
Deep End-to-end Network for 3D
Object Detection in the Context
of Autonomous Driving

Dominik Jargot

M
as

te
ro

fS
cie

nc
e

Th
es

is

Source of the cover image: http://www.computerhistory.org/atchm/wp-content/uploads/
2014/05/1.0_Driverless_Car_of_the_Future_Adlores.jpg, Retrieved on 24.05.2018

http://www.computerhistory.org/atchm/wp-content/uploads/2014/05/1.0_Driverless_Car_of_the_Future_Adlores.jpg
http://www.computerhistory.org/atchm/wp-content/uploads/2014/05/1.0_Driverless_Car_of_the_Future_Adlores.jpg

Deep End-to-end Network for 3D
Object Detection in the Context of

Autonomous Driving

Master of Science Thesis

For the degree of Master of Science in Vehicle Engineering at Delft
University of Technology

Dominik Jargot

February 7, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was completed in the Research and Development division of Daimler
AG. Their cooperation is hereby gratefully acknowledged.

Copyright c© Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology
Department of

Cognitive Robotics (CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Deep End-to-end Network for 3D Object Detection in the Context of

Autonomous Driving
by

Dominik Jargot
in partial fulfillment of the requirements for the degree of

Master of Science Vehicle Engineering

Dated: February 7, 2019

Supervisor(s):
Prof.dr. D.M. Gavrila

Dipl.-Inform. M.R. Roth

Reader(s):
Dr. J.F.P. Kooij

Dr.ing. J. Kober

Dr. M. Kok

Abstract

Nowadays, autonomous driving is a trending topic in the automotive field. One of the most
crucial challenges of autonomous driving research is environment perception.

Currently, many techniques achieve satisfactory performance in 2D object detection using
camera images. Nevertheless, such 2D object detection might be not sufficient for autonomous
driving applications as the vehicle is operating in a 3D world where all the dimensions have
to be considered. In this thesis a new method for 3D object detection, using deep learning
approach is presented. The proposed architecture is able to detect cars using data from
images and point clouds. The proposed network does not use any hand-crafted features and
is trained in an end-to-end manner.

The network is trained and evaluated with the widely used KITTI dataset [1].

The proposed method achieves an average precision of 81.38%, 67.02%, and 65.30% on the
easy, moderate, and hard subsets of the KITTI validation dataset, respectively. The average
inference time per scene is 0.2 seconds.

Master of Science Thesis Dominik Jargot

ii

Dominik Jargot Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Research goals . 3
1-2 Outline of the thesis . 3

2 Theoretical background 5
2-1 Data representation . 5

2-1-1 Data from a camera . 5
2-1-2 Data from a lidar . 6

2-2 Neural networks . 7
2-2-1 Loss function . 8
2-2-2 Bias and variance . 9
2-2-3 Activation function . 9
2-2-4 Convolutional neural networks . 10

2-3 Fusion methods . 12
2-3-1 Early fusion . 12
2-3-2 Late fusion . 12
2-3-3 Deep fusion . 13

3 Related work 15
3-1 Classical approaches for object detection . 15
3-2 Deep learning based object detection . 17
3-3 3D object detection in the context of autonomous driving 19

3-3-1 3D bounding-box representation . 19
3-3-2 Camera based methods . 19
3-3-3 Lidar based methods . 21
3-3-4 Camera and lidar based methods . 22

Master of Science Thesis Dominik Jargot

iv Table of Contents

4 Method 27
4-1 Aggregated View Object Detection . 28
4-2 VoxelNet . 29
4-3 Proposed method . 31

4-3-1 Coordinate system for the point cloud 32
4-3-2 Feature extraction from the point cloud 32
4-3-3 Feature extraction from the image . 33
4-3-4 Feature proposals . 34
4-3-5 Dimensionality reduction and resizing 34
4-3-6 Deep fusion of image-based and point cloud-based features 34
4-3-7 Detection network . 35

5 Experimental results 37
5-1 KITTI dataset . 37

5-1-1 Dataset description . 37
5-1-2 Dataset splits . 39

5-2 Evaluation metrics . 39
5-3 Data augmentation . 40
5-4 Hyperparameters . 41
5-5 Evaluation . 42
5-6 Qualitative results . 44
5-7 Comparison . 45

