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Abstract—The problem of 3D ego-motion velocity estimation
using multichannel Frequency Modulated Continuous Wave
(FMCW) radar sensors has been studied. Special attention
is given to presence of moving targets in the scene. These
targets are first distinguished by the difference between the
measured Doppler, and the Doppler calculated with an initial
rough estimation of the vehicle ego-velocity. Then, an iterative
algorithm is proposed to reduce the influence of the moving
targets in the ego-motion estimation procedure, thus improving
the overall accuracy. The performance of the proposed algorithm
is compared with state-of-the-art alternatives based on simulated
data, and superior performance has been demonstrated.

Index Terms—Ego-motion estimation, multi-channel radar,
velocity measurement, automotive radar.

I. INTRODUCTION

Ego-motion estimation is very essential for automotive
industry and robotics. Many approaches to this problem have
emerged, leveraging a variety of sensors such as vision, laser,
Global Positioning System (GPS), Inertial Measurement Unit
(IMU) sensors and wheel-based odometry. However, among
those sensors, radar can offer precise and direct measurements
of range, relative velocity, and angle for multiple targets,
even in challenging weather and lighting conditions [1]. As
a result, radar sensors receive significant attention and interest
for localization and ego-motion estimation applications.

When addressing the problem of ego-motion estimation,
a current trend in automotive is information fusion from
different sensors, such as radar with Inertial Measurement Unit
(IMU) [2]–[5], or with monocular Visual Inertial Odometry
or monocular Thermal Inertial Odometry [6], and digital
map databases [7]. Other methods focus on improving the
estimation performance given by the radar sensor itself. These
methods can be mainly categorized into model-based [8]–[10],
normal distribution transform (NDT) [11], and Simultaneous
Localization and Mapping (SLAM) approaches [12]–[15].
All these approaches require radar point clouds, which are
generated after several data processing steps. At least one
coherent processing interval, i.e. one frame, is required to
create point clouds, which limits the possible update rate. Also,
the data association between different frames is probabilistic
based, which may introduce errors during the process.

Our previous work [12] proposed a method for ego-
motion estimation starting from the lower signal level (i.e.,
the radar base-band signal before range-Doppler processing)

and achieved the best performance among the compared ap-
proaches. Using algorithms implemented directly at the signal
level for ego-motion estimation, it can be easier to combine
them with other high-resolution imaging algorithms [16] or
automotive synthetic-aperture radar (SAR) algorithms [17],
[18] to improve the performances for other tasks. However,
the performance of the proposed algorithm relies highly on
the assumption of static scene. By increasing the ratio of
moving targets in the scene, the algorithm performance will
decrease. Addressing this limitation is the major focus of this
paper. Here, an iterative algorithm is proposed to reduce the
influence of moving targets in the scene at the ego-motion
estimation, thus improving its accuracy. Initially, a rough
ego-motion estimation is performed. Then, the ego-motion
induced Doppler for each target is iteratively compared with
the measured Doppler. By doing so, the moving targets will be
distinguished and discarded for later processing. A significant
improvement is obtained in terms of ego-motion estimation
accuracy, as demonstrated on multiple simulated tests.

The rest of the paper is organized as follows. In Section
II, the signal model for a moving radar with 3 degrees of
freedom is provided. The fundamentals of how to estimate the
ego-motion velocity via the proposed optimization approach
are explained in Section III. The simulation results for targets
under different settings are provided in Section IV. Finally,
conclusions are drawn in Section V.

II. FUNDAMENTAL CONCEPTS

A. Signal model

The proposed algorithm works for any multi-channel Fre-
quency Modulated Continuous Wave (FMCW) radars, which
has no requirements for the layout of antenna array. For auto-
motive applications, we consider a FMCW multiple-input and
multiple-output (MIMO) radar with Na and Ne virtual array
elements for azimuth and elevation estimation, respectively.
Without losing generality, the omnidirectional antenna pattern
is considered for the transmitter and receiver. The 2-D MIMO
array is placed in the Y-Z plane, with the X-axis pointing
towards the illuminated scene, as shown in Fig. 1.

