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Abstract

The advent of streaming and video has sparked a revolutionary shift in the presentation
of materials across various fields, such as history, art, and media. In this context,
scholars are seeking efficient solutions to index, retrieve, and browse through digital
content, searching for a specific instance. Unlike searching a specific instance in an
image, searching in a video requires more than analyzing the visual features of an
image and then comparing these features to a database, for it includes processing
video sequences and retrieving video segments. A video can be viewed as a sequential
arrangement of frames captured at a specific frame rate. The task of locating specific
objects within a video can be likened to conducting retrieval within the set of frames
that constitute the video. While a video usually has repetitive and redundant frames,
making the processing rather inefficient.

Motivated by the urgent need and promising applications across diverse disciplines,
we present a novel deep learning-empowered content-based video image retrieval (CB-
VIR) system with a strong emphasis on real-world applications. This system offers
high efficiency and considerable accuracy, addressing the challenges associated with
accessing and utilizing video materials effectively.

To address this, our initial approach revolves around the extraction of informative
keyframes that effectively capture essential objects within the video. This process,
known as Key Frame Extraction (KFE), enables us to distill the most crucial visual
representations for further analysis. After the extraction of keyframes, the relatively
smaller dataset allows for content-based image retrieval (CBIR) to be conducted, re-
trieving similar images from a database solely based on the content of the query image.
However, capturing accurately necessitates the use of high-level representations, while
processing with high efficiency requires simple or low-level interpretations of images.
The existing research predominantly emphasizes accuracy and employs extensive con-
volutional neural networks to ensure high precision.

In this project, a wide range of methods are investigated and analyzed, includ-
ing traditional representations, handcrafted feature extraction methods, and up-to-
date machine learning-based image representations. Our contribution is striking a
balance between high-level and low-level image representations for this task. Tar-
geting efficiency improvement, enhanced color-based features together with dynamic
clustering KFE module is proposed and implemented, achieving high efficiency ra-
tio and satisfactory accuracy. While targeting accuracy, a traditional and deep
learning-based hybrid feature is proposed, achieving valid efficiency ratio and high-
est accuracy. Overall, an automatic retrieving system requiring much less user en-
gagement is provided, together with a system GUI prototype, which is available on
https://github.com/LotusCreme/CBVIR.git, and a demo video can be found on
https://youtu.be/NiWZC823nag.
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Introduction 1
This project aims to develop an efficient and reliable content-based video image retrieval
system to automatically locate query images within videos. While the application
potential is diverse, our primary focus lies on its utility in historical research. The
system is a part of the project known as ”Engineering Historical Memory” (EHM), led
by Dr. Andrea Nanetti, aiming to support ongoing historical research. The objective
of this project is to harness emerging digital techniques like artificial intelligence to
aggregate and disseminate historical knowledge [7]. Further elaboration can be found
in Section 1.1: Background.

The proposed system’s applicability extends beyond a specific application. It is well-
suited for scenarios requiring efficient navigation through video databases to pinpoint
specific patterns. Moreover, the system could be useful for content creators, video
editors, news generators, and criminal investigators. These diverse users can leverage
it to select, highlight, and analyze raw video content, swiftly access visual information
from lengthy recordings, and efficiently identify subjects of interest in CCTV footage.

Our approach involves two distinct schemes: the division of the task into two stages-
Key Frame Extraction and Content-based Image Retrieval- and strategic utilize differ-
ent image processing techniques in each stage. The second scheme is recycling image
representations across both stages. Section 1.2: Pipeline delves into the rationale be-
hind this approach and explains the functions of each module.

For clarity, a comprehensive problem statement and objective statement are pro-
vided in Section 1.3: Problem Statement. Furthermore, the structural layout of this
thesis is outlined in Section 1.4: Outline.

This endeavor seeks to blend academic rigor with practical utility, addressing a range
of applications while anchored in the pursuit of enhancing historical research through
cutting-edge digital methodologies.

1.1 Background

The advent of streaming and video has sparked a revolutionary shift in the presenta-
tion of materials across various fields, such as history and art. In this context, scholars
are increasingly seeking efficient solutions to index, retrieve, and browse digital his-
torical content. These solutions are crucial for enabling researchers to leverage vast
digital archives without expending excessive time and effort on filtering out irrelevant
information.

Recent advancements in deep learning methodologies have demonstrated their piv-
otal role in enhancing the image processing and retrieving process [8]. Additionally,
the combination of deep learning with traditional media and signal processing methods
can yield compelling outcomes [9].
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Motivated by the urgent need and promising applications across diverse disciplines,
we present a novel deep learning-empowered content-based video image retrieval system.
This system offers high efficiency and considerable accuracy, addressing the challenges
associated with accessing and utilizing digital historical materials effectively.

1.2 Pipeline

To achieve this goal, we propose decomposing the task into two stages. Figure 1.1 is
the pipeline illustration. The initial stage is denoted as Key Frame Extraction (KFE)
and depicted by the first blue box. This stage focuses on removing consecutive and
redundant frames from the input query video, while simultaneously identifies frames
of importance. Subsequently, the second stage, represented by the orange box in Fig-
ure 1.1 and referred to as Content-Based Image Retrieval (CBIR), consists of Feature
Extraction (FE) and Search and Match (SaM). Within this stage, the system extracts
features from the query image as well as the newly formed keyframe database. More-
over, it employs a certain Approximate Nearest Neighbor (ANN) search to match these
features, ultimately identifying the most suitable candidates that correspond closely to
the query image.

A video can be considered a collection of frames at a specific frame rate [10]. Lo-
cating specific objects within a video is equivalent to conducting retrieval within the
set of frames comprising the video.

Typically, videos have a frame rate of 30 frames per second, meaning a five-minute
video encompasses 9000 frames with significant content repetition, leading to wasted
efforts. This redundancy poses challenges in finding objects within such datasets. To
address this, our initial approach is KFE, which involves selecting and displaying in-
formative keyframes that capture essential objects within the video. The elimination
of redundant frames thereby enhances the efficiency and accuracy of subsequent pro-
cessing steps.

The fastest way to remove redundancy in a video is uniform downsampling, but uni-
formly extracting keyframes is impractical due to varying shot durations, which makes
discerning crucial and redundant information impossible, just like random selection.
Consequently, effective non-uniform extraction is crucial, necessitating the selection of
an appropriate image feature representation.

Once keyframes are extracted, content-based image retrieval (CBIR) can be per-
formed on this relatively smaller dataset. The CBIR is designed to retrieve relevant
images from a database based only on the visual content of the query image, without
reliance on text or keywords. However, existing research predominantly focuses on
accuracy rates, often utilizing extensive convolutional neural networks to ensure high
accuracy. In the context of this task, where the dataset size is no longer excessive,
exploring image interpretations that yield enhanced gains becomes an essential focus
of this study.

2



Figure 1.1: Two-stage CBVIR pipeline

1.3 Problem Statement

This study focuses on developing an efficient content-based video image retrieval (CB-
VIR) system with a strong emphasis on real-world applications. Efficiency and accuracy
are the primary metrics of concern due to their significant impact on system perfor-
mance. The efficient retrieval of data plays a crucial role in enabling researchers to
access relevant information quickly and conveniently. Achieving accuracy in media
data extraction necessitates the use of high-level representations, while high efficiency
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and speed require low-level interpretations. The core focus of this work is to
strike a balance between low-level features, which enhance efficiency, and
high-level features, which bolster accuracy.

The proposed system is modular, thus flexible, allowing for the enhancement of
efficiency through improvements in its two stages. But It is crucial to emphasize that
the overall accuracy and efficiency of the system are intricately intertwined with both
modules. For instance, if the Key Frame Extraction (KFE) module operates with
commendable efficiency but unfortunately omits crucial keyframes associated with a
particular query image, the Content-Based Image Retrieval (CBIR) module becomes
ineffective in aiding the retrieval process, resulting in a decrease in overall accuracy.
Conversely, if the KFE module selects an excessive number of redundant frames, it
negatively affects the subsequent feature extraction and search processes within the
CBIR module. Therefore, we have established three specific quantitative goals for the
KFE module, CBIR module, and the overall system.

1. The Key Frame Extraction (KFE) module should demonstrate a significant
increase in efficiency, aiming for a processing speed that is at least 20 times faster
than the original duration of the video. Simultaneously, it should maintain a high
accuracy level of 0.95.

2. The Content-Based Image Retrieval (CBIR) module should exhibit notable
efficiency improvements, targeting a processing speed that is at least 20 times
faster than the original duration of the video. Additionally, it should achieve a
mean average precision of 0.9, ensuring reliable and precise image retrieval results.

3. The overall system should strive for an efficiency ratio of 10 times faster than
the original duration of the video. It should successfully combine the enhanced
efficiency of both the KFE and CBIR modules. Moreover, the system should
achieve a mean average precision of 0.9.

More details of those metrics can be found in Chapter 4.

1.4 Outline

The outline of this thesis is as follows:

• Chapter 2 delves into significant research and methodologies related to video sum-
marization and content-based image retrieval.

• Chapter 3 presents the details of image representation and clustering methods
that are implemented or tested in this project. Also, this chapter thoroughly
examines their respective advantages and drawbacks.

• Chapter 4 first introduces the dataset we utilized for testing our methodologies,
and subsequently outlines the metrics used to evaluate the methods throughout
the experiments. Then, the results are presented in an order of sub-topics under
Key Frame Extraction (KFE) module, the overall KFE module, the connected
system’s performance and the GUI prototype.

4



• Chapter 5 serves as the last chapter encapsulates the outcomes of the research
and proposes potential directions for future exploration.
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Related works 2
In this chapter, related works in Content-based Video Image Retrieval (CBVIR) will
be discussed. And particularly, image feature extraction methods along with their
respective application scenarios will also be included.

2.1 Content-based Video Image Retrieval (CBVIR)

Generally, this topic is a relatively new topic compared to Content-based Image Re-
trieval (CBIR) from large databases for most of the recent advancements in artificial
intelligence have been focusing on enhancing real-time CBIR or accurate intelligent
image search capabilities [11].

VISIONE is a tool for large-scale video search, developed for Video Browser Show-
down 2019 challenge [12]. This paper mentioned that three types of queries are sup-
ported in this system. Keyword-based search allows users to search for specific video
segments by textual keywords using the Caffe framework [13]. The system annotates
images using WorkNet [14]. It extracts scene attributes and utilizes an automatic an-
notation system for untagged images. It also includes object location search, which can
sketch simple bounding boxes to indicate spatial locations of objects in the scene, by
integrating the real-time object detection algorithm YOLOv3 [15]. Object information
is indexed using a text-based representation. And for visual search, it extracts visual
features using the Regional Maximum Activations of Convolutions (R-MAC) [16] and
transforms visual features into textual representations for text search engines. This
proposed system highly relies on text-based indexing which may lose visual nuances
and potentially struggle with complex content understanding and indexing. Because it
is not open-sourced, all the functions have not been tested and validated yet.

