BEHAVIOUR MODELLING AND ANOMALY
DETECTION IN SMART-HOME IOT DEVICES

BEHAVIOUR MODELLING AND ANOMALY
DETECTION IN SMART-HOME IOT DEVICES

by
Sandesh MANGANAHALLI JAYAPRAKASH

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science
Specialisation: Cyber Security

at the Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science,
to be defended publicly on Thursday July 11, 2019 at 3:00 pm.
Student Number: 4724127

Project duration: November 2018 to July 2019

Thesis committee:

Dr. Ir. S.E. Verwer, Assistant Professor, Cyber Security group, TU Delft

Dr. Ir. J.C.Avan der Lubbe, Associate Professor, Cyber Security group, TU Delft
Dr. Ir. Asterios Katsifodimos, Assistant Professor, = Web Information Systems group, TU Delft

Ir. Azqa Nadeem, PhD Student, Cyber Security group, TU Delft

An electronic version of this dissertation is available at
http://repository.tudelft.nl/

Delft
e t University of
Technology

http://repository.tudelft.nl/

ABSTRACT

The usage of Internet of Things (IoT) devices has been exponentially increasing and their
security is often overlooked. Hackers exploit the vulnerabilities present to perform large
scale attacks as well as to obtain privacy-sensitive information. Resource constraints
combined with a lack of incentives for manufacturers makes it harder to implement se-
curity solutions part of these devices.

This thesis aims at developing a system that monitors the behaviour of these IoT devices.
Network traffic is captured and analysed as part of a network middle-box to model the
behaviour of an IoT device. This traffic shows the interactions of the IoT device with
other devices and hosts. By modelling the normal behaviour of a device, we can detect
anomalies exhibited.

Denial of Service attack was performed to evaluate the effectiveness of state machines
in detecting anomalies. To verify the validity of state machines built based on network
traffic in a laboratory setup, a test environment with a different setting was used. Traffic
was captured from a smart home setting and used to validate the state machines.

We show that state machines can be effectively used to model the behaviour of IoT de-
vices at the packet level and can also be used to uniquely identify commands issued
from smartphone to IoT device. They can also effectively distinguish attack traffic from
normal traffic.

Preface 11
1 Introduction 1
1.1 ProblemStatement e 2
1.2 ProposedSolution Lo e 2
1.3 Dataset o o L e e 2
1.4 Motivation for choosingIOT devices 3
1.5 Motivation for choosing PhilipsHue 3
1.6 ResearchQuestions. v iunun... 6
1.7 Research Scope« v v v i i i e e e e e e e e e e e e e 7
1.8 Contributions. L e 7

1.9 SummaryofResults. e 7
1.10 ReportOutline L e 8

2 Background and Literature Survey 9
2.1 Definitions Lo e e e e e e e e e 9
2.1.1 InternetofThings 9

2.1.2 Intrusion DetectionSystem 9

2.1.3 StateMachines. o o ool 10

214 SPINDEVICE . . . v . v vt it et e e 11

22 RelatedWork L e 11
2.2.1 HomogeneousDevices. 11

2.2.2 HeterogeneousDevices 17

2.2.3 Otherrelatedwork. oo oo 20

224 Observations.ttt e e e e e 20

225 ResearchGaps. v v v v v v i i e e e e e e e e e 22

3 Data Exploration 25
3.1 Experimental Setup. e e e e e 25
3.2 DataCollection L e 25
3.3 DataFiltering. 27
3.4 ObservationsfromtheData. 28
3.5 Features. oL e e 28
3.5.1 SelectedFeatures 30

3.5.2 OtherFeatures Considered. 31

3.6 SUMIMAIY .« © v v v v v v v vt e s e e e e e e e e e e e e e 34

CONTENTS

8 CONTENTS

4 Methodology 35
4.1 State Machine LearningModule 35
4.1.1 InputFormat. oL L 35
4.1.2 Parameters tolearningmodule 0000 L 36
4.1.3 OutputFormat. e 37

4.2 Representation of State Machines. 37
4.3 [Initial State Machines: Traffic between mobile appandHue 37
4.3.1 Casel: All trafficwasconsidered 37
4.3.2 Case2: Different Data with some filtering 38

4.4 Final State Machines: Traffic between Mobile appand Hue. 41
441 Inspection i ittt e e e e e e e e e e 41

4.5 Ordering of TCP stream and its significance on Background Traffic by Hue . 45
4.5.1 TCP packets re-ordering and sequence generation. 48

4.6 Final State Machines: Background Traffic generatedbyHue 50
4.7 Extension to another device: IKEAlights 52
4.7.1 Traffic between smart phone and IKEA lights 52
4.7.2 Background Traffic generated by IKEA lights. 52

4.8 Baseline:N-Grams Lo e 53
4.9 Answers to research questions addressed in thischapter 53
410 SUMMATY + . v v v v v e 54
5 Results: State Machines representing the normal behaviour 55
5.1 State Machines representing Traffic between Mobile app and Hue 55
5.2 State machines representing Background Traffic generated by Hue. 59
5.3 State Machines representing traffic generated by IKEA lights 63
5.3.1 Traffic between smartphone and IKEAlights. 63
5.3.2 Background traffic generated by IKEAlights 67

5.4 Answers to research questions addressed in this chapter 69
5.5 Summaryo e e e e e e e e e e e e e e e 70
6 Application of State Machines on Attack Traffic and Real World Data 71
6.1 CaseStudy 1: AttackTraffic 71
6.1.1 Attacktypeandtoolsused. 71
6.1.2 IoTdeviceasvictim, 72
6.1.3 IoT deviceassourceofattack 75

6.2 CaseStudy2:RealWorldData 76
6.2.1 Setup. h e e e e e e e e e e e 76
6.2.2 Hypothesis. e 76

6.3 SUMMATY . . .« o v v vttt e e e e e e e e e e e e e e 79
7 Evaluation 81
7.1 Toolsused. 81
7.2 (Semi)online evaluation. e e e 83
7.3 OfflineEvaluation. 83
7.4 Evaluation Metrics: Attack Traffic. 84

7.5 Evaluation Metrics: Baseline with Attack Traffic. 84

CONTENTS 9
7.6 Evaluation Metrics: Real Worlddata. 86
7.6.1 UsingAbsolute PacketSize. 86

7.6.2 Using Threshold on Packet Size and mismatching transitions 86

7.6.3 FalsePositive Analysis 86

7.7 Evaluation Metrics: Baseline with Real World Traffic 89
7.8 Research Questions answered in thischapter. 90
7.9 Summaryo o e e e e e e e e e e 90

8 Limitations and Future Work 93
8.1 DataRelated i i e e e e e 93
8.2 ApproachRelated. e 94
8.3 EvaluationRelated 95
8.4 Interaction with otherdevices 95

9 Conclusion 97

ACKNOWLEDGEMENTS

I would like to first thank my supervisor Dr.ir. S.E. (Sicco) Verwer of the Cyber Security
and Intelligent Systems department at TU Delft, for guiding me constantly.

I would like to thank my daily supervisor Azqa Nadeem (Ph.D. student and junior lec-
turer), for helping me throughout my journey with this thesis. She constantly steered me
in the right direction when I was faced with a fair number of obstacles. Even though she
provided me with useful feedback and suggestions, she saw that I never lost the original-
ity of my work.

I would like to extend my thanks to Dr.ir. Elmer Lastdrager, Research Engineer at SIDN
labs for providing me with the SPIN device which was very helpful with collecting the
data in this thesis.

Finally and most importantly, I would like to express my heartfelt gratitude and thanks to
my parents and friends for providing me the emotional support during my most difficult
time of writing my thesis, believing in my hard work. This dream would not be possible
without them.

Dedicated to Friends and Family.

Sandesh Manganahalli Jayaprakash
Delft, July 2019

11

INTRODUCTION

Internet of things(IoT) refers to the "things" that are interconnected to each other for the
purpose of monitoring and exchanging information[44]. These can be anything, rang-
ing from smart locks which let you control access to the home from your mobile phone,
to smart refrigerators which can monitor the contents of fridge and place orders online
based on the status. It has found its place in smart homes, health care and recently as
autonomous vehicles. The devices we use on a daily basis can be connected to the in-
ternet, equipped with sensors or actuators to enable them to operate autonomously [29]
thereby qualifying as an IOT device. As per the report of Cisco [9], the number of IoT
devices has outnumbered World Population and is increasing exponentially. Around 50
Billion devices are expected to be connected to the internet by 2020 making a ratio of
6.58 devices per person. Owing to the availability of cheap hardware and open source
software, developing these devices has been made simpler [29].

While these devices have made life easier, they raise many privacy and security con-
cerns. A report by HP highlights the security issues that are prevalent in IoT devices '.
Insecure Web interface, Weak Passwords, Insecure Network Services, Lack of Secure Up-
date Mechanism are some of the crucial weakness of IoT devices as per OWASP top 10
issues related to IoT devices °. Various attacks have been performed exploiting the weak
security of these devices. For instance, a report by BBC * warned about how attackers
were able to obtain a live feed from Baby Monitors. Distributed Denial Of Service attack
is the most prevalent attack performed by hackers by abusing these insecure 10T de-
vices. Mirai Botnet, which was comprised of an estimated 100.000 insecure IoT devices
was used to perform Denial of Service attack on DNS operator Dyn *. Popular websites
such as Github, Netflix, Amazon, Twitter were affected because of this attack. Shortly
after the attack, the source code of Mirai Botnet was made publicly accessible on Github

Ihttp://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW . pdf
Zhttps://www.owasp.org/index.php/OWASP_Internet_of _Things_Project

3https ://www.bbc.com/news/technology-30121159
4https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

http://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW.pdf
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.bbc.com/news/technology-30121159
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

2 1. INTRODUCTION

Various cryptographic techniques have been proposed specifically for securing IOT de-
vices [17] [16] [35] [34]. While these techniques might help in ensuring confidentiality
and authenticity in network traffic, they cannot be used to protect against various at-
tacks that these IoT devices could be a victim of [26]. Additional security measures to
monitor such devices is required.

1.1. PROBLEM STATEMENT

Given the security issues and challenges in IoT devices, this thesis aims at providing a
monitoring system that could be part of network middleboxes. This system first learns
the normal behaviour of an IOT device and tries to find deviations from it. AsIOT devices
have relatively less functionality, our hypothesis is, the behaviour of such devices could
lead us to a smaller, interpretable state machine. For this, all the network traffic from/to
IoT device in question is considered. The problem statement addressed in this thesis is
as follows:

Developing a method to learn the behaviour of IoT devices to perform anomaly
detection using state machines.

1.2. PROPOSED SOLUTION

We propose a method to build state machines that can not only explain the traffic be-
tween 10T device and smartphone controlling it but also the interaction of IoT device
with other hosts. To achieve this, we look at the network traffic generated by IoT devices
in the TCP/IP protocol stack to learn its normal behaviour. Traffic will be captured while
performing various operations on the IOT device, as well as when the IoT device is idle.
To aid in capturing the traffic, SPIN device(a smart router) would be used. Further details
about it is provided in Chapter 3.

These state machines are then compared against attack traffic to see how well they
can classify attack traffic from normal traffic.

1.3. DATASET

Data used for this work is composed of various pcap files which contain the packets orig-
inated from/destined to IoT device under consideration. In addition to this, these pcap
files also contain traffic generated by other devices in the network. Data used for this
projects takes only network traffic generated by IoT device in the TCP/IP protocol stack.
Communication using other protocols such as Zigbee, Bluetooth etc. has been consid-
ered out of the scope of this project and can be an interesting aspect for future work.

Figure 1.1 shows an example of data used for this project on Wireshark °(A tool used to
capture and analyse network traffic.). Here the traffic has been filtered based on MAC

Shttps://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/
akamai-mirai-botnet-threat-advisory.pdf
Shttps://wuw.wireshark.org/

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/akamai-mirai-botnet-threat-advisory.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/akamai-mirai-botnet-threat-advisory.pdf
https://www.wireshark.org/

1.4. MOTIVATION FOR CHOOSING IOT DEVICES 3

1550740039.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AW @D RE Q«» s = aaal
A eth.addr == nd tep
No. Time Source Destination Protocol Length Info
= 63.565534 192.168.8.221 192.168.8.142 Top 78 56744 ~ 443 [SYN, ECN, CWR] Seq=e Win=65535 Len=0 MSS=1460 WS=64 TSval=1408831576 TSecr=0
i 53.565804 192.168.8.142 192.168.8.221 Tcp 66 443 ~ 56744 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=8
9 3.568844 192.168.8.221 192.168.8.142 TCP 54 56744 — 443 [ACK] Seq=1 Ack=1 Win=262144 Len=0
103.570745 192.168.8.221 192.168.8.142 Tisvi.2 | 4s1client Hello
11 3.570992 192.168.8.142 192.168.8.221 TCcP 60 443 — 56744 [ACK] Seq=1 Ack=438 Win=30272 Len=0
123.572928 192.168.8.142 192.168.8.221 TLsvi.2 | 191 Server Hello, Change Cipher Spec, Encrypted Handshake Message
15 3.583502 192.168.8.221 192.168.8.142 TCcP 54 56744 — 443 [ACK] Seq=438 Ack=138 Win=261952 Len=0
163.583602 192.168.8.221 192.168.8.142 TLSv1.2 60 Change Cipher Spec
17 3.583649 192.168.8.221 192.168.8.142 TLSv1.2 99 Encrypted Handshake Message
183.583702 192.168.8.221 192.168.8.142 Tisvi.2 | 218 Application Data
19 3.584021 192.168.8.142 192.168.8.221 TCP 60 443 — 56744 [ACK] Seq=138 Ack=653 Win=30272 Len=0
20 3.595582 192.168.8.142 192.168.8.221 TCcP 1514 443 — 56744 [ACK] Seq=138 Ack=653 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
21 3.595846 192.168.8.142 192.168.8.221 TLSV1.2 774 Application Data
22 3.596144 192.168.8.142 192.168.8.221 TLSV1.2 88 Application Data
23 3.597128 192.168.8.221 192.168.8.142 TCP 54 56744 — 443 [ACK] Seq=653 Ack=2318 Win=259904 Len=0
24 3.597700 192.168.8.221 192.168.8.142 TCcP 54 56744 — 443 [ACK] Seq=653 Ack=2352 Win=259904 Len=0
253.633557 192.168.8.221 192.168.8.142 Tisvi.2 | 211 Application Data
26 3.669280 192.168.8.142 192.168.8.221 TCP 1514 443 — 56744 [ACK] Seq=2352 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
273.669784 192.168.8.142 192.168.8.221 Tcp 1514 443 ~ 56744 [ACK] Seq=3812 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
28 3.669920 192.168.8.142 192.168.8.221 TLSv1.2 1351 Application Data
293.670983 192.168.8.142 192.168.8.221 Tcp 1514 443 ~ 56744 [ACK] Seq=6569 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
30 3.671139 192.168.8.142 192.168.8.221 TCP 1514 443 — 56744 [ACK] Seq=8029 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
313.671232 192.168.8.142 192.168.8.221 TLSV1.2 1267 Application Data
323.671381 192.168.8.221 192.168.8.142 TP 5456744 ~ 443 [ACK] Seq=810 Ack=5272 Win=259200 Len=0
33 3.672606 192.168.8.142 192.168.8.221 TCcP 1514 443 — 56744 [ACK] Seq=10702 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
34 3.672711 192.168.8.142 192.168.8.221 TCcP 1514 443 ~ 56744 [ACK] Seq=12162 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]

» Frame 58: 162 bytes on wire (1296 bits 162 bytes captured (1296 bits

» Ethernet II, [Src: PhilipsL.), [DSt: Apple.)
» Internet Protocol Version 4, Src: 192.168.8.142, Dst: 192.168.8.221

» Transmission Control Protocol, Src Port: 443, Dst Port: 56744, Seq: 21811, Ack: 974, Len: 108

» [3 Reassembled TCP Segments (3028 bytes): #56(1460), #57(1460), #58(108)]

» Secure Sockets Layer

Figure 1.1: Screenshot from wireshark showing an example of the data used for this project. MAC address has
been blurred for privacy reasons. It shows the traffic exchanged between Philips Hue and Apple smartphone.
Highlighted protocol section shows that they use TLS over TCP for communication.

address of IoT device. The figure shows traffic exchanged between Philips Hue and Ap-
ple smartphone that was used to control it. Wireshark was able to find the name of the
manufacturer of the device based on first few bytes of MAC address. This can be ob-
served in the figure where it is highlighted. The protocol field in Figure 1.1 also shows
that TLS over TCP is used for communication between the Philips Hue and smartphone.
Details about how it is collected and filtered have been described in Section 3.2.

1.4. MOTIVATION FOR CHOOSING IOT DEVICES

Often laptops/PCs and smartphones are equipped with anti-virus software that moni-
tors the devices for any kind of infections and security issues. IoT devices come with
a challenge of limited resources to host such software. For this reason, we need a way
through which these devices can be monitored from an external source such as gateway
routers or network middleboxes.

IoT devices often are equipped with limited functionality. Our hypothesis is that these
IoT devices would communicate with less number of endpoints for operations such as
automatic updates, pings and for receiving commands from a smartphone. Therefore
the data is more structured and predictable to represent and explain in the form of a
state machine.

1.5. MOTIVATION FOR CHOOSING PHILIPS HUE

Given the range of IoT devices available, it was not possible to include all types of IoT
devices if we aim at explaining the behaviour of the device at the packet level. For this
reason, it was decided to focus on one device - Philips Hue.

4 1. INTRODUCTION

Acar et al.[2] in their work look at the encrypted network traffic generated by IoT de-
vices. They plot the number of bytes exchanged between the IoT device and smartphone
when the smartphone was used to control and perform a certain operation on the IoT
device. By only looking at the number of bytes exchanged per second, they were able
to identify when commands were issued by smartphone to IoT device. Figure 1.2 shows
the Rate(Bytes/Second) observed when commands are issued to Wemo insight switch to
turn it On/Off. By looking at the peaks, it can be seen when some command was issued
to the IOT device. In the case of Samsung SmartThings Outlet in Figure 1.3, we can see
three peaks showing when a command was issued to IoT device. In Figure 1.4, although
there is variation in the Rate at which bytes are exchanged, the peaks observed when a
command was issued to lock/unlock the device reflected in the form of higher peaks.

£ 40000 { ON->OFF [ON->OFF
a
S {1 OFF>ON
= 20000
@
2
O T T T T T T
0 500 1000 1500 2000 2500
time (s)

Figure 1.2: Bytes exchanged per second by the Wemo Insight Switch when commands were issued to turn it
On/Off as observed by Acar et al.[2]. We can identify when some operation was performed by just looking at
the peaks.

8
=)

200 OFF->ON [ON->OFF =) OFF->ON [

Rate (Bytes/sec)

0 | O T T o T O 1 T T P O W T T W 1 O

0 100 200 300 400
time (s)

Figure 1.3: Bytes exchanged per second by the Samsung SmartThings Outlet when commands were issued to
turn it On/Off as observed by Acar et al.[2]

1.5. MOTIVATION FOR CHOOSING PHILIPS HUE 5

1000 1 LOCKED->UNLOCKED

W WWN\

0 25 50

UNLOCKED->LOCKED

=)

Rate (Bytes/sec)
3
=1

\Aﬁa’\f_.i A M..ﬂ/\
75 100 125 150 175
time (s)

Figure 1.4: Bytes exchanged per second by August Smart Lock when commands were issued to turn it On/Off
as observed by Acar et al.[2]

Wireshark - 10 Graphs - 1550764718.pcap [

Wireshark 10 Graphs: 1550764718.pcap

42000 [
36000 [
30000

24000 [

Bytes/1 sec

18000 [

12000 |

6000 V\d
0 . .

Time (s)

Hover over the graph for details.

Enabled Graph Name Display Filter Color Style Y Axis

All packets ip.addr == 192.168.8.142 and ip.addr == 192.168.8.221

Figure 1.5: Bytes exchanged per second while controlling philips Hue from a smart phone. In this scenario,
the operation of changing theme of the light was performed once in every thirty seconds for 4 times. The time
window represented in this graph is for a total of two and half minutes. Unlike previous examples, here it was
not straightforward to identify when certain operation was performed.

However, when traffic between Philips Hue and Mobile was captured while issuing
commands, there were no clear peaks suggesting when a command was issued to the
IOT device. Figure 1.5 shows the graph taken from Wireshark showing the rate at which
Bytes exchanged. Here the data is filtered based on IP address of mobile phone and IOT
device. A total of 4 commands were issued with an interval of 30 seconds between them.
Although there is deviation with respect to bytes exchanged per second, it is not possible
to directly identify when commands were issued from smartphone to IoT device.

This graph provided the motivation to further look into network traffic generated by the

6 1. INTRODUCTION

Philips Hue because here a large number of bytes are exchanged constantly even though
fewer operations were performed.

1.6. RESEARCH QUESTIONS

This work aims at developing state machines showing the network behaviour of IoT de-
vices. The question is, how can we develop a representation of normal behaviour of the
device using a state machine and validate its efficiency. All this while only looking at
packet’s metadata. This gives rise to our main research question.

RQ1: How can we perform anomaly detection based on network traffic generated
by IoT devices using state machines?

To perform this, firstly we need to define the normal behaviour of an IOT device.

RQ1la: What are the different behaviours performed by an IoT device during its
normal operation?

RQ1b: Which high-level features can be used to define the behaviour of IoT de-
vices?

RQlc: How can these high-level features be used to build a state machine?

Once we learn the normal behaviour, we need to look at the anomalies and see if we
can detect the difference.

RQ2: How effective are state machines for detecting anomalies in network traffic
generated by IoT devices?

There can be various operations performed by an IoT device. In case of smart lights,
it can be actions such as turning it on/off, changing colours etc. Identifying this com-
munication between smartphone and IOT device would be the next research question.

RQ3: Which commands issued by smartphone to IoT device can be detected us-
ing network traffic metadata?

Upon exposure to different test settings, the behaviour of an IOT device might or
might not change. The next question is how well can these state machines adopt upon
usage of an 10T device in a different setup.

RQ4: To what extent does the state machine adapt upon exposure to different
test setting?

Previous research questions addressed a single IoT device. The next research ques-
tion is about extension of the methodology to another IoT device.

1.7. RESEARCH SCOPE 7

RQ5: How can the approach be extended to represent behaviour of another IoT
device?

1.7. RESEARCH SCOPE

This project considers the traffic generated by IoT devices in the TCP/IP protocol stack,
specifically using TCP. Communication performed using UDP is not considered. All the
traffic from the device is generated using Zigbee, Bluetooth and other such protocols are
considered out of the scope of this project. In the case of Philips Hue, Zigbee was used for
communication between Hue bridge and individual lights. This communication is out
of the scope of this project. The traffic exchanged between the Hue bridge and smart-
phone as well as external hosts using TCP protocol were considered in this project.

Assumptions held in this project: The hardware and software of central router has not
been compromised. All the traffic using TCP/IP protocol stack is routed only through a
central router.

1.8. CONTRIBUTIONS
With regard to IoT devices, this thesis offers the following contributions.

* Proposal of a methodology to build state machines representing normal behaviour
of an IoT device.

* Demonstrate that the methodology can be used to explain why a certain packet is
marked as anomalous.

* A technique to perform re-ordering of TCP packets when they are received out of
order and divide them into different conversations/sessions.

* We demonstrate the applicability of the state machines in a real-world setup where
traffic is collected in an unsupervised setting.

* A comparison of the performance of state machines with a baseline (N-Grams).

Extension of the approach to define normal behaviour of another IoT device.

1.9. SUMMARY OF RESULTS

We were able to build state machines representing the normal behaviour of an 10T de-
vice using network traffic generated by Philips Hue lighting system. Based on these state
machines, we were able to identify the commands exchanged between smartphone and
the device for actions such as Changing Colours, Turning On/Off and Changing Themes.
A simple Denial of Service attack was performed to generate attack traffic. This traffic
was then used to check the effectiveness of state machines in identifying attack traffic
from normal traffic. State machines were able to identify attack traffic with an Accuracy
0f99.94 %.

8 1. INTRODUCTION

Traffic was captured in a smart home setting where the device was used in an unsuper-
vised setting. This was when the device was in regular usage in someone’s home for a
duration of one week. State Machines were able to explain 97.82 % of the traffic gener-
ated in this scenario. The methodology was also used to model the behaviour of IKEA
smart lights using state machines.

1.10. REPORT OUTLINE

Background knowledge and definitions pertaining the concepts used in this thesis have
been explained in Chapter 2. It is combined with description of existing work in the field
of anomaly detection of IoT devices and the observations made. Chapter 3 contains
the details related to input data that is used in this thesis. It is followed by description
of methodology used to build state machines from input data in Chapter 4. State ma-
chines that were obtained as a result of application of methodology are discussed in 5.
Experimental setup and details regarding attack traffic and real world details are part
of Chapter 6. Methodology used to evaluate the performance and the resulting metrics
are discussed in Chapter 7. Chapter 8 consists of Limitations of this project and details
about how it could be improved in future work. The report concludes in Chapter 9.

BACKGROUND AND LITERATURE
SURVEY

This chapter includes background information required to better understand the con-
cepts used in this thesis. It is followed by a description of related work and observations
made across them. The chapter ends with some research gaps observed.

2.1. DEFINITIONS

This section includes definitions and meaning of some keywords used throughout this
work.

2.1.1. INTERNET OF THINGS

Internet of things is a network of devices connected to the Internet. Unlike conventional
laptops, personal computers connected to the internet, these devices have constrained
memory and processing capabilities. These are heterogeneous devices each with dif-
ferent functionalities and requirements. Examples of such devices are Smart TV, Smart
Refrigerator, Smart Lights, Smart Locks. In this thesis, Philips Hue Smart lights and IKEA
smart lights are considered.

2.1.2. INTRUSION DETECTION SYSTEM

Intrusion detection is the process of monitoring to find any possible threats. An intru-
sion detection system(IDS) is a software or a device which monitors the events to detect
intrusions [29].

They can be classified into two types based on their placement strategy: Host-based In-
trusion detection system and Network-based Intrusion detection system. In the case of
host-based IDS, an IDS is placed inside each host and it monitors all the activities of that
system. In Network-based IDS, it monitors a particular segment of network and checks
for any possible intrusions.

IDSs use three types of methodologies to find intrusions: Signature-based, Anomaly

10 2. BACKGROUND AND LITERATURE SURVEY

Based and Stateful protocol analysis. In the case of Signature-based, the observed char-
acteristics of a system are compared with characteristics of known malicious entities.
The advantage of such an approach is it involves very less false positives. A disadvantage
of such an approach is it cannot detect unknown attacks and it requires labelled data. In
Anomaly-based IDS, known behaviour of devices is learnt and any deviation from such
behaviour is marked as anomalous. Advantage of such an approach is that it can detect
unknown attacks and it doesn’t require labelled data. Disadvantage include a high num-
ber of false positives. Stateful protocol analysis usually involves deep packet inspection.
Here, the normal behaviour of an application protocol is compared with observed be-
haviour to find deviations [29]. It is similar to Anomaly-based approach, however, here
the normal behaviour is based on predefined standards set by vendors or industry ex-
perts in that area '

Intrusion detection systems can be placed inline or in a passive mode. In case of inline
deployment, all the traffic to the device flows through the IDS. In passive deployment,
IDS works on a copy of the actual traffic flowing to the device.