The received radar signal is the sum of the reflected signals
by the scatter points in the field of view. After reception, the
signal will be mixed with the transmitted signal to obtain the
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Fig. 1. The geometry of the side-looking automotive radar, where Y is the
forward direction, X is the cross-forward direction, and Z is the elevation
direction, satisfying the left-handed Cartesian coordinates.

baseband signal (dechirping). The dechirped discretized signal
of the radar will be:

z(i, j, l, b) =

ks∑
o

αo exp[jΦ(o, i, j)]

× exp[−j2π(fd,oT l + µ
γob

fs
)]

(1)

where z is the radar received signal; o is the target’s index;
i and j are the index of the antenna elements counted from
the 1st antenna element in azimuth and elevation direction,
respectively; l = 0, 1, 2, ..., Ld − 1 is the slow time index;
Ld is the total number of the chirps in one frame; b =
0, 1, 2, ..., Bd − 1 and Bd = Tcfs is the maximum number
of samples within one chirp; fs is the sampling frequency; Tc

is the chirp duration; αo is the constant complex amplitude
related to the characteristics of the target o; d is the space
interval between adjacent antenna elements; c is the speed of
light; θo is the azimuth of target o; vo is the radial velocity
between target o and radar; µ is the frequency modulation rate;
γo = 2Do

c ≪ Tc with Do being the distance between antenna
and target o; fd,o = f0

2vo
c is the Doppler of the target o;

f0 denotes the starting frequency of the chirp. The term Φ is
the phase difference between different antenna pairs, which is
related to the position of the radar mounted.

Φ(o, i, j) ≈ 2πf0(
id

c
sinθocosϕo +

jd

c
sinϕo) (2)

where d = λ
2 , λ is the wavelength, and θo and ϕo are the

target’s azimuth and elevation angle.

B. Ego-motion estimation

Current ego-motion estimation algorithms rely on the spatial
alignment between different processing time intervals. Many
algorithms, e.g., NDT [11] or Matrix Inversion [9], were
proposed, but still suffered from errors in the data alignment.
It is reasonable to assume that in a short time, i.e., in one
coherent processing interval or frame, a target will be in the
same position at the range-Doppler diagram, (in other words,
no target migration is assumed). The whole frame duration
is then divided into two sub-intervals, starting from time u0

and u1, where two subsequent range-Doppler indices can be

obtained from the detections. The ego-motion estimation can
be performed via the data alignment by equating the two
detected indices. The complete explanation of this approach is
reported in [12], with the main components summarized here.

As mentioned, a 2D constant false alarm rate (CFAR)
detection is performed on the range-Doppler spectrum, 2D
FFT of the signal z in (1), which is expressed by:

Z(i, j,m, n, u) =

k∑
o

αoπ
2TcfsNLsinc(

(mTcfs + µγoTc)

2
)

× sinc(
(n+ fd,oT )NL

2
)× exp[jΦ(o, i, j, l)]

× exp[−jπ((mTcfs + µγoTc)

+ (n+ fd,oT )(2u+NL))]
(3)

where m and n are the indices of the frequency in range and
Doppler domain, respectively; u is the starting index of the
sub-intervals. Because of the sinc function in the expression,
the amplitude peak will change according to the Doppler
velocity and range of targets, which is at the basis of the
subsequent detection processing.

Assuming that each range-Doppler cell only contains one
target, which is reasonable because of the high resolution in
the Doppler domain, the signal of the detected target at indices
[mk, nk] can be written as:

Z(i, j,mk, nk, u) ∝ Z(1, 1,mk, nk, u)exp[jΦ(ok, i, j, u)]
(4)

Φ(ok, i, j, u) = 2πf0(
id

c
sinθ̂ok(u)cosϕ̂ok(u) +

jd

c
sinϕ̂ok(u)))

(5)
where mk and nk indicates the detected targets’ range and
Doppler index. Based on this equation, the spatial angles
θ̂ok(u) and ϕ̂ok(u) of the detected targets can be obtained
via pattern search [19].

