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ABSTRACT
AI systems are increasingly incorporated into human decision-
making. Yet, human decision-makers are often affected by their
cognitive biases. In critical settings, such as medical diagnosis, crim-
inal judgment, or information consumption, these cognitive biases
hinder optimal decision outcomes, thereby resulting in dangerous
decisions and negative societal impact. The use of AI systems can
amplify and exacerbate cognitive biases in their users. In this work-
shop, we seek to foster discussions on ongoing research around
cognitive biases in human-AI collaboration and identify future re-
search directions to understand, quantify, and mitigate the effects of
cognitive biases. We will explore cognitive biases appearing in vari-
ous contexts of human-AI collaboration: what can cause them?; how
can we measure, model, mitigate, and manage cognitive biases?;
and how can we utilise cognitive biases for the greater good? We
will reflect on workshop discussions to form a research community
around cognitive biases and bias-aware systems.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); Collaborative and social computing.
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1 INTRODUCTION
In recent years, Artificial Intelligence (AI) has been increasingly
outperforming humans in many tasks, such as classification and
forecasting [18, 38]. We have seen a rapid uptake in the deployment
of AI systems to complement and support human decision-makers
in critical domains: judges use algorithmic risk assessment to deter-
mine criminal sentences, doctors rely on machine learning models
to diagnose patients, and online media platforms adopt recommen-
dation systems to present users with relevant content items. How-
ever, the literature indicates that human decision-makers are not
always rational [45]; their decisions are often affected by cognitive
biases – defined by Tversky and Kahneman [50] as mental shortcuts
or heuristics to make faster but less deliberate decisions. Cognitive
biases distort our thinking in a waywe are often unaware of and can
negatively influence decision outcomes. For example, confirmation
bias can affect how users interpret and seek information online [1],
anchoring bias can induce unfair juridical decisions when presented
with multiple pieces of evidence [20], and the Dunning-Kruger ef-
fect can hinder appropriate reliance on AI systems [21].

Research has suggested that AI systems can trigger and even
amplify cognitive biases in their users [1, 3, 7, 33, 35]. Personalised
recommendation systems, for example, optimise content recom-
mendations around the users’ preferences and cater predominantly
to what users prefer. As a result, such systems risk reinforcing
confirmation bias and the echo chamber effect [1, 6, 26]. Moreover,
studies have shown that AI explanations can exacerbate our cogni-
tive biases and compromise AI-assisted decision-making, such as
trust in AI [33], reliance on AI [5, 10, 21, 39], and interpretation of AI
results [27, 46]. Meanwhile, cognitive biases can shape the quality of
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ground-truth data and thereby influence downstream applications
and human evaluations of systems [16, 24], and also influence the
outcomes of AI systems [1, 4]. Recommendation systems pick up
not only user preferences but also their confirmation bias through
their selective information consumption behaviour. As a result,
these systems deliver content that, in turn, amplifies users’ cogni-
tive biases [1]. A recent example of ChatGPT also demonstrates
that it exhibits many biases humans possess, for instance, framing
bias and overconfidence bias [12]. With AI systems and cognitive
biases forming an interplay that influences human decision-making,
it is, therefore, crucial to understand how cognitive biases manifest
themselves and how their effects can be mitigated.

A growing body of work has explored how to mitigate cogni-
tive biases in human-AI collaboration. By leveraging AI systems
and carefully designing them as a decision aid, Kliegr et al. [27]
reviewed twenty cognitive biases in interpreting rule-based ma-
chine learning models and associated debiasing techniques. Wang
et al. [51] proposed a framework for building explainable AI sys-
tems that reduce common cognitive biases, e.g., availability bias and
confirmation bias. In addition, some research has proposed tech-
nological interventions to counter cognitive biases in human-AI
collaboration. Buçinca et al. [10] employed cognitive forcing tools
to reduce overreliance on AI. Rastogi et al. [43] introduced a time
allocation strategy to mitigate anchoring bias. Bach et al. [3] further
evaluated bias mitigation techniques as integrated into the user
interface of a clinical decision support tool and identified concerns
around the impact on efficiency.

Spanning from literature in behavioural economics, researchers
and practitioners have adopted nudges as an intervention to counter
the undesired effects of cognitive biases [9, 11, 31, 36, 37]. Nudges
alter the environment, i.e., the user interface, and subsequently trig-
ger cognitive biases that shift users towards a particular decision
or behaviour [48]. Therefore, such methods not only leverage cog-
nitive biases but can also be used to combat their negative effects.
For instance, Rieger et al. [44] employed targeted obfuscation on
search results to nudge people towards decreasing interaction with
attitude-confirming information. By obfuscating content items that
may confirm one’s beliefs, this nudge taps into the status-quo bias
– a tendency to go along with the path of least resistance – and, in
turn, helps reduce confirmation bias as users avoid interacting with
the obfuscated items.

