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Abstract. Accurately predicting wind turbine wake effects is essential for optimizing wind-
farm performance and minimizing maintenance costs. This study explores the applicability of
the Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) framework to develop a simple
yet robust Reynolds-averaged Navier-Stokes (RANS) model for wake prediction in wind energy
contexts. The framework introduces two correction terms into two-equation models, with k− ε
model being utilized in the current study. One correction term resembles the residual of the
Turbulent Kinetic Energy (TKE) equation, and the other corrects the deviatoric part of the
Reynolds Stress Tensor (RST). The terms are calculated from high-fidelity measurement or
simulation data, and symbolic regression is used to determine the model for these terms.

In this study, Large Eddy Simulation (LES) data from a single turbine is used as the training
dataset, and a sample pre-selection process is employed to discover a correction model efficiently.
The derived model incorporates two terms based on Pope’s basis tensors and their invariants.
The expression of the obtained model shows that it functions as a modification to the constant
Cμ in the k − ε model. The model is evaluated by comparing its predicted velocity and TKE
fields with the LES data used for the training. The model showed satisfactory performance in
predicting both fields. Additionally, its generalizability is evaluated by testing it against a more
complex six-turbine unseen case. The results indicate that the model effectively captures the
velocity field and power output, but it tends to overpredict TKE, especially in the wake region.

1. Introduction
The accurate prediction of wind turbine wake effects is crucial for estimating wind-farm yields,
optimizing design, and ensuring efficient land utilization while reducing maintenance costs.
This is particularly pronounced in larger and denser wind-farms, where wake interactions occur
frequently, exerting a substantial influence on overall performance. In large scale offshore wind-
farms, wake losses can account for a 10-20% reduction in total power output [1]. Additionally,
wake-induced turbulence can result in complex flow patterns that cause structural vibrations in
downstream wind turbines, leading to premature fatigue and increased maintenance costs [2].
Consequently, there’s a clear demand for an efficient and precise wake prediction method.

Various methods are available for predicting wakes, including analytical models commonly
employed in industry and Computational Fluid Dynamics (CFD) methods primarily used in
academic research. While analytical models are cost-effective, their accuracy diminishes in dense
wind-farms with cumulative effect of wakes [3]. In such scenarios, numerical models become
more suitable. Among these, Large Eddy Simulation (LES) can yield precise predictions but
demands between 103 and 104 CPU hours, making it challenging for industrial applications
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[4]. Given these limitations, Reynolds-averaged Navier-Stokes (RANS) models offers a better
compromise between accuracy and cost. Nevertheless, their effectiveness relies on the selection
of the appropriate closure model and its parameters [5].

A recent development in enhancing RANS models involves the data-driven framework
Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) [6]. This approach introduces
two correction terms into standard two-equation models. The terms are derived from high-
fidelity data, such as LES or measurement data. These terms are then modeled utilizing sparse
regression, yielding simple mathematical expressions and mitigating the ’black-boxification’ issue
commonly associated with neural network-based models. The effectiveness of the SpaRTA
framework has been demonstrated in various applications, including wind-tunnel scaled wind-
farms [7], and three-dimensional bluff bodies [8].

Considering the above, this study utilizes the SpaRTA framework in a full-scale wind-farm
simulation, aiming to study its applicability in wind energy contexts. The primary objective is
to develop a data-driven RANS model that balances simplicity, accuracy and generalizability for
predicting wakes and wind-farm power production. To achieve this, a model is derived by using
LES data of a single turbine, serving as a simpler case. A subset of the data is utilized as the
training sample, filtered according to the specified thresholds. This enhances the efficiency of the
model search process and increases the chance of discovering a simpler model. The performance
of the discovered model is assessed by predicting velocity and Turbulent Kinetic Energy (TKE)
fields. Furthermore, to evaluate its generalizability, the model is tested against an unseen LES
data case involving six turbines, which includes wind turbine power output prediction as well.

The remainder of this paper is organized into three sections. In Section 2, the SpaRTA
framework and its implementation for the current study are detailed, along with the description
of the precursor simulations, the dataset used, and the sampling method. Section 3 includes the
outcomes of the precursor simulations, an explanation of the obtained model, predictions for
TKE and velocity fields, and power output predictions by the model. Lastly, Section 4 provides
a summary of the research results, accompanied by suggestions for future research directions.