2.1.3. STATE MACHINES

A state machine, otherwise called as Finite Automata(FA) is useful when we try to model
patterns in the behaviour of any system. It consists of an initial state of a system, fol-
lowed by certain (optional) intermediate states and final states. The system moves from
one state to another when certain events occur. Each event is referred to as 'symbol’ and
is represented as a transition from one state to another.

A formal definition of a state machine from the book "Introduction to theory of compu-
tation" by Michael Sipser [39] is as follows:

A finite automaton is a 5-tuple (Q, X, d, o, F) where

e Qis afinite set called the states,

X is a finite state called the alphabet

* §:Q x X — Qisthe transition function
° qgo € Qs the start state and,

* F < Qis the set of accepted states.

Figure 2.1: A state machine with three states g1, g2, g3 and transitions between them.

https://sites.google.com/site/idpsinfo498/home/common-detection-methodologies/
stateful-protocol

https://sites.google.com/site/idpsinfo498/home/common-detection-methodologies/stateful-protocol
https://sites.google.com/site/idpsinfo498/home/common-detection-methodologies/stateful-protocol

2.2. RELATED WORK 11

Figure 2.1 gives an example of a state machine [39]. In the above example, q; is the
initial state, g, is the final state. Transitions are represented by arrow marks between the
states. Let us assume the state machine represents a system which moves from state to
state upon receiving inputs. In the above example, g, is the initial state of the system.
Upon receiving 1 as input, the system moves from ¢q; to g,. However, upon receiving an
input of 0, the system remains in the same state.

2.1.4. SPIN DEVICE

SPIN stands for Security and Privacy for In-home networks and is focused on the protec-
tion of IoT devices in the home network. The system [12] works on network level (analy-
ses network traffic), and hence can be used to monitor different types of IOT devices. Its
features include:

e It can be easily deployed in a home network by replacing home router with the
plug and play SPIN device.

* It preserves privacy since all the processing and operations are handled within the
home network.

 Provides complete configuration control to the user. For example, user can control
which devices to monitor, which traffic to block etc

* It provides a graph showing the devices in the network and the hosts it is commu-
nicating with. User can block certain traffic, or in case of known malicious hosts,
they are automatically blocked by SPIN device. Figure 2.2 shows a screenshot of
network monitoring graph taken from the documentation of SPIN” .

2.2. RELATED WORK

In this section, a brief description of various works performed in the field of Intrusion
Detection Systems for Internet of Things is presented.

2.2.1. HOMOGENEOUS DEVICES

An IoT system can have all devices which are similar in their structure and working
mechanism. In such a scenario, all devices in the system should adhere to same working
model. A best example of such a system would be wireless sensor networks, in which
all sensors perform same set of actions and have similar hardware and software compo-
nents. These devices are made accessible by internet thus exposing them to attackers.
Multiple approaches have been taken to detect anomalies in such a system. They have
been categorised based on the technique on which an element is considered as mali-
cious or anomaly.

GENERALISED APPROACH/ARCHITECTURE
Some authors provide a generalised approach or architecture which can be implemented
to monitor IoT devices.

2https://valibox.sidnlabs.nl/pages/userguide.html

https://valibox.sidnlabs.nl/pages/userguide.html

12 2. BACKGROUND AND LITERATURE SURVEY

dragino_TTH
2 debian pool nip org
‘
X T y .3

mg cpu kg dwn lan
4 otnprd8 samsungcloudsolution net.

3‘

secure nefflix.col

occ-0-768-768 .1 nflxso net

Figure 2.2: Screenshot of network monitoring graph of SPIN device. Grey nodes represent the devices in the
network. Green nodes represent hosts with which the device is communicating. Orange nodes represent DNS
queries performed by the device.

2.2. RELATED WORK 13

The paper by Thanigaivelan et al. [44] provides an overview of a generalised approach
for anomaly detection. It shares the load of detection between nodes and centralised
root node which is border router. Each node monitors its one hop neighbours and
sends a control message called DPO(Distress Propagation Object) to its parent in case
it finds its neighbour anomalous. The system is divided into three parts in each node.
Monitoring and Grading Subsystem (MGSS) gathers the details of communication, anal-
yses and grades the nodes. Reporting Subsystem(RSS) takes care of sends DPO mes-
sages to its parent node. Isolation Sub-system (ISS) handles dropping/allowing packets
from other nodes based on the content of a repository which is shared between all three
sub-systems. MGSS and RSS are part of Network Layer(L3) whereas ISS is part of Link
layer(L2). The final decision of whether a node is anomalous or not is performed by
edge router. Most resource intensive tasks are implemented as part of edge router.

The work of Butun et al. [5] highlights the security issues that arise when data collected
by large number of IOT devices is uploaded to cloud and processed as big data. A brief
survey on types of existing approaches that deal with anomaly detection for wireless sen-
sor networks is provided. A comparison of existing IDSs along with their detection tech-
nique and architecture is also included. Additionally, applicability of these approaches
for IoT as well as Cloud is discussed. While some approaches are lightweight and appli-
cable for IoT devices, they are not suitable for data heavy cloud systems. On the other
hand, some approaches which are efficient on cloud, can be resource heavy and not ap-
plicable for IoT devices. A generic requirements for an Anomaly detection methodology
is provided which would satisfy both the requirements of IoT as well as Cloud.

SIGNATURE BASED

Known malicious patterns are used as a reference to detect anomalies in case of Signa-
ture based approaches.

The proposed solution by Kasinathan et al.[14] integrates DoS protection and IDS sys-
tem a part of network manager of EBBITS project [46]. The DOS manager receives alerts
from IDS when there are signs of an intrusion. It later combines information(Packet
dropping rate, interference rate) from other components in the network manager to ver-
ify these alerts from IDS. The proposed IDS is a network based IDS and it consists of
multiple components called IDSP(IDS probe) . These IDSPs are included in the network
and they all are connected to a centralised IDS. This communication link is wired so that
the detection module is resistant against DOS attacks. In the implementation phase,
only preliminary work has been completed. They use an open-source signature based
IDS called Suricata [21] and the integration of IDS onto network manager of ebbits has
been ignored.

PROTOCOL BASED

In some papers, authors use specific characteristics of the protocols used by IOT devices
to detect malicious activities.

Wallgren et al.[48] provide an overview of few technologies used in IOT. They then demon-
strate well known attacks in WSNs on the IOT device networks running on 6LoOWPAN *
and RPL as routing protocol. Simulated attacks were performed to observe the behaviour

3 Compressed IPv6 to enable communication between resource constrained devices to the Internet

14 2. BACKGROUND AND LITERATURE SURVEY

of these devices and seen if RPL protocol can counter these attacks without involvement
of any IDS. It was observed that RPL could not handle many of these attacks. However,
the "self healing" mechanism of RPL was able to handle Hello Flood attack with the help
of the Constrained Application Protocol(CoAP)[38]. (A 'Hello’ message is used when a
new node joins the network. In 'Hello Flood’ Attack, an attacker introduces himself as
a neighbour to many nodes.) A lightweight heartbeat protocol is presented as a cen-
tralised IDS. In this protocol, an echo message is sent from Border router to all devices
in its network. The authors assume that IPSec is implemented and claim that IPSec is
mandatory in IPv6. Since IPSec is implemented, the infected node will not be able to
distinguish normal messages from these echo messages. So this can be used to detect
selective forwarding attack. In selective forwarding attack, malicious nodes selectively
forward packets to create issues with routing path. This attack combined with Hello
Flood can be used to create distortion in the traffic exchanged between nodes. A mali-
cious node can advertise itself as neighbour to multiple nodes, but upon receiving the
packets to be forwarded to other nodes, they are dropped.

THRESHOLD BASED

In threshold based approaches, certain aspects of the nodes and system are monitored
and if they are beyond a certain threshold, then it is marked as anomalous or an intru-
sion.

Raza et al.[33] aims and designing and implementing an Intrusion Detection System for
10T devices that communicate using IPv6. Primarily, their work is on detection of sink-
holing, spoofed or altered information and selective-forwarding attacks. The system is
divided broadly into two parts. The resource heavy modules are placed in the Border
Router and lightweight modules are placed in nodes. In addition to intrusion detec-
tion, it consists of a mini-firewall to prevent attacks externally from internet. To avoid
wrong rank propagation by malicious nodes, a node is considered faulty if the number
of disagreements it has with other nodes is above a threshold. To deal with selective for-
warding attacks, the router keeps track of last message received from a node and if it is
above a threshold, the node is marked as not online. Router will be assigned same num-
ber of ip addresses as the number of nodes in the network to ensure attacker is unaware
of differentiating messages from other nodes and the router.

Cho et al.[7] presents a centralised approach in 6LoOWPAN network to detect botnet at-
tacks. The detector would be placed inside 6LoWPAN gateway(router). It monitors all
the nodes of which data from the packet would be stored in the gateway. The monitor
consists of 4 modules: Control field check module calculates the sum of TCP control
field. Packet length Check calculates average packet length during a connection. Activ-
ity check module, counts the number of connections maintained by a sensor node. Bot
Analysis module collects details from all these 3 modules. If these values for a particular
node is lesser or greater than average value of other nodes by a certain threshold, then
it raises an alert. To reduce overhead in gateway, they recommend usage of sampling
methods.

Misra et al.[28] create a routing protocol called DLSR to defend server against DDoS at-
tacks in a Wireless Mesh Network. Detection and prevention of DDoS attacks require
heavy sampling of network data [25]. Each node is assumed to have a sampling bud-
get, which is the maximum number of packets that can be sampled per unit time. To

2.2. RELATED WORK 15

accomplish optimal sampling for each node, Learning Automata is used as an intelli-
gent system. DDoS detection of their work consists of three phases: In DDoS detection
phase, server analyses the incoming traffic and if it is beyond a certain threshold, a spe-
cial message called DALERT is sent to all the nodes. In the next phase, Attack identifi-
cation phase, all the nodes monitor their traffic and based on its findings, if any host is
found to be sending substantially high requests than others, it creates Attacker Informa-
tion Packet (AIP) with the identity of malicious node to other nodes. Upon reception of
AIP all other nodes move on to the next phase, which is DDoS defence phase. In this
phase, all nodes drop the packets of malicious nodes.

The proposed method by Pongle et al.[31] is on detection of wormhole attacks in IOT de-
vices. It is a hybrid approach, in which centralised components are placed in 6BR(Border
Router) and distributed modules are placed in individual nodes. It makes use of Received
signal strength and distances to detect attacks. The central node has the capability of
computing distance between nodes based on received signal strength. The assumption
held here is that in the first five minutes, no attack is committed and all nodes make note
of their (legitimate) neighbours. Whenever a node gets a new neighbour, it notifies the
border router about it through a special message. If the distance is more than transmis-
sion range, then a wormbhole attack is detected and it triggers the monitoring algorithm
to approximate the location of infected device.

Lee et al.[20] propose an IDS which monitors the power consumption of devices to detect
attacks. Behaviour of nodes during transmission/receiving is taken into consideration to
model energy consumption of a Nodes. The approach takes into account the energy con-
sumption of a node during waiting period for a channel, sending a message, receiving a
message and receiving the acknowledgment. Using these, it computes the total energy.
This energy prediction is further calculated for Route over routing scheme and Mesh
Under Routing scheme considering various probabilities and parameters. During test-
ing phase, the energy consumption is sampled every 0.5 seconds and if the energy con-
sumption of a node is higher than predicted energy consumption by a certain threshold,
then it is marked as malicious.

SEQUENCE BASED

In the work of Summerville et al. [43], contents of packets are considered as a long se-
quence of bytes. This sequences are then modelled into windows with specific stride
length. Then, each window will be treated as a sequence of n-grams. Features in the
feature vector can have same value of n (of n-grams) or different values. Each feature
will have the count of number of times the n-grams match the bit pattern for each win-
dow of bytes. This matching is performed with the help of a method that uses bit-wise
AND operation along with a increment function that works based on certain conditions.
Bit patterns to be matched are binary values but contain don't care positions. So, bits at
these positions will not have any effect on matching function. Since this uses counts of
occurrences, normal behaviour of the system can be implemented in the form of a look-
up table. Values in this table can be used to determine whether a packet or a specific
window in a packet is anomalous or not.

Their approach in the implementation and evaluation involved the following procedure.
First, the most common type of n-grams(in their case bi-grams) were plotted on a his-
togram. From this, most occurring bi-grams were chosen and they were generalised us-

16 2. BACKGROUND AND LITERATURE SURVEY

ing don'’t care positions to include more cases. It is then evaluated, and if the system fails
in detecting certain attacks, additional feature vectors with the same n(of n-grams) or
different n are added and evaluated.

NEURAL NETWORKS

Canedo et al.[6] use Neural networks placed in Gateways of IOT to detect anomalies.
Their data consisted of Device ID, Sensor value and Delay between transmissions. A
value of 1.00 is predicted when the reading are normal, and a different value is predicted
with it is anomalous.

SVM BASED

Zhang et al.[49] propose a simple light weight SVM based outlier detection for homoge-
nous network of sensor node. SVM used here is based on approach of Laskov et al.[19],
where resource heavy quadratic optimisation problem of SVM is converted into linear
optimisation problem. They achieve this by modification of geometric hyper sphere
into quarter sphere centered at origin. The assumption here is that nodes in WSN are
spatially and temporally correlated. Each node monitors the sensor measurements of its
immediate neighbours. The normal behaviour for each node is modelled based on pre-
vious its measurements as well as measurements of the nodes’ neighbours with a fixed
window size. This is repeated after a fixed time interval. If a new measurement is not
within the quarter-sphere of SVM, it is marked as anamolous.

OTHER MACHINE LEARNING ALGORITHMS

Proposed solution by Lun et al.[22] involves anomaly detection on network traffic to de-
tect DDoS attacks. Outliers are marked as anomalous with the help of Gaussian Mixture
Model. Gaussian mixture constitutes of multiple Gaussian distributions. Each data point
should ideally belong to one of these distributions(Components) with a high probability.
In case of anomalies, this probability is very low or close to zero.

Their model [50] uses the three layer architecture of internet mentioned in [1] which

is Application layer, Network Layer and Perception layer. The IDS is situated at the Net-
work layer. PCA is used for dimensionality reduction and Softmax regression as classifier.
KNN is also used as a classifier and compared with softmax regression with respect to ef-
ficiency. Experimentation was performed on KDD CUP 99 Data Set which is a labelled
dataset used in IDSs and consists of 41 features. PCA is used and top 3, 6 and 10 dimen-
sions are choosen and compared. It was found that the model was more efficent when
10 dimensions were used. It was also observed that KNN had better accuracy than soft-
max regression, but KNN took substantially higher time than softmax for classification
on same dataset.
Souza et al.[42] propose usage of K-means algorithm to find outliers. They make usage of
Mahout [30] open source machine learning library of Apache to deal with large amount
of data associated with big-data. As part of learning algorithm, multiple clusters are cre-
ated with their corresponding centroid. During testing phase, if the eucledian distance
of an instance from any of the centroids is greater than its radius, then it is marked as an
outlier. The algorithm is made part of IOT middleware called LinkSmart.

2.2. RELATED WORK 17

2.2.2. HETEROGENEOUS DEVICES

An 10T system can also have different types of devices each with different functionalities
and are made up of different components. A good example would be of a smart home
network where there can be multitude of devices. These devices are accessible by inter-
net so that the user can control them and monitor them. Several authors have worked
on mechanisms to detect anomalies of devices in such a system. Their work has been
categorised based on the detection technique and a brief summary is provided here.

GENERALISED APPROACH/ARCHITECTURE

In case of Kalis [26], IDS is implemented as part of smart router. It is a network based IDS
that doesn't target specific protocol or application and thus can cater to the demand of
handling heterogeneous IOT devices.It is a knowledge driven IDS, meaning, it uses the
features of network and rules out those attacks that are not possible in a particular type
of network. It is adaptable because it can handle mobility of devices. This knowledge
collection is done autonomously without user intervention and can also detect mobility
of devices within the network. Architecture of the system consists of following compo-
nents: Communication system speaks with the devices. It has sub components to deal
with different protocols. Data source logs the traffic which is obtained by communica-
tion system component on a sliding window basis. Knowledge base stores the features of
monitored devices. "Modules" component, consists of Sensing modules and detection
module. Sensing modules monitor dynamic changes in the network. Detection module
analyses traffic and detects attacks. In their approach, for each attack, there is a sep-
arate detection module. How these detection modules work and how they can detect
unknown attacks hasn’t been described. This issue has also been highlighted in [13].
Sivaraman et al.[41] suggest employing an external party called Security Management
Provider(SMP) to safeguard IOT devices. The role of SMP can be taken by ISP or home
router vendor or some other entity. This entity can offer "security as a service" to the
end user. This work is more like a demonstration of importance of SMP for IOT security
and privacy. For philips hue lighting system, since the communication between app and
the device is encrypted, it is easy to obtain unauthorised access. SMP can invoke access
control to ensure only legitimate clients use the system. To deal with roaming, a mobile
app is installed on user’s device to send heartbeat messages of its external ip address to
include it into its access control list. For smoke-alarm, it was observed that the commu-
nication was encrypted. But depending on the servers it talks to, it was noted that the
device was also logging to an external server, in addition to notifications in mobile. With
their system, it provided users with an option to block logging events into remote server.

SIGNATURE BASED

Authors of this paper by Habibi et al.[10] propose a white-listing based approach to mon-
itor and detect attacks in smart home IOT devices. They use VirusTotal* to check if an
url is malicious. Its API is used to check the validity of DNS response thereby avoiding
DNS poisoning attacks.

It has two modes of operation. In Real-time validation mode, any communication of a
device with a new destination not in the device’s whitelist, triggers a query to VirusTotal

4https://www.virustotal.com

18 2. BACKGROUND AND LITERATURE SURVEY

to obtain a report. If the report says it is not malicious, the request is allowed. In Max-
imum throughput mode, each new destination is verified against blacklist. If it is not
found, it is added to whitelist. The auditor module periodically monitors the whitelist
and checks with virustotal if any entry is malicious, and if yes, will add that to blacklist.
One interesting thing worth mentioning in this work is, their approach works even when
a device gets a firmware update and changes its behavior.

PROTOCOL BASED

In the paper by Sivanathan et al.[40] authors propose detection of malicious activity in
smart home IOT devices. They employ this by connecting gateway in the home net-
work to SDN controller in cloud. Detection is performed by a module called analysis
engine which communicates with SDN controller. Based on certain rules implemented
in SDN controller, analysis engine gets the mirrored traffic of home gateway. Using their
methodology, they were able to detect remote unauthorised access to IOT devices. This
occurs when a malware in a device is already present in the network, tries to scan de-
vices in local network through standard Simple Service Discovery Protocol (SSDP). It is
followed by enabling port forwarding with the help of Universal Plug-n-Play (UPnP). This
will allow an attacker to access the device from the internet. They employ their mecha-
nism at flow level and not at packet level but still achieve good results.

SPECIFICATION BASED

Serror et al.[37] propose specification based system which is centrally installed in a router
to secure smart IOT devices. Each device will have a specification of required communi-
cation details. This can be collected from various sources and it is referred to as commu-
nication rules. For efficient filtering, they propose the usage of SDN. They also propose
usage of flexible pattern matching using existing methodologies such as P4 and eBPF
[4] [23]. Anomaly detection is performed based on monitoring of these devices mainly
on packet characteristics and not deep packet inspection. It is also aided by usage of
machine learning algorithms.

NEURAL NETWORKS

Meidan et al.[24] use unsupervised learning approach to detect mirai and Bashlite bot-
net infections. They learn normal behaviour of devices by learning deep auto-encoder
for each device. These autoencoders capture behavioural snapshots. During testing
phase, if the model is not able to reconstruct a snapshot, then it is marked as anomalous.
Normal behaviour of 9 devices is first captured to learn the behaviour of these devices.
They were then infected with Botnets and observed if they can detect this activity. To
deal with false positives, they used majority voting among instances in a moving window.
Mirsky et al.[27] provide an online intrusion detection system using neural networks. It
uses an ensemble of Neural networks called auto encoders and learns the normal be-
haviour of the system using unsupervised learning. The proposed system is centralised
and can be installed in home routers. To avoid complexity associated with deep neu-
ral networks, each autoencoder in the system consists of three layers with a maximum
of seven visible neurons at each layer. The system is evaluated on surveillance camera
set.Various attacks were performed to attack the availability and integrity of the camera

2.2. RELATED WORK 19

system. Detection capability of this system is compared with offline algorithms and sig-
nature based IDS was used as baseline. Normalised RMSE errors from first k encoders is
fed to a final(called output layer) encoder which output an Anomaly score.

SVM BASED

The IDS proposed by Nobakht et al.[29] aims at securing smart IOT devices in home net-
work. It works at network level, thereby making it not specific to any individual device or
protocol. Attack they tried to detect was unauthorised access to a smart IOT device. IDS
would be placed at controller of SDN architecture and all the monitoring would be done
by an external entity having security expertise, making it a Security as service (SaaS) sys-
tem. Whenever a new device is added to the network, it is added to Device manager
component of IDS. Sensor element module captures the traffic between the monitored
device and rest of the network. Useful features are extracted in Feature Extractor module.
The detection unit module can have any machine learning algorithm to detect attacks.
They demonstrate attack on Philips Hue lighting system. Because of weak security mea-
sures, they were able to obtain unauthorised access to the system. First, they capture the
traffic in case of regular access to lighting system from a mobile app, next they capture
the traffic between device running attack script and lighting system. Parameters which
were different in both the cases were taken as features for Detection. SVM was used as a
ML algorithm for detection of attacks.

Paper by Bhunia et al.[3] uses SDN in combination with machine learning algorithm
SVM to detect attacks in IOT devices. They use a hierarchical model, where IOT devices
are connected to SDN enabled switches, which are then connected to cluster SDN con-
troller and then connected to master SDN controller. Cluster SDN controllers inform
master controller in case of significant changes in the behaviour. Anomaly detection is
performed at cluster SDN controller. The machine learning algorithm is provided with
flow level and packet level features of IOT devices. It is also provided with known be-
haviour of various attacks. When an anomalous behaviour is observed, they can either
restrict the flow rate of the device, or block the device or blacklist the source of attack.
The system was tested with three types of attacks. In first case, IOT device is used as a
target of TCP flooding, in second case, IOT device is used as source of ICMP flood attack,
in third case, two IOT devices were used as source to perform DDoS attack on a target.
They were able to detect attacks within few seconds, and were able to counter these at-
tacks. It was observed that non-linear version of SVM provided better results than linear
SVM.

COMBINATION OF MULTIPLE ALGORITHMS

Doshi et al.[8] use multiple machine learning algorithms for detection of DDoS attacks
originating from smart devices in a home network. Detection system is part of Middle-
box such as a router/switch. For normal traffic, interaction is done with smart devices
for ten minutes and pcap files are recorded. Attacks were simulated from a virtual ma-
chine running kali linux as source of attack, destination is a Raspberry pi running web
server. Both stateful and stateless features were extracted. Attack data and benign data
were combined and they used machine learning algorithms to detect malicious packets.
Algorithms used were KNN, Linear kernel SVM, Decision tree, Random forest and Neural

20 2. BACKGROUND AND LITERATURE SURVEY

networks. Among these, linear SVM performed poorly and Neural networks performed
the best in terms of detection.

2.2.3. OTHER RELATED WORK

In this section a brief description of some Intrusion detection systems which are not de-
signed specifically for IOT devices, but can still be relevant for this thesis is provided.
This paper by Sekar et al.[36] combines Specification based techniques along with Anomaly
detection schemes. This enables them to combine the strengths of both the approaches
and provides a scheme which can detect Novel attacks, as well as reducing false posi-
tives. Evaluation was performed based on its performance on its detection of probing
and DOS attacks. The specifications are obtained based on description of protocols and
are modelled into Extended Finite State Automata (EFSA). To deal with improper classifi-
cation of packets, an abstract specifications of protocol are used. In such a case, the state
machine accepts a super-set of these abstract specifications. One prime benefit claimed
by authors is it simplifies feature selection. It limits the number of possible combina-
tions of parameters by translating parameters of a sequence of packets into properties
associated with each transition in state machine. For this, statistical properties of packet
sequences are mapped to statistical properties of transitions of state machine. Each in-
dividual transition in a trace will have two types of properties. First, is about whether a
transition is taken, and second, values of state variables in that transition. Based on this,
they can find out about frequency of a transition and common values for state variables.
For detection, the same statistics used for learning are computed and are compared with
values of training data. An alarm is raised if the difference is above a threshold.

Torres et al. [45] try to learn the behaviour of botnets using LSTM networks, which is a
special type of recurrent neural networks. They use the learnt profile to detect the traffic
of unknown botnets. Behaviour of a connection is learnt as a sequence of states. By ag-
gregating flows based on source-destination ip address, port and protocol, the behaviour
of flow is encoded into a sequence of characters. Optimum length of this sequence of
states and sampling is computed based on training data. Evaluation was performed by
training with labelled data of a botnet. Labelled data of a different botnet with different
distribution was used as test data.

2.2.4. OBSERVATIONS

While each work employs unique approach, there has been some similarities across
most of the papers. In this section, some observations made in the process of literature
survey are mentioned.

° Various machine learning algorithms have been implemented and analysis is per-
formed predominantly at packet level.

* Majority of the authors perform unsupervised learning approach followed by sim-
ulated attack detection.

 There is an assumption in all the works that the software and hardware of router is
not compromised.

2.2. RELATED WORK 21

* Another assumption, specifically with the systems having centralised detection
mechanism is that all the traffic from the devices is routed through central net-
work router.

* The usage of Software Defined Networking, so as to have a trusted third party mon-
itoring devices has been suggested in multiple works.

Homogeneous Systems:

* A single model is learnt for a single device in the system and verified whether this
model is followed across all the devices.

* Work on detection mechanism has been performed from as far as 2005[22].

* In Homogeneous systems, detection system can be placed in multiple configura-
tions, each with its own advantages and disadvantages.

— Centralised: In this configuration, detection module is usually placed in Bor-
der Router or at an external third party using Software Defined Networking
(SDN).

— Distributed: Here, each node monitors other nodes in the network for anoma-
lies.

— Hybrid: This is a combination of Centralised and Distributed configurations.
Certain modules are placed in the router and some modules are implemented
in the individual nodes.

 Attacks that most authors have focused on: Routing attacks, DoS attack on the
individual nodes in the system.

Heterogeneous Systems:

» For Heterogeneous systems, a separate model is learnt for each device and veri-
fied.

* There has been a trend observed and it is worth noting that most of the research
performed has been quite recent with majority of the papers being published in
2017-2018.

e Detection mechanisms are implemented mostly in a central system. Typically bor-
der router or at a seperate third party using SDN.