After obtaining an estimation of the detected targets’ eleva-
tion and azimuth for the sub-interval starting from time index
u0, the indices for the targets will be the same as for the
following sub-interval starting from time index u1. Thus, the
detected targets for these intervals u0 and u1 are related as:

Z(i, j,mk, nk, u1) ∝ Z(i, j,mk, nk, u0)exp[jΓ(ok, u1, u0)]
(6)

Γ(ok, u1, u0) = 4π
drokf0

c
(7)

where drok = Vd ∗ (u1 − u0) = v̂rx ∗
(u1 − u0) cos θ̂ok(u) cos ϕ̂ok(u) + v̂ry ∗ (u1 −
u0) sin θ̂ok(u) cos ϕ̂ok(u) + v̂rz ∗ (u1 − u0) sin ϕ̂ok(u).
Essentially, the signal phase differences in the two sub-
intervals are due to a displacement term in Γ, which is related
to the relative ego speed v̂rx, v̂ry, v̂rz between the radar and
the targets, specifically the ego-motion velocity components
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when all targets are static, which can be estimated by pattern
search [19] as well.

A limitation of this method is the detrimental effect that de-
tected moving targets will have on the ego-motion estimation.
This issue is addressed in the next section.

III. PROBLEM FORMULATION AND PROPOSED METHOD

A. Problem formulation

Moving targets in the scene will introduce additional
Doppler components, so that the velocity Vd in our signal
model (7) will be the combination of the vehicle ego-motion
and the targets’ motion. Most of the Doppler-based algorithms
in automotive, such as Doppler beam sharpening, SLAM and
SAR implementations, will be affected by this. Also the ego-
motion estimation presented in the previous section [12] will
be affected, and the model for drok in equation (7) will face the
mismatch problem and degrade the estimation results. Given
the diversity of moving target classes and their motion models
in automotive, it will be challenging to reduce their effect in
the ego-motion estimation process.

B. Proposed method

To reduce the moving targets’ influence, a feedback loop is
added to the flow chart of the proposed iterative method, as
shown in Fig. 3. The Doppler/velocity estimation Vdd(mk, nk)
will be obtained from the range-Doppler spectrum detec-
tions. The iteration will be at first initialized with the first
rough estimation from (6), i.e., the Doppler/velocity estimation
Vdd(mk, nk). During each iteration, all the detected targets
will be iteratively divided into virtual static targets group
and virtual moving targets group. Only the static targets will
be processed to derive more accurate ego-velocity estimation
results. Specifically, the proposed method contains two im-
portant steps: first is the updating of the static targets’ group;
second is the breaking point to end the iterations.

1) Updating of the static targets’ group: The vector
[vix, v

i
y, v

i
z] is the velocity estimation from the i− th iteration.

Knowing each target’s position [θk, ϕk], the target’s ego-
motion induced Doppler/velocity can be calculated as:

V i+1
ed (mk, nk) = vix cos θk cosϕk+viy sin θk cosϕk+viz sinϕk

(8)
An example of the motion-induced velocity results and

the detected velocity are drawn in Fig. 2, where differences
between these two values due to the movement of targets are
visible. The velocity difference Di

V (mk, nk) = V i
ed(mk, nk)−

Vdd(mk, nk) is defined as the difference between the ego-
motion induced velocity Ved and the velocity obtained from
the spectrum Vdd. If the difference between the ego-motion
induced velocity and the velocity obtained from the spectrum
is higher than a certain threshold, the target will be marked
as moving target. This label is obtained from the last iteration
and shown as follows:

Fig. 2. An example of estimated velocity surface plot with the detections
and calculated motion-induced velocity values. The blue points denote the
detection results, while the surface plot shows the motion-induced velocity
value in each azimuth-estimation position.