2. Methodology
2.1. SpaRTA framework
To implement the SpaRTA framework, the governing equations must be formulated based on
two-equation models. In the present research, the k − ε model is selected as the baseline model
for its simplicity and widespread application in the field, and is often used as the base model
for different models, including the k − ε− fP model [9]. For obtaining the governing equations,
two additional terms are introduced into the base model. The terms include R, the residual of
the k-equation that corrects all compatibility errors between the model and the LES data, and
bΔij , which corrects the deviatoric part of the Reynolds Stress Tensor (RST). Incorporating the
two correction terms into the equations of the standard k − ε model, we obtain:

DtUi = −1

ρ
∂i(P +

2ρk

3
) + ∂j

(
2νSij + 2νtSij − 2kbΔij

)
+ fx + fT , (1)

Dtk = Pk + PΔ
k − ε+ ∂j

[(
ν +

νt
σk

)
∂jk

]
+R, (2)

Dtε = Cε1(Pk + PΔ
k +R)

ε

k
− Cε2

ε2

k
+ ∂j

[(
ν +

νt
σε

)
∂jε

]
, (3)

Pk + PΔ
k = −2k (

bij + bΔij
)
∂jUi = −2k

(
−νt

k
Sij + bΔij

)
∂jUi, (4)

where, t, Ui, ρ, P , ν, νt, Sij , fx, fT represent time, mean velocity components, fluid density,
pressure, kinematic viscosity, eddy viscosity (defined as νt = Cμk

2/ε), mean strain rate tensor,
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Atmospheric Boundary Layer (ABL) driving force and turbine force respectively. Additionally,
k represents the TKE, with ε denoting its destruction rate and Pk indicating its production rate.
Moreover, bij represents the deviatoric part of the RST. The parameters Cμ, Cε1, Cε2, σε and
σk in (2)-(4) are typically determined from existing literature.

With the derived equations, the SpaRTA framework operates in the following manner. Firstly,
the correction terms are derived from high-fidelity data, which in this study comprises time-
averaged LES data. The terms are calculated by imposing U , k and RST τij field data into (2)-
(4), to solve for R and bΔij . This step is called ”frozen approach” in the framework. Subsequently,
the obtained terms, called ”frozen correction terms”, are integrated into a RANS simulation for
validation in the ”propagation RANS” step. If the results closely match to the high-fidelity
data, these terms will be assigned as the target for the ”model discovery” phase, which employs
symbolic regression, as the last step of the framework. This process begins by creating a function
library. The library comprising terms derived from Pope’s basis tensors and invariants [10], along
with their combinations. Once the library is prepared, a coefficient vector, which incorporates the
significance of each library term, is optimized to minimize the error between the prediction and
the target. This is achieved through sparse-regression with elastic net regularization, resulting
in many coefficients being forced to zero. The resulting model is a linear combination of the
remaining terms from the function library and can be directly incorporated into the k−ε model.
The model could be expressed as R = Θ(R)C(R) and bΔij = Θ(bΔij)

C(bΔij)
. Here, Θ and C represent

the vector formulation of the function library and coefficients vector, respectively.
In the present study, during the implementation of the framework, the correction terms are

divided into two components, as done similarly in [7]. One component is dedicated to inlet
profile corrections, referred to as ABL correction, while the other focuses on wake correction.
This separation can be written as follows:

bΔij = bΔ,ABL
ij + bΔ,Wake

ij , R = RABL +RWake. (5)

Generally, the inlet profile in RANS simulations cannot replicate that of LES because they are
computed using distinct governing equations and models in the simulations. Consequently, in
the ”frozen approach”, the correction terms may include not only wake-related but also inlet
profile-related corrections. This is not desirable in model development, and it is preferable to
handle wake and inlet profile corrections separately. By doing so, model that focuses solely on
correcting for wake can be obtained, avoiding any dependence on the inlet profile.