» Attacks that most authors have focused on: Botnet infections, Denial Of Service
attacks originating from the devices in the system to external world, Unauthorised
Access.

22 2. BACKGROUND AND LITERATURE SURVEY

2.2.5. RESEARCH GAPS
1 Interpretability: Limited work has been done on explaining why something is marked
as anomalous.

2 Most of the detection mechanisms are performed at packet level leading to large
number of false positives.

3 Many propose usage of SDN and suggest a third party providing Security as a Ser-
vice. But this arises privacy concerns.

4 Limited work has been done to devise a generic Intrusion Detection scheme as
they have aimed at detecting specific types of attacks.

In this thesis, research gap 1 which concerns interpretability and research gap 3 which
concerns privacy have been focused on.

2.2. RELATED WORK 23
Table 2.1: Features considered and attacks performed in some of the papers part of literature survey.
Paper Features used Attacks Detected
Nobakht et | Packet size, Inter-packet time interval Unauthorised Access
al.[29]

Doshi et al.[8]

Packet size, Inter-packet time interval, Proto-
col

Denial of Service

Bhunia et al.[3]

no. of sent requests, no. of failed authentica-
tion attempts, source of requests, bandwidth
consumption, device usage at different time
periods

Denial of Service

Meidan et al.[24]

Packet Size, Packet Count, inter-packet time
interval

mirai and Bashlite botnet
infections

Mirsky et al.[27]

Packet size, Packet count, Inter-packet time
interval

Denial Of Service, Man in
the middle, Reconnais-
sance, Botnet Malware

Habibi et al.[10]

Whitelist and blacklist of domains

Raspberry Pi spoofs MAC
address of IOT device and
pings multiple domains
outside the whitelist.

packet in a sequentual form

Koroniotis et | Number of Bytes, Number of Packets, Num- | Botnet from simulated 10T

al.[15] ber of Connections. All aggregated at various | device using Kali Linux
levels

Acar et al.[2] timestamp,direction, packet length for each | Privacy Leakage

Serror et al. [37]

Communication rules: Ip address, port num-
bers, direction

Bhunia et al.[3]

no. of sent requests, no. of failed authentica-
tion attempts, source of requests, bandwidth
consumption, device usage at different time
periods

Denial Of Service

Sivaraman et
al.[41]

Generalised Architecture

Unauthorised Access using
access control rules

DATA EXPLORATION

This chapter begins with discussion about the experimental setup used to capture the data.
It is followed by additional details of data collection, initial observations and feature se-
lection.

3.1. EXPERIMENTAL SETUP

As described in the previous sections, this thesis makes use of SPIN device(Valibox) by
SIDN labs to capture network traffic which serves as our data. The experimental setup
consists of SPIN device, Philips Hue Bridge with light, a smart phone running on 10S
operating system and laptop running linux operating system. The home router was re-
placed by SPIN device??, Hue bridge was connected to it by means of a LAN cable. Lap-
top and smart phone were connected to SPIN device by means of a WiFi connection.
This has been depicted in the Figure 3.1.

3.2. DATA COLLECTION

Post the setup mentioned in the previous section, the network traffic was captured in
the form of pcap file and analysed. Since the SPIN device runs on openWRT !, which is
a Linux based operating system, it could be accessed from the laptop by means of ssh”.
tcpdump® and netcat” were used to capture and transfer pcap from the SPIN device to
laptop.

Multiple pcaps were captured for each type of operation that can be performed on the
Philips Hue lighting system. Some examples include capturing packets for a duration
of two and half minutes and one of the following operation was performed for every 30
seconds.

lhttps://openwrt.org/
2https://www.ssh.com/ssh/command/
Shttps://www.tcpdump. org/
4http://netcat.sourceforge.net/

25

https://openwrt.org/
https://www.ssh.com/ssh/command/
https://www.tcpdump.org/
http://netcat.sourceforge.net/

26 3. DATA EXPLORATION

Internet

(2

—

WIFI Laptop
LAN Cable
Hue Bridge
Valibox as Router
Zigbee
Mobile
)
Light

Figure 3.1: Experimental setup used to capture the traffic.

e Turning the Philips Hue light on/off. Figure 3.2 shows a screenshot taken from
a mobile while performing this operation. Note that the app offers the option to
perform this operation over three different places, only one of them is used. This
is because the setup used to collect traffic in this project involves only one light.

* Changing colours of light as can be seen in Figure 3.3. The app allows us to choose
colour of the light over a range of options.

* Changing themes that are offered by Philips hue. Figure 3.4 shows the interface
provided by the app to change various themes available.

Multiple pcaps were captured while these operations were performed for a duration of 2
minutes to 10 minutes, where the time interval between them was 30 seconds. In some
cases, the app was kept open in the smart phone without providing any instructions, just
to capture the background traffic between app and the device.

It was also noticed that Philips Hue bridge was communicating with multiple other hosts
with various protocols. For this, some pcaps were captured for duration of 2-3 hours to
obtain the background information. It was also observed that there were few hosts to
which the bridge was sending and receiving large number of packets in the first 3-5 min-
utes after connecting the bridge to power supply and internet. Multiple pcaps were also
captured to accommodate this case.

It is important to note that in case of Philips Hue lighting system, the Hue bridge
communicates with light using Zigbee protocol. In this thesis, this communication is

3.3. DATA FILTERING 27

12:05 PM

YOUR ROOMS

dining table

All lights are off

books

All lights are off

Figure 3.2: Screenshot of the app
taken while performing On/Off op-
eration on Hue Lights. Only one
of the three is highlighted because
the experimental setup used here
involves only one light.

Figure 3.3: Screenshot of the app
taken while choosing the colour
of light from a colour palette.
The cursor in the center of colour

palette represents the current

colour of lights.

Figure 3.4: Screenshot of the app
taken while choosing the theme of
lights. In this picture, user can
choose one of the five available op-
tions. Here none of the themes is
selected and it is in default settings.

ignored. Only communication between the mobile containing app to control the system
and the Hue bridge is considered. Throughout this report, any reference to the words
Hue or Hue bridge would refer to the Hue bridge which communicates with the mobile

app.

3.3. DATA FILTERING

The pcaps captured were also having other background traffic generated by the mobile
phone and PC, to exclude them, all the traffic was filtered based on MAC address of Hue
Bridge, and only those traffic sent/received from it is used for analysis.

Figure 3.5 shows the example of a pcap file containing data captured for this project. The
screenshot is of Wireshark - a tool used to capture and analyse network traffic’, the traf-
fic is filtered based on MAC address using Wireshark’s filter.

Additionally, empty TCP Acknowledgements have also been filtered out. This is because
the order in which these packets arrive is not always same. Communication between
hosts is considered as a sequence of packets in this project. This sequence will get af-
fected upon usage of empty acknowledgement packets. Hence they have been ignored.

Shttps://www.wireshark.org/

https://www.wireshark.org/

28 3. DATA EXPLORATION

1550403369.pcap e ¢
Fle Edit View Go Copture Anaiyze Statistics Telephony Wireless Tools Help
AWM A® BTRE QA «» s |Eaaai
et adr - - B3] Expression.
No. Time Source Destination Protocol_ Length Info

736 46.889037 192.168.8,142 52,43.36.240 Top 66 56164 ~ 80 [SYN] Seq=8 Win=20260 Len=0 WS5=1460 SACK_PERW=1 15=8

739 46.911363 52.49.36.240 192.168.8.142 TCP 66 80 ~ 56164 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=1460 SACK_PERM=1 WS=256

740 46.911638 192.168.8.142 52.49.36.240 TCP 60 56164 — 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0

741 46.911933 192.168.8.142 52.49.36.240 HTTP 1248 POST /NotificationService/RequestHandler.ashx HTTP/1.1 (application/cb-encrypted)

742 46.934093 52.49.36.240 192.168.8.142 TCcP 54 80 ~ 56164 [ACK] Seq=1 Ack=1195 Win=29446 Len=0

744 47.067794 52.49.36.240 192.168.8.142 HTTP 813 HTTP/1.1 200 OK (application/cb-encrypted)

745 47.067915 52.49.36.240 192.168.8.142 TCP 54 80 — 56164 [FIN, ACK] Seq=760 Ack=1195 Win=2944e Len=e

746 47.068095 192.168.8.142 52.49.36.240 Tcp 60 56164 ~ 80 [ACK] Seq=1195 Ack=760 Win=36720 Len=0

747 47.068688 192.168.8.142 52.49.36.240 TCP 60 56164 ~ 80 [FIN, ACK] Seq=1195 Ack=761 Win=30720 Len ﬂ

748 47.074540 192.168.8.142 192.168.8.1 DNS 88 Standard query ©x0007 AAAA www.ecdinterface.philips

749 47.077695 192.168.8.1 192.168.8.142 DNS 251 Standard query response 6x0007 AAAA wiw. scd)nlsrhce pnlhps com CNAME dp.dc1.philips.com CNAME dci-elb-52- 101490

750 47.078283 192.168.8.142 192.168.8.1 DNS 88 Standard query ©x0008 A www.ecdinterface.philips.com

751 47.086375 192.168.8.1 192.168.8.142 DNS 338 Standard query response ©x0008 A www.ecdinterface.philips.com CNAME dp.dcl.philips.com CNAME dcl-elb-52-: 10]4%717‘

752 47.086949 192.168.8.142 52.49.36.240 TCP 66 56165 — 80 [SYN] Seq=8 Win=29200 Len=@ MSS=1460 SACK_PERM=1 WS=8

753 47.090803 52.49.36.240 107.168.8.142 Tcp 5480 - 56164 [ACK] Seq=761 Ack=1196 Win=29440 Len=0

754 47.108741 52.49.36.240 192.168.8.142 TCP 66 80 ~ 56165 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=1460 SACK_PERM=1 WS=256

755 47.108975 192.168.8.142 52.49.36.240 TCP 60 56165 ~ 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0

756 47.100288 192.168.8.142 52.49.36.240 HTTP 1466 POST /DevicePortalICPRequestHandler/RequestHandler.ashx HTTP/1.1 (application/ch-encrypted)

75747.116778 192.168.8.142 216.239.35.12 TP 90 NTP Version 4, client

758 47.117129 192.168.8.142 216.239.35.4 NTP. 90 NTP Version 4, client

759 47.123163 216.239.35.12 192.168.8.142 NTP. 90 NTP Version 4, server

76047.131230 52.49.36.240 192.168.8.142 Tcp 5480 - 56165 [ACK] Seq=1 Ack=1413 Win=29952 Len=8

761 47.135670 52.49.36.240 192.168.8.142 TCP 1514 80 ~ 56165 [ACK] Seq=1 Ack=1413 Win=29952 Len=1460 [TCP segment of a reassembled PDU]

762 47.135796 52.49.36.240 192.168.8.142 HTTP 602 HTTP/1.1 200 OK (application/cb-encrypted)

763 47.135884 52.49.36.240 192.168.8.142 TcP 54 80 — 56165 [FIN, ACK] Seq=2609 Ack=1413 Win=29952 Len=6

764 47.136003 192.168.8.142 52.49.36.240 Tcp 6056165 ~ 80 [ACK] Seq=1413 Ack=1461 Win=32120 Len=0

765 47.136123 192.168.8.142 52.49.36.240 TCP 60 56165 ~ 80 [ACK] Seq=1413 Ack=2009 Win=35040 Len=0

766 47.136879 192.168.8.142 52.49.36.240 TCP 60 56165 ~ 80 [FIN, AEK] Seq=1413 Ack=2016 Win=35040 Len=0

76747.151552 216.239.35.4 102.168.8.142 e 90 NTP Version 4, serv

765 47 155855 52.49.36.240 152 155 EJAZ TCP. 54 ED 56155 [ACK] Seﬂ ZB]G ACK 1414 W)n 29952 Len 8

E]
g
3
@
\

i

I

» Transmission Control Protocol, Src Port: 89, DSt Port: 56163, Seq: 4519, Ack: 2823, Len: 937
» [2 Reassembled TCP Segments (2397 bytes): #728(1460), #729(937)]

» Hypertext Transfer Protocol

» Media Type

Figure 3.5: Screenshot from wireshark showing the data used for this project. MAC address has been blurred
for privacy reasons.

3.4. OBSERVATIONS FROM THE DATA

Based on some preliminary analysis of the traffic generated by the Hue Bridge, following
were some of the observations made.

* It communicates with the mobile app through TCP protocol. Every-time the app is
opened, a TLS session over TCP is created and the TCP session ends when the user
leaves the app. This was triggered by sending a packet with SYN-Flag from app to
bridge, and when the user leaves the app, a packet with FIN flag is sent to close the
session.

* Italso performed multiple POST and GET calls with various hosts but it was not al-
ways periodic. Figure 3.6 shows statistics and details related to these HTTP calls. It
can be seen from the figure that Philips Hue performs these HTTP calls to domains
such as fds.dcl.philips.com, www.ecdinterface.philips.com, dcp.dcl.philips.com,
diagnostics.meethue.com.

* The bridge used NTP, SSDP, DNS and IGMP protocol on top of UDP with various
hosts which was periodic in most of the cases. Figure 3.7 lists the protocols used
by Philips Hue as seen on Wireshark.

3.5. FEATURES

Multiple features were considered initially but it was later concluded that the better so-
lution would be to use minimum number of features. This was mainly because the algo-
rithm used in this thesis is State machines, more number of features would lead to more
combinations of transitions which would lead to more states and bigger state machines.
To make state machines easy to understand, it was important to choose fewer features

3.5. FEATURES 29

Topic [ltem ~ Count
~ HTTP Responses by Server Address 24
~ 52.51.133.171 7
OK 6
KO 1
~ 52.213.192.178 4
OK 3
KO 1
~ 130.211.67.12 13
OK 13
~ HTTP Requests by Server 25
~ HTTP Requests by Server Address 25
~ 54.230.129.20
fds.dcl.philips.com:80
~ 52.51.133.171
www.ecdinterface.philips.com:80
~ 52.213.192.178
dcp.dcl.philips.com:80
~ 130.211.67.12
diagnostics.meethue.com:80
diagnostics.meethue.com
~ HTTP Requests by HTTP Host
~ www.ecdinterface.philips.com:80
52.51.133.171
~ fds.dcl.philips.com:80
54.230.129.20
~ diagnostics.meethue.com:80
130.211.67.12
~ diagnostics.meethue.com
130.211.67.12
~ dep.del.philips.com:80
52.213.192.178

= -
\l\lmw w##\l\l

v
SR N)

NN

Display filter: eth.addr == [N and tcp|7

Figure 3.6: Screenshot from wireshark showing various stats related to HTTP calls performed by IOT device
from one of the pcaps captured.

Wireshark - Protocol
Protocol ~ Percent Packets Packets Percent Bytes
~ Frame 100.0 7135 100.0
~ Ethernet 100.0 7135 1.4
~ Internet Protocol Version 4 100.0 7135 2.0
~ (User Datagram Protocol 16.3 1166 0.1
Simple Service Discovery Protocol 8.0 570 2.5
Network Time Protocol 5.9 422 0.3
Multicast Domain Name System 0.2 12 0.1
__Domain Name System 2.2 160 0.2
Bootstrap Protocol 0.0 2 0.0
~ (Transmission Control Protocol 82.2 5862 93.4
Secure Sockets Layer 3.4 245 2.4
~ Hypertext Transfer Protocol 0.6 46 0.7
Media Type 0.3 19 0.3
_ Line-based text data 0.3 23 0.2
Internet Group Management Protocol 11 82 0.0
[Internet Control Message Protocol] 0.4 25 0.0

Figure 3.7: Various protocols used by Philips Hue as seen on Wireshark.

30 3. DATA EXPLORATION

which capture the behaviour of the device as much as possible.

One of the important aspect of this thesis was to explain every packet that is sent/received
from the IOT device, preferably in an online manner. In order to accomplish this, every
packet had to be considered as a transition in state machine. For this, only packet-level
features were considered and not flow level features. In case of flow level features, mul-
tiple packets will be aggregated based on some criteria and features will be extracted
to represent these flows. Packet-level features are considered in this thesis because it
provides us with fine-grained information. As we are using state machines which is a se-
quential model, aggregating the packets into flows will make us miss the temporal aspect
of the data.

3.5.1. SELECTED FEATURES

Features on which the emphasis was laid were Protocol, Packet Size and inter-packet
time interval. These three were predominantly used by multiple authors in the papers
which are discussed in Literature Survey as seen in Table 2.1.

TCP FLAGS

As observed in the previous section, the Hue bridge communicates with various hosts
using TCP protocol and in many cases, these sessions start and end in a reasonable time
window. A TCP session was created between smartphone and Philips Hue everytime the
app was opened. This session was closed when user leaves the app. So one of the features
that was used was TCP flags in those cases where the bridge communicates using TCP
protocol.

PACKET SIZE

Based on the literature in previous chapter, it was observed that packet size and inter-
packet time interval was used prominently in case of stateless features. It was also ob-
served that, with many hosts, the Hue bridge communicates with a fixed packet size. In
this thesis, packet size was used as second feature .

As discussed in previous section, Philips Hue communicated with multiple hosts using
HTTP Figures 3.9, 3.11, 3.13, 3.15 represent the variation in packet size when Hue is com-
municating with these hosts. It could be seen that there is a regular variation in packet
size. This highlights the importance of packet size as a feature.

HTTP REQUESTS AND RESPONSES

As seen from Figure 3.6, Philips Hue communicates with some hosts using HTTP. Fig-
ure 3.5 shows example of three such HTTP post calls followed by their responses. So it
was decided to include details related to it as part of the features. In case of HTTP re-
quests from IOT device, the domain of GET/POST call was used as the feature. For HTTP
responses, the response code was used as feature.

TLS HEADER MESSAGES
As seen in the Figure 3.8, Philips Hue uses TLS on top of TCP to communicate with mo-
bile app of smartphone. The message field of TLS is used as one of the feature. This

3.5. FEATURES 31

could be messages such as 'Client Hello’, 'Server Hello’, 'Change Cipher Spec’, ’Encrypted
Handshake), etc. More details about TLS messages can be found here °

1550740039.pcap.
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AmI® B RE Q «» Jws|=Eaaalf
[[eth.addr = = [End tcp
No. Time Source Destination Protocol Length Info
= 63.565534 192.168.8.221 192.168.8.142 TcP IDEIER =) 63k Ll 0] S0 TIPS i) (S) o) LT SRR) =)
8 3.565804 192.168.8.142 192.168.8.221 TCcP 66 443 ~ 56744 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1
9 3.568844 192.168.8.221 192.168.8.142 TCP 54 56744 — 443 [ACK] Seq=1 Ack=1 Win=262144 Len=0
10 3.570745 192.168.8.221 192.168.8.142 TLSV1.2 491 Client Hello
11 3.570992 192.168.8.142 192.168.8.221 TCP 60 443 —~ 56744 [ACK] Seq=1 Ack=438 Win=30272 Len=0
12 3.572928 192.168.8.142 192.168.8.221 TLSV1.2 191 Server Hello, Change Cipher Spec, Encrypted Handshake Message
15 3.583502 192.168.8.221 192.168.8.142 TCP 54 56744 - 443 [ACK] Seq=438 Ack=138 Win=261952 Len=0
16 3.583602 192.168.8.221 192.168.8.142 TLSV1.2 60 Change Cipher Spec
17 3.583649 192.168.8.221 192.168.8.142 TLSV1.2 99 Encrypted Handshake Message
18 3.583702 192.168.8.221 192.168.8.142 TLSV1.2 218 Application Data
19 3.584021 192.168.8.142 192.168.8.221 TCcP 60 443 —~ 56744 [ACK] Seq=138 Ack=653 Win=30272 Len=0
20 3.595582 192.168.8.142 192.168.8.221 TCP 1514 443 ~ 56744 [ACK] Seq=138 Ack=653 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
21 3.595846 192.168.8.142 192.168.8.221 TLSV1.2 774 Application Data
22 3.596144 192.168.8.142 192.168.8.221 TLSV1.2 88 Application Data
23 3.597128 192.168.8.221 192.168.8.142 TCcP 54 56744 — 443 [ACK] Seq=653 Ack=2318 Win=259904 Len=0
24 3.597700 192.168.8.221 192.168.8.142 TCP 54 56744 — 443 [ACK] Seq=653 Ack=2352 Win=259904 Len=0
25 3.633557 192.168.8.221 192.168.8.142 TLSV1.2 211 Application Data
26 3.669280 192.168.8.142 192.168.8.221 TCP 1514 443 ~ 56744 [ACK] Seq=2352 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
27 3.669784 192.168.8.142 192.168.8.221 TCP 1514 443 ~ 56744 [ACK] Seq=3812 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
28 3.669920 192.168.8.142 192.168.8.221 TLSV1.2 1351 Application Data
29 3.670983 192.168.8.142 192.168.8.221 TCP 1514 443 ~ 56744 [ACK] Seq=6569 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
30 3.671139 192.168.8.142 192.168.8.221 TCcp 1514 443 — 56744 [ACK] Seq=8029 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
31 3.671232 192.168.8.142 192.168.8.221 TLSV1.2 1267 Application Data
32 3.671381 192.168.8.221 192.168.8.142 TCcP 54 56744 - 443 [ACK] Seq=810 Ack=5272 Win=259200 Len=0
33 3.672606 192.168.8.142 192.168.8.221 TCP 1514 443 ~ 56744 [ACK] Seq=10702 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
34 3.672711 192.158.8.142 192.168.5,221 Tcp 1514 443 — 56744 [ACK] Seq=12162 Ack=810 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
» Frame 58: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits)
» Ethernet II, [Src: PhilipsL), [Dst: ppleJ D

» Internet Protocol Version rc: St: 192.168-

» Transmission Control Protocol, Src Port: 443, DSt Port: 56744, Seq 21811, Ack: 974, Len: 168
» [3 Reassembled TCP Segments (3628 bytes): #56(1460), #57(1460), #58(108)]

» Secure Sockets Layer

Figure 3.8: TLS is used for communication between Philips Hue and Apple smart phone.

3.5.2. OTHER FEATURES CONSIDERED

Several other features were initially considered but later not used because of various rea-
sons. In this section we discuss about these features and the reason for not including
them.

INTER-PACKET TIME INTERVAL

Similar to packet size, Inter-packet time interval was also used by multiple authors in lit-
erature. Upon visual inspection of traffic, it was seen that the communication between
Hue and smart phone was not periodic. It was also seen that various hosts with which
Hue communicated was not periodic either. Figures 3.10, 3.12, 3.14, 3.16 shows inter-
packet time interval when Hue is communicating with these hosts. It can be seen that
the Jitter is low during first few packets and is higher in the later packets. This shows
that more communication occurs in the first few seconds and the frequency decreases
over time. These graph also symbolise that the inter-packet time interval is not periodic.
Furthermore, interpacket time interval is also affected by network delays and might vary
from location to location. For these reasons, interpacket time interval has not been con-
sidered as part of feature set in this project.

Shttps://www.ibm. com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_
.htm

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm

32

3. DATA EXPLORATION

Hue|52.213.192.178->192.168.8.142
Series

1400

1200

Interval (ms)
5 L

000

Packet size (bytes)

Packet no.

Figure 3.9: Variation in Packet size during a HTTP call
and response between Hue and dcp.dcl.philips.com

Hue|52.213.192.178->192.168.8.142
Series

Packet no.

Figure 3.10: Interpacket time interval during
a HTTP call and response between Hue and

dcp.dcl.philips.com
Hue|192.168.8.142->52.85.182.17 Hue|192.168.8.142->52.85.182.17
Series Series
225 "
200 »
ws o
H 3
S0 g,
s H
£ £ 6
100
.
-
2
M
o
0 20 0 80 100 0 20 40 60 80 100

Packet no.

Figure 3.11: Variation in Packet size during
a HTTP call and response between Hue and
fds.dcl.philips.com

Hue|192.168.8.142->52.51.133.171
Series

1400

1200

1000

800

Packet size (bytes)

Interval (ms)

400

200

15 20 25 30
Packet no.

Figure 3.13: Variation in Packet size during
a HTTP call and response between Hue and
www.ecdinterface.philips.com

Hue|192.168.8.142->130.211.67.12
Series

1400

1200

1000

Packet size (bytes)

10 20 0) 50
Packet no

Figure 3.15: Variation in Packet size during a
HTTP call and response between Hue and diagnos-
tics.meethue.com

Packet no.

Figure 3.12: Interpacket time interval during
a HTTP call and response between Hue and
fds.dcl.philips.com

Hue|192.168.8.142->52.51.133.171
Series

10 15 20 25 30
Packet no.

Figure 3.14: Interpacket time interval during
a HTTP call and response between Hue and
www.ecdinterface.philips.com

Hue|192.168.8.142->130.211.67.12
Series

800

Interval (ms)
3 8 8

0
Packet no.

Figure 3.16: Interpacket time interval during a
HTTP call and response between Hue and diagnos-
tics.meethue.com

3.5. FEATURES 33

PORT NUMBERS

It was observed that Hue Bridge always communicated with the mobile app using TCP
port 443. It was also observed this was the same case with other hosts. Hence port num-
bers was not used.

IP ADDRESS

Upon inspecting the data, it was realised that IP address will not be a useful feature. For
instance, in Figure 3.6 it can be seen that Philips Hue communicated with multiple hosts
using HTTP calls and responses. It was observed that the Hue was performing the same
HTTP call with different ip address over time. If IP address is used as feature, these con-
versations would be considered as different from each other, but the underlying com-
munication is same in both the cases.

Figures 3.17 and 3.18 shows example of a HTTP Post call made in two different pcap files
by Philips Hue. It can be seen that even though the type of call performed in same in
both the cases, IP address is different.

[eth.addr = ~I—and tcp

0. Time Source Destination Protocol Length Info

325 48.797726 192.168.8.142 52.213.192.178 TCP 66 54156 — 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=8

326 48.819956 52.213.192.178 192.168.8.142 TcP 58 80 ~ 54156 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=1460

327 48.820240 192.168.8.142 52.213.192.178 TcP 60 54156 — 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0

328 48.820463 192.168.8.142 52.213.192.178 TCP 572 54156 — 80 [PSH, ACK] Seq=1 Ack=1 Win=29200 Len=518 [TCP segment of a r.