Label(mk, nk) =

{
static |Di+1

V (mk, nk)| ≤ DcE(|Di
V |)

moving |Di+1
V (mk, nk)| > DcE(|Di

V |)
(9)

The static targets will be stacked together to form the matrix
for translational motion Tt

i+1(u) ∈ CNa∗Ne×Nk according to
[12], and an optimization algorithm will be implemented to
derive the new estimation [vi+1

x , vi+1
y , vi+1

z ].
2) Breaking point to end the iteration: To ensure the

number of iterations is enough to provide accurate estimation,
different criteria are proposed here to define the threshold,
namely Averaging-based-threshold (ABT), Ordered Statistics
threshold (OST), and Ordered Statistics Averaging based
threshold (OS-ABT),

Averaging based threshold (ABT):

E(abs(Di+1
V (mk, nk)))− E(abs(Di

V (mk, nk))) < ϵ (10)

where ϵ is the tolerant distance of moving targets, E is the
operation of expectation.

Ordered Statistics threshold (OST): The velocity differences
D∗

V will be sorted according to their amplitude. A new
sequence of the variables is defined as:

D∗
V (1) ≤ D∗

V (2) ≤ ... ≤ D∗
V (K) (11)

The iterations will then stop when:

Di+1
V (kos)−Di

V (kos) < ϵ (12)

Ordered Statistics Averaging based threshold (OS-ABT):
The velocity differences D∗

V will be sorted as well to get the
new sequence. To avoid some extreme case errors, the average
is calculated after sorting. The iterations will then stop when:

E(Di+1
V (1 : kos))− E(Di

V (1 : kos)) < ϵ (13)
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where (1 : kos) denotes the values from the first to kos.
The algorithm is summarized in the pseudocode shown in

Algorithm 1, and the corresponding block diagram is drawn
in Fig. (3). Summarizing, after obtaining raw radar data, a
2D FFT is performed, followed by 2D-CA-CFAR [20]. With
the obtained information, the initial ego-motion estimation is
performed, and the motion-induced velocity is calculated and
compared with the detected velocity. The detected points will
be labelled, and the static targets will be sent to the iterative
algorithm. These steps will be performed until the threshold
is met and the final ego-motion estimation results obtained.

Algorithm 1 Proposed iterative method
Initialization.
Obtain the velocity estimation for the detected targets
Vdd(mk, nk) and the initial estimation of translation speed
[v1x, v

1
y, v

1
z ] with all the detected targets.

Iteration i.
Calculate the ego-motion induced velocity as in (8).
Distinguish static targets based on the threshold as in (9).
Form the new matrix for translation speed estimation Tt

i+1

Implement the pattern search algorithm for ego-motion
estimation according to [12].

i = i+ 1
Break the iteration when threshold is met.
Obtain estimated results Vab when using (10)
Obtain estimated results Vos when using (12)
Obtain estimated results Vos−ab when using (13)

Fig. 3. Block diagram of the proposed method for ego-motion estimation.

IV. RESULTS AND DISCUSSION

To show the effectiveness of the proposed method, several
results based on groups of simulated point targets are initially
presented and analyzed. We used a simulated 8 × 8 2D
uniform square array on the side-looking radar to evaluate
the performance of the approach. The distances between
different antennas are constant, λ

2 , to avoid ambiguity. The
radar parameters are listed in Table I. The ϵ in equation (10),
(12) and (13) is set in the following simulations as 0.2.