In the current study, four types of RANS simulations were conducted, each utilizing a distinct
combination of correction terms as listed in Tab. 1. The full propagation RANS applies all the
frozen correction terms, while the frozen-bΔij propagation and model-bΔij RANS similarly employ
all the correction terms except for RWake. However, the model-bΔij RANS utilizes model-derived
bΔ,Wake
ij . In contrast, the baseline RANS applies no corrections. During the study, it became clear
that the improvement is mainly coming from bΔ,Wake

ij instead of RWake, which will be presented
later in Sec. 3.2. Regarding this, the study focus on discovering a model for the bΔ,Wake

ij , with
frozen-bΔij propagation RANS serving as the prediction of the best possible model.

Table 1: Correction terms corresponding to each RANS simulation.

RANS simulation type R = bΔij =

Full propagation frozen-RABL + frozen-RWake frozen-bΔ,ABL
ij + frozen-bΔ,Wake

ij

Frozen-bΔij propagation frozen-RABL frozen-bΔ,ABL
ij + frozen-bΔ,Wake

ij

Model-bΔij frozen-RABL frozen-bΔ,ABL
ij + model-bΔ,Wake

ij

Baseline None None
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2.2. Precursor simulations
To conduct full-scale wind-farm RANS, precursor simulations are essential to acquire the inlet
profile and simulation parameters for the baseline and propagation RANS simulations. Moreover,
it is also required for obtaining bΔ,ABL

ij and RABL for the propagation RANS simulations.
For the both baseline and propagation RANS simulations, the reference profiles are extracted

from corresponding cases of LES data, which are presented in Sec. 2.3. The profiles consist of U
and k fields, obtained by averaging across the lateral direction y of the profile at the streamwise
position x = 200 m. It was observed that the inlet profile evolves until x = 200 m, with negligible
evolution thereafter until reaching the first turbine at x = 400 m. Based on this observation,
the location of the reference profile is determined.

To align the RANS inlet profile with that of LES, two parameters, surface roughness length
z0 and ABL driving force fx, undergo optimization. A rough wall Boundary Condition (BC) is
implemented at the wall to match the LES setup, with z0 representing the degree of roughness.
It exerts significant influence on the first cell in the vertical direction, thereby impacting the
entire profile. Meanwhile, the second parameter, fx, appears as a body forcing term within the
momentum equations, driving the wind profile through the simulation domain. The optimization
process employs the Nelder-Mead algorithm [11]. The objective function is based on the
combined error of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) between
the LES and RANS U and k profiles within the turbine height region. The obtained values of
the two parameters, z0 and fx, which yield the desired inlet profile closely aligned with the LES
data, are then utilized in full-scale RANS simulations.

2.3. LES dataset
In this study, LES data of a wind-farm under a truly neutral ABL, characterized by a pressure-
driven boundary layer without Coriolis and temperature effects, is utilized. The data is sourced
from [5], which is generated by in-house pseudo spectral code, that is also used in [12].

The dataset comprises two distinct cases, both featuring a domain size of 4800 m (480 cells)
in the streamwise direction x, 800 m (160 cells) in the lateral direction y, and 355 m (71 cells) in
the vertical direction z. The domain is discretized uniformly in each direction, resulting in a total
cell count of approximately 5.5 million cells for each case. The inlet turbulence intensity at the
hub height (defined as Ih =

√
2k/3/Uh, with Uh = 8 m/s representing the mean velocity at the

hub height) is consistently 5.8% for the both cases. The cases differ in the configuration of wind
turbine placements, as illustrated in Fig. 1. In case 1T (a), there is a single turbine. Conversely,
case 6T7D (b) features two columns of six wind turbines, with a distance of 7D between each
turbine, where D denotes a turbine diameter. In the figure, all axes are normalized by D,
following the standard practice in the wind industry.

A non-rotational Actuator Disk (AD) method is employed to model the wind turbines for all
the simulations, following the approach outlined in [13]. The disk-based thrust coefficient C ′

t is

Figure 1: Computational domain and wind turbine configurations of LES data for cases (a) 1T
and (b) 6T7D. Length along each axis are normalized with D.
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set to C ′
t = 4a/(1− a), where a represents the induction factor. In this study, a is fixed at 0.25,

resulting in C ′
t = 4/3, consistent with [5]. The turbine parameters remain consistent across the

both cases, with a D = 80 m and a turbine hub height zh set at 70 m. The turbine force is
calculated based on the disk-averaged velocity and uniformly distributed over the disk regions,
with a Gaussian filter subsequently smoothing the distribution of these forces throughout the
computational domain in y − z plane. The standard deviation σ for the Gaussian filter size is
set at approximately 8 meters. For more details about the AD method, please refer to [13].