Two reviews of CBVIR [17,18] pointed out that dealing with excessive video frames
requires shot boundary detection and key frame selection. As for image retrieval,
there are two categories: query-by-text (QbT) and query-by-example (QbE) [17]. QbT
corresponds to Annotation-based Image Retrieval (ABIR), which is sophisticated and
even extended to real-time re-ranking to reduce ambiguity and noisy results [19]. QbE
means the search is based on image content, which is also known as Content-based
Image Retrieval (CBIR). The subsequent and main discussions are around the progress
in image retrieval instead of video content retrieval.

As for the adaptable framework for content-based visual media retrieval, a frame-
work leverages Convolutional Neural Networks (2D CNN), 3D Convolutions (3D CNN),
and Long Short Term Memory networks (LSTMs) [20] to process images and videos for
content-based retrieval [21]. Its recurrent convolutional architecture includes LSTM
processing to generate a final feature representation for the video. This framework
works effectively for both images and videos for retrieval. Their 3D model is good
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at retrieving seen data while 2D model is better at unseen data. It enhances video
comprehension and turning points identification by using LSTM. This network includes
sequence information and relationship of scenes of the video [22], but the whole pipeline
aims to process video into a single feature encapsulating the essence of the video. This
causes the lack of temporal information and it is at the expense of efficiency.

Generally, video image retrieval topic exhibits a scarcity of pertinent literature
within the academic domain. In the next section, video summarization and image
feature extraction methods will be discussed.

2.2 Key Frame Extraction (KFE)

As discussed in Chapter 1, our propoesed implementation of this application involves
two distinct stages: Key Frame Extraction (KFE) and Content-Based Image Retrieval
(CBIR). Irrespective of the specific stage, the primary focus for enhancing efficiency and
ensuring accuracy lies in employing an appropriate image feature description method.

The existing literature primarily focuses on KFE methods within the realm of
video summarization. Video summarization aims to generate concise synopses of
lengthy videos while preserving crucial characters and main storylines. Traditional
approaches encompass techniques such as determining optical flow based on bright-
ness patterns [23], object-based inter-frame change detection [24], and utilizing color
histogram features [25]. Audiovisual features are used to describe the characteristics
of the shots and utilize Support Vector Machines (SVM) to select relevant shots [26].
While these methods effectively extract keyframes, their redundancy performance is
compromised.

A technique named VSUMM is designed to generate condensed video summaries.
This approach involves extracting HSV color features from frames and employing the
k-means clustering algorithm [6]. In a similar vein, researchers exploit the variance
curve of dynamic color histograms to identify gradual shot transitions, leading to the
extraction of a set of keyframes. They also utilize a rapid wavelet histogram technique
via optimized k-means to create another set of keyframes. These two sets are then
combined using mutual information to produce the final selection of keyframes [27].
Conversely, instead of dealing with visual features, a framework first trains the network
to link the visual information to textual inputs and then takes a textual query as
input and generates a corresponding keyframe set [28]. Works leveraging deep learning
models like Graph Convolutional Networks (GCNs) [29], Bi-directional Long Short-
Term Memory (BiLSTM) fuse multi-modality to sort the scene relations and select the
candidate shots for the essence creation [9,30]. These pipelines offers valuable insights
for conducting our project but they are not perfectly aligned with our task requirements
and structures. Instead, decomposing the video into independent frames as VSUMM [6]
pipeline is more economical in this task.

8



2.3 Content-based Image Retrieval (CBIR)

The historical researchers’ pain point in searching visual materials is that the database
is not thoroughly annotated with textual descriptions, and even if it is labeled or fully
annotated in a certain language, cross-cultural and cross-language research still face
text-based retrieval limitations. Moreover, researchers often lack textual clues, such
as keywords or detailed descriptions. Different from query-by-text, CBIR requires no
textual information, treating all visual materials as feature vectors, and by comparing
features’ similarity, it can provide the most similar candidates.

Earlier progress in image feature analysis techniques like handcrafted features Scale-
Invariant Feature Transform (SIFT) [2], Speeded Up Robust Features (SURF) [31], Ori-
ented fast and Rotated BRIEF (ORB) [32], and Hashing value [33] replaced traditional
methods and were prevalent in image representation until the advent revolutionizing
deep convolutional neural networks (DCNN) [11], including AlexNet [34] and ensuing
networks [4, 5, 35, 36].

VGGNet and ResNet are outstanding CNNs regarding accuracy and efficiency. More
details and discussions can be found in Chapter 3. Most studies tend to favor the
approach of individually mapping vectors from a convolutional layer as local features
[37] and subsequently combining them into a global feature [16,38].

R-MAC generates a comprehensive image description by combining CNN activation
characteristics from various spatial regions through a specific aggregation process. [16],
Cross-dimensional Weighting (CroW) descriptor is an efficient non-parametric weight-
ing and aggregation scheme, aiming to combine and summarize the information con-
tained within convolutional features to create a more condensed and representative
global feature [39]. Sum-Pooled Convolutional (SPoC) descriptor (based on simple
sum-pooling aggregation) leverages preprocessed Gaussian centers to aggregate convo-
lutional features, deriving concise global descriptors. It yields a significant performance
enhancement compared to previous global image descriptors commonly employed in im-
age retrieval tasks [38]. Additionally, deep learning methods are revolutionizing this
field with much more advanced features that could adjust the attention and highlight
the most relevant regions within the extracted features [40,41].

Obviously, researchers have increasingly turned to these more advanced features for
image retrieval tasks. However, it’s worth noting that though these techniques are more
effective compared to low-level feature extraction approaches, they also require higher
computational resources and are less efficient.

Both KFE and CBIR need the implementation of the same processing scheme:
image representation where each frame or image is represented by a vector using a
particular extraction method, and representation comparison, involving comparing the
similarity of images with a certain comparison measure. However, they exhibit distinct
levels of sensitivity and accuracy requirements. For KFE, the focus is on consecutive
frames, which often exhibit similar characteristics, whether in terms of background
or foreground objects. Regardless of a hard or soft transition, intermediary frames
experience a phase of blurriness or a sudden and substantial change in optical features,
both of which require only a low feature ”resolution”. On the other hand, CBIR’s
similarity comparison centers around a given query image, and all comparison objects
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receive equal consideration. The combination of adjacent frame features does not yield
any attentional advantage. Therefore, it needs high-level features instead of traditional
methods.

The aforementioned works are groundbreaking researches that are worth further in-
vestigation and experiment. In the next chapter, different levels of image representation
methods will be thoroughly analyzed.
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Methods 3
In Chapter 2, we thoroughly examined and analyzed various image representation meth-
ods, along with their respective application scenarios. However, it is worth noting that
there is a scarcity of research or discussion specifically addressing efficient video frame
retrieval tasks. Consequently, we were unable to reach a definitive conclusion regarding
the optimal method or scheme for such tasks. In light of this, rather than exclusively
focusing on cutting-edge methods, we broadened our scope to include less current cat-
egories.

In this chapter, we will delve into the state-of-the-art image representation methods
from different categories, both traditional handcrafted features and up-to-date deep
learning-based methods. Our objective is to explore their potential, drawbacks, and
suitability within both the Key Frame Extraction (KFE) and Content-Based Image
Retrieval (CBIR) modules. In KFE module, extracted features later serve as cluster
references for the system to take key frames from the video. In CBIR module, extracted
features will be compared using a certain measure to retrieve all the relevant candidates
from the keyframes. By undertaking this comprehensive examination, we aim to analyze
the strengths and weaknesses of these methods and their applicability to our specific
research goals.

Among the methods for image representation to be examined are the following:

• Color-histogram

• Histogram of gradients

• Scale-Invariant Feature Transform (SIFT)

• VGGNet-based

• ResNet-based

• Hybrid feature

The methods for clustering features to be discussed are the following:

• K-means clustering

• Dynamic clustering
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3.1 Image Representation

3.1.1 Color Histogram (CH)

A color histogram is a color-based image visual representation that effectively captures
and illustrates the distribution of colors within an image. Particularly for digital images,
the color histogram quantifies the number of pixels associated with specific colors across
the entire color space of the image. Statistically, the color histogram encapsulates the
joint probability of intensities for each of the three color channels, thereby presenting
a comprehensive portrayal of the global color distribution in the image [42].

While a color histogram can be constructed for any color space, it is commonly
employed in the context of three-dimensional color spaces such as RGB (Red-Green-
Blue color model) or HSV (Hue-Saturation-Value color model). In this work, for key
frame extraction part, we mainly use RGB color model, for HSV separating color
information from brightness information also makes computation less efficient, while
the gain is not outstanding. For comparison, we include the VSUMM scheme proposed
in [6]. Next, more details of this scheme and RGB color histogram calculation will be
discussed.

3.1.1.1 Video SUMMarization (VSUMM)

Video SUMMarization (VSUMM) approach aims to automatically create a summary
for a given video. This approach is based on HSV color histogram feature extraction
from video frames and K-means clustering algorithm [6].

In the image representation step, the processing of the color space is HSV (Hue,
Saturation, Value) model as shown in Figure 3.1.

Figure 3.1: Illustration of HSV color model

It computes the dominant spectral component color and quantizes the color his-
togram to 16 bins. Then it calculates the histogram of each bin unit, connects the
histograms of all bin units in the same image block to form the histogram feature of
the image block, and normalizes it. Finally, the feature descriptions of all image blocks
in the image are connected to obtain the histogram feature of the entire image.

Its clustering method will discussed in Section 3.2.
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3.1.1.2 Color-based feature vectore formation

Assuming the RGB color space, as shown in Figure 3.2 contains L color bins.

Figure 3.2: Illustration of RGB color model

The proportion of pixels in the kth color bin of an image with N pixels can be
presented as Equation 3.1:

h (k) =
η(k)

N
, k ∈ {1, 2, · · · , L}, (3.1)

where η(k) is the total number of pixels in the kth color bin. The full color histogram
of the entire image I can be expressed as:

H(I) = [h (1)h (2) . . . h (L)] . (3.2)

Figure 3.3 is the illustration of two example images with their color histogram plots.

Figure 3.3: Illustration of RGB color histograms

The calculation of color histograms is simple and fast, and the color information it
keeps can be applied to simple image retrieval and similarity check tasks, but it has
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two major limitations. Firstly, it is inherently vulnerable to slight brightness changes
or quantization errors. This sensitivity to bin allocation can lead to misrepresentations
and inaccurate comparisons [43]. Specifically, when colors are visually similar but
actually distinct, there is a possibility that they will be perceived as identical if they
happen to be assigned to the same histogram bin. Conversely, colors that belong
to different bins, even if they share a significant visual similarity, will be regarded
as completely different. And the other limitation is that color histogram is proven
to be less efficacious on large databases [44]. Because a color histogram primarily
emphasizes the distribution of different color types within an image, disregarding their
spatial arrangement. Consequently, images that appear distinct can exhibit similar
color histograms. Figure 3.4 This issue becomes particularly pronounced when dealing
with extensive image databases, where a considerable number of images may share
similar color histograms which exacerbates the problem.