Four hundred targets are generated in the radar field of
view at random range values in the interval [0 m, 35 m],

TABLE I
RADAR PARAMETERS FOR THE VERIFICATION OF THE METHOD

Parameters Value
Center Frequency (GHz) 77

Slope (MHz/us) 62.5
Sampling Rate (Msps) 32

Bandwidth (GHz) 1
PRI (us) 20

Number of chirps per frame 256

elevation in the interval [−30◦, 30◦], and azimuth in the
interval [−60◦, 60◦]. The amplitude of all scatterers is
drawn from the uniform distribution αo = U(0, 300).
According to the Swerling model III, the amplitude can be
seen as constant during one coherent processing interval.
The scatterers are also assumed to be isotropic and provide
constant amplitude and phase of the scattered field during
the processing period, as in [21]. The vehicle is moving with
random speed selected from a uniform distribution in all three
coordinates where Vx = U(−10.8 km/h, 10.8 km/h),
Vy = U(14.4 km/h, 46.8 km/h), Vz =
U(−10.8 km/h, 10.8 km/h).

One example of the velocity plot cut at ϕ = 0 is extracted
from the velocity surface in Fig. 2. As shown in Fig. 4,
the estimated ego-velocity results after three iterations of
the proposed method are closer to the ground-truth than the
estimation by the previous method [12].

Ground truth

Intial estimation [15]

Iterated results

Fig. 4. Comparisons of estimated velocity with original [12] and proposed
iterative method, compared to the ground truth when 40% targets are moving
in [0 m/s, 6 m/s] .

To test performances under different ratios of moving
targets, 100 Monte Carlo tests are performed. The moving
targets’ radial speeds are selected from a uniform distribution
vr = U(−21.6 km/h, 21.6 km/h). The ratio of total moving
targets ranges from 10% to 50%, as in common automotive
scenarios many scatter points are often from static targets or
clutter. The results for different threshold calculations ABT,
OST, OS-ABT are compared in Figure 5. With the proposed
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iterative method, the ego-motion estimation performances are
improved compared with the conventional algorithm (blue
line in the figure). The smaller the ratio of moving targets,
the better improvement can be achieved. This is reasonable
because outliers will show significant differences when the
moving targets’ ratio is lower, thus the iterative method can
easily discard those outliers. However, as the moving targets’
ratio increases, the differences become negligible because
of high bias, reducing performances. Notably, the OS-ABT
approach, as a combination of both advantages from ABT and
OST, achieves the best results in almost every ratio and every
direction. Only when the ratio of moving targets is small, i.e.
10%, the ABT approach already achieves good performance.
The OS might introduce more bias by setting a fixed order
which decreases slightly the performance.

10% 20% 30% 40% 50%

The ratio of moving targets

100

X
 d

ir
e
c
ti
o
n
(m

/s
)

Ori

ABT

OST

OS-ABT

10% 20% 30% 40% 50%

The ratio of moving targets

100

Y
 d
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e
c
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o
n
(m

/s
)

10% 20% 30% 40% 50%

The ratio of moving targets

0.2

0.4

Z
 d
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e
c
ti
o
n
(m

/s
)

Fig. 5. Ego-motion estimation error in three directions, with different ratios
of moving targets present in the scene and different termination thresholds
approaches (ABT, OST, OS-ABT).

Another Monte Carlo test is performed, where 30% of
targets in the field of view are simulated with random speeds.
The radial speeds are chosen randomly in the range [0 : vr],
with vr ∈ [3 m/s, 6 m/s, 9 m/s]. The results are shown in
Fig. 6. As expected, the performance drops in all cases with
increasing speeds because of the larger error introduced in
the ego-motion estimation. Still, all the iterative algorithms
reduce the estimated error of the ego-motion estimation. OS-
ABT achieves the best results in all the directions and at all
different speed ranges against the other two variants.