The LES data used in this research underwent pre-processing procedures. The data are time-
averaged to ensure comparability with the RANS solutions. In the case of 6T7D, the fields were
spatially averaged with respect to the y = 5D plane to improve the statistical representation of
the data. This averaging process involved extracting domains within the ranges of 0 ≤ y ≤ 5D
and 5D ≤ y ≤ 10D, followed by the computation of field averages. However, in the case of 1T,
spatial averaging was not performed. Instead, a domain of 2.5D ≤ y ≤ 7.5D was extracted to
align with the domain size of the other case. Moreover, there is a fringe zone in the downstream
of the domain, thus to avoid its effect, 55D < x region is omitted from any analysis.

2.4. Selection of training samples
In the model discovery phase of the SpaRTA framework, the 1T case is utilized. This decision
leverages the inherent simplicity of the 1T case, establishing it as an ideal scenario for model
development. If the model, derived from this simpler case, can accurately predict for the more
complex 6T7D case, it implies that the model is capable of capturing the general physical
patterns present in both scenarios. Furthermore, the accuracy of these predictions provides
some assurance of the model’s generalizability.

Furthermore, the selection of samples from the 1T case was conducted intentionally. Instead
of covering the entire domain, which includes less relevant areas like the free stream or the
boundary regions, a more focused set of samples located near the turbine wake was selected.
This process involved setting a threshold for the PΔ,Wake

k field, which is a k production term
that resulted from frozen approach-derived bΔ,Wake

ij . Samples were chosen where PΔ,Wake
k exceeds

0.001 or falls below -0.001, as depicted by the isolines in Fig. 2, focusing on substantial non-zero
PΔ,Wake
k values. As shown in the figure, most of the samples are from the wake region, with

some collected from the wall regions. However, samples that have boundaries with walls are
excluded due to their reliance on wall function. Regarding above, the thresholds are deemed
suitable for the case 1T, nevertheless, the values can be chosen differently for different cases.

Figure 2: The x− z plane of the PΔ,Wake
k field at y = 5.0D for the full propagation RANS. The

isolines represent -0.001 (solid) and 0.001 (dashed) lines.
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Table 2: Model and simulation parameters used for the baseline and propagation RANS. The
model parameters are based on the standard k − ε model [14].

RANS parameters: Simulation parameters:

Simulation type Cμ Cε1 Cε2 σε σk z0 [m] fx [m/s2]

Baseline 0.09 1.42 1.92 1.00 1.30 0.0117 0.000339

Propagation 0.09 1.42 1.92 1.00 1.30 0.00296 0.000286

3. Results
3.1. Precursor simulation results
The standard k − ε model [14] is considered as the baseline RANS model for the current study,
and thus, the precursor simulations also implement the same model. The parameters for the
standard k − ε model used in baseline and propagation RANS are listed in Tab. 2, with both
cases utilizing the same set of parameters. Similarly, simulation parameters z0 and fx that are
obtained from the precursor simulations mentioned in Sec. 2.2 are also tabulated.

In Figure 3, a comparison of the inlet profiles between LES and RANS simulations is
presented. Profiles comparison between LES and RANS results indicates good agreement.
However, in the baseline RANS, a significant difference appears in the k profile near the wall.
In contrast, the propagation RANS effectively corrects this deficiency in the near-wall region
observed in the baseline RANS, and improvements are observed in other parts of the profile as
well. These results highlight the accuracy of the ABL correction terms. However, there is still a
minor mismatches near the wall for the propagation RANS. It is common that LES overestimates
the peak of k near the wall, resulting in unreliable values in that region. Nonetheless, achieving
an exact match in the near-wall region is not the primary concern and does not impact the
outcome of the study, since the main focus of this research is predicting wake behavior in the
turbine region. Consequently, the obtained correction terms bΔ,ABL

ij and RABL are implemented
for all propagation RANS, along with the corresponding inlet profiles.