Nonetheless, effectively mitigating cognitive biases is a challeng-
ing task, particularly because of the inherent property of cognitive
biases that some individuals are less or more susceptible to biased
judgments due to interaction contexts (e.g., domain knowledge,
cognitive load, or topic involvement) [8, 30, 35] and individual
characteristics (e.g., short-term memory span) [35, 42]. Moreover,
different individuals, such as those with varying levels of expertise,
possess different mental models of interacting with and understand-
ing AI systems [25, 53]. As a result, not every debiasing intervention
would always be effective for every user [21, 35, 44]. Additionally,
multiple cognitive biases can manifest at the same time, producing
mixed effects that can be difficult to observe and mitigate [2].

The role of cognitive biases in human-AI collaboration has be-
come a growing discourse in the CSCW community. Through dif-
ferent domains, such as HCI, CSCW, Information Retrieval, and

Behavioural Economics, diverse forms of studies address the ques-
tion of how cognitive biases manifest themselves and how they
could be effectively mitigated. Therefore, it is important to bridge
together insights from different disciplines and create a common
ground for future cognitive bias research.

In this workshop, we aim to bring together researchers, prac-
titioners, and designers to jointly seek a better understanding of
cognitive biases and solutions to mitigate problems arising from
biases. Recent workshops such asWorkshop on Detection and De-
sign for Cognitive Biases in People and Computing Systems [13] at
CHI 2020, Workshop on Technologies to Support Critical Thinking
in an Age of Misinformation [14] at CHI 2021, and the Dagstuhl
Seminar on Technologies to Support Critical Thinking in an Age of
Misinformation [15] have explored related topics with particular
focus on online information consumption and misinformation. This
proposed workshop at CSCW 2023 will focus on cognitive biases
in the context of human-AI collaboration, where AI systems act as
supporting tools for human decision-makers.

2 WORKSHOP GOALS AND THEMES
We aim to foster a discussion about ongoing work on cognitive
biases in HCI, provide a common platform to revisit the current
research, and establish a research agenda for understanding, quan-
tifying, mitigating, and utilising cognitive biases. Ultimately, we
seek to form a research community that works towards the design
of Bias-Aware Systems [8, 34], defined as computing systems that
take into account the cognitive biases of their users. Through cre-
ating this community, we aim to build a shared understanding of
cognitive biases and methods to measure, utilise, and mitigate their
effects. We hope that discussions in this workshop lead to fruitful
collaborations that leverage our understanding of cognitive biases
in users.

In this workshop, we call for participants to share their research
ideas, questions, and opinions with regard to the following themes:

• Discovering and Identifying Cognitive Biases We would
like to explore mechanisms and components of AI systems that
amplify or trigger cognitive biases in their users. In what human-
AI collaboration scenarios are cognitive biases involved? Recent
research has explored a diverse set of cognitive biases people
follow when interacting with explainable AI systems [7, 17, 27].

• Modelling and Quantifying Cognitive Biases: An important
step towards bias mitigation is to model cognitive biases and
measure their extent [4, 40]. However, since users are often un-
aware of their cognitive biases, it is challenging to know whether
cognitive biases are manifesting themselves. Recent research
has proposed mathematical frameworks to model cognitive bi-
ases [23, 35, 43]. Moreover, some works have explored methods
to reliably quantify cognitive biases in-situ using a variety of
physiological sensors [8, 19].

• Novel Approaches to Mitigate Cognitive Biases: We would
like to explore novel methods to mitigate the negative effects of
cognitive biases in human-AI collaboration. Existing approaches
include nudging, i.e., changing the choice environment [11], boost-
ing, i.e., fostering metacognitive skills in people [28], and design-
ing decision support systems that help users make effective and
accurate decisions [51]. We seek to discuss the shortcomings and
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limitations of existing debiasing approaches and develop future
directions.

• Application Scenarios of Cognitive Biases: While it is known
that cognitive biases negatively affect human decision-making,
we would like to explore the use of cognitive biases for the greater
good. Can we imagine scenarios in which cognitive biases actu-
ally benefit human-AI collaboration? [29, 32]

• Impact of the Bias Mitigation: We seek to explore how bias
identification and mitigation strategies can positively and neg-
atively impact AI systems and their users. What benefits do
people get if their biases are mitigated? Do we really need to
eliminate biases? Is there an alternative way to support human
decision-making? Recent research has shown that some debias-
ing interventions like nudges can harm user autonomy [3, 36] or
slow down the interaction [41].