Figure 3.4: Example patterns having overall similar color histograms, but different spatial
distributions (adapted from [1])

Recognizing these constraints, we can first increase the number of bins to mitigate
the impact of quantization error. Additionally, we can still incorporate spatial infor-
mation alongside color distributions by dividing the original image into blocks and
flattening the features after embedding each block respectively.

Given that the color span is divided into L color bins, the color histogram of a block
located at pth row and qth column with N(p,q) pixels can be presented as Equation 3.3:

h(p,q) (k) =
η(p,q)(k)

N(p,q)

, k ∈ {1, 2, · · · , L}, (3.3)

where η(p,q)(k) is the (p, q)th, p ∈ {1, 2, · · · , P}, q ∈ {1, 2, · · · , Q} block total number
of pixels in the kth color bin.

Therefore, the image feature matrix H(I) could be expressed accordingly:

H(I) =


h(1,1)(k) h(1,2)(k) · · · h(1,Q)(k)
h(2,1)(k) h(2,2)(k) · · · h(2,Q)(k)

...
...

. . .
...

h(P,1)(k) h(P,2)(k) · · · h(P,Q)(k)

 . (3.4)

For a more compact expression that can be easily used in later feature comparison,
we can vectorize H(I) into a feature vector h(I), as shown in Equation 3.5:

h(I) = vec(H(I)), (3.5)
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where vec represents the vectorization function [45]:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]T ,

which stacks the columns of a m× n matrix A.
Figure 3.5 shows the pipeline of how the enhancements are implemented. The first

image is a frame read from a historical video, and it is partitioned into a grid of 3× 3,
resulting in a total of 9 blocks. After embedding each block using color histogram, this
feature matrix is vectorized into a feature vector that can represent the whole image
without losing all spatial information.

Figure 3.5: The illustration of including spatial information

3.1.1.3 Color-based feature matrix formation

Moreover, a video consists of many frames, which can be denoted as I. Therefore, we
can express the color-based feature matrix as H(I), and

H(I) = [h(I1) h(I2) · · · h(Im)], m ∈ {1, 2, · · · ,M}, (3.6)

where M is the number of frames contained in a certain video.

3.1.1.4 Singular Value Decomposition (SVD)

We have introduced the color-based image representation of a single frame and a single
video in the previous section. The raw color histogram representation is a redundant
form with a large dimension. Reducing the dimensionality of these features alleviates
the computational burden in subsequent steps. In this section, we will introduce a
Principle Component Analysis(PCA) method Singular Value Decomposition(SVD) that
can reduce the dimension of our raw color-histogram features. This technique has been
used in motion video summarization tasks with the user-specified length [46].

The fundamental concept behind Principal Component Analysis (PCA) is to trans-
form a set of features from a higher-dimensional space (n-dimensional) into a lower-
dimensional space (k-dimensional). This new space, consisting of k orthogonal fea-
tures, is referred to as the principal components [47]. These principal components are
essentially a compressed representation of the original n-dimensional features [47]. In
practical applications, the matrices we decompose are often non-square, and the same
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holds true for our application. Singular Value Decomposition (SVD) [48] is a versatile
decomposition method that can be applied to any matrix. Given an n × m(n ≥ m)
matrix A, there always exists a singular value decomposition:

A = UΣVT , (3.7)

where U is an n× n orthogonal matrix, and the orthogonal vectors in U are called
left singular vectors. Σ is a diagonal matrix of n×m, the elements outside the diagonal
are all 0, and the elements on the diagonal are called singular values, and the singular
values are generally arranged from large to small. VT is an m×m orthogonal matrix,
which is the transpose matrix of V, and the orthogonal vector in it is called the right
singular value vector [49].

After performing SVD on the feature matrix H(I), we truncate the right singular
vectors to take only the top 60 of them. Singular Value Decomposition (SVD) holds an
important implication: the larger the singular value, the more information it represents,
while smaller singular values can be considered negligible. In practice, retaining the
first k singular values aims to find a low-rank approximation of an arbitrary matrix
An×n. This approximation seeks to closely resemble the original matrix by capturing
its essential characteristics. Figure 3.6 is an illustration of color-based image features
formation pipeline.

Figure 3.6: The pipeline of color-based feature matrix formation

There are various reasons to utilize a low-rank matrix for approximation. For our
case, in an image, only the first few dozen singular values along with their corresponding
orthonormal basis vectors are retained. This can dramatically reduce the storage space
required and reduces future comparison burdens between feature vectors. Additionally,
for many other image features, low-rank approximations can be used to remove noise.
Small singular values, often associated with noise introduced during image sampling,
can be discarded to enhance image quality [48].

Another improvement falls in the matrix formation before SVD. The feature ma-
trix we are working with before SVD remains large. As the pipeline in Figure 3.6
shows, the number of columns, denoted as N, represents the number of frames we are
handling. For instance, a 4-minute video contains approximately 7000 frames. SVD

16



algorithm based on Lanczos method has the computation complexity proportional to
O(min{m2n,mn2}) [50]. Therefore, further improvement is required in this aspect.
The most intuitive way is to segment the feature matrix before SVD. According to the
SubMatrix Selection Singular Value Decomposition (SMSSVD) [51], no tuning is re-
quired when applying SMSSVD to a dataset and different dimensions can be interpreted
separately from each other, which means the orthogonality holds when we implement
submatrix SVD.

3.1.1.5 Color histogram analysis

By improving in these aspects, the spatial color information is partially preserved with
the order of blocks. Introducing block-wise color histograms incurs minimal costs in
relation to the gain it can offer. The dimension of the feature matrix is reduced by
SMSSVD, which will alleviate the burden of later similarity check and processing.
These enhancements contribute to more efficiency without losing comprehensiveness
and accuracy in image comparisons.

In essence, after a few improvements, the color histogram keeps valuable insights
that facilitate subsequent assessments of image similarity. This attribute renders the
color histogram a practical tool for diverse applications in image processing and anal-
ysis.

3.1.2 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) is a shape-based feature descriptor. Widely
used in image processing tasks like human detection, HOG also performs well in ob-
ject detection and recognition tasks [52, 53]. It captures the distribution of gradient
orientations in an image, both the magnitudes and orientations of the changes in pixel
intensities. The information it can provide is significant, for it depicts the local struc-
ture and outlines the edges of an image.

Though the idea of HOG is not complicated, the implementation is a bit complex
and computationally demanding. It first converts the input color image into grayscale
to simplify the future calculation for color intensities that are less relevant in gradi-
ent analysis except more dimensions are included. Next, the gradient magnitude and
orientation for each pixel in the image are calculated, usually in the x and y directions.

3.1.2.1 HOG Feature Calculation

Say we are given an grayscale image I ∈ [0 : 255]128×64, (I(r, c) denotes the (r, c)th

entry), one can follow these steps to obtain the HOG feature of the image.

Step 1): Calculate the gradient matrices

Gx(r, c) = I(r, c + 1)− I(r, c− 1), (3.8)

Gy(r, c) = I(r − 1, c)− I(r + 1, c). (3.9)
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Step 2): Calculate the magnitude matrix M and the angle matrix A as,

M(r, c) =
√
Gx(r, c)2 + Gy(r, c)2, (3.10)

A(r, c) = | tan−1(Gy(r, c)/Gx(r, c)|. (3.11)

Step 3): After obtaining M and A, we compute the histogram of the gradients in the
following way. First, divide M and A into 8 × 8 cells to form blocks (the
blocks can have other sizes, here we use 8 × 8 as an example. Denote the
corresponding submatrix for the ith cell as Mi and Ai respectively. Say we
have 16 × 8 = 128 cells. Now consider the ith block and its corresponding
submatrices Mi and Ai. For each block, a 9-point histogram is calculated.
Specifically, let V ∈ R9 record the value for the jth bin, j ∈ [1 : 9]. For each
cell (entry) in the ith block, let j = ⌊A(r, c)/20◦⌋ [54].

Then increase V (j) by M(r, c) ·
(
A(r, c)/20◦ − 1/2

)
, and increase V (j + 1)

by M(r, c) ·
(
A(r, c)− C(j)

)
/20◦, where C(j) = 20◦(j + 1/2).

Step 4): Once histogram computation is over for all blocks, 4 blocks from the 9 point
histogram matrix are clubbed together to form a new block 2 × 2. This
clubbing is done in an overlapping manner with a stride of 8 pixels. For all 4
cells in a block, we concatenate all the 9 point histograms for each constituent
cell to form a feature vector with dimension 36. Denote the feature vector
for the ith (new) block as fi.

Step 5): Normalize fi for each block so that fi has unit norm.

Step 6): Concatenate the feature vectors for all blocks and obtain the final feature
vector for the image.

3.1.2.2 HOG analysis

Figure 3.7 are two example illustrations of oriented gradients, the arrows in the right-
hand side images are indicating both the magnitude and directions of each block. The
pointer of the arrow shows the direction of spatial blocks intensity change, and the color
indicates the magnitude of change, of which lighter color means a larger magnitude.

As can be seen, for content like a book, the feature vectors of cell responses scatter
around the text and box edges. In images with figures, the algorithm can draw the
edge of the character by the clue of contours.

Compared to color-based image representations, shape-based methods are robust
to changes in brightness, contrast, or minor movement of the interest object and even
handle deformations and slight occlusions well [54].

Another reason why this study also includes investigating this method is this de-
scriptor can find and depict the interesting part of the image, and less computationally
demanding when only CPU is provided. Much progress was made in improving both the
accuracy and speed in the real-time application of HOG because of its effectiveness and
robustness in outdoor human activity detection [55], where changes in environmental
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Figure 3.7: Illustration of HOG results

lighting or background are frequent. This is also the challenge machine learning-based
schemes face [56].

However, as elaborated above, its robustness is at a cost of efficiency, for it segments
the image into small overlapping cells, conducts gradient calculations for each pixel,
accumulates the histogram of gradient orientations, and concatenates the normalized
block histograms to form the final feature vector. And for comparison or retrieval tasks,
it is limited in providing contextual information [57], as a result of which it struggles to
represent multiple interest points within the image (especially in historical materials).
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3.1.3 Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) algorithm is a handcrafted image feature
extraction method. It excels in capturing unique and scale-invariant features from
images that can robustly represent the main objects or even background scenes. Its
prominent properties, including but not limited to scale-invariant, rotation invariant,
and resistance to lighting change make it outstands in image processing and image
retrieval in relatively large databases [2].

The SIFT algorithm utilizes scale-space filtering by applying the Difference of Gaus-
sians (DoG) approximation to detect keypoints at various scales. The DoG images are
then searched for local extrema over scale and space. By comparing each pixel with its
neighbors in the current scale, as well as neighboring pixels in adjacent scales, potential
keypoints are identified as local extrema, as the illustration in Figure 3.8.

Figure 3.8: Illustration of seaching for local maxima and minima of the DoG images (adapted
from [2])

These keypoints represent the best scale for capturing distinctive features. This pro-
cess forms the foundation for subsequent steps: assigning orientations and computing
keypoint descriptors.

3.1.3.1 SIFT descriptor calculation

In this subsection, more details of how to conduct the calculation and get the final
descriptors will be discussed.