329 48.842859 52.213.192.178 192.168.8.142 TCP 54 80 ~ 54156 [ACK] Seq=1 Ack=519 Win=30016 Len=0

192.168.8.142 52,213.192.178 Re |
331 48.865485 52.213.192.178 192.168.8.142 TCP 54 80 ~ 54156 [ACK] Seq=1 Ack=1783 Win=31600 Len=0
B 332 48.871723 52.213.192.178 192.168.8.142 HTTP 845 HTTP/1.1 200 OK (application/ch-encrypted)
333 48.871852 52.213.192.178 192.168.8.142 TCP 54 80 ~ 54156 [FIN, ACK] Seq=792 Ack=1783 Win=31600 Len=0
334 48.872010 192.168.8.142 52.213.192.178 TCP 60 54156 — 80 [ACK] Seq=1783 Ack=792 Win=30058 Len=0
335 48.872557 192.168.8.142 52.213.192.178 TCP 60 54156 —~ 80 [FIN, ACK] Seq=1783 Ack=793 Win=30058 Len=0

Frame 330: 1318 bytes on wire (10544 bits), 1318 b¥tes captured (10544 bits
Ethernet II, Src: Philipsl), Dst: GuanglLia
Internet Protocol Version 4, Src: 192.168.8.142, Dst: 52.213.192.178
Transmission Control Protocol, Src Port: 54156, Dst Port: 80, Seq: 519, Ack: 1, Len: 1264
[2 Reassembled TCP Segments (1782 bytes): #328(518), #330(1264)]
Hypertext Transfer Protocol
» POST /DcpRequestHandler/index.ashx HTTP/1.1\r\n
Host: dcp.dcl.philips.com:8G\r\n
[truncatedJAuthorization: |
» Content-Length: 1264 n
Content-Type: application/CB-Encrypted; cipher=AES\r\n
Connection: close\r\n

r\n
Full request URI: http://dcp.dcl.phlllps.com:8G/DchequestHandler/index.ashx]]
%ﬁTTf‘?ﬁﬁﬁ??t T71]

[Response in frame: 332]

Figure 3.17: Hue communicating with one of the hosts to perform a HTTP Post call. Request URL has been
highlighted in the picture.

34 3. DATA EXPLORATION

A [eth.addr == [N and tcp

No. Time Source Destination Protocol Length Info

286 15.201079 192.168.8.142 54.76.81.242 TCP 66 57387 —~ 80 [SYN] Seq=@ Win=29200 Len=0 MSS=146@ SACK_PERM=1 WS=8
288 15.222872 54.76.81.242 192.168.8.142 TCP 58 80 - 57387 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=1460
289 15.223160 192.168.8.142 54.76.81.242 TCP 60 57387 —~ 8@ [ACK] Seq=1 Ack=1 Win=29200 Len=0
290 15.223397 192.168.8.142 54.76.81.242 TCP 572 57387 — 80 [PSH, ACK] Seq=1 Ack=1 Win=29200 Len=518 [TCP segment of a r
201 15.245513 54.76.81.242 192.168.8.142 TCP 54 80 —~ 57387 [ACK] Seq=1 Ack=519 Win=30016 Len=0@
B 192.168.8.142 54.76.81.242 1414 POST /DCpReq iandler/index.ashx HTTP/1.1 (application/cb-encrypted
294 15.268926 54.76.81.242 192.168.8.142 TCP 54 80 - 57387 [ACK] Seq=1 Ack=1879 Win=32646 Len=0
295 15.275106 54.76.81.242 192.168.8.142 HTTP 845 HTTP/1.1 200 OK (application/cb-encrypted)
296 15.275249 54.76.81.242 192.168.8.142 TCP 54 80 - 57387 [FIN, ACK] Seq=792 Ack=1879 Win=32640 Len=0
297 15.275741 192.168.8.142 54.76.81.242 TCP 60 57387 — 80 [ACK] Seq=1879 Ack=792 Win=30058 Len=0
298 15.286018 192.168.8.142 54.76.81.242 TCP 60 57387 — 80 [FIN, ACK] Seq=1879 Ack=793 Win=30058 Len=0

» Frame 292: 1414 bytes on wire (11312 bits), 1414 bytes captured (11312 bits
» Ethernet II, Src: PhilipsL), Dst: GuangLia.
» Internet Protocol Version 4, Src: 192.168.8.142, Dst: 54.76.81.242
» Transmission Control Protocol, Src Port: 57387, Dst Port: 89, Seq: 519, Ack: 1, Len: 1360
» [2 Reassembled TCP Segments (1878 bytes): #290(518), #292(1360)]
- Hypertext Transfer Protocol
+ POST /DcpRequestHandler/index.ashx HTTP/1.1\r\n
Host: dop.dcd.philips.com:86\r\n
[truncated]Authorization: |
» Content-Length: 1360 \rin
content-Type: application/CB-Encrypted; cipher=AES\r\n
Connection: close\r\n

r\n
|[Full request URI: http://dcp.dcd,philips.com:80/DcpRequestHandler/index.ashx])

7T
[Response in frame: 295]

Figure 3.18: Hue communicating with one of the hosts to perform a HTTP Post call to the same URL as the
previous picture. Notice that IP address is different in both the cases.

IP FLAGS

IP flags were also considered, but it was later observed in the data that the flag was either
not set to anything or it was set to DF (Dont fragment).

3.6. SUMMARY

Focus of this chapter has been completely on the data used for this project. Experimen-
tal setup used to capture network traffic generated by IOT device was discussed. Tools
and methodology to obtain this traffic from router to local machine is then explained.
Various operations performed on the IOT device were visualised. Format of the data col-
lected and filtering approach used is then discussed. It is followed by some preliminary
observations that were made by observing the data captured. Based on these observa-
tions and inputs from literature survey, features that could be useful to represent the
behaviour of IoT devices are then mentioned.

METHODOLOGY

This chapter contains the description of the state machine learning module and their rep-
resentation. It is followed by a discussion of initial state machines learnt from the network
traffic of Smart Home devices. Their weaknesses are discussed, followed by more inter-
pretable state machines which can be used as the final result.

4.1. STATE MACHINE LEARNING MODULE

This thesis uses Flexfringe, a passive automata learning package[47] to build state ma-
chines from input data. Flexfringe works with both labelled and unlabeled data. Present
focus is to learn the normal behaviour of an IoT device and hence input to this module
will be unlabelled (All the traffic captured from IoT device is assumed to be from its nor-
mal behaviour and the device is not infected).

It starts by constructing a tree which exactly represents the input data. Each transition of
the tree represents an entry in the input. It then iteratively merges pairs of states to cre-
ate a deterministic and generic state machine. A merger of two states will be evaluated
based on two criterion: Consistency and Score. When is a merge consistent and what is
the score of that merge is based on a heuristic. This can either be controlled with the
help of a parameter of Flexfringe or users can define their own heuristic. More details
about state machine learning module and heuristics defined in flexfringe can be found
as part of this work [11].

4.1.1. INPUT FORMAT
Input format to the state machine learning module is based on Abbadingo competi-
tion[18]. The first line of input file contains the number of sequence of input symbols
followed by number of unique symbols. Each subsequent line contains the following:
The label of the sequence of symbols, followed by number of symbols in the sequence
and rest of the line contains actual sequence of symbols. Figure 4.1 gives an example of
such input file.

In the first line of Figure 4.1, 3 represents number of sequences, 7 represents number

35

36 4. METHODOLOGY

3
1 60 SA54 A54 FA54 FA60
1
1

60 SA54 A54 A54 A54 FA54 FA6GO

7

558

gl S60 SA54 A54 A54 FA54 FAGO
5

FAG0:3

Figure 4.1: Example of an input file that can be given
to Flexfringe[47] to obtain a state machine.

Figure 4.2: State machine that is obtained based on
input specified in Figure 4.1

of unique symbols. Next two lines start with a label of 1 along with number of entries in
the sequence, followed by actual sequence of symbols. Here, a label of 1 is used for all
the traces. Since it is unlabelled data, any label can be used with the sequences, as long
as all of them share the same label.

4.1.2. PARAMETERS TO LEARNING MODULE

Flexfringe comes with a range of parameters, many of them were explored, but in the
end 4 of them were considered for this thesis and rest remained with default values. As
discussed in the previous section, one of the important aspects of state merging is based
on a heuristic. The parameters "heuristic_name" and "data_name" are used to specify
this. The heuristic overlap was used for this project. In overlap, Consistency is based
on overlapping outgoing transitions for two states. The score represents the number of
overlapping outgoing transitions. This was chosen because the training data is not la-
belled and emphasis has been more on transitions in state machines and not much on
their probability. Other heuristics available as part of flexfringe works either with Prob-
abilistic Deterministic Finite Automaton or labelled data. More details about heuristic
could be found as part of this work [11].

The second set of parameters considered were "state_count" and "symbol_count". These
two numbers specify the minimum number of occurrences of any state/symbol. Any
state/symbol whose occurrences is below this threshold is merged with any other state

4.2. REPRESENTATION OF STATE MACHINES 37

without verifying Consistency and Score.

4.1.3. OUTPUT FORMAT

The final output by state machine learning algorithm is in the form of a graphviz dot file'
or a PNG file. Each state contains its number of occurrences. Transitions between states
are the symbols or elements of input file. More details about how these state machines
can be read are discussed in next section.

4.2. REPRESENTATION OF STATE MACHINES

In this section, a brief explanation of how state machines are represented and how they
can be read is provided.

In continuation with the previous chapter, Protocol related information and Packet Size
were chosen as features. Each packet exchanged between hosts is marked by a transition
in the state machine. Figure 4.2 shows an example of a state machine that is obtained
as output from Flexfringe[47]. Initial state is represented in the shape of a square. All
the intermediate states are represented in the form of an oval. In that figure, entries
such as #6, #3 that are present inside each state represent the number of occurrences of
that state. Arrow marks represent transitions between states. Each transition marks a
packet sent/received. Transitions in the above example are in the form "TP:N". Where T
represents TCP flag of that packet, P represents Packet Size and N represents the number
of occurrences of that symbol.

4.3. INITIAL STATE MACHINES: TRAFFIC BETWEEN MOBILE APP

AND HUE

Initial focus was to concentrate only on communication between the app which controls
the lighting system with the Hue bridge (which here is a TCP connection). The idea was
to get good, readable state machines for this and then extend the work to other traffic.

4.3.1. CASE1: ALL TRAFFIC WAS CONSIDERED

In this scenario, all the traffic between Hue bridge and the mobile app was considered.
The input traffic was composed of pcaps which captured the turning "On/Off" actions
on Hue multiple times. It was filtered based on IP address of Mobile and MAC address
of Hue. The hypothesis was that, since it is a TCP session, the state machine should start
with a SYN packet and should end with a FIN or FIN-ACK packet. In between this, there
should be some looping behaviour representing the actions which were performed on
Hue with fixed time intervals between them.

State machine in Figure 4.3 that was obtained using the pcaps that were captured to learn
the behaviour of Hue while performing "On/Off" operation multiple times on lights. It
could be seen that the initial few transitions represent the creation of a TCP session as
we can see, the first three transitions from the initial state are "S00", "SA00", "A00" as
highlighted in the figure. We can also see some looping behaviour in the lower part of
state machine. However, we do not see the termination of TCP session clearly in this

Ihttps://www.graphviz.org/doc/info/lang. html

https://www.graphviz.org/doc/info/lang.html

38 4. METHODOLOGY

state machine. The obtained state machine also consists of a loop to its initial state with
a long list of symbols. The reason is that there isn't much evidence for these symbols
to create a state or to merge them into an existing state. This caused the state machine
learning module to create a transition from the root state to itself to have less number of
total states in the final result. This has been highlighted in Figure 4.3.

From this, we could infer that, although the initial part of state machine is reasonable,
the way it creates a loop to the root node with many symbols is not convincing. It was
also not possible to explain all the transitions in the state machine.

4.3.2. CASE2: DIFFERENT DATA WITH SOME FILTERING

In this scenario, all the traffic between Hue bridge and the mobile app was considered.
The input traffic was composed of pcaps which captured the "changing colour" on Hue
multiple times. In addition to filtering mentioned in the previous case, packets repre-
senting "TCP Re-transmissions" were omitted. The hypothesis was same as the previous
case.

State machine in Figure 4.4 that was obtained using the pcaps that were captured

to learn the behaviour of Hue while performing "Changing Colours" operation multiple
times on lights. As seen in previous case, it was clear that there was a TCP session created
in the beginning based on highlighted transitions. It could be seen that the final two
symbols to the first state represent the closing of TCP session because they represent a
TCP packet with FIN-ACK flag set. Another drawback which we had of the previous case
was of a loop with many symbols pointing from initial state to itself. However, it is not
present in this case.
While it was possible to identify the creation and termination of TCP session, we still are
not aware of what the intermediate transitions represent in this state machine. We are
also not able to identify the packets representing the commands issued by smart phone
to IoT device. Another issue is that this works in very specific cases and depends on the
input. Different set of pcaps were captured performing different actions on Hue, the
resulting state machines were similar to the previous case and not like this case.

4.3, INITIAL STATE MACHINES: TRAFFIC BETWEEN MOBILE APP AND HUE 39

/.\ #25913 M: 10470.PA50:4, PADD:5603, PA10:3819. A90:3743 PAB0:59. PAT0:35, PAS0: 1590, PA40:393, PA30:39, FAND: 75, 1:1 |

[N

A0 14

AD0:7

IPAO:27

Figure 4.3: Initial state machine representing the traffic between Mobile App and Hue

40 4. METHODOLOGY

A0 18, AS0:]

Figure 4.4: Initial state machine representing the traffic between Mobile App and Hue while Changing Colours
command was issued. Highlighted packets signify creation and termination of a TCP session.

4.4. FINAL STATE MACHINES: TRAFFIC BETWEEN MOBILE APP AND HUE 41

4.4, FINAL STATE MACHINES: TRAFFIC BETWEEN MOBILE APP
AND HUE

Continuing from previous section, it was observed that the state machines were not in-
terpretable and differed with different input data. To deal with this issue, certain steps
were taken. Firstly, Packets with empty TCP acknowledgements were removed in this
stage because the order in which these arrive differ every time. Secondly, manual in-
spection of pcaps was performed.

4.4.1. INSPECTION

As mentioned in Chapter 3.2, while recording pcaps, actions were performed every 30
seconds. Few such smaller pcaps were taken and analysed. Initial few packets demon-
strated the initiation of TCP session and then TLS session with various packets depicting
TLS handshake as seen in Figure 4.5.

No. Time Source Destination Protocol Length Info

9 0.591668 192.168.8.221 192.168.8.142 54 57037 — 443 [ACK] Seq=1 Ack=1 Win=262144 Len=0
10 0.591786 192.168.8.221 192.168.8.142 TLSV1.2 491 Client Hello

11 0.592127 192.168.8.142 192.168.8.221 Tcp 60 443 ~ 57037 [ACK] Seq=1 Ack=438 Win=30272 Len=0
12 ©.594455 192.168.8.142 192.168.8.221 TLSV1.2 191 Server Hello, Change Cipher Spec, Encrypted Handshake Message
13 ©.595534 192.168.8.221 192.168.8.142 Tcp 54 57037 — 443 [ACK] Seq=438 Ack=138 Win=261952 Len=0

14 0.599297 192.168.8.221 192.168.8.142 TLSV1.2 60 Change Cipher Spec
15 0.599370 192.168.8.221 192.168.8.142 TLSv1.2 99 Encrypted Handshake Message

» Frame 15: 99 bytes on wire (792 bits), 99 bytes captured (792 bits)

» Ethernet II, src: Apple IR), Ost: Philips)
» Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.142

» Transmission Control Protocol, Src Port: 57037, Dst Port: 443, Seq: 444, Ack: 138, Len: 45

» Secure Sockets Layer

Figure 4.5: Creation of TLS session between Philips Hue and the smartphone.

To make the state machine more readable, these packets were labelled with the ap-
propriate TLS action they were performing.
It was then observed that there was a certain query(in the form of a single packet) from
Mobile to Hue in the initial stage of connection, it was followed by a bigger response from
Hue (comprising multiple packets). This could probably be checking for availability of
lights(Since a single Hue bridge can be used to control multiple light bulbs). This can be
seen in Figure 4.6.

42 4. METHODOLOGY

[Weth.addr = -—

No. Time Source Destination Protocol Length Info

[| 28 ©.677705 192.168.8.221 8 TLSV1.2 211 Application Data
30 0.701268 192.168.8.142 .8. TCP 1514 443 — 57637 [ACK] Seq=2352 Acl 0272 1460 [TCP segment of a reassembled PDU]
316.701512 192.168.8.142 .8. TCcP 1514 443 — 57637 [ACK] Seq=3812 Aci 0272 Len=1460 [TCP segment of a reassembled PDU]
32 0.701634 192.168.8.142 .8. TLSvi.2 1351 Application Data
33 0.702620 192.168.8.142 .8. TCcP 1514 443 — 57637 [ACK] Seq=6569 Aci 0272 Len=1460 [TCP segment of a reassembled PDU]
34 0.702795 192.168.8.142 .8. TcP 1514 443 — 57037 [ACK] Seq=8029 Aci 0272 Len=1460 [TCP segment of a reassembled PDU]
35 0.702934 192.168.8.142 .8. TLSvi.2 1267 Application Data
36 0.703347 192.168.8.221 .8. TcP 54 57037 - 443 [ACK] Seq=810 Ack=5272 Wil
37 0.704093 192.168.8.221 .8. TCP 54 57037 ~ 443 [ACK] Seq=810 Ack=6569 Wir
38 ©.704160 192.168.8.142 .8. TcP 1514 443 — 57037 [ACK] Seq=10702 Ack=8: 460 [TCP segment of a reassembled PDU]
39 0.704321 192.168.8.142 .8. TcP 1514 443 — 57037 [ACK] Seq=12162 Ack=810 Wi 460 [TCP segment of a reassembled PDU]
40 ©.704406 192.168.8.142 .8. TLSvi.2 1267 Application Data
41 0.705382 192.168.8.142 .8. TCP 1514 443 ~ 57037 [ACK] Seq=14835 Ack=810 Wi 460 [TCP segment of a reassembled PDU]
42 0.705547 192.168.8.142 .8. TCP 1514 443 ~ 57037 [ACK] Seq=16295 Ack=810 Wi 460 [TCP segment of a reassembled PDU]
43 ©.705709 192.168.8.142 .8. TLSvi.2 1154 Application Data
44 0.705824 192.168.8.142 .8. TLSV1.2 88 Application Data
45 0.708978 192.168.8.221 .8. TCcP 54 57637 —~ 443 [ACK]
46 ©.709070 192.168.8.221 .8. TCcP 54 57037 ~ 443 [ACK]
47 ©.710310 192.168.8.221 .8. TCP 54 57637 - 443 [ACK]
48 ©.710399 192.168.8.221 .8. TCcP 54 57037 ~ 443 [ACK]
49 0.710764 192.168.8.221 .8. TCcP 54 57637 ~ 443 [ACK] 0
50 0.710836 192.168.8.221 .8. TCcP 54 [TCP Window 6295 Win=256512 Len=0
51 0.710888 192.168.8.221 .8. TCcP 54 [TCP Window 6295 Win=260672 Len=0
52 0.711494 192.168.8.221 192.168.8.142 TCcP 54 57037 - 443 0
53 0.713894 192.168.8.221 192.168.8.142 TCP 54 57037 — 443
54 0.713975 192.168.8.221 192.168.8.142 TcP 54 57037 - 443

» Frame 28: 211 bytes on wire (1688 bits), 211 bytes captured (1688 bits
» Ethernet II, Src: Apple , Dst: Philips —)
» Internet Protocol Version 4, Src: 192.168.8.221, DSt: 192.168.8.142

» Transmission Control Protocol, Src Port: 57637, Dst Port: 443, Seq: 653, Ack: 2352, Len: 157

Secure Sockets Layer

Figure 4.6: Query from smart phone to Hue followed by response in the form of multiple packets from Hue in
the initial phase of the connection.

It was also noted that there was a another query which happened multiple times,
throughout the duration of entire connection and it triggered relatively smaller response
from hue (comprising 2-3 packets). This has been highlighted in Figure 4.7.

[ethacdr =S

o. Time Destination Protocol __Length Info
73 0.985362 .8.221 192.168.8.142 TLSv1.2 218 Application Data
75 0.993899 T168.8. ~168.8. = 0272 Len=1460 [TCP segment of a reassembled PDU]
76 0.994080 192.168.8. .8. Tcp 1514 443 — 57037 [ACK] 0272 Len=1460 [TCP segment of a reassembled PDU]
77 6.994176 192.168.8.142 192.168.8.221 TLSV1.2 162 Application Data
78 0.994224 192.168.8.142 192.168.8.221 TLSV1.2 88 Application Data
81 0.996314 192.168.8.221 192.168.8.142 Tcp 54 57037 — 443 [ACK] Se
82 0.996441 192.168.8.221 192.168.8.142 Tcp 54 57037 — 443 [ACK] Seq:
83 0.996490 192.168.8.221 192.168.8.142 Tcp 54 57037 — 443 [ACK] Seq=974 Ack=21951 Win=261952 Len=0
86 1.005114 192.168.8.221 192.168.8.142 TLSV1.2 218 Application Data
87 1.011466 192.168.8.142 192.168.8.221 TLSvi.2 1421 Application Data
88 1.012016 192.168.8.142 192.168.8.221 TLSV1.2 88 Application Data
89 1.020883 192.168.8.221 192.168.8.142 Tcp 54 57037 — 443 [ACK] Seq=1138 Ack=23318 Win=260736 Len=0
96 1.620990 g 8 ICP 5457037 = 443 [ACK] $eq=1138 Ack=23352 Win=260736 Len=0
911.024158 8. oM TLSV1.2 218 Application Data
92 1.042019 1688 1688 = eq=23352 Ack=1302 Win=36272 Len=1460 [TCP segment of a reassembled PDU]
93 1.042231 192.168.8.142 192.168.8.221 TLSV1.2 774 Application Data
94 1.042308 .8.142 192.168.8.221 2 88 Application Data
95 1.045320 .8.221 192.168.8.142 54 57037 ~ 443 [ACK] Seq=1302 Ack=25532
96 1.045922 8.8.221 192.168.8.142 54 57037 . 443 [ACK] Seq=1302 Ack=25566
199 2.493180 .8.221 192.168.8.142 P2 2186 Application Data
202 2.504654 -8.14; T 1514 443 460 [TCP segment of a reassembled PDU]
203 2.504865 .8.142 192.168.8.221 1514 443 — 57037 [ACK] 460 [TCP segment of a reassembled PDU]
204 2.504969 .8.142 192.168.8.221 g2 162 Application Data
265 2.505027 .8.142 192.168.8.221 .2 88 Application
206 2.507107 .8.221 192.168.8.142 54 57037 - 443 466 Ack=28486
207 2.508130 .8.221 192.168.8.142 54 57037 - 443 466 Ack=28594
208 2.508250 8.221 192.168.8.14; 5457037 - 44, 466 Ack=28628
209 2.509513 8. 2 218 Application
210 2.515874 EES TAZT AppIicCation
211 2.517081 .8. oA 88 Application
212 2.519794 .8. 54 57037 ~ 443 [ACK] Seq=1630 Ack=29995 260736 Len=0
213 2.519883 .8. 54 57037 — 443 [ACK] Seq=1630 Ack=38029 Win=262680 Len=0
214 2.526571 192.168.8. 2 218 Application Data
215 2.616536 192.168.8. 1514 443 — 57037 [ACK] Seq=30029 Ack=1794 Win=30272 Len=1460 [TCP segment of a reassembled PDU]
216 2.616777 192.168.8 2 774 Application Data

88 Application Data
TCP

219 707 192.168.8.221
220 2.619834. 192.168.8.221

68.8.142 54 57037 - 443 [ACK]
.168.8.142 TCP 54 57037 - 443 [ACK]

Frame 217: 88 bytes on wire (764 bits), 88 bytes captured (704 bits)

Ethernet II, Src: Philips|), pst: Apple NN

Figure 4.7: Packets depicting command from smartphone to perform some action followed by response from
Hue . This type of conversation occurs multiple times in the data.

Ignoring these packets, when other packets were inspected, it was possible to uniquely
identify the packets sent from Mobile App to Hue and the corresponding response to
perform various actions. This conversation can be seen in Figure 4.8.

4.4. FINAL STATE MACHINES: TRAFFIC BETWEEN MOBILE APP AND HUE 43

[|eth.addr =

No. Time Source Destination Protocol Length Info
367 31.822999 192.168.8.221 192.168.8.142 TLSv1.2 272 Application Data
368 31.831955 192.168.8.142 192.168.8.221 TLSv1.2 647 Application Data
369 31.832516 192.168.8.142 192.168.8.221 TLSv1.2 88 Application Data

Frame 367: 272 bytes on wire (2176 bits), 272 bytes captured (2176 bits)

Ethernet II, Src: Apple), Dst: Philips.)
Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.142

Transmission Control Protocol, Src Port: 57837, Dst Port: 443, Seq: 2122, Ack: 36671, Len: 218
Secure Sockets Layer

Figure 4.8: Query from smartphone to Hue followed by response occurring multiple times.

These conversations between the smartphone and Hue were considered as separate
sequences and given as input to state machine learning module.
Using all this knowledge, and filtering, a state machine was learnt using the pcaps which
captured "Changing colours" action on hue lights shown in Figure 4.9.
Following things can be inferred about the traffic based on state machine generated.

1 This part of state machine represents the TLS session initiation between Hue and
the mobile app when user opens the app.

2 This symbol represents the initial query from Mobile app to Hue. All the transi-
tions that follow this symbol are the responses from Hue to Mobile app.

3 Itrepresents the query from App to Hue which happens multiple times throughout
the connection. Similar to previous case, all the symbols after this represent the
reply from Hue.

4 A command sent from mobile app to Hue.
5 Response from Hue to the app for the previous command.
6 Any response from Hue to App includes this packet as its final reply.

7 After any of these query-responses between App and Hue, when the user leaves
the app, it sends a packet with FIN-ACK to close the session.

Unlike the state machines in previous case, here it was possible to identify all the
transitions that were part of state machine.

44 4. METHODOLOGY

w254
A272:45 PAITI:R \ i 2
-/
48
> 1
EH5:7
:PA:IE:lTl II >3

PALIB63,PATIES2

Figure 4.9: State machine depicting the traffic captured while performing the action of "Changing colours" of
light. Each state contains the number of times it has occurred. A symbol/transition "S78" means it is a packet
with TCP flag SYN and size of 78 bytes

4.5. ORDERING OF TCP STREAM AND ITS SIGNIFICANCE ON BACKGROUND TRAFFIC BY
HUE 45

4.5. ORDERING OF TCP STREAM AND ITS SIGNIFICANCE ON BACK-

GROUND TRAFFIC BY HUE

Once readable state machine was obtained for traffic between Hue and mobile app, fo-
cus now was on background traffic generated by Hue. This comprised mainly of various
HTTP calls by Hue to certain domains of Philips, followed by uploading or downloading
of data. This can be seen in Figure 4.10. It lists the hosts with which Philips hue was
communicating using HTTP in one of the pcaps captured during this thesis. To make
state machines more readable, packets which represent performing GET/POST calls are
marked with the domain to which these calls were made. The response from these calls
is marked with HTTP status. Traffic from multiple pcaps were used as input and gave the
following state machine in Figure 4.12.