• Case Studies of Cognitive Biases in Human-AI Collabo-
ration: Presentation of concrete cases where the prevalence,
mitigation, and utilisation of cognitive biases in human-AI col-
laboration have been investigated.

3 CALL FOR PARTICIPATION
We would like to welcome 20-30 participants for this workshop (ex-
cluding the organisers). Participants will be required to contribute
a brief statement of interest to the workshop. We accept several
forms of submission, including (1) a short research summary or
position paper (2-4 pages excluding references) discussing one or
more workshop themes or (2) a one-page essay stating motivations
for attending this workshop with a short bio. Each submission will
be reviewed by the workshop organisers and accepted based on
the quality of the submission and the diversity of perspectives to
allow fruitful discussions between researchers from different do-
mains, including but not limited to HCI, CSCW, AI, and cognitive
psychology. Upon acceptance, we will encourage participants to
record a short 3-5 minute video presenting the content of their
submission, which will be available to watch before the workshop.
We will advertise our workshop and the call for papers through
mailing lists, social media, and forums.

4 WORKSHOP SCHEDULE
We propose a one-day workshop with hybrid participation: there
will be an option to participate physically at CSCW 2023 and virtu-
ally to ensure maximum inclusion. We plan to organise the work-
shop with the following activities:
• Introduction (1 hour): We will welcome participants to this
workshop and provide an outline of planned activities, goals, and
themes. We will also include a quick ice-breaking activity for
participants to get to know each other.

• Lighting Talks (1.5 hours): Participants will share their paper
submissions. We plan on allocating time for selected papers,
and the presentations will be organised under workshop themes.
Each presenter will have three minutes to talk about their work
and two minutes for Q&A. We aim for this session to be an
opportunity for authors to introduce their research and gain
feedback from the audience.

• Two-round Action Group Activities (2 hours): We will divide
participants into action groups where each group’s theme will

associate with concrete scenarios from the submitted position
papers and existing pre-workshop discussions, for example, rec-
ommender systems, explainable AI, or generative AI. Participants
can join the groupwith the theme they aremost interested in. The
number of action groups will be determined prior to the work-
shop. In two rounds, participants will engage in the following
activities:
– Brainstorming (40 minutes): Participants will be assigned a
brainstorming task and discuss solutions in their action group.
Each brainstorming task will be associated with one of the
abovementioned themes. In both rounds, there will be at least
one organiser facilitating discussion in each group. We plan
to source brainstorming tasks from workshop themes: what
are cognitive biases and their causes-triggers-effects (discovering
bias); what are the measures of cognitive biases (quantifying
bias); develop interventions to debias (mitigating bias); identify
application scenarios where cognitive biases are exploited (utilis-
ing bias); and identify positive and negative impacts from bias
mitigation (impact of bias mitigation).

– Knowledge Synthesis (20 minutes): All participants will re-
convene to share what they discussed in their action groups,
including key ideas, challenges, and opportunities.

• Closing Remarks (30 minutes): We will synthesise key take-
aways from discussions and identify the next steps for building
a research community on cognitive bias. We will also facilitate
follow-up conversations after formally concluding the workshop.
We will incorporate breaks between sessions and social activities

into the final schedule.

5 HYBRID SETUP
We plan to utilise the following tools to support and accommodate
our hybrid setup:
• Workshop Website.We will make the workshop information
publicly available on the workshop website1, including the work-
shop proposal, call for participation, accepted submissions, work-
shop program, participant information, and other relevant mate-
rial.

• Slack Workspace. We will set up a dedicated Slack workspace
to enable asynchronous communication among workshop par-
ticipants before, during, and after the workshop. Prior to the
workshop, we will also share accepted paper submissions and (if
applicable) short videos on the Slack workspace. The organisers
will actively monitor discussions on the channels to keep our
participants engaged.

• Zoom Video Conferencing.We will broadcast in-person work-
shop presentations, activities, and discussions on Zoom to allow
virtual participants to take part in our workshop. The same tool
will also allow live closed-captioning to support accessibility.

• Padlet and Miro Boards.We will use Padlet and Miro boards
to allow participants, both in-person and virtual, to share and
note down ideas throughout the workshop. We will encourage
workshop participants to take notes on these online sharing
tools as they will be accessible for remote participants and future
references.