6 Conclusions 49
6-1 Future work and recommendations . 49

A KITTI benchmark results of published methods 51

B All results 53

Bibliography 55

Glossary 59
List of Acronyms . 59

Dominik Jargot Master of Science Thesis

List of Figures

1-1 A commercial autonomous vehicle developed by Waymo. Image [8]. 2

2-1 What people perceive as an image, for a machine is a tensor of numbers. Left
image [7]. 6

2-2 Example of a point cloud obtained by a lidar sensor. 6
2-3 Example of BEV projections (first three from left) and a cylindrical, front view

projection (three images on the right) [10]. 7
2-4 A biological neuron and an artificial neuron comparison 8
2-5 A neural network example and the publications with "deep learning" and "neural

network" keywords . 8
2-6 Convolution layer visualization . 11
2-7 An example showing the difference between valid and same padding options. . . 11
2-8 Early fusion for pedestrian detection [17] . 13
2-9 Decision level fusion of two CNNs [20] . 14
2-10 Comparison between shallow and deep fusion 14

3-1 The principle behind the Histogram of Gradients (HOG) feature descriptor [26]. . 16
3-2 A scheme presenting the DPM approach [28]. 16
3-3 Examples of detections in the images obtained with the Faster R-CNN [6] and the

architecture of the Faster R-CNN [6] . 18
3-4 An overview of SSD (top) and YOLO (bottom) architectures [31]. 18
3-5 Different 3D bounding box representations used in the literature [23]. 19
3-6 General pipeline for fusion of any 2D detector with 3D point cloud [48] 23
3-7 MV3D architecture [10]. 24
3-8 Architecture of the model presented in [24]. 24
3-9 Object detection pipline for F-PointNet [49]. 25

Master of Science Thesis Dominik Jargot

vi List of Figures

4-1 AVOD architecture [23] . 28
4-2 The overview of VoxelNet architecture with the emphasis on the Feature Learning

Network [9]. 29
4-3 Voxel feature encoding (VFE) layer introduced in VoxelNet [9] 30
4-4 Proposed architecture . 31
4-5 Camera and voxel coordinate systems placement. 32
4-6 An example input image (top) and a corresponding point cloud feature map (bot-

tom left) after 1× 1 convolution and an image feature map (bottom right). The
feature are maps obtained in the training process. 34

4-7 Fusion types for the proposed method . 35

5-1 A scheme of the sensor placement in the car used to collect the KITTI dataset [7]. 38
5-2 A visualization of the Intersection over Union. 39
5-3 Experiment 006: Plots of average precision on the KITTI validation dataset over

training iterations. 44
5-4 Experiment 009: Plots of average precision on the KITTI validation dataset over

training iterations. 44
5-5 Precision-recall curves for the 006 model for the case of 2D, 3D, and BEV detection 44
5-6 Precision-recall curves for the 009 model for the case of 2D, 3D, and BEV detection 45
5-7 Qualitative results for the 006 model on the KITTI validation set. 46
5-8 Qualitative results for the 009 model on the KITTI validation set. 47

Dominik Jargot Master of Science Thesis

List of Tables

4-1 Convolutional layers for point cloud feature extraction. 33
4-2 Image feature extractor. 33

5-1 Explanation of the annotations in the KITTI dataset. 38
5-2 Conditions for three difficulty levels in the KITTI dataset [7] 39
5-3 Hyperparameters used in the experiments and their values 41
5-4 Experiments’ results. Constant parameters: RPN proposal crop size: 3× 3, SecS

proposal RoI crop size: 7× 7, fusion method: concatenate, fusion type: late. . . 42
5-5 Experiments’ results. Constant parameters: RPN proposal crop size: 5× 5, SecS

proposal RoI crop size: 9× 9, fusion method: concatenate, fusion type: late. . . 43
5-6 Experiments’ results. Constant parameters: RPN proposal crop size: 7× 7, SecS

proposal RoI crop size: 11× 11, fusion method: concatenate, fusion type: late. . 43
5-7 Experiments’ results. Constant parameters: RPN NMS: 1024, ILR: 0.0001, decay

steps: 30000, decay factor: 0.8. 43
5-8 Comparison of results on the validation set for a car class. The proposed architec-

ture achieves results comparable to the presented state-of-the-art methods. . . . 45

A-1 3D Object Detection KITTI Benchmark results [1] 52

B-1 The list of the performed experiments together with all varying training parameters. 54

Master of Science Thesis Dominik Jargot

viii List of Tables

Dominik Jargot Master of Science Thesis

Acknowledgements

I would like to thank my supervisor prof. dr. Dariu M. Gavrila for the opportunity to work
in one of the best known automotive companies in the world. Additionally, I would like to
express my gratitude for his patience and forbearance. I would like to also thank my daily
supervisor Markus R. Roth for the support and guidance during my stay at Daimler AG, and
the trust after my stay.