After testing different scenarios, i.e. different speeds of the
targets and different ratios of moving targets, the parameters in
the iterative algorithm are tested as well. Dc in equation (9) is
tested with different values, namely [0.5, 1, 1.5, 2, 2.5]. Dc is
used to determine the boundary between the static targets and
the moving targets. If the value is too small, the constraint
will be too strict, and the algorithm will highly rely on the
initial estimation and stop easily at an inaccurate separation
of targets. On the other hand, if the value is too large, more
moving targets will be used for the final estimation, leading
to a drop in the estimation accuracy. The results are shown
in Fig. 7. The red boxes are from the original method [12],

3m/s 6m/s 9m/s

The average radial speed of moving targets

0

1

X
 d

ir
e
c
ti
o
n
(m

/s
) Ori

ABT

OST

OS-ABT

3m/s 6m/s 9m/s

The average radial speed of moving targets

0
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Y
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/s
)

3m/s 6m/s 9m/s

The average radial speed of moving targets

0

0.2

0.4

Z
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e
c
ti
o
n
(m

/s
)

Fig. 6. Ego-motion estimation in three directions, with targets in the
scene moving at different average speeds; different termination thresholds
approaches compared (ABT, OST, OS-ABT).

which do not depend on Dc. We can see that ABT and OS-
ABT obtain better results than OST. The outliers for OS-ABT
are less than ABT, providing a lower variance estimation. The
performances first improve from Dc = 0.5 to Dc = 1.5 by
relaxing the strict constraint, but then the errors increases again
with higher Dc values.

0.5 1 1.5 2 2.5

The D
c

0

0.5

1

1.5

Y
 d

ir
e
c
ti
o
n
 (

m
/s

)

Ori

ABT

OST

OS-ABT

Fig. 7. Ego-motion estimation in three directions with different values of the
parameter Dc for different termination thresholds approaches (ABT, OST,
OS-ABT).

The ϵ and k parameters in the OST & OS-ABT are also
tested with different values, and with moving targets’ ratio
equals to 30% and targets’ speed range equals to 3m/s. The
results show that for k >= 3 the performance of the algorithm
remains broadly constant, since the outliers are discarded in
the iterations and only the static targets are selected.

Several extended targets in random shapes as shown in Fig.
8 are also simulated. All the targets within the maximum
range of 100m for this simulation will be considered in the
signal generation. Based on the signal model described in
equation (1), the corresponding radar signals are generated
from the superposition of the scatter points in each frame.
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Fig. 8. Estimated trajectory using simulated data with different methods.

The ground truth trajectory and estimated trajectories are
compared in Fig. 8 to evaluate the algorithm performance
in a continuous, more realistic sequence of frames. With the
proposed iterative approach, the estimated trajectory is moving
closer to the ground truth. Three different evaluation metrics
[12], namely absolute pose error (APE), absolute trajectory
error (ATE) and relative trajectory error (RTE), are used
to compare different ego-motion estimation algorithms. APE
for the original algorithm is 1.4046 m/s, with the proposed
algorithm 1.1154 m/s and the alternative method in [9] 54.29
m/s. ATE for the original algorithm is 79.1799 m, with the
proposed algorithm 29.0577 m and the method in [9] 778
m. RTE calculated with 10 frames for the original algorithm
is 2.4695 m, with the proposed algorithm 2.3209 m and the
method in [9] 20.1m. All these evaluations prove that the
proposed method improves the performance of the original
algorithm [12].

V. CONCLUSION

This paper proposes an iterative method to improve the
accuracy of the ego-motion estimation in scenarios with mov-
ing targets. The method compares the detected target velocity
with the ego-motion-induced velocity, and targets with higher
differences are labelled as moving targets, and then discarded
in the next iteration. Thus, only static targets are selected for
the final ego-motion estimation. Three different approaches
to compute thresholds for the breaking point of the iterative
method are proposed and compared as well.

The proposed method’s effectiveness is verified through
numerical simulations. The improvements are obtained under
different moving ratios and different moving speeds (e.g., 3
times in 10% moving targets situations). Different threshold-
based methods are compared with Monte Carlo tests, showing
that the OS-ABT approach works robustly and accurately.
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