1http://www.critical-media.org/cscw23
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6 WORKSHOP OUTCOMES
The following are the expected outcomes of this workshop.

• Forming a research community. By bringing together re-
searchers and practitioners from different disciplines, we expect
to see an exchange of knowledge and future collaborations on
research around cognitive biases and bias-aware systems. We will
also keep the slack workspace open to workshop participants to
continue to develop a community of cognitive bias researchers.

• Compilation of Cognitive Biases in HCI. Based on workshop
discussions, we intend to document a list of cognitive biases in
various HCI contexts and the associated quantification, utilisa-
tion, and mitigation strategies, accompanied by empirical studies
that explored such biases.

• Sharing Insights. We will document the results of the action
groups and discussions and make the collected information avail-
able toworkshop participants and the broader community through
an online repository and a public website.

7 ORGANISERS
The organising team of this workshop consists of researchers and
experts working in and across CSCW, HCI, AI, and Information
Retrieval.

• Nattapat Boonprakong is a PhD candidate at the School of Com-
puting and Information Systems, the University of Melbourne. He
is interested in Cognition-aware Systems and Empathic Comput-
ing. His PhD research is particularly focused on the detection and
mitigation of cognitive biases in online information consumption
where people often face different opinions.

• Gaole He is a PhD candidate at Web Information Systems group
of the Faculty of Electrical Engineering, Mathematics and Com-
puter Science (EEMCS/EWI), Delft University of Technology. His
research focuses on human-centered explainable AI, human-AI
decision-making, and knowledge graph reasoning.

• Ujwal Gadiraju is an Assistant Professor at the Software Tech-
nology Department of the EEMCS faculty at Delft University of
Technology. He is a Co-director of the TU Delft Design@Scale
AI Lab. His research focuses on Human-Centered AI and Crowd
Computing to create novel methods, interfaces, systems, and tools
capable of overcoming existing challenges at the intersection of
HCI and AI in our pursuit to build better AI systems and facilitate
better reliance of humans on AI systems. He has (co)-organized
workshops and symposiums focused on biases in human compu-
tation, crowdsourcing, and human-AI interactions.

• Niels van Berkel is an Associate Professor at the Department of
Computer Science at Aalborg University. His research focuses on
collaboration with real-world intelligent systems, with a focus on
overcoming challenges in decision-making. He has (co-)organised
various workshops, including on the topic of Human-AI interac-
tion, explainability, and fairness [52].

• Danding Wang is an Assistant Researcher at the Institute of
Computing Technology, Chinese Academy of Sciences. Her re-
search focuses on human-centered explainable AI, AIGC detec-
tion, media forensics, and misinformation detection. She pro-
posed an explainable AI framework that facilitates human rea-
soning and mitigates cognitive biases [51].

• Si Chen is a PhD candidate at the School of Information Sciences
at University of Illinois at Urbana-Champaign. She conducts re-
search on human consciousness and metacognition while using
AI-driven intelligent learning systems. Additionally, she explores
how to ensure inclusivity in such systems for learners with di-
verse abilities, such as those who are blind and visually impaired.

• Jiqun Liu is an Assistant Professor of Data Science and Affiliated
Assistant Professor of Psychology at the University of Oklahoma
(OU). His research focuses on the intersection of human-centered
data science, interactive information seeking/retrieval, and cogni-
tive psychology, and seeks to apply the knowledge learned about
people interacting with information in adaptive recommendation,
user education and intelligent nudging.

• Benjamin Tag is a Lecturer in the Human-Centred Computing
Group at Monash University. He researches Human-AI Interac-
tion, Digital Emotion Regulation, and Immersive Analytics with
a special focus on inferring mental state changes from data col-
lected in the wild. Benjamin co-organized a series of workshops
on cognitive biases [13–15].

• Jorge Goncalves is an Associate Professor in the School of Com-
puting and Information Systems at the University of Melbourne.
He has conducted extensive research on Human Computation
and facilitating Human-AI Interaction. He has also served as
Workshops Co-Chair for CHI’19 and CHI’20, and co-organised
many successful workshops at leading HCI venues such as CHI,
CSCW and Ubicomp [22, 47, 49].

• Tilman Dingler is a Senior Lecturer in the School of Computing
and Information Systems at the University of Melbourne. He
investigates the notion of cognition-aware systems and builds
technologies that support users’ information-processing capabil-
ities. Tilman instigated a series of recent workshops related to
critical thinking and the role of cognitive biases at prime venues,
such as CHI and in the prestigious Dagstuhl seminar series [13–
15].
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