• Scale-space extrema detection: as mentioned above, it constructs a scale-space
representation of an image by applying Gaussian blurring at multiple scales. It
then identifies potential interest points, or keypoints, by locating local extrema in
the Difference-of-Gaussian function across the scale space.

• Keypoint localization: after getting the candidate locations, the algorithm ana-
lyzes each candidate keypoint and eliminates unstable ones based on criteria such
as low contrast, poorly defined edges, or unstable location.
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• Orientation assignment: it computes the dominant orientation for each keypoint
by considering the gradient magnitudes and orientations in its local neighborhood.
This step helps achieve rotation invariance.

• Keypoint descriptor generation: a descriptor is computed for each keypoint to
capture its local appearance. This descriptor is based on the gradients and ori-
entations of the image patches surrounding the keypoint. It is designed to be
invariant to changes in illumination, scale, and rotation.

3.1.3.2 SIFT feature analysis

Figure 3.9 are the example results of SIFT extracted keypoints. The images presented
here are extracted from two historical videos featuring the renowned travelers Marco
Polo and Ibn Battuta. This figure highlights the keypoints identified using the SIFT
algorithm. Distinct colors have been assigned to different ranges or intensities, span-
ning from blue to red via green and yellow. The progression of colors, from blue to
yellow, represents the keypoint score, indicating the significance of each keypoint. As
observed in the provided figures, the SIFT algorithm successfully produces highly dis-
tinctive keypoints which are also robust against partial object appearances, providing
key information from multiple objects simultaneously.

Figure 3.9: SIFT detected keypoints on example images

Furthermore, Figure 3.10 shows the matching results of another two frames ex-
tracted from a historical video. In this example, after using SIFT to depict certain
keypoints in the images, we also employ an approximate nearest neighbor search algo-
rithm on these keypoints. The search is to establish a match between corresponding
keypoints from two frames. It offers a comparison of their similarity and showcases the
uniqueness of each keypoints.

Overall, the performance of SIFT is sufficient to deal with the relatively large image
dataset (around thousands of images) comparison task, but its efficiency is not high
enough. The computational load in SIFT primarily stems from the utilization of the
Difference-of-Gaussian approximation in scale-space extrema detection. Speeded Up
Robust Features (SURF) is a faster alternative feature detection and description algo-
rithm. It employs a technique called the Hessian matrix together with a more efficient
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Figure 3.10: SIFT keypoints matching results on example images

approximation technique to detect interest points in an image. These modifications
result in a threefold increase in speed for detection and description implementations
than SIFT, which could greatly contribute to the efficiency of overall image feature
extraction and comparison [31]. However, it is important to note that due to patent
restrictions, the implementation of SURF is disabled in several open-source libraries.
Consequently, this application-oriented study will focus on and evaluate SIFT instead
of SURF.

3.1.4 Deep learning-Based Features

Convolutional Neural Networks (CNNs) have achieved remarkable success in the field
of and keep drawing attention from various research areas, including image retrieval,
object detection, activity detection, facial recognition and more [58]. The availability
of extensive datasets and repositories, such as ImageNet [59], has been instrumental
in the training of multilayered neural networks on massive amounts of data. By us-
ing a backpropagation algorithm, these models can iteratively fine-tune their internal
parameters, enabling the computation of progressively abstract representations. The
large-scale datasets have greatly enhanced the learning capabilities of neural networks
and the integration of high-performance computing systems has made intensive compu-
tations possible [60]. Therefore, deep convolutional networks have been revolutionizing
image and video processing, leading to significant breakthroughs in the aforementioned
domains. They enable the creation of complex computational models with multiple
layers, allowing them to learn hierarchical representations of data [61].

In detail, CNNs use convolutional layers that apply filters to local regions of the
input image. This allows them to capture local patterns and features, which are es-
sential for understanding the spatial structure of images. The localized receptive fields
help in extracting meaningful features from different parts of the image. Generally,
lower layers learn simple features like edges and textures, while higher layers learn
more complex features and representations. This hierarchical feature learning allows
CNNs to capture both low-level and high-level features, enabling them to understand
the hierarchical structure of images [3].

It is not surprising that video summarization aims to leverage this technology to
extract crucial information from videos more accurately. In fact, there is a growing
interest in not only identifying the key elements but also uncovering the underlying
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storyline, mirroring human-like comprehension [22,30, 62,63]. But these works require
more than just image understanding. They also incorporate the textual information and
grow graphs for understanding the scene relations, which would be overly sophisticated
for our specific task, as our focus primarily revolves around efficient image understand-
ing. In this sense, we intend to employ up-to-date models to effectively represent the
images, aligning with our objectives.

In this section, two deep learning architectures that are commonly used as back-
bones for image representation in image interpretation tasks will be discussed. One is
VGGNet (developed by an Oxford group named Visual Geometry Group), famous for
its simplicity and effectiveness [4]. Another one is ResNet (Residual Neural Network),
which significantly improved training deep neural networks by tackling the problem of
vanishing gradients [5].

3.1.4.1 VGGNet

The VGG (Visual Geometry Group) architecture was proposed as an easy and effi-
cient design principle for Convolutional Neural Networks (CNNs) in the field of image
recognition. It has a deeper architecture compared to its predecessors.

The left illustration of Figure 3.11 shows the general structure of VGG incorpo-
rated with the idea that filters with small sizes could enhance CNN performance by
using a stack of 3 × 3 filters instead of larger 5 × 5 and 11 × 11 filters used in its
predecessor ZefNet [64]. The parallel assignment of these small-size filters proved to be
as effective as larger filters in terms of receptive field efficiency and produced similar
results [3]. Additionally, using small-size filters reduced the number of parameters and
computational complexity.

Figure 3.11: Illustration of VGGNet structure (adapted from [3,4])

To regulate network complexity, VGG introduced 1× 1 convolutions in the middle
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of the convolutional layers as shown in the right-hand side of Figure 3.11, increasing
the nonlinearity of the decision function. After the convolutional layers, the struc-
ture includes a max pooling layer and applies padding to maintain spatial resolution.
VGG achieved significant results in image classification task [4] for its enlarged depth,
homogenous topology, and simplicity compared to the predecessor networks.

VGG16 and VGG19 are two variations of the VGG architecture. Figure 3.12 illus-
trates the construction of their detailed structure (VGG16 is indicated in this figure by
removing 3 convolutional layers).

Figure 3.12: Illustration of VGG19 structure

VGG16 consists of 16 layers, including 13 convolutional layers and 3 fully connected
layers. It starts with a series of convolutional layers with 3 × 3 filters, followed by
max-pooling layers [4]. The network gradually increases the number of filters as the
spatial resolution decreases. VGG19 has additional convolutional layers which provide
increased representational capacity but also make the network more computationally
expensive. It is generally used when a more complex model is required, or when the
task at hand demands a higher level of feature extraction and discrimination. In our
study, we will implement and analyze the performance of VGG16 in KFE module.
Figure 3.13 shows an example image together with a few visualizations of its feature
maps.

3.1.4.2 ResNet

ResNet, short for Residual Neural Network, is a deep learning architecture that revolu-
tionized image classification tasks. It tackles the challenge of training very deep neural
networks by introducing shortcut connections, allowing the network to effectively prop-
agate gradients during training and preventing the vanishing gradient problem. This
innovation enables it to achieve remarkable accuracy and has influenced subsequent
advancements in the field of deep learning.

Figure 3.15 shows the VGG19 network, plain network, and Residual network struc-
tures. The middle model is called a plain network inspired by VGG nets (the left one
of Figure 3.15). It consists of convolutional layers with 3 × 3 filters and follows two
design rules: the same number of filters for the same output feature map size, and
doubling the number of filters when the feature map size is halved to maintain time
complexity per layer. Downsampling is performed using convolutional layers with a
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Figure 3.13: Example feature maps from different VGG16 layers

stride of 2. The network concludes with a global average pooling layer and a 1000-way
fully-connected layer with softmax. This inspired baseline model has a considerable
reduction in the computational complexity of VGG nets for the plain network FLOPs
is only 18% of VGG19 model.

The right model in Figure 3.15 is the proposed Residual Network-34, an extension
of the plain network. Shortcut connections are inserted into the network, transforming
it into its residual version. Figure 3.14

Figure 3.14: Illustration of a buiding block for residual learning (adapted from [5])

The definition of a building block is:

y = F (x, {Wi}) + x, (3.12)

meaning the output y is a combination of input x and a residual mapping to be learned
F , defined as F (x, {Wi}) are the input and output vectors of the layers considered.

Identity shortcuts are used when the input and output have the same dimensions.
The input vector is directly added to the output of a layer without any transforma-
tion or alteration, increasing dimensions. It also allows the network to learn residual
mappings by comparing the original input to the transformed output. To match the di-
mensions, two options are considered: one is to use identity mapping with zero padding,
introducing no extra parameters and the other one is to employ 1× 1 convolutions to
match dimensions. When the shortcuts span feature maps of different sizes, they are
performed with a stride of 2.
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3.1.4.3 Models analysis

To have a clearer idea of the parameters amount and calculation complexity of different
models, which can greatly influence the efficiency of extracting image features, we
present the properties of these models in Table 3.1.

Table 3.1: Properties comparison of models

Dataset Model Number of conv. Layers Number of parameters FLOPs

ImageNet VGG-16 13 138M 15.5G
ImageNet ResNet-18 18 11.5M 1.8G
ImageNet ResNet-34 34 21.8M 3.6G
ImageNet ResNet-50 50 25.6M 3.8G
ImageNet ResNet-101 101 44.5M 7.6G
ImageNet ResNet-152 152 60.2M 11.3G

As can be seen, VGG nets have a significant number of parameters and FLOPs,
resulted from the inclusion of pooling layers for each block and a stack of convolutional
layers with small 3 filters. On the other hand, ResNet introduces residual connections,
which enable the network to learn residual mappings rather than directly learning the
entire mapping from scratch. These connections allow for the flow of gradients directly
from later layers to earlier layers in training, bypassing several intermediate layers. By
leveraging these shortcuts, ResNet can effectively address the degradation problem that
arises with very deep networks.

The use of residual connections reduces the number of parameters in ResNet com-
pared to VGG because it reduces the necessary complexity to learn each layer. Instead
of trying to learn all the details of a particular layer, ResNet focuses on learning the
residual information, which requires fewer parameters. This parameter efficiency allows
ResNet to achieve similar or even better performance than VGG while utilizing fewer
parameters.