3.2. Full-scale simulation results
Incorporating the inlet profiles, simulation parameters, and inlet profile corrections obtained in
Sec. 3.1, the four types of full-scale RANS simulations are conducted, with the results presented
in this section. In Figure 4, a comparison of the Ux and k fields at the mid x − z plane is
illustrated for case 1T.

Figure 3: Comparison of inlet profiles in the z direction for Ux and k between LES data (red
solid line), baseline RANS (black line) and propagation RANS (blue line). The profiles are
plotted against the normalized vertical coordinate z/D. Turbine borders are indicated by the
gray solid lines, and the turbine hub-height is by the dot-dashed line.
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Figure 4: Comparison of x−z planes of Ux (left column) and k (right column) fields at y = 2.5D
for 1T case simulations. Top to bottom, LES (a, f), full propagation RANS (b, g), frozen-bΔij
propagation RANS (c, h), model-bΔij RANS (d, i), and baseline RANS (e, j) fields are shown,
respectively. Dark rectangles represent the ADs, and dash-dotted lines indicate the hub heights.

Upon comparing the Ux and k fields from full propagation RANS (b, g) with those of LES (a,
f), it becomes apparent that the results are closely aligned across most regions. This validates
the accountability of the frozen correction terms, and supports the decision to set the terms as
the target for the model discovery phase.

Although utilizing all the correction terms improve the accuracy significantly, the primary
source of improvement originates from the correction of turbulence anisotropy via bΔ,Wake

ij as
mentioned in Sec. 2.1. It can be seen when comparing figures (c, h) – which are generated
with frozen-bΔij propagation RANS – to the figures above them (b, g). While there are slight
differences in the distribution of the k field within the wake region, the peak position remains
consistent. As for the Ux fields, they exhibit nearly identical behavior. Consequently, the focus
of the model discovery process in this study is exclusively on bΔ,Wake

ij .
In terms of the predictions by the model-bΔij RANS, the distribution of k (i) closely resembles

that of frozen-bΔij propagation RANS (h), though its peak is shifted slightly downstream.
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Regarding the Ux field (d), it is very much the same as (c). The algebraic expression of the
model that is being implemented is:

Model-bΔ,Wake
ij =

1

68

[
1 + 4.55 · tanh

(
(I1/ω

2)

81.097

)]
(T

(1)
ij /ω), (6)

where T
(1)
ij = Sij represents the first tensor of the Pope’s basis tensors, and I1 = SijSij denotes

the first invariant, as defined in [10]. Regarding the model having T
(1)
ij outside the largest

bracket, it can be reformulated in terms of a Cμ modification. Specifically, the terms 2νtSij and
2kbΔij in (1) can be combined into a single equation, 2νtfPSij , through the introduction of fP ,
as similar in [15]. Subsequently, the term fP can be expressed as,

fP = 1− 1

68 · Cμ

[
1 + 4.55 · tanh

(
(I1/ω

2)

81.097

)]
(7)

This formulation suggests that the model acts as a Cμ correction, locally adjusting the original
Cμ value based on the local I1/ω

2 value. Furthermore, when Cμ = 0.09, the values of fP
ranges between 0.093 and 0.83, considering the ”tanh” function’s range from 0 to 1 with I1 ≥ 0
condition. This means the model reduces Cμ value across the entire domain and further decreases
the value in regions with higher velocity gradient, where the wake is prominent.

The last row of the Fig. 4 (e, j) highlights the limitations of the k − ε model, particularly in
its prediction of a faster wake recovery for Ux, primarily due to its overestimation of k in the
near the turbine region, aligning with the study [5]. It’s important to note that the authors
are aware that the k − ε model may not be the most suitable choice for the current simulation
cases. Nevertheless, it is implemented to demonstrate the correction terms’ ability to improve
predictions, even when applied to the simplest model.