Topic / Item ~ Count
~ HTTP Responses by Server Address 24
~ 52.51.133.171

7
OK 6
KO 1
~ 52.213.192.178 4
OK 3
KO 1
~ 130.211.67.12 13
OK 13
~ HTTP Requests by Server 25
~ HTTP Requests by Server Address 25
~ 54.230.129.20
fds.dcl.philips.com:80
~ 52.51.133.171
www.ecdinterface.philips.com:80
~ 52.213.192.178
dcp.dcl.philips.com:80
~ 130.211.67.12
diagnostics.meethue.com:80
diagnostics.meethue.com
~ HTTP Requests by HTTP Host
~ www.ecdinterface.philips.com:80
52.51.133.171
~ fds.dcl.philips.com:80
54.230.129.20
~ diagnostics.meethue.com:80
130.211.67.12
~ diagnostics.meethue.com
130.211.67.12
~ dcp.dcl.philips.com:80
52.213.192.178

w

e = -
AANN N\lmN BN

Display filter: eth.addr == [N and tcp|

Figure 4.10: Screenshot from wireshark showing various stats related to HTTP calls performed by IOT device
from one of the pcaps captured.

State machine in Figure 4.12 could be used to infer that there were TLS sessions cre-
ated along with HTTP calls and responses. A TCP session starts by an exchange of SYN
and SYN-ACK packet. Termination is marked by FIN-ACK packets °. The ordering in
state machines in Figure 4.12 violates TCP protocol with respect to ordering of packets.

Zhttp://telescript.denayer.wenk.be/~hcr/cn/idoceo/tcp_connection.html

http://telescript.denayer.wenk.be/~hcr/cn/idoceo/tcp_connection.html

46 4. METHODOLOGY

[eth.addr == —
> Time Source Destination Protocol __ Length Info
710 46.711952 192.168.8.142 52.49.36.240 TCP 66 56163 ~ 80 [SYN] Se. o M
711 46.733833 52.49.36.240 192.168.8.142 TP 66 80 ~ 56163 [svn ACK] Seq © Ack=1 w;n 26883 L
712 46.734112 192.168.8.142 52.49.36.240 TP 60 56163 — 80 [ACK] Sel Wil
713 46.741670 192.168.8.142 52.49.36.240 HTTP 314 POST /DevlcsPartalICPRequestHandler/RequestHandler ashx HTTP/1.1
719 46.763550 52.49.36.240 192.168.8.142 TP 54 80 ~ 56163 [ACK] S Win=28160 Lel
720 46.765207 52.49.36.240 192.168.8.142 TP 1514 80 — 56163 [ACK] Seq 1 Ack 261 Win=28160 Len=1460 [TCP segment of a reassembled PDU]
721 46.765313 52.49.36.240 192.168.8.142 HTTP 395 HTTP/1.1 401 Unauthorized (text/html)
722 46.765519 192.168.8.142 52.49.36.240 TP 60 56163 — 80 [ACK] Seq=261 Ack=1461 Win=32120 Le
723 46.765625 192.168.8.142 52.49.36.240 TP 60 56163 — 80 [ACK] Seq=261 Ack=1802 Win=3564 Len=0
724 46.766679 192.168.8.142 52.49.36.240 HTTP 1327 POST /DevicePortalICPRequestHandler /RequestHandler.ashx HTTP/1.1 (application/cb-encrypted)
725 46.805196 192.168.8.142 224.0.0.22 IGMPV3 60 Membership Report / Join group 239.255.255.256 for any sources
726 46.819068 52.49.36.240 192.168.8.142 HTTP 1311 HTTP/1.1 260 OK (application/cb-encrypted)
727 46.820609 192.168.8.142 52.49.36.240 HTTP 1343 POST /DevicePortalICPRequestHandler /RequestHandler.ashx HTTP/1.1 (application/cb-encrypted)
728 46.850780 52.49.36.240 192.168.8.142 TP 1514 80 —~ 56163 [ACK] Seq=3059 Ack=2823 Win=33280 Len=1460 [TCP segment of a reassembled PDU]
729 46.850935 52.49.36.240 192.168.8.142 HTTP 991 HTTP/1.1 200 OK (application/ch-encrypted)
730 46.851235 192.168.8.142 52.49.36.240 Tcp 60 56163 — 80 [ACK] Seq=2823 Ack=5456 Win=43860 Len=0
731 46.852281 192.168.8.142 52.49.36.240 TP 60 56163 — 80 [FIN, ACK] Seq=2823 Ack=5456 Win=43800 Let
732 46.874054 52.49.36.240 192.168.8.142 TP 54 80 ~ 56163 [FIN, ACK] Seq=5456 Ack=2824 Win=33280 Lel
733 46.874336 192.168.8.142 52.49.36.240 TP 60 56163 ~ 80 [ACK] Seq=2824 ACk=5457 Win-43800 Len-0
735 46.879460 192.168.8.1 192.168.8.142 DNS 251 standard query response 0x0805 AAAA . ecdlnlerface philips.com CNAME dp.dc1.philips.com CNAME |
736 46.880090 192.168.8.142 192.168.8.1 DNS 88 Standard query 6x0006 A . ecdinterface. philips.con
2246 BRRA33 192 168 A 1 192 168 8 14 DU 23 2 CNANE dp dcd phili SNQNE dc1
738 46.889037 192.168.8.142 52.49.36.240 TP se 56164 - se [SYN] Seq=0 Wil WS=8
739 46.911363 52.49.36.240 192.168.8.142 TP 66 80 ~ 56164 [SYN, ACK] Seq 0 i 460 SACK_PERN=1 US=256
740 46.911638 192.168.8.142 52.49.36.240 TP 60 56164 — 80 [ACK. Wil
741 46.911933 192.168.8.142 52.49.36.240 HTTP 1248 POST /Nut)flcatmnServlce/RequestHandler ashx HTTP/1.1 (application/ch-encrypted)
742 46.934093 52.49.36.240 192.168.8.142 TP 54 80 ~ 56164 [ACK] Seq=1 Ack=1195 Win=29440 Len:
744 47.067794 52.49.36.240 192.168.8.142 HTTP 813 HTTP/1.1 260 OK (application/cb-encrypted)
745 47.067915 52.49.36.240 192.168.8.142 TP 5480 ~ 56164 [FIN, ACK] Seq=760 Ack=1195 Win=29446 Len=o
746 47.068095 192.168.8.142 52.49.36.240 TP 60 56164 — 80 [ACK] Seq=1195 Ack=760 Win=30726 Len=0
747 47.068688 192.168.8.142 52.49.36.240 TP 60 56164 — 80 [FIN, ACK] Seq=1195 Ack=761 Win=30726 Len=0
749 47.077695 192.168.8.1 192.168.8.142 DNS 251 Standard query response 6x0007 AARA Wi ecdlnlerface philips.com CNAME dp.dcl.philips.com CNAME |
750 47.078283 192.168.8.142 192.168.8.1 DNS 28 standard query £x0908/ A . e cdinterface.philips
192.168.8.1 192.168.8,14; DS
752 47.086949 192.168.8.142 52.49.36.240 TCP se 56165 ~ 80 [SYN] Se Win=29200 Len=0 MSS=1460 SACK PERM=1 WS
753 47.090803 52.49.36.240 192.168.8.142 TP 54 80 ~ 56164 [ACK] S 1 Ack=1196 Win=29440 Lel
754 47.108741 52.49.36.240 192.168.8.142 TP 6680 ~ 56165 [SYN, ACK] Seq=0 Ack=1 an 26883 Len=0 MSS=1460 SACK_PERM=1 WS=256
755 47.108975 192.168.8.142 52.49.36.240 TP 60 56165 — 80 [ACK] Seq=1 Ack: =
756 47.109288 192.168.8.142 52.49.36.240 HTTP 1466 POST /DevlcsPartal[cPRequestNandlerlRequestNandler ashx HTTP/1.1 (application/cb-encrypted)

Figure 4.11: Screenshot from wireshark showing some of the HTTP calls performed by Philips Hue. We would
expect the state machine to represent this.

CHel(:9,FADO:S

EHel00:9,ChgCip20:9. Http-200-0K20: 18 Key20:9, www. ecdinterface. philips20: 18, R00:2

swww.ecdinterface, philips00:45, diagnostics. meethuc00:70,fds,

dep.de 1. philips00: 18 ADD:3
200-0K00:115

56780, PA20:73, PADD:24, PA 1045, FADK:26 | PAGD:24.PA30: 15, PASD:259, Hitp-200-OK90:¢

Figure 4.12: Initial state machine representing background traffic generated by Hue while interacting with
various hosts. Highlighted part shows that the state machine doesn’'t comply TCP protocol ordering.

Client Network Server
sz s smux
Receive SYN
Send SYN seq=y
Receive SYN + ACK ACK x+1
Send ACK y+1
Receive ACK

Figure 4.13: Opening a TCP session. A SYN packet initiates the creation, followed by SYN-ACK packet from the
second host and an ACK from the first host.”

4.5. ORDERING OF TCP STREAM AND ITS SIGNIFICANCE ON BACKGROUND TRAFFIC BY

HUE

47

Client

Client application closes

Receive FIN + ACK
Send ACK y+1

Send FIN
seq=x

Receive ACK

Network

Server

FiN x
\. Receive FIN
./,.Aﬁii/ Send ACK x+1
Server application closes

Send FIN seq =y

FINY ACK x+1
%
Receive ACK

Figure 4.14: Terminating a TCP session. A FIN packet initiates termination, followed by a FIN response with

acknowledgements to terminate the session.

2

~ Time Source Destination Protocol Length Info

970 87.416060 192.168.8.142 192.168.8.221 TLSv1.2 1420 Application Data

971 87.416409 192.168.8.142 192.168.8.221 TLSv1.2 88 Application Data

972 87.419133 192.168.8.221 192.168.8.142 TCP 54 56748 — 443 [ACK] Seq=16471 Ack=227432 Win=260736 Len=@

973 87.419217 192.168.8.221 192.168.8.142 TCP 54 56748 — 443 [ACK] Seq=16471 Ack=227466 Win=260736 Len=0
1003 89.594957 192.168.8.221 192.168.8.142 TCP 54 56749 — 443 [ACK] Seg=1 Ack=1 Win=262144 Len=@
1065 89.595913 192.168.8.221 192.168.8.142 TCP 54 56748 — 443 [ACK] Seq=16472 Ack=227467 Win=262144 Len=0
1006 89.602526 192.168.8.221 192.168.8.142 TLSv1.2 491 Client Hello
1007 89.602809 192.168.8.142 192.168.8.221 TCP 60 443 — 56749 [ACK] Seq=1 Ack=438 Win=30272 Len=0
1008 89.604743 192.168.8.142 192.168.8.221 TLSv1.2 191 Server Hello, Change Cipher Spec, Encrypted Handshake Message
10609 89.606429 192.168.8.221 192.168.8.142 TCP 54 56749 — 443 [ACK] Seq=438 Ack=138 Win=261952 Len=0
1010 89.611897 192.168.8.221 192.168.8.142 TLSv1.2 60 Change Cipher Spec
1011 89.613161 192.168.8.221 192.168.8.142 TLSv1.2 99 Encrypted Handshake Message
1012 89.613236 192.168.8.221 192.168.8.142 TLSv1.2 218 Application Data

Figure 4.15: Screenshot from wireshark highlighting the TCP packets received out of order.

For instance, in Figure 4.12, initial state has a self-loop for a packet with TCP flag
FIN-ACK. In the first three transitions from the initial state, there was a packet with SYN
flag which was followed by a loop depicting a packet with FIN flag and then a packet with
SYN-ACK flag. This has been highlighted in Figure 4.12. This should not be the normal
behaviour of a TCP session. Ideally, a TCP session should begin with a SYN packet fol-
lowed by SYN-ACK and it should terminate with a FIN-ACK packet from either direction

as shown in Figures 4.13 and 4.14.

Upon further investigation, it was found that some of the packets were received out of
order. Figure 4.15 illustrates one such example. Here, before a response to closing a ses-
sion could arrive, there was another request to initiate a new session. Although these
occurred less often, they were having an impact on the resulting state machine. To deal
with these irregularities, TCP sequence re-ordering was performed. The approach used
to achieve this is described in next section.

48 4. METHODOLOGY

4.5.1. TCP PACKETS RE-ORDERING AND SEQUENCE GENERATION

As discussed, there were few packets which reached out of order when the traffic was
captured at the router. To deal with this, the exact sequence in which traffic was gener-
ated at the hosts need to be recreated. Additionally, there might be multiple conversa-
tions between hosts over a period of time. We need to devise a way to regenerate indi-
vidual conversations. For solving both these problems, TCP sequence number and ac-
knowledgement numbers were used. Figure 4.16 shows pseudocode of the methodology
used to achieve this goal.

input : Stream of packets

For each packet when it has TCP layer
#identify first packet in a conversation
if (TCP Acknowledgement Number is Zero):
increment conversation number of that ip address
if TCP flags contain SYN or FIN:
next_sequence_number expected = Seq Number of this packet + 1
else:
if (Packet has Padding)
next sequence number expected = Seq Mumber of this packet + length of this packet TCP payload - length of TCP padding
else:
next_sequence number expected = Seq Mumber of this packet + length of this packet TCP payload
else:
if (TCP Acknowledgement Number mapped to a previously seen ip address)
Get the entry of a datastructure corresponding to that ip address
append metadata of this packet inside the datastructure corresponding to this ip address
else if TCP Sequence Number mapped to a previously seen ip address:
Get the entry of a datastructure corresponding to that ip address
if TCP flags contain SYN or FIN:
next_sequence_number expected = Seq Number of this packet + 1
else:
if (Packet has Padding)
next sequence number expected = Seq Mumber of this packet + length of this packet TCP payload - length of TCP padding
else:
next_sequence number expected = Seq Mumber of this packet + length of this packet TCP payload

update the datastructure to hold the sequence number of future packet related to that ip address
append metadata of this packet inside the datastructure corresponding to this ip address

Figure 4.16: Pseudocode representing the implementation used to perform tcp packet reordering and sepera-
tion of conversations.

The goal is to create a mapping, such that every packet belongs to an entry in the
form of IP-address:conversation-number. All the packets in such mapping are in the
order in which they were generated at sender.

It was important to identify the first packet of a conversion upon arrival. This can be
identified based on its acknowledgement number. Every TCP session begins with a ran-
dom sequence number called Initial Sequence Number(ISN), and an Acknowledgement
number of zero °. So when there is a packet with acknowledgement number of zero,
an entry is created with its [P-address and conversation number of 1 and this packet is
mapped to that entry. To identify next packet that would belong to this conversation, the
next sequence number is stored in a different data structure. The sequence number of
packet that is expected next is calculated as follows:

* For all the packets: Sequence number of current packet + TCP payload length.

Shttp://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/

http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/

4.5. ORDERING OF TCP STREAM AND ITS SIGNIFICANCE ON BACKGROUND TRAFFIC BY
HUE 49

« For those packets with SYN or FIN flag set, it is further incremented by 1 * °.

* In case of packets with padding, length of the padding is subtracted from TCP pay-
load length.

Upon arrival of a packet in the same direction as the first packet of a conversation:
Sequence number of the packet is checked against all the entries in the data structure,
to see if the next sequence number of any conversation matches it. If there is a match, it
is appended in the data structure and Sequence number of packet that is expected next
is updated.

Upon arrival of a packet in the opposite direction as the first packet of a conversation:
The packet’s acknowledgement number is checked against next sequence number of all
the conversations. If matched, it is appended to the data structure. In this case, sequence
number of packet that is expected next is not updated.

Figure 4.17 shows an example of how the output looks before applying this procedure.
Out of order packets, such as those shown in Figure4.15 have been highlighted in this
figure. Here, all the packets exchanged with an IP address by Hue belong to same con-
versation.

Figure 4.18 shows an example of how the output looks after applying this procedure to
the same data as before. It is important to note that here different conversations have
been separated.

130.211.67.12:1 => S:66 SA:66 diagnostics.meethue Http-200-0K JFA:60 S:66 FA:54 SA:66)
diagnostics.meethue Http-200-0K FA:60 FA:54 S:66 SA:66 diagnostics.meethue
Http-200-0K diagnostics.meethue Http-200-0K S:66 SA:66 PA:60
diagnostics.meethue Http-200-0K FA:54 FA:60 FA:54 FA:60 S:66 SA:66
diagnostics.meethue Http-200-0K FA:54 FA:60 S:66 SA:66 diagnostics.meethue
Http-200-0K FA:54

52. 51 133 171:1 => S:66 SA:66 www.ecdinterface.philips Http-400-UnAuth PA:395

Y ips Http-200-0K www.ecdinterface.philips Http-200-0K PA:991
www.ecdinterface.philips Http-200-0K FA:54 FA:60 S:66 SA:66

wWwWw . ecdlnterface ph111ps Http-200-0K PA:602 FA:54 FA:60 S:66 SA:66

www.ecdinterface.philips Http-200-0K FA:54 FA:60 S:66 SA:66 www.ecdinterface.philips

Http-200-0K FA:54 FA:60

Figure 4.17: Output before TCP sequence re-generation. Each key is in the form of IP-address:conversation-
number and value consist of metadata(TCP Flag:Packet Size) of packets belonging to the conversation. Each IP
address is associated with all the packets exchanged between Hue and the host of that IP address in that pcap.
Hence here the conversation number is always 1. Highlighted parts show the packets received out of order.

4http://www.cs.miami.edu/home/burt/learning/Csc524.032/notes/tcp_nutshell.html
Shttps://osqa-ask.wireshark. org/questions/61819/tcp-sequence-number-calculation

http://www.cs.miami.edu/home/burt/learning/Csc524.032/notes/tcp_nutshell.html
https://osqa-ask.wireshark.org/questions/61819/tcp-sequence-number-calculation

50 4. METHODOLOGY

130.211.67.12:1 => S: : diagnostics.meethue Http-200-0K FA:60 FA:
130.211.67.12:2 => S: : diagnostics.meethue Http-200-0K FA:60 FA:
130.211.67.12:3 => S: : diagnostics.meethue Http-200-0K FA:60 FA:
130.211.67.12:4 => S: : diagnostics.meethue Http-200-0K FA:54 FA:
130.211.67.12:5 => S: : PA:60 diagnostics.meethue Http-200-0K FA:
130.211.67.12:6 => S: : diagnostics.meethue Http-200-0K FA:54 FA:
130.211.67.12:7 => S: : diagnostics.meethue Http-200-0K FA:54

52.51.133.171:1 => S: : www.ecdinterface.philips Http-400-UnAuth PA:395
www.ecdinterface.philips Http-200-0K www.ecdinterface.philips Http-200-0K
PA:991 FA:60 FA:54

52.51.133.171:2 => S:66 SA:66 www.ecdinterface.philips Http-200-0K FA:54 FA:60
52.51.133.171:3 => S:66 SA:66 .ecdinterface.philips Http-200-0K PA:602
FA:54 FA:60

52.51.133.171:4 => S:66 SA:66 .ecdinterface.philips Http-200-0K FA:54 FA:60
52.51.133.171:5 => S:66 SA:66 .ecdinterface.philips Http-200-0K FA:54 FA:60

Figure 4.18: Output after TCP sequence re-generation. Each key is in the form of IP-address:conversation-
number and value consists of metadata of packets belonging to the conversation. Each new conversation is
recognised and separated.

4.6. FINAL STATE MACHINES: BACKGROUND TRAFFIC GENER-
ATED BY HUE

After performing TCP sequence regeneration mentioned in the previous section, these
new sequences were provided as input to state machine learning algorithm and a state
machine was obtained.
Figure 5.5 shows the state machine obtained from most of the background traffic from
Hue. Each chain of transitions represents a conversation between Philips hue and some
host.

Following are the inferences that can be made based on the state machine.

1 Packets signifying the creation of TCP session.
2 Packets signifying the termination of TCP session.

3 This and its subsequent transitions represent the packets exchanged while creat-
ing a TLS session.

More details about every transition in the state machine will be explained as part of next
chapter.

4.6. FINAL STATE MACHINES: BACKGROUND TRAFFIC GENERATED BY HUE 51

#151

500:151

A

<‘ 1
4151

A00:151

PA00:3 [diagnostics.meethue00:9

dcp.del.philips00:18
2
/_____.-—-—"
ttp-200- =
IFA00:27]PA30:9 Http-200-0K00:12
PAS0:9 PAB0:9
ttp-200-OK80:9

Figure 4.19: State machine explaining Background traffic After performing TCP reordering. Here, communi-
cation with one of the hosts ignored for better readability.

52 4. METHODOLOGY

4.7. EXTENSION TO ANOTHER DEVICE: IKEA LIGHTS

Once the state machines for the behaviour of Philips Hue lighting system were learnt, the
work was then extended to another lighting system. IKEA lights work similar to Philips
Hue lighting system. It consists of a bridge which controls the lights. To control the
bridge, commands can be issued by user through a Mobile app or a Remote. In this
work, we consider the traffic generated by IKEA light when controlling them through
Mobile app. The connections and methodology used to capture the traffic remained the
same.

4.7.1. TRAFFIC BETWEEN SMART PHONE AND IKEA LIGHTS

It was observed that IKEA bridge communicates with the Mobile app using DTLS proto-
col, version 1.2. DTLS provides communication privacy on top of UDP, which is similar
to how TLS works on top of TCP. Instead of TCP flags, which was used as a feature in
previous case, the type of DTLS message was used as a feature along with packet-size.
Following is the approach used to identify these messages.

In order to identify the type of message, whether it is part of initial key exchange, or ap-
plication data being exchanged, raw DTLS payload of the packet from scapy was used.
From the documentation ° and wireshark, following inference was made about the struc-
ture of DTLS packet header and is shown in Figure 4.20.

Handshake
or ; Handshake
Application Version Epoch Number Sequence Number Length of Payload Type
Data
2 4 4 12 4 2

Figure 4.20: DTLS header format.

First two bytes specify whether the packet contains handshake message or applica-
tion data. Next four bytes contains the DTLS version used. Epoch number is used in
conjunction with sequence number, it starts with zero and is incremented by 1, every
time there is a change is cipher state between hosts. Next 12 bytes are used to specify se-
quence number of the packet. In the case of DTLS, it starts with zero and is incremented.
It is followed by 4 bytes which signify the length of payload. Last two bytes specify the
handshake type (Client Hello, Server Hello, Client Key Exchange etc.) that is part of this
packet.

4.7.2. BACKGROUND TRAFFIC GENERATED BY IKEA LIGHTS

Traffic generated by IKEA bridge apart from its interaction with the mobile app was anal-
ysed. It was observed that similar to Philips Hue, IKEA bridge also communicated with
hosts performing HTTP calls, followed by some response using TCP. Methodology used
in previous study with background traffic generated by Hue was applied to this traffic

Shttps://tools.ietf.org/html/rfc6347

https://tools.ietf.org/html/rfc6347

4.8. BASELINE: N-GRAMS 53

and state machines were obtained. Details regarding those state machine will be dis-
cussed in next chapter.

4.8. BASELINE: N-GRAMS

To compare the results of this thesis, N-Grams was used as a baseline. N-Grams captures
sequences of length N. It iterates over the training data as a sliding window. N-Grams
is used as the baseline measure here because similar to state machine, N-Grams also
accounts for the sequence of events occurred.

Consider the following trace in Figure 4.21.

50 SA® A@ A® FAO FA®

Figure 4.21: A simple sequence from which we can generate N-grams. u

To see how N-Grams work, consider a value of N=3 in N-grams, we would get the
following trigrams(3-grams) shown in Figure 4.22.

50 SA@ A@
SAQ AQ AD

AB AG FAB
AB® FAG FAO

Figure 4.22: Trigrams obtained from the sequence in Figure 4.21.

Probabilities of such sequences are calculated. In the test data, if there are any se-

quences which never occur/rarely occur in training data, then it is marked as anoma-
lous.
N-Grams work with categorical data[32] and since packet size is a continuous data, we
need a way to discretise it. Percentiles is one way to convert continuous variables into
discrete variables. So in this project, with the baseline, instead of using absolute value of
packet size as a feature, we use its percentiled value. All other features remain similar to
those provided for state machine learning module as they are categorical.

4.9. ANSWERS TO RESEARCH QUESTIONS ADDRESSED IN THIS

CHAPTER
Two state machines were used to define the behaviour of IoT device during its normal
operation. One to represent the traffic exchanged between IoT device and mobile and
one to represent the background traffic.
Results of this chapter can be used to answer the following research questions:

RQ1b: Which high-level features can be used to define the behaviour of IoT de-
vices?

54 4. METHODOLOGY

High-level features such as Packet size, TCP Flag, domain of HTTP call, HTTP re-
sponse code, TLS messages were used to describe the behaviour of IoT device using state
machines in this thesis. As IKEA lights use DTLS protocol, instead of TCP flags, which
was used as a feature in Philips Hue, the type of DTLS message was used as a feature
along with packet-size.

[RQlc: How can these high-level features be used to build a state machine?

Each packet in the conversation between hosts was considered as a transition in state
machine. One of the protocol specific information such as TCP Flag, domain of HTTP
call, HTTP response code, TLS messages, DTLS message was concatenated with Packet
size to create the transitions that could be used for state machines.

4.10. SUMMARY

This chapter started with the description of state machine learning module that was
used to build state machines in this project. It was later used to build state machines ex-
plaining the traffic generated between Philips Hue and Mobile app controlling it. Chal-
lenges were encountered when dealing with background traffic generated by Hue be-
cause of packets received out of order. They were solved with the help of TCP sequence
reordering to replicate the order of packets in which they were generated by end hosts.
Once this problem was tackled, it was possible to generate interpretable state machines
explaining the background traffic generated by Philips hue while communicating with
multiple hosts over a period of time. To extend the methodology for another device, traf-
fic generated from IKEA lights was used. N-Grams was used as a baseline in this thesis.

RESULTS: STATE MACHINES
REPRESENTING THE NORMAL
BEHAVIOUR

This chapter discusses the details about state machines that we obtain upon usage of
methodology in previous chapter. It starts with a discussion about state machines rep-
resenting traffic between Hue and Mobile App, followed by background traffic. Extension
of the methodology to IKEA lights and the resulting state machines are also discussed.

5.1. STATE MACHINES REPRESENTING TRAFFIC BETWEEN MO-

BILE APP AND HUE

As state machine explaining packets captured while changing colours of light was ob-
tained in the previous chapter, traffic captured while performing other actions were
combined with this traffic. In each pcap file, only one type of action (Turning lights
On/Off or Changing Colours or Changing Themes) was performed and the time of the
action was noted.

Figure 5.1 shows the packets recorded while performing "Changing Theme" of Philips
Hue light. It can be seen that the highlighted packets match the transitions 5, 6 and 7
from the state machine in Figure 5.4.

55

56

5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

No. Time
152 7.090740
153 7.100288
[| 110206

155 7.150028
156 7.150248
157 7.150335
158 7.153375
159 7.153513

192.

Source

192.

192.
192.
192.
192.
192.

168.
168.

8

8
.8
168.8
168.8.
168.8
168.8
168.8

221
221

142
142
.142
.221
221

Destination
168.
168.

192.
928

192.
192.
192,
192.
192.

168.
168.
168.
168.
168.