This thesis will explore the efficiency and accuracy of these models in interpreting
a large number of historical materials. In Figure 3.16, an example image with a few
visualizations of its feature maps extracted from ResNet-18 can be found. Together
with Figure 3.13, it is evident that feature maps capture local patterns and structures
in the input images. The filters in the network focus on a specific region of the input
image and learn to detect local patterns such as corners, textures, and edges. And the
hierarchical structure allows the model to extract relevant features at multiple levels of
abstraction.
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Figure 3.15: Network architectures comparison for ImageNet (adapted from [5])
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Figure 3.16: Example feature maps from different ResNet18 layers

3.1.5 Hybrid Feature (HF)

3.1.5.1 Problem statement

After conducting preliminary tests on the methods mentioned in the KFE module, I
have obtained several results. Upon analyzing these results, I have identified several
inherent problems in these methods, along with a few noteworthy points. To name the
most prominent ones, traditional methods, and deep learning-based methods have the
following limitations:

• Color histogram-based features are greatly influenced by the presence of black bars
within the frame. As explained in Section 1, our improved color histogram features
incorporate spatial information by dividing the frame into blocks and extracting
the features accordingly. However, videos sourced from certain platforms targeting
mobile viewership and propagation often contain large side black bars. In such
cases, the color histogram is greatly influenced by these bars, leading to potential
inaccuracies in the extracted features.

• Deep learning-based features, on the other hand, are not influenced by the black
bars. The inclusion of filters in deep learning models enables them to detect
patterns of interest without considering the surrounding less relevant areas. Con-
sequently, the feature maps generated by deep learning approaches do not give
attention to these black bars and remain unaffected by their presence.

• Deep learning-based features can be negatively impacted by similar interest pat-
terns that appear in consecutive frames. Due to the nature of deep learning
algorithms, which aim to capture temporal dependencies, the presence of similar
patterns across successive transition frames can introduce redundancy and lead
to diminished performance.

• Color histogram-based features are not influenced by similar interest patterns in
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consecutive frames. Since color histogram features rely on the distribution of
colors in each frame individually, the presence of similar patterns in consecutive
frames does not impact the extraction process.

Therefore, considering the potential benefits derived from the respective strengths
of both approaches, we have thought about the possibility of combining them. As a
result, we propose a hybrid feature that integrates key components from both methods.
In the next section, we will discuss the hybrid feature structure.

3.1.5.2 Hybrid feature construction

The hybrid feature is a combination of a de-dimensionalized color-based feature and a
Resnet18 feature vector. The structure is shown in Figure 3.17 Both components are
normalized according to the weight assigned to them. This feature can leverage the
sensitivity of high-level features in detecting instances within an image, without being
influenced by a large area of non-informative content. It can also mitigate the influence
of high-level feature fixed interest points when dealing frames with minor changes.

Figure 3.17: Illustration of hybrid feature structure

The structure of this hybrid feature is as follows: given an image I, denote hR as
the feature vector of I extracted using ResNet, and hC as the feature of I extracted
using color histogram. We construct a new feature vector,

hN =
[
kRhR kChC

]
, (3.13)

where kR, kC are non-negative weights. Note that if hR and hC are normalized such
that ∥hR∥p = ∥hc∥p = 1 for any p norm ∥ · ∥p, then the new feature is automatically
normalized if we choose kp

R + kp
C = 1 because

∥hN∥p = (kp
R + kp

C)1/p = 1. (3.14)

By tuning kR and kC , we are able to find good features derived from both deep
learning-based and traditional color histogram, thereby obtaining an ideal hybrid fea-
ture. For this particular task, I have assigned equal weights of half to each component.
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3.2 Clustering Methods

As mentioned in Chapter 1, keyframe extraction module is to remove consecutive and
redundant frames from the input query video. Clustering is a useful way to group
similar image features after which a frame from each group could be selected to serve
as the key frame and represent the shot. Figure 3.18 is a demonstration of what result
we expect the KFE module to produce. In this section, two clustering algorithms: K-
means clustering and dynamic clustering that are widely used to group similar objects
or features will be discussed.

Figure 3.18: A demonstration of KFE results

3.2.1 K-means Clustering

K-means clustering is a centroid-based clustering algorithm that aims to divide a
dataset into K clusters (K is a predefined hyperparameter) and provide the center
point corresponding to each cluster, which is the key frame in our case.

VSUMM model is utilizing the K-means clustering algorithm for its simplicity and
effectiveness. [6]. Their pipeline is shown in Figure 3.19

K-means clustering algorithm operates iteratively and follows these main steps:

1. Initialization: Randomly select K points from the dataset as initial cluster cen-

troids, each is denoted as µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
k .

2. Assign features: Assign each feature (data point) to the nearest centroid based
on a distance metric, using Euclidean distance. The loss function is defined as:

J(c, µ) = min
M∑
i=1

∥fi − µci∥
2 , (3.15)

where ci is the ith feature center point vector, M is the number of the features.
After the iteration, each frame color histogram vector fi is assigned to its nearest
center cluster vector.
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Figure 3.19: VSUMM approach pipeline (adapted from [6])

3. Update: Recalculate the centroids of each cluster by taking the mean of all data
points assigned to that cluster.

In tth iteration, the center point and center cluster are updated according to:

µ
(t+1)
k < − argminµ

b∑
i:cti=k

∥fi − µ∥2 , (3.16)

cti < − argmink

∥∥fi − µt
k

∥∥2
. (3.17)

The algorithm iterates the assignment and updates steps until the centroids no
longer change significantly or a maximum number of iterations is reached [65]. The
goal of K-means clustering is to minimize the within-cluster sum of squares, also known
as inertia. It seeks to find the best partition of the data into K clusters, where the data
points within each cluster are as close to each other as possible.

However, K-means clustering has some limitations. First, the algorithm is sensi-
tive to the initial centroid selection, potentially leading to convergence on suboptimal
solutions. Secondly, in our scenario, where the same object may appear across mul-
tiple shots dispersed throughout the video, K-means clustering treats these frames
collectively, disregarding the temporal attribute inherent in individual frames. Thirdly,
K-means clustering requires a predefined number of clusters, but videos have different
durations and scene transition frequencies. If K is assigned too small, videos with fre-
quent scene transitions cannot be processed well, leading to lower accuracy. Conversely,
when K is set too large, videos with fewer transitions may be excessively fragmented,
resulting in redundancy keyframes. Finally, the computation of distances between ev-
ery feature and every center vector can be relatively time-consuming, causing slower
processing speeds.
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3.2.2 Dynamic Clustering

Another centroid-based clustering algorithm is dynamic clustering, which offers several
advantages. Dynamic clustering is an unsupervised and scalable technique with linear
complexity [66]. Unlike other traditional clustering algorithms that work on static
datasets, dynamic clustering is designed to handle data that changes over time or
where new data points are continuously added. This temporal adaptability makes
dynamic clustering particularly well-suited for video data, given its inherent temporal
characteristics. Algorithm 1 showcases the implementation of dynamic clustering in
grouping frames and detecting keyframes.

Algorithm 1: Dynamic clustering in KFE

Data: Feature set: F, Num. of features: N , Threshold: thr
Result: Final centroids: C, Keyframe indices: I
Two initial features: F1,F2;

One initial centroid: C0 =
F1+F2

2 ;
i← 2;
n← 2;
while i ≤ N do

Ci+1
k ← n·Ci

k+Fi+1
n+1

if cos(Ci
k,C

i+1
k ) ≤ thr then

Ck ← Ci+1
k ; /* Update current centroid */

n← n+ 1;
i← i+ 1;

else

if cos(Ci
k,C

i+1
k ) ≥ thr then

Ck ← Ci
k ; /* Store the centroid before update */

Ik ← i ; /* Store the keyframe index */

n← 2;
i← i+ 2;
k ← k + 1;
; /* Update the next centroid index */

Ci
k ←

Fi−2+Fi−1

2 ; /* Initialize the next centroid */

end

end

end

Figure 3.20 is an illustration of the process for these two cases shown in the algo-
rithm.

And the threshold defined in the ”Data” is a decision boundary of how similar two
centroid vectors should be. And we use Cosine Similarity defined in Equation 3.18 as
the measure of similarity check.

cos(θ) =
c1 · c2
∥c1∥ ∥c2∥

=

∑n
i=1 c

i
1c

i
2√∑n

i=1 (ci1)
2
√∑n

i=1 (ci2)
2

(3.18)
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Figure 3.20: Illustration of the process clustering upcoming frame into one cluster and the
process establishing a new cluster

Moreover, it does not require predefined hyperparameters. It seamlessly adjusts to
changes in the data distribution and can automatically adjust the cluster assignments
as a new feature becomes available. This means the aforementioned dilemma of setting
a suitable predefined number of clusters can be resolved.
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Experiments and Results 4
4.1 Dataset

The dataset comprises a collection of videos that focus on the exploration journeys
undertaken by three prominent explorers: Ibn Battuta, Zheng He, and Marco Polo.
These videos have been meticulously selected by a historical scholar Andrea Natetti
from School of Art, Design and Media, the Nanyang Technological University (NTU).
These videos are also included in his featured project: Engineering Historical Mem-
ory Project (EHM, https://engineeringhistoricalmemory.com/) and ensured to
be relevant and accurate. EHM offers a broad spectrum of perspectives and schol-
arly contributions, ensuring a well-rounded and comprehensive collection of historical
resources.

4.1.1 Properties

4.1.1.1 Resolution

The videos encompass different resolutions, including 1280×710, 480×360, 576×1024,
and 540× 960. This diverse range of resolutions caters to different display capabilities
and enables us to test different methods and optimize our algorithms on various video
qualities.

4.1.1.2 Duration

Regarding duration, the videos are categorized into three distinct segments: 0∼3 min-
utes, 3∼10 minutes, and 10+ minutes. A wide range of durations enable us to evaluate
the efficiency and stability of the methods. And the videos have different frame rates,
including 25, 30, and 60 frames per second (fps). By considering videos of different
durations and frames per second, we can gain valuable insights into the robustness and
scalability of different algorithms and techniques.

4.1.2 Content

The videos cover a wide range of content, including depictions of historical figures,
iconic landmarks, historical maps, and even animated representations. This rich and
diverse content enables us to evaluate the accuracy and robustness of different methods
in video processing and image retrieval. It imposes requirements for the methods to
have a comprehensive interpretation of frames.The inclusion of such diverse content
imposes rigorous requirements on methods to possess a comprehensive interpretation
of frames.
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In addition to the videos, the dataset provides a supplementary resource of approx-
imately 10 query images for each video. These images serve as queries for conducting
specific retrieval test. Figure 4.1 is a video-queries pair example. It consists of one
historical video and ten image queires.

Figure 4.1: Dataset example (Video-Queries Pair)

4.1.3 Groundtruth

Besides the video-query pairs, we also annotated all occurances of every query image
as the groundtruth. Table 4.1 is an example groundtruth sheet for a single video.

1. Query: This column represents the query identifier. In the given example, the
queries are represented by numbers (431, 432, etc.). Each unique query has its
own row in the sheet.

2. Start Stamp: This column indicates the starting timestamp of a query occurrence.
The format used is minutes:seconds (mm:ss). For instance, in the first row, the
start stamp is 0:01, meaning the query starts at 0 minutes and 1 second.

3. End Stamp: This column specifies the ending timestamp of a query occurrence.
Similar to the start stamp, it is also in the format mm:ss. In the first row, the
end stamp is 0:43, indicating that the query ends at 0 minutes and 43 seconds.