Great thanks to my parents, Beata and Grzegorz, who supported me no matter what. They
gave me more than they could afford and I promise to make them proud. I would also like
to thank my beloved girlfriend, Adrianna Kaźmierczak, for reading and reviewing my work.
She has always been there for me and believed in me even when I did not believe in myself.

The time I have spent at the University in Delft and at Daimler in Ulm was not only a great
academic and professional experience, but also a chance to make friends for life. I would like
to thank all of the people I have met during this over two years long journey for making this
time unforgettable. It was a pleasure for me to study at TU Delft and I am glad to be where
I am now.

Delft, University of Technology Dominik Jargot
February 7, 2019

To my parents.

Chapter 1

Introduction

Nowadays, autonomous driving is a subject undergoing intense study with many researchers
working towards a goal of a fully automated vehicle. One of the milestones towards this full
automation is the vehicle’s ability to perceive the environment. Without a human in the loop
the vehicle has to take over all the tasks related to road observation, including detection of
cars and vulnerable road users (VRU)1.
Object detection and classification is currently a matter of broad interest. A great share of
research in this field is related to autonomous driving. For a human, object detection is natural
and is processed subconsciously, whereas a machine has to be told explicitly how to perform
this task on noisy sensor data via dedicated software. Additionally, the implementation in
a road-legal car has to be robust as the road situation can change dynamically or adverse
weather conditions can worsen the performance of sensors. Moreover, the system has to work
even in case of individual sensor malfunction. Consequently, what is easy for people can be
challenging for machines, hence, the reliable solution to the problem is far from trivial.
Nowadays, many modern cars are equipped with Advanced Driver-Assistance Systems (ADAS)
and sensors such as cameras and radars are mounted within the chassis. For instance, the
Lane Keeping Assistance utilizes the camera to prevent an unwanted lane departure. Other
popular examples of ADAS are the Adaptive Cruise Control (ACC) and the Blind Spot De-
tection, both of them utilize radar. ACC automates the longitudinal movement of the car,
i.e. it keeps a safe distance to the car in the front. The Blind Spot Detection helps the driver
by providing him information whether there are vehicles in the areas not visible in the side
mirrors.
These systems can be perceived as an intermediate step towards the full automation, but
for now, they only offer assistance for a driver to enhance the safety. For a car to be fully
autonomous, it has to be able to take over all the tasks of the human driver. One of the
most important ones is the object detection, used to spot and localize other road users and
obstacles.

1In the European Union Intelligent Transport Systems (ITS) directives vulnerable road users (VRU) are
defined as: "non-motorised road users, such as pedestrians and cyclists as well as motor-cyclists and persons
with disabilities or reduced mobility and orientation" [2].

Master of Science Thesis Dominik Jargot

2 Introduction

In the literature, most approaches to object detection are data-driven, thus, there is a need
for large and annotated datasets to teach the system how to perceive the environment. There
are a lot of datasets with only 2D data, i.e. images from cameras and there are many 2D
detectors that are already mature and perform well, for instance, SSD [3], YOLO [4], Fast
R-CNN [5], or Faster R-CNN [6].

However, the car is in fact operating in a 3D world and we would like the autonomous vehicle
to be able to also perceive the world that way. Hence the need for the datasets providing 3D
data, together with 3D annotations. For now, not much labelled 3D data is available, with
one of the most popular datasets being the KITTI dataset [7] providing images and lidar
point clouds and 3D annotations.

Currently, the research for 3D object detection in the context of autonomous driving is focused
mainly on the camera + lidar setting. The machine learning approach is adopted to build
models that are able to recognize the features of the object to be detected and predict the
object’s location and class (e.g. a car or a pedestrian). At the moment, the best performing
methods are based on deep learning algorithms.