Protocol Length |nfo
8.142 TCP 54 [TCP Window
8.142 TCP 66 [TCP Window
8.142 TLSv1.2 Application Data
8.221 TCP 60 p43 — 53118
8.221 TLSv1.2 653 ppplication Data
8.221 TLSv1.2 88 ppplication Data
8.142 4753118 — 443
8.142 TCP 54 53118 — 443

» Frame 154: 274 bytes on wire (2192 bits), 274 bytes captured (2192 bits)

+ Ethernet II, Src: Apple

), Dst: PhilipsL

» Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.142
+ Transmission Control Protocol, Src Port: 53118, Dst Port: 443, Seq: 1293, Ack: 60762, Len: 220

» Secure Sockets Layer

Update] 53118 — 443 [ACK]
Update] 53118 — 443 [ACK]

[ACK] Seq=60762 Ack=1513 |

[ACK] Seq=1513 Ack=61361 |
[ACK] Seq=1513 Ack=61395 |

Figure 5.1: Packets exchanged while Changing Themes of Philips Hue. Empty Acknowledgements have to be

ignored.

Figure 5.2 shows the packets recorded while performing "Changing Colours" of Philips
Hue light. It can be seen that the highlighted packets match the transitions 1, 2 and 7
from the state machine in Figure 5.4.

A eth-addr =]

No. Time

[467 60.118049
468 60.139002
469 60.139682
470 60.141899
471 60.142450
472 60.183199
473 60.205288
474 60.205831
475 60.208004
476 60.208074

Secure Sockets Layer

Source

ik
192.
192.
192,
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

©0 Co 0 oo o oo oo oo ool

oL
.142
.142
221
221
221
.142
.142
027l
.221

Destination

192.168.8.142
192.168.8.221
192.168.8.221
192.168.8.142
192.168.8.142
192.168.8.142
192.168.8.221
192.168.8.221
192.168.8.142
192.168.8.142

[Protocol Lengtn oo
TLSv1.2 272 Application
647|Application
88|application
54157042 - 443
5457042 — 443
272|Application
647|Application
88|Application
757042 - 443
54 57042 -~ 443

TCP

Frame 467: 272 bytes on wire (2176 bits), 272 bytes captured (2176 bits)
Ethernet II, Src: Apple

Data
Data
Data
[ACK] Seq=3050
[ACK] Seq=3050
Data
Data
Data
[ACK] Seq=3268
[ACK] Seq=3268

), Dst: Philipst [M)

Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.142
Transmission Control Protocol, Src Port: 57042, Dst Port: 443, Seq: 2832, Ack: 43934, Len: 218

Figure 5.2: Packets exchanged while Changing Colours of Philips Hue. Empty Acknowledgements have to be

ignored.

Figure 5.3 shows the packets recorded while performing "Changing Colours" of Philips
Hue light. It can be seen that the highlighted packets match the transitions 3 and 4 and
7 from the state machine in Figure 5.4.

5.1. STATE MACHINES REPRESENTING TRAFFIC BETWEEN MOBILE APP AND HUE 57

(A]eth.addr =~

No. Time Source Destination Protocol Length [Info
495 31.143542 192.168.8. 192.168.8.142 TCP 54156764 —~ 443 [ACK] Seq=6386
500 31.664974 192.168.8.221 192.168.8.142 TLSv1.2 259 Application Data
501 31.674053 192.168.8.142 192.168.8.221 TLSv1.2 638|Application Data
502 31.676430 192.168.8.142 192.168.8.221 Application Data
503 31.676634 192.168.8.221 192.168.8.142 P 456764 — 443 [ACK] Seq=6591
504 31.678503 192.168.8.221 192.168.8.142 TCP 54 56764 —~ 443 [ACK] Seq=6591
515 31.913061 192.168.8.221 192.168.8.142 TLSV1.2 218 Application Data
518 31.921031 192.168.8.142 192.168.8.221 TCP 1514 443 - 56764 [ACK] Seq=95276
519 31.921207 192.168.8.142 192.168.8.221 TCP 1514 443 - 56764 [ACK] Seq=96736
520 31.921311 192.168.8.142 192.168.8.221 TLSv1.2 162 Application Data
522 31.922757 192.168.8.221 192.168.8.142 TCP 54 56764 — 443 [ACK] Seq=6755
523 31.922844 192.168.8.221 192.168.8.142 TCP 54 56764 — 443 [ACK] Seq=6755
524 31.927251 192.168.8.142 192.168.8.221 TLSv1.2 88 Application Data
525 31.932034 192.168.8.221 192.168.8.142 TCP 54 56764 — 443 [ACK] Seq=6755

Frame 500: 259 bytes on wire (2072 bits), 259 bytes captured (2072 bits)

Ethernet II, Src: Apple [T), Dst: PhilipsL [)
Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.142

Transmission Control Protocol, Src Port: 56764, Dst Port: 443, Seq: 6386, Ack: 94658, Len: 205
Secure Sockets Layer

Figure 5.3: Packets exchanged while Turning the lights On/Off on Philips Hue. Empty Acknowledgements
have to be ignored.

Traffic from all the pcap files was used as input to state machine learning module
described in the previous chapter. This will result in a state machine explaining packets
captured while performing actions such as Turning the light On/Off, Changing Colours,
Changing Themes as seen in Figure 5.4.

58

5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

57832

[SA66:32

EHS0:32 [CHel0:32

Hel0:32

ChgCip:32

PAL24:1

PASS:1 PAIGE1PATIS63 PAT158:1 PATISS 85, PATI904 PATIS6:77

4161 paRSAp:

Al!xﬁ LPALT
PAII90:1PAI1S6:3PA%A1:1 PA9392 @

AIS14:479

|Pasi:1 Pas3ot

AlSlad

1514472

PAI3S1:465

1514465

o ()

1514:d65

pa1267:455 |A1514:10

A1s14:10

PAIZGT1

455

aistesass

PAIG2:104 PAI61:93 \PALI54:101 PALIS6'S PATIS292

DEACD
s\ \wstean ssuars
y PALLSOPALES2PALS0IINAIS 146

s st
zn Naisia\asies

Als149)

514367

PATI4269

(A1514:2,PAO1 44,PA939:20,PASOT: 1

PA2S8:2T
3
PA259:26

PAG92:2.PAGM:T

N .
AT L | 1
pacsrar
—4
aswas | a0
6
vyl
"AGAT:A8
prens | 2
—7
-~
st

Figure 5.4: State machine depicting the traffic captured while performing the actions of "Changing colours",
"Changing Theme" and "Turning On/Off" for Hue lights. Each state contains the number of times it has oc-
curred. A symbol/transition "S78" means it is a packet with TCP flag SYN and size of 78 bytes

5.2. STATE MACHINES REPRESENTING BACKGROUND TRAFFIC GENERATED BY HUE 59

Following are the different packets exchanged while performing these operations
based on the state machine in Figure 5.4.

1 Packet sent from Mobile app to Hue to change the colour of light.

2 Response from Hue to App for the previous command of changing colour.

3 Packet sent from Mobile app to Hue to turn the light On/Off.

4 Response from Hue to App for the previous command of turning light On/Off.
5 Packet sent from Mobile app to Hue to change theme of lights.

6 Response from Hue to App for the previous command of changing theme.

7 All the responses from Hue to Mobile are followed by this packet.

It was important to verify if the actions marked in the state machine indeed represent
the packets exchanged while performing these operations. To achieve this, once these
state machines were learnt, the operations of "Changing colours", "Changing Theme"
and "Turning On/Off" for Hue lights were performed again and time of the action was
recorded.

5.2. STATE MACHINES REPRESENTING BACKGROUND TRAFFIC

GENERATED BY HUE
This section contains the description of individual transitions that are part of state ma-
chines representing the background traffic generated by Hue.
State machine in Figure 5.5 shows the state machine obtained from most of the back-
ground traffic from Hue (few hosts were ignored for better readability. They will be
included in next figure). Each chain of transitions represents a conversation between
Philips hue and some host.

All the transitions before and after the marked transition represent the following:

1 With some hosts, Hue creates a TLS session and terminates it without exchanging
any other packets.

2 Performs an HTTP call to www.ecdinterface.philips.com and obtains a reply with
HTTP status 400. It retries again to obtain a response with HTTP status 200 and
closes the session.

3 Performs an HTTP call to www.ecdinterface.philips.com and obtains a reply with
HTTP status 200. Closes the session with packets containing FIN-ACK in the last
state.

4 Performs an HTTP call to dcp.dcl.philips.com and obtains a reply with HTTP sta-
tus 200. Closes the session with packets containing FIN-ACK in the last state.

60

5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

www.ecdinterface. philips20:9

#9
Key20:9 1tp-200-0K20:9
#9 #)

\CheCip20:9 {www.ecdinterface. philips20:9

#
PA0O:9 Hup-200-0K20:9
#9 #9
PA10:9 \ PA60:9

[FA00:27,PA30:9

PA00:3 [diagnostics.meethue00:9

——— 4

dep.del.philips00:18
5
FA00:9
L(lp—EOU-OKUD:jS
Hitp-200-0K00:12
]
#18
PA90:9 PABO:9
#) #
tp-200-0K90:9 /Hup-200-0K80:9
#408 57

Figure 5.5: State machine explaining Background traffic After performing TCP reordering. Here, communica-
tion with one of the hosts ignored for better readability.

5 Performs an HTTP call to diagnostics.meethue.com and obtains a reply with HTTP
status 200. Closes the session with packets containing FIN-ACK in the last state.

6 Opens a TCP session and closes it without any operation with some hosts.

5.2. STATE MACHINES REPRESENTING BACKGROUND TRAFFIC GENERATED BY HUE 61

State machine in Figure 5.6 shows the state machine obtained from background traf-
fic with all the hosts from Hue captured in this project.

0104, A 10123 AS030.AI00: 128 ADODT.ASILESH. AL 50215, AK0TTATED 1 TFALN.PAION 11 FAIDD

okl phipeon 18

Figure 5.6: State machine explaining Background traffic with all the hosts with Philips Hue using TCP based on
traffic captured in this project.

All the transitions before and after the marked transition represent the following:

1 Performs an HTTP call to fds.dcl.philips.com and obtains a reply with HTTP sta-
tus 200 and response of many packets. This communication was ignored in the
previous state machine for better readability.

2 Performs an HTTP call to diagnostics.meethue.com and obtains a reply with HTTP
status 200. Closes the session with packets containing FIN-ACK in the last state.

3 With some hosts, Hue creates a TLS session and closes it.

4 Performs an HTTP call to www.ecdinterface.philips.com and obtains a reply with
HTTP status 400. It retries again to obtain a response with HTTP status 200 and
closes the session.

[8)]

Opens a TCP session and closes it without any operation with some hosts.

6 Performs an HTTP call to www.ecdinterface.philips.com and obtains a reply with
HTTP status 200. Closes the session with packets containing FIN-ACK in the last
state.

62 5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

7 Performs an HTTP call to dcp.dcl.philips.com and obtains a reply with HTTP sta-
tus 200. Closes the session with packets containing FIN-ACK in the last state.

To validate the claims made in state machines in Figure 5.5 and Figure 5.6, we can re-
fer to the screenshot of wireshark in Figure 5.7 showing the details regarding HTTP calls
performed by Hue as part of one of the pcaps captured. Highlighted part of the figure
shows various domains such as fds.dcl.philips.com, diagnostics.meethue.com, ecdin-
terface.philips.com and dcp.dcl.philips.com. These were represented as 1, 2, 4 and 6 in
the state machine in Figure 5.6.

Topic [Item « Count
~ HTTP Responses by Server Address 24
* 52.51.133.171 7
oK 6
KO 1
~ 52.213.192.178 4
OK 3
KO 1
- 130.211.67.12 13
OK 13
| HTTP Requests by Server 25
= HTTP Requests by Server Address 25

~ 54.230.129.20
fds.dcl.philips.com:80

~ 52.51.133.171
www.ecdinterface.philips.com:80|

~ 52.213.192.178
dcp.dcl.philips.com:80

~ 130.211.67.12
diagnostics.meethue.com:80
diagnostics.meethue.com

HTTP Requests by HTTP Host

~ www.ecdinterface.philips.com:80
52.51.133.171

~ fds.dcl.philips.com:80
54.230.129.20

~ diagnostics.meethue.com:80
130.211.67.12

~ diagnostics.meethue.com
130.211.67.12

~ dep.dcl.philips.com:80
52.213.192.178

W

«

##:;)—‘)—‘)—‘)—‘\J\JH;)—‘)—‘A&\J\J)—‘)—‘

Display filter: eth.addr == [and tep|

Figure 5.7: Screenshot from wireshark showing various stats related to HTTP calls performed by IOT device
from one of the pcaps captured.

5.3. STATE MACHINES REPRESENTING TRAFFIC GENERATED BY IKEA LIGHTS 63

5.3. STATE MACHINES REPRESENTING TRAFFIC GENERATED BY
IKEA LIGHTS

Once state machines representing the behaviour of Philips Hue lighting system was learnt,
the work was then extended to another lighting system. IKEA lights work similarly to
Philips Hue lighting system. It consists of a bridge which controls the lights. To control
the bridge, commands can be issued by user through Mobile app. The connections and
methodology used to capture the traffic remained the same. It was observed that IKEA
bridge communicates with Mobile app using DTLS protocol, version 1.2 .

5.3.1. TRAFFIC BETWEEN SMARTPHONE AND IKEA LIGHTS

As discussed in previous chapter, we were able to identify the type of DTLS message ex-
changed to distinguish between packets corresponding to key exchange and application
data.

During the inspection of pcap files, it was noticed that every time a user opens the app,
a DTLS session was created by exchanging key related information as seen in Figure 5.8.

[Tdtls
No. ~ Time Source Destination Protocol Length Info
.8 .8, F 111 Client Hello
4 0.010099 192.168.8.234 192.168.8.221 DTLSvV1.2 102 Hello Verify Request
5 0.012614 192.168.8.221 192.168.8.234 DTLSV1.2 143 client Hello
6 0.015591 192.168.8.234 192.168.8.221 DTLSvV1.2 165 Server Hello
7 0.015772 192.168.8.234 192.168.8.221 DTLSvV1.2 67 Server Hello Done
8 0.017877 192.168.8.221 192.168.8.234 DTLSv1.2 101 Client Key Exchange
9 0.017981 192.168.8.221 192.168.8.234 DTLSv1.2 109 Change Cipher Spec, Encrypted Handshake Message
10 0.018668 192.168.8.234 192.168.8.221 DTLSv1.2 60 Change Cipher Spec
11 0.018872 192.168.8.234 192.168.8.221 DTLSV1.2 95 Encrypted Handshake Message

Frame 3: 111 bytes on wire (888 bits), 111 bytes captured (888 bits)

Ethernet II, Src: Apple ENSEMINSSINENININNIN) , Dst: Muratavs IR
Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.234

User Datagram Protocol, Src Port: 54162, Dst Port: 5684

Datagram Transport Layer Security

Figure 5.8: Packets representing key exchange between smart phone and IKEA lights.

Time at which actions such as Turning the lights On/Off and changing brightness
were recorded and packets exchanged were inspected. Figure 5.9 shows the packets ex-
changed when turning the lights On/Off. Figure 5.10 shows the packets exchanged when
changing the brightness of lights.

[]dus
No. ~ Time Source Destination Protocol Length Info
.661264 8 8 DTLSv1.2 113 Application
236 54.661617 192.168.8.234 192.168.8.221 DTLSv1.2 79 Application Data
i 237 54.662323 192.168.8.234 192.168.8.221 DTLSv1.2 373 Application Data
238 54.662870 192.168.8.234 192.168.8.221 DTLSv1.2 373 Application Data
240 54.668996 192.168.8.221 192.168.8.234 DTLSv1.2 75 Application Data
3 241 57.244220 192.168.8.234 192.168.8.221 DTLSv1.2 373 Application Data

Frame 235: 113 bytes on wire (904 bits 113 bytes captured (904 bits
Ethernet II, Src: AppleW), Dst: MurataMa_)
Internet Protocol Version 4, Src: B . , Dst: 192.168.8.234

User Datagram Protocel, Src Port: 64252, Dst Port: 5684

Datagram Transport Layer Security

v v v

Figure 5.9: Packets exchanged while turning the lights On/Off.

Ihttps://tools.ietf.org/html/rfc6347

https://tools.ietf.org/html/rfc6347

64 5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

[A]dus

No. = Time Source Destination Protocol Length Info
275 101.483545 192.168.8. 192.168.8.234 DTLSv1.2 120 Application
276 101.483950 192.168.8.234 192.168.8.221 DTLSv1.2 79 Application Data
277 101.484764 192.168.8.234 192.168.8.221 DTLSv1.2 373 Application Data
278 101.489117 192.168.8.221 192.168.8.234 DTLSv1.2 75 Application Data

Frame 275: 120 bytes on wire (960 bits), 128 bytes captured (960 bits)

Ethernet II, Src: Apple_), Dst: MurataMa)
Internet Protocol Version 4, Src: 192.168.8.221, Dst: 192.168.8.234

User Datagram Protocol, Src Port: 64252, Dst Port: 5684

Datagram Transport Layer Security

Figure 5.10: Packets exchanged while changing the brightness of light.

Upon usage of methodology discussed in previous section, we obtain the state ma-

chine in Figure 5.11 representing the traffic exchanged between IKEA lights and smart
phone.

5.3. STATE MACHINES REPRESENTING TRAFFIC GENERATED BY IKEA LIGHTS 65

cryped_Hanslikeo5.2 |

b‘, assis hon D

s

=

s
TT— Dz |
»? Gn /
A —
(o

op_Dias 13

o)

S /

(Che Cipter_Spece23

- D
/ App_Data364: 1 \App_Datad2: 13 p_Datal21:1
|
|)

\p_Dao213

D)

lsep Duasy-13

bapp Datazss 13

bapp_Dataton 13

n

Figure 5.11: State machine explaining Background traffic generated by IKEA lights. Here, communication with
one of the hosts ignored for better readability.

66 5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

All the transitions after the highlighted parts in Figure 5.11 represent the following:

1 Packets exchanged while exchanging key related information of DTLS.

2 Packets exchanged while performing On/Off operation on IKEA lights.

3 Packets exchanged while performing Changing brightness operation on IKEA lights.
4 Packets exchanged after creation of DTLS session when the app is first opened.

Here, it is important to note that, unlike previous case, we were not able to identify all
the transitions that are part of the state machines. Additionally, re-transmitted packets
in case of UDP were not effectively handled, leading to the state machine in Figure 5.11.
In future work, these aspects can be better handled.

5.3. STATE MACHINES REPRESENTING TRAFFIC GENERATED BY IKEA LIGHTS 67

5.3.2. BACKGROUND TRAFFIC GENERATED BY IKEA LIGHTS

Similar to Philips Hue, IKEA lights also communicates with external hosts to perform
HTTP calls and in some cases, just creates and terminates a TCP session regularly. Ad-
ditionally, IKEA lights were also seen communicating with some hosts using TLS to ex-
change some packets. Background traffic generated by IKEA lights with some hosts was
used to generate state machine as shown in Figure 5.12.

HTTP-304-Not-Modified00: 10.

Figure 5.12: State machine explaining Background traffic generated by IKEA lights. Here, communication with
one of the hosts ignored for better readability.

Highlighted parts of the state machine represent the following.

1 HTTP call from IKEA lights to fw.ota.homesmart.ikea.com.
2 Areply to the previous call with HTTP status 200 followed by some packets.
3 Areply to the previous call with HTTP status 304.

4 With some hosts, it opens and closes a TCP session without performing any action.

68 5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

B

e
2 (T 2000K0s

H i

Figure 5.13: A state machine representing all the background traffic generated by IKEA lights, observed as part
of this thesis.

5.4. ANSWERS TO RESEARCH QUESTIONS ADDRESSED IN THIS CHAPTER 69

Figure 5.13 shows the state machine representing the background traffic with all the
hosts observed as part of this thesis. While most of the details remain similar to previous
state machine, one significant difference is the communication represented by 5 in
the figure. It represents the communication between IKEA lights and some hosts where
a TLS connection is established, followed by exchange of some packets and termination
of session.

5.4. ANSWERS TO RESEARCH QUESTIONS ADDRESSED IN THIS

CHAPTER
In this chapter, we discussed the details of results obtained upon implementing the
methodology discussed in previous chapter.
Results of this chapter can be used to answer the following research questions:

RQ1la: What are the different behaviours performed by IoT device during its nor-
mal operation?

In the state machine representing the traffic between IoT device and mobile phone,
TLS was used for communication between these two devices. It involved sending a sin-
gle packet from smartphone followed by multiple packets of response from IOT device
depending on the input.

In the state machine representing background traffic, Philips Hue communicated with
few hosts in the form of HTTP POST/GET calls followed by uploading/downloading of
data. Similar was the case with IKEA lights.

Results obtained in section 5.1 can be used to answer our fifth research question:

RQ5: Which commands issued by smartphone to IoT device can be detected us-
ing network traffic metadata?

Using state machines learnt from network metadata, the following commands issued
from smartphone to IoT device were detected: the commands to turn the lights On/Off,
Changing Colours, Changing themes.

In 5.3, we were able to generate the state machine explaining the background traffic
generated by IKEA lights. The results in that section can be used to answer our next
research question

RQ5: How can the approach be extended to represent the behaviour of another
IoT device?

To represent background traffic generated by IKEA lights, no changes were made to
methodology. However, to model the traffic between IKEA lights and Smartphone,it re-
quired changing the methodology to include a new protocol(DTLS).

70 5. RESULTS: STATE MACHINES REPRESENTING THE NORMAL BEHAVIOUR

5.5. SUMMARY

In this chapter, details regarding the state machines were discussed. The chapter started
with description of state machines explaining the behaviour of Philips Hue. It was fol-
lowed by details regarding state machines obtained to represent the behaviour of IKEA
lights.

APPLICATION OF STATE MACHINES
ON ATTACK TRAFFIC AND REAL
WORLD DATA

This chapter contains the description of attack traffic and its implications on the state ma-
chines which were learnt in the previous chapter. It contains details about setup and tools
used to generate attack traffic. It is followed by details of setup used to capture traffic in
real-world data outside the lab environment. This is then used to validate the state ma-
chines using different evaluation methods.

6.1. CASE STUDY 1: ATTACK TRAFFIC

Once state machines were learnt on the normal behaviour of the device, attack traffic
was generated to see if we can detect it based on these state machines. This section
contains the details regarding attack traffic and its generation.

6.1.1. ATTACK TYPE AND TOOLS USED

The type of attack focused in this thesis is a Denial-Of-Service attack. Here, the attacker
floods the victim with random requests. This causes victim to allocate more resources
and gets overloaded, thereby unable to serve the requests of genuine users.

The attack was performed using hping' utility of Kali Linux. hping is a command line
tool that is being used for security testing and auditing. It can be used to generate and
analyse packets complying various protocols in TCP/IP protocol stack. Here, it was used
to flood many SYN packets from attacker to victim thereby overloading the resources
of victim. This attack is called a SYN-flood attack. The rate at which these packets are
sent can also be configured based on requirements. This can be specified in terms of

http://www.hping.org/

71

http://www.hping.org/

72 6. APPLICATION OF STATE MACHINES ON ATTACK TRAFFIC AND REAL WORLD DATA

Internet

().

Hue Bridge
LAN Cable ' ’ i
- 4———-—4—)
Valibox as Router ~ WiFi |OS Mobile
Zigbee
Hue Light Laptop (Kali Linux)

Figure 6.1: IOT device as victim. A laptop running Kali linux performs attack on IOT device till it becomes
unresponsive.

interval between packets that are sent. If the parameter 'flood’ is used, it sends packets
with interpacket time interval as less as possible. Various details regarding parameters
for this tool can be found here 2. In this project, this time interval was varied to see the
highest amount of time interval between packets to render Philips hue unresponsive.
Upon experimentation, a duration of 8 milliseconds between packets made Philips hue
unresponsive within a few seconds.

6.1.2. 10T DEVICE AS VICTIM

In this scenario, IoT device was made as victim of the attack and flooded with many re-
quests from the attacker. The attacker here is a laptop running kali Linux. Experimental
setup used to perform this attack was the same as the one used to capture traffic de-
scribed in section 3.1. The only difference is here a Laptop running Kali Linux is used
instead of a regular Linux laptop.

Once packet capturing process is started, mobile app is interacted with the lights to
generate normal traffic. After this, attack is started and continued till the lights stop re-
sponding. Once the mobile app fails to control the light, the attack and packet capture
process is stopped. Figure 6.2 shows an example of how this attack traffic looks in Wire-
shark. Figure 6.3 shows the overlap of packets between attack traffic and normal traffic.

2http://www.hping.org/manpage.html

http://www.hping.org/manpage.html

6.1. CASE STUDY 1: ATTACK TRAFFIC 73

N |eth.addr ==

No. Time

Source Destination Protocol Length Info

19599 11.709101 192. 192.1 142 TLSv1.2 211 Application Data

Internet Protocol Version 4, Src: - .8. , Dst: 192.168.8.142
Transmissign Control Protocol, Src Port: 50270, Dst Port: 443, Seq: 817, Ack: 3728, Len: 157

[l

» Frame 19599: 211 bytes on wire (1688 bits), 211 bytes captured (1688 bits

» Ethernet II, Src: Applem), Dst: PhilipsL _D
»

»

Figure 6.2: Screenshot from Wireshark showing how attack traffic looks like when performed on IoT device.
Attacker, in this case, IP address 192. 168.8.165 floods IoT device with multiple SYN packets and RST packets.
This will result in IoT device not responding to legitimate requests.

74 6. APPLICATION OF STATE MACHINES ON ATTACK TRAFFIC AND REAL WORLD DATA

N |eth.addi

No. Time Source Destination

Protocel Length Info

19766 11.746586 o o = oM TCP 1514 443 - 50270 [ACK] Seq=12078 Ac
19767 11.746900 g o - 8. TCP 1514 443 — 50270 [ACK] Seq=13538 Ac
19768 11.747021 . : . 221 TLSv1.2 1267 Application Data

19773 11.747974 . . . TCP 54 50270 —~ 443 [ACK] Seq=974 Ack=6848 Win
19774 11.748172 . . . TCP 1514 443 — 50270 [ACK] Seq=16211 Ack=974 Wi
19775 11.748326 . f . TCcP 1514 443 — 50270 [ACK] Seq=17671 Ack=974 Wi
19776 11.748418 . . . TLSv1.2 1267 Application Data

19780 11.751039 5 5 .168.8.142 TCP 54 50270 — 443 [ACK] Seq=974 Ack=7945 Win
19781 11.751102 .168. .168.8.142 TCP 54 50270 —~ 443 [ACK] Seq=974 Ack=10865 Wi
19782 11.751151 o o .168.8.142 TCP 54 50270 — 443 [ACK] Seq=974 Ack=12078 Wi
19783 11.751246 o g .168.8.221 TLSv1.2 263 Application Data, Application Data

19791 11.754603 . . .168.8.142 54 50270 —~ 443 [ACK] Seq=974 Ack=14998 Wi

Frame 19768: 1267 bytes on wire (10136 bits), 1267 bytes captured (10136 bits

Ethernet II, Src: PhilipsL.), Dst: Apple)
Internet Protocol version 4, Src: 192.168.8.142, Dst: 192.168.8.221

Transmission Control Protocol, Src Port: 443, Dst Port: 58270, Seq: 14998, Ack: 974, Len: 1213

[3 Reassembled TCP Segments (4133 bytes): #19766(1460), #19767(1460), #19768(1213)]

Figure 6.3: Screenshot from wireshark showing overlap between traffic sent from Apple smart phone and At-
tack traffic.