4. Query ID: This column also consists of the identifier or code associated with a
specific query.

5. Number of Occurrences: This column indicates the count or frequency of a specific
query occurrences. It represents how many times a particular query appears
within the specified time range. In the first row, the number of occurrences is 1,
suggesting that query 431 appears once within the given video.

Overall, this meticulously curated dataset serves as an academic resource, offering
a rich assortment of videos and query images with their occurances information. It
can be used in evaluating both accuracy and redundancy of the keyframe extraction
module. Additionally, it can be leveraged to assess the mean Average Precision (mAP)
in the content-based image retrieval (CBIR) module. In next section, the metrics of
evaluating the proposed methods will be discussed.
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Table 4.1: Example grountruth for a video

Query Start stamp[s] End stamp[s] Query ID Number of occurrences

431 0:01 0:43 431 1
432 0:43 0:48 432 13
432 2:03 2:26 433 7
432 2:38 2:52 434 5
432 3:27 3:42 435 1
432 4:08 4:13 436 2
432 4:20 4:31 437 1
432 5:07 5:09 438 1
432 5:26 5:47 439 1
432 6:13 6:19 440 1

432 6:40 6:43
432 7:05 7:10
432 7:14 7:20
432 7:45 7:53
433 1:13 1:38
433 1:45 1:54
433 1:54 2:07
433 2:16 2:26
433 2:38 2:52
433 5:05 5:09
433 7:57 8:00
434 2:26 2:44
434 2:54 3:08
434 3:55 4:03
434 6:43 6:53
434 7:36 7:45
435 3:08 3:11
436 4:08 4:13
436 4:20 4:24
437 5:30 5:34
438 6:21 6:33
439 6:33 6:43
440 7:20 7:31

4.2 Metrics

In this section, the metrics to evaluate both modules are presented. For Key Frame
Extraction (KFE) module, accuracy, redundancy and efficiency ratio are considered.
Content-Based Image Retrieval (CBIR) module is evaluated using mean Average Pre-
cision (mAP) and efficiency ratio. These metrics provide a comprehensive framework
for evaluating the performance and efficiency of each module.
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4.2.1 Accuracy

The accuracy metric quantifies the proportion of correctly identified intervals, where
keyframes are correctly retained or discarded within those intervals. This evaluation
criterion examines whether an interval is labeled as positive or negative based on the
presence or absence of at least one retained frame index falling within the duration of
that interval. The interval is defined by its start and end timestamps, and the accuracy
metric compares the actual state of the interval (positive or negative) to the predicted
state based on the presence of retained keyframes. The accuracy is defined as Equation
4.1.

Accuracy :=
Number of positive intervals

Number of all intervals
. (4.1)

The accuracy metric serves as a reliable indicator of the correctness of the keyframe
extraction results. High accuracy signifies a reliable and precise performance of the
method. Accuracy is a widely used evaluation metric that provides a straightforward
and intuitive understanding of the method performance. It allows for easy comparison
between different methods and enables quick assessment of the overall effectiveness of
the KFE module.

To illustrate the significance of accuracy, we present two examples. In the first
example, the keyframe extraction accuracy is relatively low, indicating inaccuracies or
missed keyframes. Conversely, in the second example, the keyframe extraction process
achieves a high accuracy level, accurately identifying relevant keyframes. These ex-
amples highlight the impact of accuracy on the quality and reliability of the keyframe
extraction results. In the first example shown as Figure 4.2, the total number of in-
tervals in this example is 8, and the number of positive intervals is 7. Therefore, its
accuracy is Accuracy1 = 0.875

While in the second example shown as Figure 4.3, the total number of intervals in
this example is also 8, and the number of positive intervals is 8. Therefore, its accuracy
is Accuracy2 = 1

These are two simple examples showing how the accuracy in KFE is defined for a
single video, but for more than one video, we take the mean of all accuracies from all
video results as in Equation 4.2.

mean Accuracy :=

∑Nv

k=1 Accuracyk

Nv

, (4.2)

where Nv denotes the number of videos considered.

4.2.2 Redundancy

Redundancy metric quantifies the level of redundancy in the keyframe extraction. It
represents how much redundancy exists within a specific interval of keyframes. A lower
redundancy value indicates a higher degree of diversity and uniqueness among the
keyframes within that interval. On the contrary, a higher redundancy value suggests
that the keyframes within the interval are more similar or redundant. It is defined as
Equation 4.3.
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Figure 4.2: KFE results - example one

Redundancy := 1− 1

Number of keyframes within the given interval
. (4.3)

This metric enables an assessment of the variation and representativeness of the
extracted keyframes. It allows for the evaluation of how well the keyframe extraction
method captures diverse visual content, providing insights into the richness and dis-
tinctiveness of the selected keyframes within a given interval. Redundancy serves as an
indicator of the computational burden or stress that the Content-Based Image Retrieval
(CBIR) module will encounter. A lower redundancy value suggests a reduced level of
redundancy among the keyframes, implying that fewer calculations or computations
will be required by the CBIR module. This positively impacts the efficiency ratio, as
lower redundancy translates to a more streamlined and efficient retrieval process. By
minimizing redundancy, the CBIR module can operate more swiftly and effectively,
enhancing the overall efficiency of the system.

The two examples can also be compared in this metric as well. In the first exam-
ple, the keyframe extraction redundancy is relatively high, indicating there still are
redundant keyframes retained. In the second example, the keyframe extraction process
achieves a low redundancy level, accurately discarding unuseful frames. In the first
example shown as Figure 4.2, its redundancy is Redundancy1 = 0.476, while in the
second example shown as Figure 4.3, its redundancy is Redundancy2 = 0.146.

Also, for more than one video, we take the mean of all redundancies from all video
results as in Equation 4.4.
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Figure 4.3: KFE results - example two

mean Redundancy :=

∑Nv

k=1 Redundancyk

Nv

, (4.4)

where Nv denotes the number of videos considered.

4.2.3 Efficiency Ratio

Efficiency Ratio: The efficiency ratio measures the ratio of video duration and certain
module’s processing time. It quantifies the speed improvement achieved by the system,
indicating how much faster the method processes the video compared to the minimum
human processing time, which is the video duration. Equation 4.5 is its definition.

Efficiency Ratio :=
Video duration

Computation time
. (4.5)

And for all the videos tested, we should calculation the mean Efficiency Ratio (mER)
which is defined as Equation 4.6:

mean Efficiency Ratio :=

∑Nv

k=1 ERk

Nv

, (4.6)

The efficiency ratio provides a straightforward measure of computational efficiency
and speed enhancements. It allows for comparisons between different methods to de-
termine the efficiency of optimization efforts.
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4.2.4 mean Average Precision (mAP)

Mean Average Precision (mAP) is a metric commonly used to evaluate the performance
of information retrieval systems. It combines the average precision values of multiple
queries to calculate the mean, representing the overall effectiveness of the retrieval
methods. The calculation of mAP includes precision and recall calculation.

Precision is calculated as the intersection of relevant and retrieved images divided
by the total number of retrieved images (Equation 4.7). Recall is the intersection of
relevant and retrieved images divided by the total number of relevant images (Equation
4.8).

Precision =
| { relevant images } ∩ { retrieved images } |

| { retrieved images } |
, (4.7)

Recall =
| { relevant images } ∩ { retrieved images } |

| { relevant images } |
, (4.8)

For the retrieval task, the retrieved candidates are many, ranked by the relevancy
between them and the given query image, so we expect the most relevant items to
appear at the top of the results. However, precision and recall do not consider the
ranking. Different rankings can yield the same precision and recall values as long as
the number of retrieved relevant images remains constant. mean Average Precision is
a metric that takes ranking into account, giving a more comprehensive understanding
of the systems performance.

Considering the ranks of the retrieved results, we need to calculate a new metric
called precision-at-k denoted as P (k). By taking the first K ranked images, calculating
the precision-at-k and calculating recall-at-k, denoted as recall(k) similarly, we can
get a precision-recall curve based on them and obtain the comprehensive performance.
And the Average Precision (AP) is the area under the precision-recall curve. It can
be approximated by summing the product of P(k) and rel(k), where k ∈ {1, 2, · · · , K}
divided by the total number of relevant intervals (N). Note that rel(k) is an indicator
of whether kth retrieved image index falls in the groundtruth intervals, and it equals 1
if the kth retrieved image is positive and 0 otherwise. Therefore, we can define the AP
as follows:

Average Precision (AP) :=

∑n
k=1 P (k) · rel(k)

N
. (4.9)

And Equation 4.10 is defined accordingly:

mean Average Precision(mAP) :=

∑M
m=1

∑N
k=1 Pm(k) · relm(k)

MN
. (4.10)

It takes the mean over the average precisions of all the queries.
And Figure 4.4 is an example of the calculation process of AP:
In this example, the AP is∑n

k=1 P (k) · rel(k)

N
=

1 + 0.67 + 0.5 + 0.44 + 0.5

5
= 0.
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Figure 4.4: Average Precision Example

Note that, for a certain query image, the number of retrived image is usually larger
than the groundtruth interval number because of inevitable redundancy in KFE module.
Therefore, the goal in CBIR part is not to retrieve all frames with the query image, but
to at least one frame in the positive interval. The K in Equation 4.10 is the number of
positive intervals for a certain query.

In short, mAP provides a comprehensive assessment of the retrieval algorithm’s
performance by considering precision at various rank positions for multiple queries. It
highlights methods that not only retrieve relevant results but also rank the positive
results higher, offering a more comprehensive evaluation of the retrieval quality.

Overall, by utilizing these metrics, we can gain insights into the accuracy, redun-
dancy, efficiency, and retrieval performance of the keyframe extraction and content-
based image retrieval algorithms. Their application allows for a more comprehensive
evaluation and comparison of different approaches, aiding in the refinement and opti-
mization of the methods.

4.3 Results

4.3.1 Experiments on KFE

In this part, different experiments revolving around keyframe extraction module are
conducted and presented. Experiment settings are shown in the setting table followed
by results presented in tabular form as well.

4.3.1.1 Black bar removal

Firstly, as mentioned in the problem analysis of Chapter 3 hybrid features section,
it was observed that color-based features are susceptible to being influenced by the
presence of black bars. Before implementing the hybrid features, we introduced the
black bar removal technique into the color-based feature extraction in order to mitigate
this issue.

The black bar removal pipeline is shown as Figure 4.5.
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Figure 4.5: The pipeline of black bar removal technique

It conducts dynamic border detection on each frame, selecting the largest contours
among the detected informative areas. By cropping around the largest detected contour,
the low-level feature extraction is able to perform accurately on those regular frames.
This experiment aims to assess the extent to which black bars influence the performance
of low-level image representation.

The experiment sets up as Table 4.2:

Table 4.2: Black bar removal experiment setting

Experimental parameters Setting

Black bar removal True/False
Test set 24 videos

Feature method RGB color histogram/CH+SMSSVD
Clustering method Dynamic cluster

Metrics

Accuracy
Redundancy

mER

Table 4.3 shows the keyframe extraction results of the system with and without the
black bar removal technique. In Table 4.3, the first feature tested is the original color
histogram image representation, and the enhanced color-based image feature is also
tested, denoted as ’CH+SMSSVD’.