There have already been some commercial vehicle implementations, such as a Waymo car,
see Figure 1-1. However, many manufacturers and researchers still struggle with delivering a
vehicle ready for a series production. Apart from legal issues, which are not discussed here,
there are many technical limitations that has to be considered. One of the factors to take into
account is to provide the redundancy in the system, in case of the sensor’s malfunction or
poor operation conditions, e.g. a camera has limited performance when it is dark and a lidar
in a foggy weather. Another difficulty is the placement of the sensors which ideally would be
hidden within the chassis, unlike in the Waymo car (Figure 1-1).

Figure 1-1: A commercial autonomous vehicle developed by Waymo. Image [8].

Regarding how the data from different modalities can be combined, there are several ap-
proaches to sensor fusion. In the early fusion, the low level data such as raw data or feature
maps is combined and then processed together. In the late fusion, also called decision fusion,
data from different sources is processed separately and only the outputs are fused. Lately,
also a method called deep fusion has been applied. It consists in fusing the data several times
on the intermediate steps of the system.

In this work, we introduce a method for 3D object detection on camera and lidar data. The
method is a deep learning based approach with deep fusion of lidar and camera features. We

Dominik Jargot Master of Science Thesis

1-1 Research goals 3

provide an end-to-end framework which automatically learns features from raw camera and
lidar data.

1-1 Research goals

For this thesis, the following research goals have been set:

Goal: Develop a new end-to-end deep learning based method for 3D object detection
in the context of autonomous driving using camera and lidar data, with a focus on car
detection.

Subgoal: Ensure that the method is able to learn from raw camera and lidar data
without the need for any hand-crafted features.

Goal: With a designed network, in the available benchmark achieve performance com-
parable with state-of-the-art methods

Subgoal: Achieve high detection rates in the 3D camera and lidar data
Subgoal: Achieve runtime of the method around 10 Hz, so that it can be consid-
ered close to real-time detection.

1-2 Outline of the thesis

This work is structured as follows. A short introduction is given in Chapter 1. Chapter 2
introduces the theoretical background most important for this thesis. Specifically, data rep-
resentation methods, basics of neural networks, and fusion methods are discussed. Later
on, previous related work in the field of object detection with the focus on the autonomous
driving scenario is presented in Chapter 3. Chapter 4 is devoted to the description of the
proposed method. The general concept and architecture, as well as the implementation de-
tails are provided there. Subsequently, the results of the experiments and their evaluation
and comparison are discussed in Chapter 5. Finally, Chapter 6 contains the conclusions, as
well as the future work comments and the recommendations.

Master of Science Thesis Dominik Jargot

4 Introduction

Dominik Jargot Master of Science Thesis

Chapter 2

Theoretical background

In this chapter, theory and background information about the subjects crucial for this thesis
project are presented. At first, the possible ways of representing data from a camera and
a lidar are explained. Later on, different fusion methods for different sensor modalities are
described. Subsequently, a brief and general introduction to neural networks is given with
the main focus on convolutional neural networks.

2-1 Data representation

A camera is a well known, relatively cheap, and widely used sensor. It captures the information
of the environment in a mean of images or videos (sequences of images). Images are relatively
easy to visualize and provide discriminative information. Nevertheless, due to the lack of
a depth information it is a challenging task to detect objects of varying shapes, sizes, and
orientations by using only one camera.

On the other hand, a lidar provides a 3-dimensional point cloud of the environment, which
yields information about the distance in the scene, i.e. depth. This data is very well applicable
for obstacle detection. However, point clouds obtained by lidar sensors lack color and texture
information and only sparsely capture the environment.

2-1-1 Data from a camera

An image from a modern, digital camera can be represented by a two-dimensional, dense
matrix. The smallest element of each image is a pixel which can be encoded with different
structures, such as a single intensity value (e.g. gray-scale image), or a vector (e.g. RGB,
or HSV values). In the latter case, the representation of the whole image becomes three
dimensional, which is encoded with a 3D tensor. See Figure 2-1 for the machine interpretation
of an image.

Master of Science Thesis Dominik Jargot

6 Theoretical background

Figure 2-1: What people perceive as an image, for a machine is a tensor of numbers. Left
image [7].

