS AND FUTURE WORK 4 

In this paper, we propose a novel method, UCB-Bayes, for unified preference learning and 5 

personalized menu optimization in the context of Smart Mobility. UCB-Bayes adapts the classical 6 

UCB algorithm by using the HB estimates for logit mixture. The proposed algorithm outperforms 7 

the classical algorithm under various conditions. The performance gap becomes smaller when the 8 

true choice model is logit mixture with inter- and intra-consumer heterogeneity. We also compare 9 

the proposed algorithm with PMO and find that in regular settings, UCB-Bayes performs worse 10 

than PMO given that true choice model is logit mixture with only inter-consumer heterogeneity. 11 

In other words, in such settings UCB-Bayes reduces to PMO without any exploration term. This 12 

happens as it explores when the estimates are already good. On the other hand, when intra-13 

consumer heterogeneity is also considered, the performance of the two methods becomes similar.  14 

Under an alternative setting where there is disturbance for a certain time frame, which 15 

prohibits system operators to offer optimal alternatives (e.g., closure of a road, subway system 16 

etc.), the performance of PMO is negatively affected. Especially when the true underlying model 17 

is logit mixture with inter-and intra-consumer heterogeneity, PMO performs worse than UCB-18 

Bayes. This indicates that more exploration is needed under disturbance. The magnitude of 19 
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heterogeneity also has an impact on the relative performance of the two methods. 1 

 In summary, when we believe the consumer heterogeneity among consumers is not high 2 

and intra-consumer heterogeneity exists, we propose to use UCB-Bayes especially when there 3 

exists some disturbance for some alternatives. In other cases, PMO might perform better, i.e., 4 

exploration may not be needed.  5 

In the future, we need to investigate realistic cases where menu size is greater than one 6 

and therefore the rewards of different menus are correlated. It requires a different algorithm and 7 

its combinatorial nature would make it computationally difficult to choose among many possible 8 

menus. Furthermore, the application of the proposed framework in real case studies is a very 9 

interesting direction to take as the heterogeneity will be coming from real choices of individuals 10 

across the population and the framework can be validated. 11 
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