To demonstrate the capability of the model, we applied it to an unseen case (of greater
complexity than the training case), with a row of 6 turbines at a 7D spacing (6T7D). The
results are shown in Fig. 5. The ordering of the figures is consistent to the Fig. 4. For the
6T7D case, frozen-bΔij propagation RANS exhibits an overprediction of k in the wake regions
(h), indicating the importance of RWake in wake interactions. The overprediction increases
sequentially after each turbine, similar to the baseline RANS (j). This behavior is also observed
in the model-bΔij RANS (i). However, neither the LES data (f) nor the full propagation RANS
(g) exhibit this behavior noticeably. Regarding the Ux, model-bΔij RANS (d) closely match
the frozen-bΔij propagation RANS (c). In the model-bΔij RANS, due to the overprediction of k,
the wake recovery is slightly faster compared to frozen-bΔij propagation RANS, but significantly
slower than that of the baseline RANS (e), in which k is significantly overpredicted (j).

In conclusion, the visual assessment above suggests that the obtained model could be
effectively implemented in RANS simulations, demonstrating relatively good accuracy. In the
following subsection, its ability to predict power production is assessed.

3.3. Power output prediction
In this section, we conduct power output predictions for various simulations. The Figure 6
presents a comparison of each turbine’s power output, normalized to the first turbine’s power
output in the LES data. The full propagation RANS closely match the LES data across the
domain. The baseline RANS overestimates for the downstream turbines, particularly for the
second one. This is likely due to faster wake recovery, as power is proportional to the cube of
the incoming velocity, making the accuracy of Ux crucial for correct power output prediction.

Comparing the full and frozen-bΔij propagation RANS, it’s observed that the inclusion of the
RWake correction has very small impact on the power output prediction accuracy. However, this
doesn’t necessarily imply that RWake is unimportant. The omission of this term in this study
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Figure 5: Comparison of x−z planes of Ux (left column) and k (right column) fields at y = 2.5D
for 6T7D case simulations. Top to bottom, LES (a, f), full propagation RANS (b, g), frozen-bΔij
propagation RANS (c, h), model-bΔij RANS (d, i), and baseline RANS (e, j) fields are shown,
respectively. Dark rectangles represent the ADs, and dash-dotted lines indicate the hub heights.

was for the model simplicity, and its effect is small at least for the cases studied here. Further
investigation is required with different simulation cases to explore the impact of RWake.

The prediction of the model-bΔij RANS closely align with the frozen-bΔij propagation RANS,
despite only being trained with 1T case. This suggests that, at least for this simulation setup,
the physics present in the single turbine case may still dominate in multiple turbine scenarios.

4. Conclusion
The primary focus of this study is to develop a simple model for correcting the deviatoric part
of the RST using the SpaRTA framework. The training dataset consists of LES data of a single
turbine, and a sample pre-selection process is employed to enhance the efficiency of the model
discovery process within the framework. The outcome of this study is a simple model for the
correction term of the deviatoric part of the RST.

The model consists of two terms, that are made up from the first tensor and the first
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Figure 6: Comparisons of power output for different models. The power output is normalized
with respect to the power output of the first turbine in the LES data.

invariant of the Pope’s basis tensors, along with the specific dissipation rate that is used for
non-dimensionalization. The model works as an modification to the constant Cμ, thus making
the model in the scope of the linear eddy viscosity model. The model could capture velocity
fields relatively well, but slightly deviates for the TKE field for the trained data. Additionally,
when applied to a more complex six-turbine unseen case, the model demonstrates consistent
performance in terms of velocity field and power output prediction, except for the TKE field,
highlighting its generalizability.

In future research, it is recommended to consider using different baseline models for minimal
corrections and improved model comparisons. Additionally, a thorough investigation into the
computational costs associated with the modeling approach is necessary, to justify its utilization.
In addition to that, to attain the accuracy of full propagation RANS, it is necessary to conduct a
discovery of the RWake model. Furthermore, it is essential to assess the models’ generalizability
by testing them against more complex scenarios, such as configurations with turbines placed
closer together or in staggered arrangements.
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[2] Réthoré P 2009 Wind Turbine Wake in Atmospheric Turbulence Ph.D. thesis
[3] Archer C L, Vasel-Be-Hagh A, Yan C, Wu S, Pan Y, Brodie J F and Maguire A E 2018 Applied Energy 226

1187–1207
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