2-1-2 Data from a lidar

From the raw lidar data the following information can be extracted and prepared for the
further processing: reflectance, distance, and relative XYZ position expressed in the local
coordinate system. This information is contained in a list of points, which is not structured,
i.e. permutation of the list does not change the resulting point cloud. Unlike data from a
camera, data from a lidar is sparse, hence, it is not possible to represent the point cloud in
a form of a dense tensor. Apart from being sparse, the data has highly variable density of
points, with density decreasing with distance from the sensor. The reasons behind it are,
e.g. non-uniform sampling of the space, effective range, occlusion, as well as relative position
and orientation of the sensor. A visualization of an example point cloud used in this thesis is
shown in Figure 2-2.

Figure 2-2: Example of a point cloud obtained by a lidar sensor.

Dominik Jargot Master of Science Thesis

2-2 Neural networks 7

There are many approaches available to process a point cloud provided by a lidar. Here two
of them that are widely used in the literature related to object detection are presented. The
first one is the voxelization, i.e. discretization of the euclidean 3D space into voxels (three-
dimensional version of a pixel). This creates a grid of voxels which is most often equally
spaced. This approach can be found in [9]. Another approach is to perform a projection of
the point cloud into a 2D map, e.g. in [10, 11]. Popular projections are a front view and a
top view, also referred to as a bird-eye view (BEV). While projecting the point cloud into
either top view or front view it is possible to generate different maps, such as intensity map,
height map, distance map, maps in longitudinal or lateral direction. The front view uses, for
instance, a cylindrical projection [11].
Examples of lidar projections can be found in Figure 2-3.

Figure 2-3: Example of BEV projections (first three from left) and a cylindrical, front view
projection (three images on the right) [10].

2-2 Neural networks

Artificial neural networks (ANNs) or simply neural networks (NNs) are computing systems
that use a network of functions to process complex data. NNs are loosely inspired by animal
brains and the way biological neurons operate together. By looking at the Figure 2-4 one can
see that the artificial neuron is indeed a very simple model of a biological neuron. Multiple
artificial neurons are stacked in several layers, creating a network. A single artificial neuron
is a mathematical function that transforms an input x into an output y,

y = f(wT x + b) = f(
N−1∑
i=0

wixi + b) (2-1)

where N indicates the number of neurons in the layer. Weights wi and bias b are trainable
parameters that are updated during training process. Most commonly, the function f is a
non-linear function and is called an activation function.
The architecture of NN can be divided into three main parts, namely, an input layer, hidden
layers, and an output layer. An example in Figure 2-5a shows a fully-connected network, i.e.
all of the nodes of a preceding layer are connected with all nodes of a subsequent layer. For
the NN to be able to learn, one has to define a function that will indicate how close is a given
prediction to the true value. Such a function is called a loss function (see Section 2-2-1).
Even though NNs are a relatively old concept [13], it is the recent increase in computational
power that gave this field a significant push. Especially, neural networks with a large number
of hidden layers, called deep neural networks (DNNs), had gained popularity in the past
decade (see Figure 2-5b).

Master of Science Thesis Dominik Jargot

8 Theoretical background

Figure 2-4: Each biological neuron (left) via dendrites receives the input signal from other
neurons. The information is processed in the cell body and the output is sent further through the
axon. A mathematical model (right) is inspired by the behaviour of the biological neuron, where
"dendrites" lead the weighted input to the activation function. The output can be an input to
another artificial neuron [12].

(a) (b)

Figure 2-5: An example of a neural network with input x, two hidden layers f1 and f2, and
output y (a). Number of publications with keywords "deep learning" and "neural network"1(b).

DNNs are a part of deep learning approach for machine learning. In this thesis a term deep
learning refers specifically to deep neural networks. Other branches, such as deep belief
networks or recurrent neural networks are not considered here.

2-2-1 Loss function

During the training, the outputs of the network are compared with the provided ground
truth. The network’s task is to minimize this difference via minimizing the loss function.
Different loss functions are suitable for different applications, for instance, for regression, a
mean squared error (MSE, l2 loss)

MSE = 1
N

N∑
i=1

(yi − ŷi)2 , (2-2)

1Data retrieved from Scopus database on 15th of October 2018

Dominik Jargot Master of Science Thesis

2-2 Neural networks 9

where yi is a true value and ŷi is a prediction, or a mean absolute error (MAE, l1 loss)

MAE = 1
N

N∑
i=1
|yi − ŷi| (2-3)

and for classification, the cross-entropy

H(p, p̂) = −
∑

i

pi log p̂i, (2-4)

where p is a set of true labels and p̂ is a set of predictions.