6.1. CASE STUDY 1: ATTACK TRAFFIC 75

Internet

¢

(-

Raspberry Pi

Valibox as Router ~ WiFi I0S Mobile

B

L

Laptop (Kali Linux)

Figure 6.4: Illustration of attack from IOT device on Raspberry Pi. Laptop running Kali Linux spoofs MAC
address of IOT device.

6.1.3. I0T DEVICE AS SOURCE OF ATTACK

The approach here used was similar to the one used in Doshi et al.[8]. It is a simulated
attack where, instead of infecting the IOT device, a laptop running Kali Linux is used
as the attacker. This laptop will spoof the MAC address of IoT device. This can also be
seen in Figure 6.6, which is a screenshot taken from Wireshark showing attack traffic.
In highlighted parts of the figure, we can see that the source MAC address is seen as
something that belongs to a Philips device. Since the logic to build the system filters
traffic of IoT device based on MAC address, the attack traffic would be considered as the
traffic originating from IoT device. A raspberry pi running apache web server would be
the victim.

First, the apache server on raspberry pi is accessed from mobile phone to check ifit is
up and running. After this, the attack is initiated from the laptop and continued until the
server becomes unresponsive. Figure 6.5 provides a visual explanation of attack traffic
generated in the form of a state machine. As can be seen, the attack starts with a large
number of SYN packets and some responses from victim in the form of SYN-ACK. Once
this is increased, the attacker starts sending Reset packets as long as the victim replies
with SYN-ACK. And this process repeats. Figure 6.6 shows an example of how this attack
traffic looks in Wireshark.

76 6. APPLICATION OF STATE MACHINES ON ATTACK TRAFFIC AND REAL WORLD DATA

#47475 DSS4:4OS69.SASS:TOOT

Figure 6.5: State machine representing SYN Flood attack.

6.2. CASE STUDY 2: REAL WORLD DATA

Details regarding traffic captured in a smart home environment is mentioned in this sec-
tion. Traffic was captured for a week when the device was actually in use in a home
network.

6.2.1. SETUP
The setup to capture was similar to the approach used in 3. However, there were two
significant differences:

 The traffic was captured while several users performed action on the device and it
was not in a controlled environment.

* The setup used to capture traffic while learning state machines included the Hue
bridge and one light along with it. In this setup, it consisted of a Hue bridge but
with three different types of lights.

¢ Training data involved controlling the IoT device with a smartphone running I0S
operating system. Here, android phone and an I0S smartphone were used to con-
trol the device.

This setup has been illustrated in Figure 6.7

6.2.2. HHYPOTHESIS
Because of the differences, some hypotheses were made concerning false positives that
could be encountered.

* Some of them would arise because of the commands issued to control other two
types of lights which were not initially part of training data.

* There could be difference in the type of communication between IOT device with
an IOS smartphone in comparison to IoT device with Android smartphone.

6.2. CASE STUDY 2: REAL WORLD DATA 77

No. Time Source Destination Protocol Length Info
. 878194 .8, .8,

272 6.878264 192.168.8.165 192.168.8.222 TCP 54 2248 —

273 6.878334 192.168.8.165 192.168.8.222 TCP 54 2249 -~

274 6.878403 192.168.8.165 192.168.8.222 TCP 54 2250 -

275 6.878487 192.168.8.165 192.168.8.222 TCP 54 2251 —

276 6.878558 192.168.8.165 192.168.8.222 TCP 54 2252 —

277 6.878630 192.168.8.165 192.168.8.222 TCP 54 2253 -

278 6.878699 192.168.8.165 192.168.8.222 TCP 54 2254 -

279 6.878769 192.168.8,165 192.168.8.222 TCP 54 2255 -

280 6.878901 192.168.8.165 192.168.8.222 TCP 54 2256 —

281 6.879042 192.168.8.165 192.168.8.222 TCP 54 2257 -

282 6.879218 192.168.8.165 192.168.8.222 TCP 54 2258 — 80 [SYN] Seg=0 Win=512 Len=0
283 6.879340 192.168.8.165 192.168.8.222 TCP 54 2259 — 80 [SYN] Seq=0 Win=512 Len=0
284 6.879434 192.168.8.165 192.168.8.222 TCP 54 2260 — 80 [SYN] Seq=0 Win=512 Len=0
285 6.879648 192.168.8.222 192.168.8.165 TCP 58 80 —~ 2056 [SYN, ACK] Seq=0 Ack=1 Win=
286 6.879802 192.168.8.222 192.168.8.165 TCP 58 80 — 2057 [SYN, ACK] Seq=0 Ack=1 Win=
287 6.879949 192.168.8.165 192.168.8.222 TCP 54 2261 — Seq=0 Len=0
288 6.880094 192.168.8.165 192.168.8.222 TCP 54 2262 - Seq=0 Len=0
289 6.880307 192.168.8.165 192.168.8.222 TCP 54 2263 - Seq=0 Len=0
290 6.880458 192.168.8.165 192.168.8.222 TCP 54 2264 — Seq=0 Len=0
291 6.880717 192.168.8.165 192.168.8.222 TCP 54 2265 — Seq=0 Len=0
292 6.880834 192.168.8.165 192.168.8.222 TCP 54 2266 — Seq=0 Len=0
293 6.880905 192.168.8.165 192.168.8.222 TCP 54 2267 — Seq=0 Len=0
294 6.880972 192.168.8.165 192.168.8.222 TCP 54 2268 — Seq=0 Len=0
295 6.881084 192.168.8.165 192.168.8.222 TCP 54 2269 - Seq=0 Len=0
296 6.881182 192.168.8.165 192.168.8.222 TCP 54 2270 - Seq=0 Len=0
297 6.881251 192.168.8.165 192.168.8.222 TCP 54 2271 — Seq=0 Len=0
298 6.881440 192.168.8.165 192.168.8.222 TCP 54 2272 - Seq=0 Len=0
299 6.881570 192.168.8.165 192.168.8.222 TCP 54 2273 - Seq=0 Len=0
300 6.881690 .8.165 192.168.8.222 TCP 54 2274 - Seq=0 Len=0
301 6.881792 .8.165 192.168.8.222 TCP 54 2275 - Seq=0 Len=0
302 6.881983 .8.165 192.168.8.222 TCP 54 2276 - Seq=0 Len=0
303 6.882140 .8.165 192.168.8.222 TCP 54 2277 — Seq=0 Len=0
304 6.882242 .8.165 192.168.8.222 TCP 54 2278 — Seq=0 Len=0
305 6.882360 192.168.8.222 TCP 54 2279 - Seq=0 Win=512 Len=0

i
» Frame 271: 54
» Ethernet 1I,

(432 bits), 54 bytes capturegd (4 bi
,| Dst: Raspberr)
» Internet Pro : 192.168.8.165, Dst: 197.168.8.

» Transmission Control Protocol, Src Port: 2247, Dst Port: 80, Seq: @, Len: @

Figure 6.6: Attack traffic when IOT is used as source of attack. Notice that source Ethernet address of Wireshark
shows that it is originating from Philips Hue and destination is Raspberry Pi. This is because of spoofing MAC
address by the attacker.

» It was not a controlled simulation. It was unsupervised and involved multiple de-
vices over a longer duration. This could give rise to some false positives.

* The gap between traffic collection of training data and this real-world data was
around 3-4 months. There could be some minor changes in the way system be-
haves because of possible updates.

78 6. APPLICATION OF STATE MACHINES ON ATTACK TRAFFIC AND REAL WORLD DATA

Internet

9
|

Android Mobile

-————>
WiFi %

Valibox as Router

Laptop
g 2

10S Mobile

-

~ LAN Cable

Zigbee

Hue Hue Hue Light
Light 1 Light 2 Strip
PC
Figure 6.7: Experimental setup used to capture the traffic in a real life environment.
[A]eth.addr == and tcp
No. Time Source Destination Protocol Length Info
213 133.239243 192.168.8.144 192.168.8.142 TLSV1.2 258 Application Data
214 133.248850 192.168.8.142 192.168.8.144 TLSV1.2 637 Application Data
215 133.249461 192.168.8.142 192.168.8.144 TLSV1.2 88 Application Data
4

» Frame 213: 258 bytes on wire (2064 bits), 258 bytes captured (2064 bits)

» Ethernet II, Src: Apple[I), pst: PhilipsL [)
» Internet Protocol Version 4, Src: 192.168.8.144, Dst: 192.168.8.142

» Transmission Control Protocol, Src Port: 58126, Dst Port: 443, Seq: 2787, Ack: 45782, Len: 204
» Secure Sockets Layer

Figure 6.8: Traffic captured at smart home highlighting source host as Apple smart phone and destination as

Philips Hue. Note that the packets exchanged here are same as the packets in Figure 5.3. This means that
turning the lights On/Off was performed.

(M [eth.addr == and tcp

No. Time Source Destination Protocol Length Info
l 142 66.167630 192.168.8.105 192.168.8.142 TLSv1.2 258 Application Data

143 66.178780 192.168.8.142 192.168.8.105 TLSvV1.2 637 Application Data

144 66.191433 192.168.8.142 192.168.8.1605 TLSv1.2 88 Application Data

145 66.194145 192.168.8.105 192.168.8.142 TCP 54 44592 — 443 [ACK] Seq
]

» Frame 142: 258 bytes on wire (2064 bits), 258 bytes captured (2064 bits)
» Ethernet IT,), [Dst: PhilipsL)
» Internet Protocol Version 4, Src: 192.168.8.105, Dst: 192.168.8.142

» Transmission Control Protocol, Src Port: 44592, Dst Port: 443, Seq: 2828, Ack: 42910, Len: 204
» Secure Sockets Layer

Figure 6.9: Traffic captured at smart home highlighting source host as Samsung smartphone and Philips Hue.

Note that the packets exchanged here are same as the packets in Figure 6.8. This shows that the commands
issued by android and I0S smartphones could be same.

6.3. SUMMARY 79

6.3. SUMMARY

Details regarding the setup used to capture attack traffic are presented. IOT device was
initially considered as victim of Denial of Service attack and traffic was captured during
the execution of that attack. In second case, IOT device was considered as source of at-
tack. Instead of infecting the device in question, a laptop running kali linux was used to
perform attack. To impersonate IoT device, this laptop spoofed the MAC address of IoT
device. A state machine describing the attack has been included in this chapter.

This chapter also contains the details regarding setup used to capture traffic from a smart
home environment. Several hypothesis regarding how this traffic might be slightly differ-
ent from the traffic generated as part of training data in this project are then discussed.
Given the network traffic while performing attack and from real-world data, it can be
used to evaluate the efficiency of state machines in identifying them. Details regarding
the methodology used to perform such evaluation and corresponding results are pre-
sented as part of next chapter.

EVALUATION

This chapter contains a description of the procedure used to verify test traffic against the
learnt state machine. It is followed by various metrics used to evaluate the performance of
the system. Evaluation is performed on Attack traffic from DoS attack and on real-world
traffic separately. Obtained results are discussed along with false positive analysis.

We now have the state machines as well as the test traffic containing normal and at-
tack traffic. Additionally, traffic was also captured in a smart home environment. In this
Chapter, the methodology used to compare metadata of packets with a state machine is
provided. In the second half of this chapter, this methodology is applied and resulting
evaluation metrics are discussed.

7.1. TOOLS USED

The final output by state machine learning module is in the form of a graphviz dot file' or
a PNG file. In this work, dot file is considered. Pydot’ is a tool that can be used to parse,
modify Graphviz DOT files. Output by flexfringe provides a graphviz DOT file that need
to be processed in order to perform evaluation methodology mentioned in this chapter.
It can be used to obtain the transitions and states in the form of a data-structure to easily
parse the data. Figure 7.2 provides an example of a DOT file that can be used to create
a state machine shown in Figure 7.1 with the help of state machine learning module
Flexfringe[47].
Highlighted parts of the DOT file specify the following:

1 This part of the DOT file specifies the number assigned to each state. Each of these
entries corresponds to a state in the state machine.

2 This part contains the label that will be placed inside the corresponding state

Ihttps://www.graphviz.org/doc/info/lang.html
2https://pypi.org/project/pydot/

81

https://www.graphviz.org/doc/info/lang.html
https://pypi.org/project/pydot/

82 7. EVALUATION

FA60:3 | "A54:3"
) "FA54:3

Figure 7.2: Graphviz DOT file corresponding to the
state machine in Figure 7.1

Figure 7.1: Example of a state machine obtained as
from Flexfringe[47].

3 This partis used to specify the label of transition.

4 It contains the source node and destination node of the transition.

7.2. (SEMI)ONLINE EVALUATION 83

7.2. (SEMI)ONLINE EVALUATION
Here, every packet is checked against the state machine as it is parsed from pcap file.
Algorithm 1 provides the pseudo-code of logic used to achieve this. It is called (semi)
online evaluation because details of a packet are parsed individually without storing any
details related to them. However, it is performed over a pcap file which is already cap-
tured instead of packets captured in real-time.

Result: Number of matched and not matched inputs
initialization;
for each packet in pcap file do
check if the packet is sent from/to IOT device ;
input = details of packet in required format ;
if ip_addr is never seen before then
‘ cur_state = ip_addr_state[ip_addr] = root_node ;
else
‘ cur_state = ip_addr_state[ip_addr] ;
end
for each transition from cur_state do
‘ check if input matches one of the transition ;
end
if no match then
‘ increment not_matched_count;
else
increment matched_count;
cur_state = get_next_state(cur_state, transition) ;
end
end
Algorithm 1: Pseudo-code used to traverse the state machine and compare against
packets in a pcap file
For each IP address, the latest state where it is currently present is recorded. Every
time a new packet arrives, this state is updated if there is a match. If it is the first packet,
then the current state of the IP address would be the root node. Starting from the root
node, if there is a transition corresponding to the input symbol, make a transition and
now this new state is the current state for that IP address. If there is no match, then an
appropriate response is displayed.
In order to handle the situation where packets from multiple hosts are mixed with each
other, a separate data-structure was used to keep track of latest state depicting the most
recent packet received/sent from that IP address.

7.3. OFFLINE EVALUATION

In this case, details from pcap are converted into an input file, similar to the way inputs
were given to state machine learning module. Every conversation performed by Hue
is considered as an input to the evaluation module and checked if the entire sequence
matches with the state machine. If there is a mismatch in the packet among even one

84 7. EVALUATION

packet of the conversation, entire conversation is marked as not-matched. Algorithm 2
provides the pseudo-code of logic used to achieve this.
Result: Number of matched and not matched inputs
initialization;
for each sequence in the input file do
for each input in the sequence do
for each transition from cur_state do
‘ check if input matches one of the transition ;
end
if no match then
| increment not_matched_count ;
else
increment matched_count ;
cur_state = get_next_state(cur_state, transition) ;
end
end
end
Algorithm 2: Pseudo-code used to traverse the state machine and compare against
packets in a pcap file
For the attack traffic, the entire sequence of packets coming from the attacker signi-
fying everything from beginning to end of traffic is considered as a single sequence.

7.4. EVALUATION METRICS: ATTACK TRAFFIC

As discussed in previous chapter, Denial of Service attack was performed on/from IoT
device and traffic was captured along with normal traffic. Evaluation mechanism ex-
plained in the previous section was used on the traffic which was captured when IoT
device was used as victim of DoS attack.

Since the data consists of normal traffic as well as attack traffic, an evaluation metric that
takes both positives and negatives into consideration was required. For this purpose, ac-
curacy was used.

TruePositive+ TrueNegative 7.1)

Accuracy = >y ;
TotalPositives+ TotalNegatives

Using this as a measure, an Accuracy of 99.94% was obtained in detection of attack traf-

fic from normal traffic.

7.5. EVALUATION METRICS: BASELINE WITH ATTACK TRAFFIC

As mentioned in Chapter 4, N-Grams was used as a baseline in this thesis. Instead of
using absolute packet size, its value in terms of percentiles was used. Other features re-
mained the same as those provided to state machine learning module.Probability was
assigned to each N-Gram that appeared in training data. For any N-gram in Test data, if
the probability of its occurrence is below a threshold, then it is marked as anomalous.
Table 7.1 shows accuracy achieved upon usage of a various number of percentiles for
packet size, a threshold on the probability of occurrence and value of N in N-grams.

7.5. EVALUATION METRICS: BASELINE WITH ATTACK TRAFFIC 85

Table 7.1: Accuracy obtained based on number of percentiles used for packet size, thresholds defined for
probability of occurrence of a sequence below which it is marked as anomalous and size of sequences(N in
N-grams).

Length of Sequences | No. of Percentiles | Threshold(on probability) | Accuracy

2 10 0.1 99.71%
2 10 0.01 99.71%
2 30 0.1 99.61%
2 30 0.01 99.61%
2 30 0.01 99.61%
2 50 0.01 99.61%
2 50 0.01 99.61%
3 10 0.1 100%
3 10 0.01 100%
3 30 0.1 100%
3 30 0.01 100%
3 30 0.01 100%
3 50 0.01 100%
3 50 0.01 100%
4 10 0.1 100%
4 10 0.01 100%
4 30 0.1 100%
4 30 0.01 100%
4 30 0.01 100%
4 50 0.01 100%
4 50 0.01 100%

We considered values less than 5 for N in N-grams because longer traces would lead to
sequences that might occur less frequently. Additionally, with some hosts, the IOT de-
vice opens and closes a TCP session without exchanging any packets. This would give us
traces of length 4.

86 7. EVALUATION

7.6. EVALUATION METRICS: REAL WORLD DATA

Data collected in a home network is used to evaluate the state machines. Whenever a
packet matches a transition in state machine, it is marked as True Positive. When there
is a mismatch, it is marked as a false positive. This is under the assumption that the IOT
device is not infected by any malware and represents normal behaviour. Upon manual
inspection in Wireshark, there weren’t any traces of infection.

Since the assumption is that data only positives constitute the traffic, Precision or Posi-
tive predictive value is used. It is the ratio of total number of true positives to the sum of
true positives and false positives. The following formula represents this

TruePositive

Precision = — — (7.2)
TruePositive+ FalsePositive

When the Offline evaluation was applied to the data, two types of evaluation were
performed:

7.6.1. USING ABSOLUTE PACKET SIZE

In this case, absolute number of packet size from the test traffic was used to create meta-
data of the packet. All other features were used in the same manner in which they were
used in training data. Metadata was then used to see if there is any matching transition
corresponding to that packet. This is more a stricter version.

Upon evaluation from the pcaps captured over a week, A precision of 75.13% was ob-
tained. That would mean, out of all the packets generated by the IOT device, 24.87% of
the packets were marked as anomalous even though they were from benign traffic.

7.6.2. USING THRESHOLD ON PACKET SIZE AND MISMATCHING TRANSI-

TIONS

The hypothesis was that usage of a stricter approach in terms of checking for absolute
packet size and number of packets would have led to a large number of false positives
in the previous case. To negate this effect, a buffer for packet size was used. For each
packet in test data, all other features were compared against the state machine, except
in case of packet size, if the packet size in test data is in within the range of b bytes from
packet size specified in the state machine, then it is still counted as true positive. (where
b represents the buffer for packet size)

Alongside, a buffer was used for mismatching transitions. In each trace, if the number
of transitions that are not matched is less then t, then it is marked as true positive. (Here
t represents the threshold for mismatching transitions)

Upon using a threshold of 15 bytes for packet size, and 3 in terms of transitions, a pre-
cision of 97.82 % was obtained. Table 7.2 provides the precision obtained upon usage
of various thresholds.

7.6.3. FALSE POSITIVE ANALYSIS
In the previous section, it was inferred that there were still some false positives in the
network traffic captured from real-world traffic. This was even after imposing threshold.

7.6. EVALUATION METRICS: REAL WORLD DATA 87

Table 7.2: Precision obtained based on thresholds defined for packet size and mismatching transitions.

Mismatching Transition | Buffer for packet size(in bytes) | Precision

2 25 95.23%
2 20 95.23%
2 15 82.53%
3 25 97.82%
3 20 97.82%
3 15 97.82%
3 10 84.72%
4 25 97.82%
4 20 97.82%
4 15 97.82%

These false positives were manually inspected to find the cause of these alarms.
Upon usage of the threshold, there were no false positives in the traffic exchanged be-
tween IoT device and smartphone.
Following were the traces where there was an alarm raised.

Background Traffic: Philips Hue communicated with various hosts over HTTP and
this constituted background traffic. False positives raised here are:

of few packets(2-3) in training data. However, in traffic captured from real-world
data, there were few instances where this resulted in a response of 30-35 packets.
These instances caused the majority of false positives in this data. This has been
highlighted as 1 in Figure 7.3.

* HTTP Post call to www.diagnostics.meethue.com generated a response in the form

° HTTP call to www.ecdinterface.philips.com always resulted in a HTTP response
with status 200. In real-world traffic, during a few instances, a response of 400
was obtained. These traces raised a false alarm. This has been highlighted as 3 in
Figure 7.3.

° HTTPresponse to call made to dcp.dcl.philips.com involved more number of pack-
ets than what was seen in training data. This has been highlighted as 2 in Figure

7.3.

Implications: Upon observing the false positives, we can draw certain implications.
In terms of background traffic, the state machines don’t remain valid if the response to an
HTTP call is significantly different than what was seen in training data. Minor changes
can be accounted with the help of thresholds on Packet sizes and number of mismatch-
ing transitions.
However, there were no false positives in traffic exchanged between Mobile App and Hue
upon usage of threshold on packet size and mismatching transitions. Extra flexibility of-
fered in terms of these thresholds were helpful in making false positives zero in this case.

88 7. EVALUATION

PAQO:3 [diagnostics. meethue00:9

www.ecdinterface. philips20:9

FACD:9

Http-200-0K20:9 ttp-200-0OK00:58

FA00:27,PA30: Http-200-0K00:12

www.ecdinterface. philips20:9

[

dcp.del. philips00:18

ttp-200-0K80:9

Figure 7.3: State machine representing background traffic generated by philips Hue. Highlighted parts repre-

sent the conversations where false positives were raised.

7.7. EVALUATION METRICS: BASELINE WITH REAL WORLD TRAFFIC 89

7.7. EVALUATION METRICS: BASELINE WITH REAL WORLD TRAF-
FIC

Traffic captured in real-world settings were used to evaluate the performance of N-grams

which formed our baseline.

Similar to section 7.5, the performance of N-grams was measured upon various param-

eters. As discussed in the previous section, we assumed that the IOT device was not

infected so precision was used to evaluate the performance.

Table 7.3 provides the precision achieved upon usage of different parameters. It can be

seen that, as the number of percentiles increased, precision decreased.

Table 7.3: Precision obtained based on number of percentiles used for packet size, thresholds defined for
probability of occurrence of a sequence below which it is marked as anomalous and size of sequences(N in
N-grams).

Length of Sequences | No. of Percentiles | Threshold(on probability) | Precision

2 10 0.1 92.87%
2 10 0.01 92.87%
2 10 0.001 92.87%
2 30 0.1 86.15%
2 30 0.01 86.15%
2 30 0.001 86.15%
2 50 0.1 83.68%
2 50 0.01 83.68%
3 10 0.1 86.24%
3 10 0.01 86.24%
3 30 0.1 74.33%
3 30 0.01 74.33%
3 50 0.01 70.88%
3 50 0.01 70.88%
4 10 0.1 76.06%
4 10 0.01 76.06%
4 30 0.1 63.97%
4 30 0.01 63.97%
4 50 0.1 59.31%
4 50 0.01 59.31%

Another observation that can be made from the table is, as the length of sequences
increases, precision decreases.
With the best possible parameters: Length of sequences as 2, Number of percentiles as
10 and Threshold as 0.1, we were able to obtain a precision of 92.87% using N-Grams on
real-world data.

90 7. EVALUATION

7.8. RESEARCH QUESTIONS ANSWERED IN THIS CHAPTER

Attack traffic and traffic from real world were considered in this chapter. The perfor-
mance of our state machines is then evaluated. The results from this chapter answer the
following research questions:

RQ2: How effective are state machines for detecting anomalies in network traffic
generated by IOT devices?

State machines were able to successfully detect traffic of Denial of Service attack.
Upon evaluation, a high value of accuracy was obtained. While there were some false
positives when we used state machines with real world data, these false positives were
significantly lowered upon usage of a threshold and resulted in a precision of 97.86%.

By using a test setting, which was different from the setup used to build state ma-
chines, we were able to anser the following research question:

RQ4: To what extent does the state machine differ upon exposure to different test
setting?

Upon exposure to different test setting, state machines were still able to capture
97.82% of the traffic.

7.9. SUMMARY

This chapter started with evaluation methodology of semi-online evaluation and offline
evaluation. Pseudo-code explaining how it was implemented is then mentioned. These
evaluation methodologies were used on Attack traffic from Chapter 6 and real-world
traffic from Chapter ?? separately. Accuracy of 99.94% was obtained when evaluated
on Attack traffic. A precision of 75.13% was obtained on real-world traffic using abso-
lute packet size as one of the features. Upon relaxation of this requirement, by including
a buffer of for packet size and mismatching transitions, precision increased to 97.82%.
The remaining traces which were marked as false positives were analysed and reason for
marking it as false positive has been the slight difference in the behaviour of IoT device
during training data and in real-world data.

Table 7.4: Performance of N-Grams and State Machines with Attack Traffic and Real World data upon usage of
best set of parameters observed as part of this thesis.

Algorithm Type of Test Data | Metric Used | Value

State Machines Attack Traffic Accuracy 99.94 %
N-Grams Attack Traffic Accuracy 100 %

State Machines | Real World Data Precision 97.82 %
N-Grams Real World Data Precision 92.87 %

7.9. SUMMARY 91

N-Grams as a baseline was used to identify attack traffic, as well as with real-world
traffic. Although N-Grams performed better than State machines in identifying attack
traffic, state machines was better than N-Grams with real-world traffic. Table 7.4 pro-
vides the values of evaluation metrics obtained using the best set of parameters observed
as part of this thesis.

Although N-grams have slightly higher accuracy than State machines in detecting attack
traffic, the key strength of using state machines for this thesis is explainability:

N-grams consider sequences of packets with fixed length. In case of state machines, a
complete TCP session could be explained in a single trace. It is also easier to interpret the
behaviour of a device using TCP sessions in state machines than stating the frequency of
sequences of packets with fixed length.

LIMITATIONS AND FUTURE WORK

This chapter contains the limitations of the thesis and how it can be extended for future
work.

8.1. DATA RELATED

Limitations:

While collecting data, operations to control IOT device were performed manually. This
restricts the amount of traffic that was captured.