Table 4.3: The impact of black bar removal on traditional methods performances

Feature type Metrics Without With bar removal

Raw color histogram

Accuracy 0.809 0.964
Redundancy 0.305 0.371

mER 7.519 7.377

CH+SMSSVD

Accuracy 0.898 0.969
Redundancy 0.296 0.349

mER 20.473 19.35

Table 4.3 showcases the influence of a black bar removal technique on the perfor-
mance of keyframe extraction. When comparing the two settings, it is evident that
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employing black bar removal leads to notable improvements in various metrics.
In terms of the raw color histogram, applying black bar removal significantly en-

hances accuracy, increasing it from 0.809 to 0.964. This improvement suggests that the
technique aids in more precise image representation. During the test, setting a higher
similarity threshold can also help to improve the accuracy, because it gives a finer reso-
lution when comparing frames, but it will cause very high redundancy. Applying black
bar removal causes a reasonable increase of redundancy from 0.305 to 0.371, because
when the accuracy is low, many keyframes are not detected, and those intervals’ re-
dundancy is not defined, leaving only one frame retained and zero redundancy, so the
average redundancy is very low. For the CH+SMSSVD method, the implementation of
image representation is different from the original CH-based features. Thus, the overall
performance is slightly better than the original CH-based features. Accuracy increases
from 0.898 to 0.969 and redundancy degrades to 0.349. So for the latter implementa-
tion, the impact of black bar removal is similarly positive. The mean Efficiency Ratios
(mER) of them are both obtained on my local device. They both have a minimal
increase because of the calculation to detect contours.

Overall, these results demonstrate that the black bar removal technique improves
accuracy in both the raw color histogram and CH+SMSSVD approaches, but makes
the system less efficient.

4.3.1.2 Variations of ResNet

In Chapter 3, high-level features were introduced for image interpretation, with ResNet
being particularly notable for its residual connections, fewer parameters, and fewer com-
putational operations (FLOPs). Various ResNet variations were considered, including
ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, each possessing distinct
properties based on their structural differences. In this investigation, we aim to assess
the performance of these ResNet variations in keyframe extraction (KFE) tasks and
provide support for the selection of ResNet18 for hybrid features, as opposed to the
other variations.

The experiment setting is shown in Table 4.4.

Table 4.4: Experiment setting for different ResNet variations

Experimental parameters Setting

Feature methods ResNet18/34/50/101/152
Test set 24 videos

Clustering method Dynamic cluster

Metric

Accuracy
Redundancy

mER

Table 4.5 lists the feature dimensions and shows the performance of different ResNet
variations in KFE module.

From the results shown in Table 4.5 or the plots in Figure 4.6, the most surprising
result we get is that more layers of the network do not equal better performance.
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Table 4.5: Performance comparison among different ResNet variations in KFE module

Variation Feature Dimension Accuracy Redundancy mER

ResNet18 512 0.949 0.258 33.82
ResNet34 512 0.955 0.267 28.18
ResNet50 2048 0.927 0.337 22.15
ResNet101 2048 0.911 0.352 17.60
ResNet152 2048 0.920 0.353 14.15

When considering deep learning algorithms for intricate image representation, strong
local interest point searching ability is a desirable attribute. This ability signifies fixed
attention on similar images, which is advantageous for content-based image retrieval
(CBIR) tasks as they require the exclusion of disturbing objects. However, in the
context of KFE, it may lead to the omission of certain frames that do not necessarily
contain only one interest object.

Figure 4.6: Plots of ResNet variations’ Accuracy, Redundancy and mean Efficiency Ratio
performances in KFE module

Examining the feature dimensions across the ResNet variations, ResNet18 and
ResNet34 have a feature dimension of 512, while ResNet50, ResNet101, and ResNet152
have a higher feature dimension of 2048. Despite the higher dimensionality, ResNet18
and ResNet34 achieve comparable or better accuracy compared to the other variations.
It’s worth noting that ResNet34 exhibits slightly higher accuracy and redundancy com-
pared to ResNet18 but at the cost of lower efficiency. On the other hand, ResNet50,
ResNet101, and ResNet152 showcase higher redundancy and lower efficiency, result-
ing in a trade-off between accuracy and computational performance. With only 18
convolutional layers, ResNet18 demonstrates the lowest redundancy, highest efficiency,
and second-highest accuracy among the tested variations. These results support the
selection of ResNet18 for hybrid features, indicating its favorable performance in KFE
tasks.

Overall, the results suggest that ResNet18’s balanced performance in terms of ac-
curacy, redundancy, and efficiency makes it a suitable choice for the hybrid features
in the context of KFE. It strikes a good compromise between accurately representing
frames and maintaining computational efficiency.
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4.3.1.3 Different clustering methods

In Section 3.2, we discussed two centroid-based clustering methods that are particu-
larly suitable for grouping similar frames and creating a keyframe dataset: K-means
clustering and dynamic clustering. These methods exhibit prominent and influential
differences. Specifically, K-means clustering requires a predefined number of clusters,
while dynamic clustering does not. Additionally, K-means clustering overlooks the
temporal characteristics of videos, whereas dynamic clustering leverages the temporal
information.

To obtain quantitative results and gain insights into the performance of these meth-
ods in the task at hand, we designed an experiment as outlined in Table 4.6.

Table 4.6: Experimental setting in testing different clustering methods for KFE task

Experimental parameters Setting

Clustering method K-means/Dynamic
Test set 24 videos

Feature method CH+SMSSVD

Metric

Accuracy
Redundancy

Average efficiency [s]

The results, ranked by redundancy, are presented in the Table 4.7.

Table 4.7: Performance comparison on two clustering methods: K-means clustering and
dynamic clustering (ranked by redundany)

K per 60 seconds Average efficiency[s] Accuracy Redundancy

5 0.678 0.665 0.062
10 0.752 0.910 0.223

Dynamic(0.9) 0.217 0.941 0.227
12 0.806 0.933 0.297

Dynamic(0.92) 0.27 0.969 0.349
15 0.815 0.958 0.361
20 0.883 0.966 0.455

Starting with K-means clustering, as the number of clusters per 60 seconds increases
from 5 to 20, the average efficiency grows from 0.678 seconds to 0.883 seconds, the
accuracy moves from 0.665 to 0.966 accompanied by the redundancy degradation from
as low as 0.062 to 0.455.

Moving on to dynamic clustering, denoted as ”Dynamic” in the table, it does not
require a predefined number of clusters but instead adjusts a similarity threshold to
group similar frames. When the redundancy is around 0.22, its average efficiency is
0.217 seconds, and the accuracy is 0.941, both surpassing that of K-means clustering
at 10 clusters. As the redundancy rises to 0.349, the accuracy of dynamic clustering
has already exceeded the K-means clustering at 20 clusters per 60 seconds.
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The results clearly demonstrate the superiority of dynamic clustering in this task.
With both higher accuracy at a fixed level of redundancy and efficiency compared
to K-means clustering, dynamic clustering proves its capability to effectively extract
keyframes of the video content.

Figure 4.7 and Figure 4.8 are two illustrations of an example case demonstrating
why temporal characteristic is important in this task. These two figures showcase the
algorithm difference of whether including temporal adaptability.

Figure 4.7: Illustration of K-means clustering

K-means clustering (Figure 4.7) treats dispersed similar frames collectively, neglect-
ing the inherent temporal attribute of individual frames. This limitation makes it less
suitable for capturing the sequential nature of videos. Moreover, K-means clustering re-
quires a predefined number of clusters, which poses challenges when videos have varying
durations and scene transition frequencies.

Figure 4.8: Illustration of dynamic clustering

In contrast, dynamic clustering (Figure 4.8) addresses these shortcomings by lever-
aging the temporal information present in the frames. It does not rely on a fixed number
of clusters, allowing for a more adaptive and flexible grouping process. Instead, dy-
namic clustering utilizes an adjustable similarity threshold to identify and group similar
frames dynamically.

Overall, these findings support the decision to favor dynamic clustering over K-
means clustering for keyframe extraction. Dynamic clustering’s ability to adaptively
group similar frames based on capturing temporal information makes it a more suitable
choice in scenarios where video durations and scene transition frequencies vary.
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4.3.2 Image representation methods comparison on KFE

In Chapter 3, we comprehensively explored various image representation methods,
including traditional color-based features, edge-based features - histogram of gradi-
ents, handcrafted features like SIFT, and deep learning-based features such as VGG16,
ResNet18, and hybrid features. Given the large volume of frames involved in the
keyframe extraction module, it becomes imperative to represent the images efficiently
while preserving adequate information for establishing similarity among similar frames
and discerning distinct content.

Before proceeding to test the promising image representation methods for KFE, we
conducted a few preliminary tests, some of which were discussed in previous experiment
sections. After identifying the most potential approaches among the proposed methods,
we proceeded to implement and test them using our comprehensive database. In this
section, we will delve into the detailed results obtained from these experiments. The
experimental setup details are presented in Table 4.8.

Table 4.8: Experimental setting in testing different feature extraction methods for KFE

Experimental parameters Setting

Feature method
Edge-based/ VSUMM/ VGG16/ ResNet18/

color-based/ Hybrid feature
Clustering method Dynamic clustering

Test set 24 videos

Metric

Accuracy
Redundancy

Mean efficiency ratio

Table 4.9 shows the results of the mean efficiency ratio, accuracy, and redundancy of
those tested methods. The edge-based method demonstrates a very low-efficiency ratio
of 0.3. The method involves extensive computations for gradient calculations, leading
to higher demands on computational resources. Consequently, it was not tested on
the entire dataset for mean accuracy and redundancy due to resource constraints. The
efficiency limitation is a significant drawback in practical scenarios.

VSUMM presents a noteworthy efficiency ratio of 34.22, indicating its ability to
efficiently identify keyframes while maintaining a decent level of mean accuracy of
0.879, but the mean redundancy of 0.42 is too high, as a result of which it will bring
much burden in the following process. And VSUMM does not meet the quantitative
goal we set in Section 1.3 Problem Statement.

On the other hand, the improved color-based method exhibits the highest mean
efficiency ratio, reaching an impressive value of 49.5. This highlights the method’s
ability to efficiently process and extract meaningful information from the image for
KFE task. It also achieves a high mean accuracy of 0.969 and a moderate level of
redundancy of 0.349, making it a strong candidate for keyframe extraction tasks where
efficiency and accuracy are crucial.

Note that mean efficiency ratio values marked with ∗ were obtained using NVIDIA
RTX A6000. Values without the ∗ were obtained using the CPU. VGG16 and ResNet18,
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Table 4.9: Performance comparison on different image representation methods in KFE task

Methods Mean efficiency ratio Mean accuracy Mean redundancy

Edge-based 0.3 - -
VSUMM 34.22 0.879 0.42
VGG16 1.96/18.06* 0.962 0.195
ResNet18 3.45/33.82* 0.949 0.258

Color-based 49.5 0.969 0.349
Hybrid feature 20.4* 0.974 0.176

both deep learning-based methods, showcase competitive efficiency ratios of 18.06
and 33.82 respectively. These models achieve high mean accuracy (VGG16: 0.962,
ResNet18: 0.949) and moderate redundancy (VGG16: 0.195, ResNet18: 0.258), making
them valuable contenders for keyframe extraction tasks where accuracy is a prioritized
metric, and there are available GPU resources.