2-2-2 Bias and variance

In the context of machine learning there are two important prediction errors called bias and
variance.

In practice, if the bias is high, the model has poor performance on both training and the
test data. This is called underfitting and can occur due to the fact that the model is too
simple. In case of a high variance, the model performs significantly better on the training
data than on test data. This means that the model has learned to fit too closely to the training
data and cannot generalize well, which is called overfitting. Overfitting can be caused by an
overcomplicated model or too few training data.

There are multiple approaches how to tackle both under- and overfitting. In case of underfit-
ting, a solution could be choosing a more complex model. When it comes to overfitting, one
uses such techniques as, e.g. l1 or l2 weight decay, or dropout. The idea of weight decay is to
add a regularization term to the loss function, using an l1 or l2 norm:

J(w) = L+ λ
∑

i

|wi| (2-5)

J(w) = L+ λ
∑

i

w2
i , (2-6)

where L is the loss function, J(w) is a regularized loss function, wi are weights, and λ is a
regularization parameter (λ > 0). On the other hand, dropout consists in dropping randomly
chosen neuron activations and their connections during the training. This prevents complex
co-adaptation between the neurons and consequently, reduces overfitting.

All methods used to reduce the generalization error are collectively called regularization tech-
niques [14].

2-2-3 Activation function

According to Eq. (2-1), each node in the hidden layers applies a usually nonlinear function,
called activation function, to the affine transformation of the input. Nowadays, the most
commonly used node type is a rectified linear unit (ReLU), which uses the following activation
function:

f(z) = max{0, z}. (2-7)

Master of Science Thesis Dominik Jargot

10 Theoretical background

Prior to ReLUs, the most popular activation functions were the logistic sigmoid function and
the hyperbolic tangent:

f(z) = 1
1 + e−z

(2-8)

f(z) = tanh(z). (2-9)

Both of them saturate for most of their domain, what can cause problems with gradient-based
learning. This is solved in ReLU ((2-7)), which is unbounded. On the other hand, the Eq. (2-
7) is not differentiable at z = 0. However, in practice, gradient descent is found to perform
well enough. A problem occurs when gradient-based methods are used for learning in cases
where activation equals zero. For that purpose, several generalizations of ReLU, e.g. leaky
ReLU, are proposed [14].

2-2-4 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks in which classic matrix multipli-
cation is replaced by a convolution. They are especially suitable for data with a grid-like
topology, such as images [14]. If the data is just as useful after permutations of data entries,
one should not use CNN.

In general, the convolution is an operation on two functions, here continuous functions of
time x(t) and w(t):

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da (2-10)

Most of the time one has to deal with discrete data, where t is an integer time index. Hence,
the discrete convolution is defined as:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) (2-11)

In CNNs, the x is called the input, w the kernel (or filter), and s the output (or feature map).

It is possible to perform convolutions over more axes, for multidimensional tasks. For instance,
when dealing with 2D images, also a 2D kernel can be used. This would be denoted as
S(i, j) = (I ∗K)(i, j), where i and j are indices over two axes, I is an image, and K is a kernel.
As convolution operation is commutative, an equivalent expression S(i, j) = (K ∗ I)(i, j) =
(I ∗K)(i, j) is more commonly used due to its implementation advantages [14]:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2-12)

Typically, a convolutional neural network layer consists of three components. At first, at
the convolution step, the kernel slides over all cells and the convolutions are performed on
the input. Then, at the detector layer, an activation function, such as ReLU, is applied to
activations obtained at the convolution stage. Lastly, a pooling layer is used to reduce the
spatial dimension of the output by, for instance, taking a maximum over the values within
the kernel. Consequently, the number of parameters in the network is reduced, which can

Dominik Jargot Master of Science Thesis

2-2 Neural networks 11

Figure 2-6: Convolution layer visualization together with the components, such as the kernel,
input, feature map, padding, or stride. Figure from [15].

also help to control overfitting. In many architectures, the pooling layer is applied only once
per multiple convolution and detector layers.