As discussed in Chapter 3, only those packets which used TCP were considered to build
state machines in case of Philips Hue lighting system. Communication using UDP was
not considered.

Future Work:

Data Collection can be automated to collect data over longer durations using tools such
as Appium'. This would help to achieve more training data and provide exact times-
tamps at which certain operations were performed.

It was observed in the data that the Hue used protocols such as NTP, SSDP etc. Packets
related to these protocols can also be used to learn the normal behaviour of IoT devices.
Philips Hue uses Zigbee protocol to communicate between the Hue bridge and indi-
vidual lights as illustrated in Figure 8.2. This traffic was not considered as part of this
project. There have been instances where vulnerabilities in Zigbee protocol were used
to gain unauthorised access °. Metadata from traffic generated by this protocol can be
combined with the features as part of this thesis. That would enable to detect such kind
of attack and provides a complete view of working of such IoT devices.

Ihttp://appium.io/
Zhttps://eyalro.net/project/iotworm/

93

http://appium.io/
https://eyalro.net/project/iotworm/

94 8. LIMITATIONS AND FUTURE WORK

Zigbee TCP "

A
L

A
¥

Hue Light Hue Bridge Smart Phone

Figure 8.1: Hue bridge uses Zigbee to communicate with lights whereas it uses TCP to communicate with smart
phone controlling it.

8.2. APPROACH RELATED

Limitations: Packet level features were used for this project. This could lead to more
false positives.

In scenarios where TCP is used, retransmitted and out of order packets were handled in
this thesis. However, in the case of UDDP, there needs to be a better approach for identify-
ing the retransmitted and out of order packets.

Future Work: Flow level features could also be used to capture normal behaviour. Packet
level and flow level features can be combined to learn normal behaviour.

DTLS on top of UDP was encountered while working with IKEA lights. It was observed
that, even wireshark was unable to identify retransmitted packets. Usage of parameters
such as Sequence number, epoch number could be used to better identify re-transmitted
and out of order DTLS packets.

In Chapter 6, attack traffic of Denial of Service attack was used to build a state machine. It
used the same metadata that was used to build the state machines representing normal
behaviour of IOT device. This could further be extended. Traffic can be captured while
performing various attacks and can be given as input to the module in this project. It
will help in visualising and explaining various attacks and their behaviour without mak-
ing any changes to the existing module of this project.

As mentioned before, background traffic generated by Philips Hue consists of HTTP
GET/POST calls made by the device. In some instances, these HTTP calls and their re-
sponses are comprised of more than one packet. Figure provides an example of one such
instance where contents of POST calls is part of two packets. In the figure, packet no.
292 is highlighted with its content labelled as a POST call by wireshark. However, packet
no.290 is also part of this POST call and they have been divided into two TCP segments.
This can be seen in the highlighted part of screenshot.

In the current approach, these two packets are considered as two transitions in the
state machine. In future work, these two packets can be merged into a single transition
in state machine. This would give smaller state machine. Upon usage of a threshold on
packet size, as mentioned in Chapter 7 would also lead to less number of false positives.

8.3. EVALUATION RELATED 95

(A eth.addr =~ and tcp

No. Time Source Destination Protocol Length Info

286 15.201079 192.168.8.142 54.76.81.242 TCcP 66 57387 — 80 [SYN] Seq=0 Win=29200 Len=@ MSS=1460 SACK_PERM=1 WS=8
288 15.222872 54.76.81.242 192.168.8.142 TCcP 58 80 ~ 57387 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=1460

289 15.223160 192.168.8.142 54.76.81.242 TcP 60 57387 — 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0

290 15.223397 192.168.8.142 54.76.81.242 TCcP 572 57387 ~ 80 [PSH, ACK] Seq=1 Ack=1 Win=29200 Len=518 [TCP segment of a reassembled PDU]
291 15.245513 54.76.81.242 192.168.8.142 TCP 54 80 ~ 57387 [ACK] Seq=1 Ack=519 Win=30016 Len=0

292 15.247009 T RequestHandler/index.ashx HTTP/1.1 (applica

294 15.268926 54.76.81.242 192.168.8.142 TCP 5460 - 57367 [ACK] Seq=1 Ack=1879 Win=32640 Len=0

295 15.275106 54.76.81.242 192.168.8.142 HTTP 845 HTTP/1.1 260 OK (application/ch-encrypted)

296 15.275249 54.76.81.242 192.168.8.142 TCcP 54 80 ~ 57387 [FIN, ACK] Seq=792 Ack=1879 Win=32640 Len=0

297 15.275741 192.168.8.142 54.76.81.242 TCcP 60 57387 — 80 [ACK] Seq=1879 Ack=792 Win=30058 Len=0

298 15.286018 192.168.8.142 54.76.81.242 TCcP 60 57387 — 80 [FIN, ACK] Seq=1879 Ack=793 Win=30058 Len=0

» Frame 292: 1414 bytes on wire (11312 bits), 1414 bytes captured (11312 bits
» Ethernet IT, Src: PhilipsL [~ " =), pst: Guanglia[__)
» Internet Protocol Version 4, Src: 192.166.8.142, DSt: 54.76.61.242

» q: 519, Ack: 1, Len: 1360
» |2 Reassembled TCP Segments (1878 bytes): #290(518), 3292(1350)

- kyperrexT-rramsrer-rroTUCoT
» POST /DcpRequestHandler/index.ashx HTTP/1.1\r\n
Host: dcp.dcl.philips.com:8e\rin

[truncated]Authorization: CBAuth Type="SS0", Client="echSfafffed1555f", RequestNr="5", Nonce="Oxf6I9VZNGbrl9YIeqOEfg==", SSOToken=' 1KVqT 7;
» Content-Length: 1360

Content-Type: application/CB-Encrypted; cipher=AES\r\n

Connection: close\r\n

\r\n

[Full request URI: http://dcp.dc1.philips.com:8o. Handler/index.ashx

[HTTP request 1/1]

[Response in frame: 295]

File Data: 1360 bytes

Figure 8.2: Screenshot from wireshark showing a POST call which is made up of two TCP segments.

8.3. EVALUATION RELATED

Limitations: While evaluating with IOT device as source of attack, instead of infecting
the 10T device, MAC address of the device was spoofed and a simulated attack was per-
formed.

Future Work: For future work, it could be infected by an actual malware. The approach
used by Meidan et al. [24] to infect IOT device with Mirai Botnet could be a good starting
point.

Missing states and additional states are not part of the current evaluation methodology
in this project. A threshold can be set, upto which these missing or additional states will
be tolerated.

Current evaluation involves reading the state machines without making any changes to
it. A programming language such as Java can be used to exploit the advantage of multi-
threaded programming feature present there. This will speed up the evaluation as traces
can be evaluated parallely. It can also be used to implement online evaluation where
each packet can be checked if it matches a transition in the intermediate state of state
machine or if it matches the transition from the initial state simultaneously. Python is
used as the programming language for evaluation in this project.

In section 7.6.2 of evaluation chapter, a threshold was used to handles mismatching tran-
sitions and slight changes in packet sizes. Various values for these thresholds were ex-
perimented and the one which provides least amount of false positives were chosen. It
would be more useful if we can have a method that calculates this threshold automati-
cally based on the data.

8.4. INTERACTION WITH OTHER DEVICES

Future Work: Devices such as Google Home, Alexa could be configured to control Philips
Hue. Here, only smart phone was used to control IoT device. It would be interesting to
see the difference between commands issued by Google home/Alexa and smart phone,
if any.

CONCLUSION

IoT devices are getting increasingly popular, but they face a multitude of security issues'.
These insecure 10T devices are exploited by hackers, for instance, in the form of Botnets
to perform large scale Denial Of Service attacks. Additionally, they raise privacy concerns
as they are used in home environment.

This project starts with learning the behaviour of these IoT devices and tries to explain
it at packet level. It uses state machines to achieve this. Type of work performed in this
project only involves passively listening to network traffic generated by IoT devices. For
this reason, there will be no overload on individual IOT devices and can be built on top
of existing network infrastructure. Network middle-boxes such as routers can be used to
deploy this work.

Answers for the research questions posed in section 1.6 have been answered in the fol-
lowing manner:

RQ1: How can we perform anomaly detection based on network traffic generated
by IoT devices using state machines?

To achieve this, traffic from IoT device was captured during its normal operation.
This was used to create a state machine explaining the normal behaviour of IoT device.
To validate this, traffic was captured at a smart home environment involving multiple
devices. This traffic was used to validate the fit between state machines and actual be-
haviour of IoT device. Furthermore, Denial of Service attack was performed. Traffic from
this attack was used to see whether the state machines can effectively detect anomalies
from benign traffic.

RQ1la: What are the different behaviours performed by an IoT device during its
normal operation?

Ihttp://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW . pdf

97

http://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW.pdf

98 9. CONCLUSION

The search for an answer to this question started with the manner in which traffic
was collected. Initial focus was on the traffic in TCP/IP protocol suite exchanged be-
tween IOT device with all the other hosts. Traffic was captured while issuing various
commands from the smartphone. Duration and time at which the traffic was captured
were also varied. It was observed that the IOT device communicated with multiple hosts
during its operation. This remained true even when the device was idle. With respect
to UDB it polled some hosts. For instance, it used NTP to obtain time-related data from
certain hosts. However, the focus was on TCP, because using this protocol, IOT device
communicated with the smartphone controlling it It was also using TCP, the IOT device
performed certain HTTP POST/GET calls followed by uploading/downloading data.

RQ1b: Which high-level features can be used to define the behaviour of IoT de-
vices?

Initial set of features considered were protocol, packet size and inter-packet time in-
terval. It was observed in the literature that these three protocols were predominantly
used as stateless features. Upon performing some analysis in the training data, it was
decided to discard inter-packet time interval. Other features such as port numbers, IP
Address, IP Flags were discarded. This was based on the distribution in values of these
features in the dataset.

To aid better explanation of each packet, TLS header message was used in those packets
which were communicated using TLS. For the same purpose, in case of HTTP calls per-
formed by IOT device, domain name of the call and response code of that call were used
as features. In all the remaining cases, TCP flags were used as the feature. In case of IKEA
lights, as DTLS was used for communication between smartphone and the lights, DTLS
message in the packets was used instead of TCP flags.

One important thing to highlight is that here the sequence in which packets are ex-
changed is used as an implicit feature to define the behaviour. This is because the arrival
of each packet marks a transition for one state to another in the state machine.

[RQ1c: How can these high-level features be used to build a state machine?

High-level features such as Packet Size, TCP Flag, TLS Headers, HTTP Call domains
and response code, DTLS message were decided to use for constructing state machines
as part of the previous research question. To build these state machines, arrival or de-
parture of each packet was considered as a transition. Packet size was combined with
one of the other 4 features and this constituted a symbol of state machine that creates a
transition. As each packet’s arrival marks a transition, it was important to handle pack-
ets received out of order. Since the packets were communicated using TCP protocol,
TCP stream reordering was performed before it was used to generate state machines.
Sequence Number and Acknowledgement number of TCP packets were used to identify
and reorder the out of order packets and also to divide the communication between two
hosts into multiple conversations.

Each packet was arranged in the form of PS (P represents protocol-related information, S

99

specifies packet size). Each conversation between Hue and any other hosts was then sep-
arated by newline character. It is then given as an input in Abbadingo competition[18]
format to state machine learning module Flexfringe[47]. Output of this module is in the
form of graphviz dot file which can be converted to PNG format.

RQ2: How effective are state machines for detecting anomalies in network traffic
generated by IoT devices?

Once the state machines were learnt from network traffic of IoT device, the focus was
then on its performance to identify anomalous network traffic. To achieve this, Denial
of Service attack was performed on IoT device to render the device unresponsive. Traffic
was captured which covered normal operation as well as attack traffic. Direction of the
attack was reversed to simulate the same attack but with IoT device as victim. To simu-
late the attack, MAC address of IoT device was spoofed from a laptop running kali Linux.
Test data containing attack traffic and normal traffic were used to see if the attack traf-
fic matches the behaviour specified by state machines. Accuracy was used as a measure
to find the effectiveness of the detection mechanism. Upon calculation, an Accuracy of
99.94% was obtained.

The state machines learnt also highlights that network traffic can still be used to de-
duce important information even if it is encrypted. In this project, only by looking at the
metadata of packets sent/received from IoT device and smartphone, actions performed
by the device could be deduced. This answers our fifth research question.

RQ3: Which commands issued by smartphone to IoT device can be detected us-
ing network traffic metadata?

Using state machines learnt from metadata of network traffic exchanged between
the Philips Hue and Smart Phone, we were able to identify when and which actions were
performed by IoT device. These actions include:

e Issue of command by Smart Phone to IoT device to turn the lights On/Off.

* Response from IoT device to smartphone upon receiving the command to turn
lights On/Off.

¢ Issue of command by Smart Phone to IoT device to change colours of light.

* Response from IoT device to smartphone upon receiving the command to change
colours of light.

* Issue of command by Smart Phone to IoT device to change the theme of lighting.
* Response from IoT device to smartphone upon receiving the command to change
the theme of lighting.

In case of IKEA lights, we were able to identify the following actions:

100 9. CONCLUSION

* Command from smart phone to IKEA lights to turn it On/Off and its corresponding
replies.

* Command from smart phone to IKEA lights to change brightness and its corre-
sponding replies.

To validate this claim, pcaps were captured while issuing these commands from smart-
phone to IoT device. Time of this action was recorded. Later, these pcaps were visually
inspected on Wireshark to verify if the packets exchanged indeed matched those transi-
tions on state machine.

To answer our next research question, we set up an IoT device in a home network
involving multiple devices. The traffic used to learn state machine was exchanged be-
tween Philips Hue Bridge and an I0S smartphone. However, in this setting, both An-
droid smartphone and IOS smartphone were used to control the IOT device. While the
training setup included only one type of light, there were three types of lights in this test
setup.

RQ4: To what extent does the state machine differ upon exposure to different test
setting?

Upon evaluation with thresholds set on packet size and mismatching transitions, a
precision of 97.82% was obtained.

While the focus was on Philips Hue in the previous research questions, the method-
ology was then used to learn state machine of IKEA smart lights. Its results could be used
to answer our next research question.

RQ5: How can the approach be extended to represent the behaviour of another
IoT device?

To represent the background traffic generated by IKEA lights was used to build the
state machine. The methodology for building these state machines was same as the one
used for background traffic generated by Philips Hue. For modelling the traffic between
smart phone and IKEA lights, methodology was extended to include DTLS protocol.

In conclusion, we were able to build a state machine that can explain the behaviour of a
IoT devices at packet level. These state machines can be used to detect the actions per-
formed by IoT device as well as to distinguish normal network traffic with any anomalous
traffic.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8

BIBLIOGRAPHY

Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. “Archi-
tecting the internet of things: state of the art”. In: Robots and Sensor Clouds. Springer,
2016, pp. 55-75.

Abbas Acar et al. “Peek-a-Boo: I see your smart home activities, even encrypted!”
In: arXiv preprint arXiv:1808.02741 (2018).

Suman Sankar Bhunia and Mohan Gurusamy. “Dynamic attack detection and mit-
igation in IoT using SDN”. In: Telecommunication Networks and Applications Con-
ference (ITNAC), 2017 27th International. IEEE. 2017, pp. 1-6.

Pat Bosshart et al. “P4: Programming protocol-independent packet processors”.
In: ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 87-95.

Ismail Butun, Burak Kantarci, and Melike Erol-Kantarci. “Anomaly detection and
privacy preservation in cloud-centric Internet of Things”. In: Communication Work-
shop (ICCW), 2015 IEEE International Conference on. IEEE. 2015, pp. 2610-2615.

Janice Cafiedo and Anthony Skjellum. “Using machine learning to secure IoT sys-
tems”. In: Privacy, Security and Trust (PST), 2016 14th Annual Conference on. IEEE.
2016, pp. 219-222.

Eung Jun Cho, Jin Ho Kim, and Choong Seon Hong. “Attack model and detection
scheme for Botnet on 6LoWPAN". In: Asia-Pacific Network Operations and Man-
agement Symposium. Springer. 2009, pp. 515-518.

Rohan Doshi, Noah Apthorpe, and Nick Feamster. “Machine Learning DDoS De-
tection for Consumer Internet of Things Devices”. In: arXiv preprint arXiv:1804.04159
(2018).

Dave Evans. “The internet of things: How the next evolution of the internet is
changing everything”. In: CISCO white paper 1.2011 (2011), pp. 1-11.

Javid Habibi et al. “Heimdall: Mitigating the Internet of insecure things”. In: IEEE
Internet of Things Journal 4.4 (2017), pp. 968-978.

Christian Hammerschmidt. “Learning Finite Automata via Flexible State-Merging
and Applications in Networking”. PhD thesis. University of Luxembourg, Luxem-
bourg, 2017.

Cristian Hesselman et al. SPIN: a user-centric security extension for in-home net-
works. Tech. rep. Technical Report SIDN-TR-2017-002. SIDN Labs, 2017.

Philokypros Ioulianou et al. “A Signature-based Intrusion Detection System for the
Internet of Things”. In: Information and Communication Technology Form (2018).

101

102 BIBLIOGRAPHY

[14] Prabhakaran Kasinathan et al. “Denial-of-Service detection in 6LoWPAN based In-
ternet of Things”. In: 2013 IEEE 9th international conference on wireless and mobile
computing, networking and communications (WiMob). IEEE. 2013, pp. 600-607.

[15] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset
in the internet of things for network forensic analytics: Bot-iot dataset”. In: Future
Generation Computer Systems (2019).

[16] Thomas Kothmayr et al. “DTLS based security and two-way authentication for the
Internet of Things”. In: Ad Hoc Networks 11.8 (2013), pp. 2710-2723.

[17] Thomas Kothmayr et al. “Poster: Securing the internet of things with DTLS”. In:
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems.
ACM. 2011, pp. 345-346.

[18] KLang. “Evidence driven state merging with search”. In: Rapport technique TR98—
139, NECI 31 (1998).

[19] Pavel Laskov et al. “Intrusion detection in unlabeled data with quarter-sphere sup-
port vector machines”. In: Praxis der Informationsverarbeitung und Kommunika-
tion 27.4 (2004), pp. 228-236.

[20] Tsung-Han Lee et al. “A lightweight intrusion detection scheme based on energy
consumption analysis in 6LowPAN”. In: Advanced Technologies, Embedded and
Multimedia for Human-centric Computing. Springer, 2014, pp. 1205-1213.

[21] MultiMedia LLC. Suricata. URL: https://suricata-ids.org/ (visitedon 11/24/2018).

[22] Wei Lu and Issa Traore. “An unsupervised approach for detecting DDoS attacks
based on traffic-based metrics”. In: Communications, Computers and signal Pro-
cessing, 2005. PACRIM. 2005 IEEE Pacific Rim Conference on. IEEE. 2005, pp. 462—
465.

[23] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture
for User-level Packet Capture.” In: USENIX winter. Vol. 46. 1993.

[24] Yair Meidan et al. “N-BaloT—Network-Based Detection of IoT Botnet Attacks Us-
ing Deep Autoencoders”. In: IEEE Pervasive Computing 17.3 (2018), pp. 12-22.

[25] Diego M Mendez, Ioannis Papapanagiotou, and Baijian Yang. “Internet of things:
Survey on security and privacy”. In: arXiv preprint arXiv:1707.01879 (2017).

[26] Daniele Midi et al. “Kalis—A System for Knowledge-Driven Adaptable Intrusion
Detection for the Internet of Things”. In: Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE. 2017, pp. 656—666.

[27] Yisroel Mirsky et al. “Kitsune: an ensemble of autoencoders for online network
intrusion detection”. In: arXiv preprint arXiv:1802.09089 (2018).

[28] Sudip Misra et al. “An adaptive learning routing protocol for the prevention of
distributed denial of service attacks in wireless mesh networks”. In: Computers &
Mathematics with Applications 60.2 (2010), pp. 294-306.

https://suricata-ids.org/

BIBLIOGRAPHY 103

(29]

(39]

[40]

(41]

Mehdi Nobakht, Vijay Sivaraman, and Roksana Boreli. “A host-based intrusion
detection and mitigation framework for smart home IoT using OpenFlow”. In:
Availability, Reliability and Security (ARES), 2016 11th International Conference
on. IEEE. 2016, pp. 147-156.

Sean Owen and Sean Owen. “Mahout in action”. In: (2012).

Pavan Pongle and Gurunath Chavan. “Real time intrusion and wormhole attack
detection in internet of things”. In: International Journal of Computer Applications
121.9 (2015).

Okko Risdnen and Unto K Laine. “A method for noise-robust context-aware pat-
tern discovery and recognition from categorical sequences”. In: Pattern Recogni-
tion 45.1 (2012), pp. 606-616.

Shahid Raza, Linus Wallgren, and Thiemo Voigt. “SVELTE: Real-time intrusion de-
tection in the Internet of Things”. In: Ad hoc networks 11.8 (2013), pp. 2661-2674.

Shahid Raza et al. “Lithe: Lightweight secure CoAP for the internet of things”. In:
IEEE Sensors Journal 13.10 (2013), pp. 3711-3720.

Shahid Raza et al. “Secure communication for the Internet of Things—a compar-
ison of link-layer security and IPsec for 6LoOWPAN". In: Security and Communica-
tion Networks 7.12 (2014), pp. 2654-2668.

Ramasubramanian Sekar et al. “Specification-based anomaly detection: a new ap-
proach for detecting network intrusions”. In: Proceedings of the 9th ACM confer-
ence on Computer and communications security. ACM. 2002, pp. 265-274.

Martin Serror et al. “Towards In-Network Security for Smart Homes”. In: Proceed-
ings of the 13th International Conference on Availability, Reliability and Security.
ACM. 2018, p. 18.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application
protocol (CoAP). Tech. rep. 2014.

Michael Sipser. Introduction to the Theory of Computation. Vol. 2. Thomson Course
Technology Boston, 2006.

Arunan Sivanathan et al. “Low-cost flow-based security solutions for smart-home
IoT devices”. In: Advanced Networks and Telecommunications Systems (ANTS), 2016
IEEE International Conference on. IEEE. 2016, pp. 1-6.

Vijay Sivaraman et al. “Network-level security and privacy control for smart-home
IoT devices”. In: Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), 2015 IEEE 11th International Conference on. IEEE. 2015, pp. 163—
167.

Alberto MC Souza and Joseé RA Amazonas. “An outlier detect algorithm using big
data processing and internet of things architecture”. In: Procedia Computer Sci-
ence 52 (2015), pp. 1010-1015.

Douglas H Summerville, Kenneth M Zach, and Yu Chen. “Ultra-lightweight deep
packet anomaly detection for Internet of Things devices”. In: Computing and Com-
munications Conference (IPCCC), 2015 IEEE 34th International Performance. IEEE.
2015, pp. 1-8.

104

BIBLIOGRAPHY

(44]

(45]

[46]

(47]

(48]

(49]

[50]

Nanda Kumar Thanigaivelan et al. “Distributed internal anomaly detection system
for Internet-of-Things”. In: Consumer Communications & Networking Conference
(CCNC), 2016 13th IEEE Annual. IEEE. 2016, pp. 319-320.

Pablo Torres et al. “An analysis of recurrent neural networks for botnet detection
behavior”. In: Biennial Congress of Argentina (ARGENCON), 2016 IEEE. IEEE. 2016,
pp. 1-6.

Viliam Vajda et al. “The EBBITS Project: An Interoperability platform for a Real-
world populated Internet of Things domain”. In: Proceedings of the International

Conference Znalosti (Knowledge), Technical University of Ostrava, Czech Republic.
2011, pp. 317-320.

Sicco Verwer and Christian A Hammerschmidt. “flexfringe: a passive automaton
learning package”. In: 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE. 2017, pp. 638-642.

Linus Wallgren, Shahid Raza, and Thiemo Voigt. “Routing Attacks and Counter-
measures in the RPL-based Internet of Things”. In: International Journal of Dis-
tributed Sensor Networks 9.8 (2013), p. 794326.

Yang Zhang, Nirvana Meratnia, and Paul Havinga. “Adaptive and online one-class
support vector machine-based outlier detection techniques for wireless sensor
networks”. In: Advanced Information Networking and Applications Workshops, 2009.
WAINA'09. International Conference on. IEEE. 2009, pp. 990-995.

Shengchu Zhao et al. “A Dimension Reduction Model and Classifier for Anomaly-
Based Intrusion Detection in Internet of Things”. In: Dependable, Autonomic and
Secure Computing, 15th Intl Conf on Pervasive Intelligence & Computing, 3rd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th Intl. IEEE. 2017,
pp. 836-843.

	Preface
	Introduction
	Problem Statement
	Proposed Solution
	Dataset
	Motivation for choosing IOT devices
	Motivation for choosing Philips Hue
	Research Questions
	Research Scope
	Contributions
	Summary of Results
	Report Outline

	Background and Literature Survey
	Definitions
	Internet of Things
	Intrusion Detection System
	State Machines
	SPIN Device

	Related Work
	Homogeneous Devices
	Heterogeneous Devices
	Other related work
	Observations
	Research Gaps

	Data Exploration
	Experimental Setup
	Data Collection
	Data Filtering
	Observations from the Data
	Features
	Selected Features
	Other Features Considered

	Summary

	Methodology
	State Machine Learning Module
	Input Format
	Parameters to learning module
	Output Format

	Representation of State Machines
	Initial State Machines: Traffic between mobile app and Hue
	Case1: All traffic was considered
	Case2: Different Data with some filtering

	Final State Machines: Traffic between Mobile app and Hue
	Inspection

	Ordering of TCP stream and its significance on Background Traffic by Hue
	TCP packets re-ordering and sequence generation

	Final State Machines: Background Traffic generated by Hue
	Extension to another device: IKEA lights
	Traffic between smart phone and IKEA lights
	Background Traffic generated by IKEA lights

	Baseline: N-Grams
	Answers to research questions addressed in this chapter
	Summary

	Results: State Machines representing the normal behaviour
	State Machines representing Traffic between Mobile app and Hue
	State machines representing Background Traffic generated by Hue
	State Machines representing traffic generated by IKEA lights
	Traffic between smartphone and IKEA lights
	Background traffic generated by IKEA lights

	Answers to research questions addressed in this chapter
	Summary

	Application of State Machines on Attack Traffic and Real World Data
	Case Study 1: Attack Traffic
	Attack type and tools used
	IoT device as victim
	IoT device as source of attack

	Case Study 2: Real World Data
	Setup
	Hypothesis

	Summary

	Evaluation
	Tools used
	(Semi)online evaluation
	Offline Evaluation
	Evaluation Metrics: Attack Traffic
	Evaluation Metrics: Baseline with Attack Traffic
	Evaluation Metrics: Real World data
	Using Absolute Packet Size
	Using Threshold on Packet Size and mismatching transitions
	False Positive Analysis

	Evaluation Metrics: Baseline with Real World Traffic
	Research Questions answered in this chapter
	Summary

	Limitations and Future Work
	Data Related
	Approach Related
	Evaluation Related
	Interaction with other devices

	Conclusion