The Hybrid Feature method, combining elements from different approaches, yields
a mean efficiency ratio of 20.4. The significant reduction in efficiency is attributed to its
incorporation of two image interpretations. However, this approach yields remarkable
mean accuracy of 0.974 and low mean redundancy of 0.176, making it a highly attractive
option for tasks that require high accuracy.

In conclusion, the results and analysis reveal that each method has distinct strengths
and weaknesses in terms of efficiency, accuracy, and redundancy. Researchers can
consider the specific requirements of their keyframe extraction tasks to determine the
most suitable method for their application, taking into account the trade-offs.

Moreover, for the CBIR (Content-Based Image Retrieval) module, we can exclude
the methods that are less competitive based on our quantitative goals. This leaves us
with four candidates: color-based, VGG16, ResNet18, and the hybrid feature. These
selected methods offer promising potential for effective video image retrieval, aligning
well with our desired objectives.

4.3.3 Experiments on the overall task

The subsequent phase of our investigation involves the integration of the Key Frame
Extraction (KFE) module with the Content-Based Image Retrieval (CBIR) module
to accomplish the overall task. As previously discussed, the CBIR module requires a
more sophisticated feature of image representation to ensure retrieving accuracy. As
shown in Tabel 4.10, in this experimental setup, we investigate the integrated KFE
module with previously filtered-out methods and high-level features in CBIR module’s
performance. The KFE module is evaluated using the hybrid feature, color-based,
and ResNet18-based features, and meanwhile, dynamic clustering is employed. For
the CBIR module, we explore SIFT, ResNet18, and ResNet101 feature methods. The
experiment evaluation relies on the mean Efficiency Ratio and mean Average Precision
metrics to gauge the balance of retrieval accuracy and computational efficiency. This
comprehensive experiment aims to provide insights into the collective impact of both
modules on the overall system’s effectiveness.
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Table 4.10: Experimental setting in testing different feature extraction methods for the whole
system

Experimental parameters Setting

KFE feature method
Hybrid feature/ Color-based/

ResNet18
Clustering method Dynamic clustering

CBIR feature methods SIFT/ResNet18/ResNet101
Test set 24 videos

Metric
Mean efficiency ratio

Mean average precision

Furthermore, within this section, we introduce and evaluate a recycling scheme,
aiming to enhance the efficiency of the overall realization. Figure 4.9 shows the pipeline
of this scheme.

Figure 4.9: Illustration of recycling scheme

50



The recycling scheme optimizes the utilization of frame features, because we only
extract frame features once, which is in the KFE phase. During this initial phase,
frame features and in the second phase, the chosen keyframe features are intelligently
repurposed for comparison with the query image feature. This innovative strategy
avoids the need for redundant feature extraction in the latter stage. In terms of feature
selection, deep learning-based techniques are favored. ResNet18 emerges as the prime
choice for it is the most efficient high-level feature approach in the KFE phase. Due to
the high volume of frames in the first stage, using this method is the most ”economical”
in the recycling scheme.

Table 4.11 shows the results. The combination of Hybrid + SIFT exhibits a mean
efficiency ratio of 17.91 and mAP of 0.936, indicating a balance between computa-
tional efficiency and retrieval accuracy. While the combination of Hybrid + ResNet101
demonstrates a lower mean efficiency ratio of 15.27 but a higher mAP of 0.945. This
emphasizes the advantageous role of ResNet101 in boosting retrieval accuracy. But
generally, the hybrid feature slightly improved retrieval accuracy at the cost of losing
our primary focus: efficiency.

Table 4.11: Overall performance comparison on different combinations of feature methods

Methods Mean efficiency ratio mAP

Hybrid + SIFT 17.91 0.936
Hybrid + ResNet101 15.27 0.945

Color-based + ResNet101 30.22 0.902
ResNet18 + ResNet101 21.59 0.933

Recycling Scheme 30.43 0.781

Color-based + ResNet101 approach excels in computational efficiency, boasting an
Efficiency Ratio of 30.22, yet it has low retrieval accuracy with an mAP of 0.902.
The trade-off between efficiency and accuracy is evident here. Although the color-
based feature is efficacious in extracting keyframes, it has relatively high redundancy.
This redundancy contributes to an expanded candidate retrieval dataset, consequently
impacting the effectiveness of the retrieval process. intervening in this process. This
divergence is a key factor behind the relatively diminished performance of ResNet101
in the retrieval task, in contrast to its previously observed excellence.

In terms of efficiency, the only competitive scheme for color-based + ResNet101 is
the recycling scheme. Notably, the recycling scheme showcases high-efficiency gains,
yielding a mean efficiency Ratio of 30.43, the highest among the tested approaches.
However, the mAP sees a sharp drop to 0.781, indicating that ResNet18 is incapable of
retrieving relevant candidates. After some specific validations, we found that it is highly
susceptible to highly focus blurred or close-up scenes lacking discernible patterns. This
demonstrates that though the recycling scheme exhibits a high potential in augmenting
efficiency, it is insufficient in balancing both efficiency and accuracy in this task, using
the current model.

Lastly, the ResNet18 + ResNet101 combination strikes a balance with a mean ef-
ficiency ratio of 21.59 and an mAP of 0.933. The efficiency gain due to ResNet18’s
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feature extraction in KFE is complemented by the accuracy boost from ResNet101 in
accurate searching and matching.

4.3.4 Discussion

In summary, except for the recycling scheme, the other schemes satisfy the quantitative
objectives raised in Section 1.3. As can be seen, the result analysis reveals a dynamic
interplay between efficiency and accuracy across the methods. The trade-offs are evi-
dent as certain combinations emphasize computational efficiency, while others prioritize
retrieval accuracy. These results underscore the significance of thoughtful method se-
lection based on the specific objectives and computational resources available. The
recycling scheme’s efficiency gains highlight its potential for resource optimization, but
the decline in mAP suggests the need for further refinement to strike a more favorable
balance between efficiency and accuracy. For tasks with volumes of videos to process,
the combination of color-based and ResNet101 is optimal. Hybrid feature should be
considered when the task prioritizes retrieval accuracy. Notably, the combination of two
variants of ResNet offers an unparalleled equilibrium between accuracy and efficiency,
catering to both metrics.

4.4 System Prototype

Given that this is a practical application-driven problem, we aim to complete the whole
project with a functional prototype. This prototype needs to have a user-friendly inter-
face, designed for simple operations and only uncomplicated uploads. The interface’s
usability should be intuitive, minimally demanding of user interaction, and seamlessly
adaptable across devices with various configurations. In terms of outcome presentation,
clarity is of great importance. By the final result display, users can directly obtain a
complete and reliable target image temporal location.

Therefore, I also developed a simple application written in Python. This application
has a simplified interface, with the initial access page illustrated as the home page in
Figure 4.10.

By clicking the ”Start” button, we can go to the upload page shown as Figure 4.11.
On this page, users are required to upload both a query video and a query image.

This can be done simply by clicking the corresponding buttons, navigating to their
desired files within their folders, and selecting the target image and video. To initiate
the processing, users should click the ”Run” button after successfully uploading the
relevant items, as exemplified in Figure 4.11. As the processing commences, informative
labels will appear to indicate the progress of both the Keyframe Extraction (KFE) and
Content-Based Image Retrieval (CBIR) procedures, with each step being marked as in
progress or completed. Subsequently, users will be able to access the results by clicking
the ”Click to See Results” button. The following figures: Figure 4.12, Figure 4.13, and
Figure 4.14 are examples of this application in action across various retrieval tasks.
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Figure 4.10: Screenshot of the graphical user interface in home page

Figure 4.11: Screenshot of the start page that requests upload and processes operations from
users
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Figure 4.12: Illustration of how the results are presented in application window and saved
keyframe set together with the final result list in txt file in local computer (Example of the
query video of <Ibn Battuta PBS World Explorers> and the query image of index 1)

Figure 4.13: Screenshot of result page (Example of the query video of <Zhenghe facts and
his accomplishments, the untold story> and the query image of index 411)
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Figure 4.14: Screenshot of result page (Example of the query video of <Zhenghe facts and
his accomplishments, the untold story> and the query image of index 412)
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Conclusions 5
5.1 Conclusion

In conclusion, this work has successfully addressed the challenges of efficient content-
based video image retrieval (CBVIR) by decomposing the task and developing a mod-
ular system that strikes a delicate balance between low-level features for enhanced effi-
ciency and high-level features for stable accuracy. Through the Key Frame Extraction
(KFE) and Content-Based Image Retrieval (CBIR) modules, significant advancements
have been achieved in both efficiency and accuracy, bringing us closer to a comprehen-
sive solution for rapid and precise video content retrieval.

Starting from traditional image representation techniques, this work focused on the
most promising color-based method and improved the algorithm by constructing sub-
matrices within the feature matrix and reducing the dimension by SVD to accelerate
the comparing process. The investigation extended to handcrafted features, proving
their reliability as an alternative to high-level feature methods, particularly under con-
strained computing resources. Deep learning-based features, the focus of the overall
realization, have shown great performance in accuracy. Building upon these founda-
tions, a hybrid feature is proposed which reached significantly high accuracy. Moreover,
integral to the overall system’s success were endeavors such as integrating the black-bar
removal technique and introducing dynamic clustering in drawing keyframes.

Finally, the quantitative objectives set for each module were met, demonstrating
substantial efficiency improvements while maintaining a high level of accuracy. The
dynamic interplay between efficiency and accuracy across various methods underscores
the need for thoughtful method selection based on specific objectives and available
computational resources.

5.2 Future directions

Looking ahead, there are several promising directions for future research in the field of
content-based video image retrieval.

• First, further refinement of the recycling scheme could lead to a more optimal bal-
ance between efficiency and accuracy. The exploration could be around fine-tuning
the model and proposing novel techniques for more robust image interpretation.
Additionally, we still need more investigation on hybrid approaches that more dy-
namically combine the advantageous characteristics of different methods, catering
to a wide range of applications.

• Second, the proliferation of large-scale video datasets and advances in deep learn-
ing offer opportunities for leveraging techniques such as transfer learning and
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self-supervised learning to further improve both efficiency and accuracy.

• Third, as the digital landscape evolves, the demand for efficient and accurate
content-based video image retrieval will only intensify. Video instance retrieval
goes beyond the limitations of searching for specific instances in images, which
is not sufficient for certain scenarios like selecting, highlighting, and analyzing
raw video content and efficiently identifying target objects in surveillance footage.
More advanced models like 3D-CNNs models designed to capture both spatial and
temporal information are crucial. Or by cooperating models with the ability to
interpret objects, motions, and storylines to textual information, researchers can
achieve much higher real-time retrieval efficiency.
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