A visualization of how convolution in CNNs work is presented in an example in Figure 2-6.
An inner product between the region from the input (blue) and the kernel of size 3× 3 (gray)
is computed and stored in the feature map in the corresponding cell (green). Commonly,
padding is added around the input, i.a. in order to control the spatial size of the feature map.
Usually, the same height and width of the output and the input after each convolutional layer
is desired. Another parameter of a convolutional layer that can be defined is the stride. It
indicates by how many pixels (cells) the center of the kernel moves at a time to compute
the next value of a feature map. The most commonly used values of the stride are 1 and 2.
Higher values cause high shrinking of the spatial dimensions [14, 15].

In this thesis also the terms valid and same are used when describing the padding. A brief
graphical explanation can be found in Figure 2-7. Valid padding drops the last entries of
data if the filter does not fully fit after the last stride jump in a particular direction. On the
contrary, same padding tries to pad evenly both sides of the input. However, if there is an
odd number of entries to be added, it adds the extra value at the end of data (in terms of
indexing).

Figure 2-7: An example showing the difference between valid and same padding options. Pa-
rameters used in the example: input width 13, kernel width 6, stride 5.

Master of Science Thesis Dominik Jargot

12 Theoretical background

1× 1 convolutions

In the field of convolutional neural networks, 1 × 1 convolution introduced in [16] is an
important concept that serves several purposes. 1 × 1 kernel size indicates that the filter
does not care about the neighbouring data in the same feature map. Such a convolution can
be used for dimensionality reduction across multiple feature maps similarly to how pooling
is used for reducing the spatial dimensions of the feature maps. It is particularly useful for
reducing the memory demand and increasing the efficiency of parts of the network. As the
convolution is almost always followed by the non-linear activation function, 1× 1 convolution
can also be used to add additional non-linearity to the network architecture.

2-3 Fusion methods

In order to overcome the limitations of individual sensors, the systems should be able to make
use of more sources of information. An example for that can be radar data, which is able to
operate at night and is a range measurement device, and a camera, which can detect colours
and in general reflects how humans perceive a scene. However, a camera is not able to perform
well with insufficient lighting conditions or to easily determine the distance and velocity of an
object. Thus, combining the measurements from both sensors allows for improved perception.
There are three conceptionally different fusion approaches, namely early fusion, late fusion,
and deep fusion. For the sake of comparison to deep fusion, early and late fusion can also be
collectively named as shallow fusion.

2-3-1 Early fusion

Early fusion, also called value fusion, combines raw data (measurements) or feature vectors
from individual sources into a joint, fused feature vector. This vector is then an input to the
network. An advantage of this approach is the fact that the employed classifier makes use of
more information what allows for better performance. However, some of the techniques can
be computationally demanding (also regarding the data storing) and in some cases the data
alignment can be challenging.
Methods that can be used in this task are based on various kinds of pre-processing and
projections. Data from two sources have to be properly aligned and transformed in order to
be comparable and usable for further fusion.
An example of early fusion can be found in [17]. Thomanek and Wanielik combine data from
two vision sensors in order to enhance the performance of pedestrian detection. At first, data
from each source is pre-processed (image registration) and the features are extracted (edge
maps). Subsequently, two extracted edge maps are combined using a probabilistic fusion rule
(see Figure 2-8). Later on, the method uses a cascade of Adaboost classifiers to perform the
pedestrian detection.

2-3-2 Late fusion

Late fusion is also called the decision fusion. In this approach, data from each source is pro-
cessed individually, possibly using different methods/classifiers. Subsequently, the resulting

Dominik Jargot Master of Science Thesis

2-3 Fusion methods 13

Figure 2-8: Early fusion for pedestrian detection presented in [17]. After some basic processing
of the individual sensor signals, early fusion is performed on the obtained features (edge maps).
Subsequently, the fusion output is used for further detection algorithm.

outcomes are fused together to obtain a new, potentially more accurate or reliable, decision.
In the late fusion it is possible to combine classifiers that are specialized and efficient in a
specific class. However, in this approach, the already pre-processed data are combined and it
can be hence prone to errors.

There are many different approaches to the decision fusion. Among the popular techniques are
fuzzy inference systems [18], Bayesian classifiers [19], and evidential theory (Dempster-Shafer
theory) [20].

Other popular decision fusion techniques are opinion pools and voting [21]. Opinion pool
combines probabilities from multiple sources (classifiers, models, etc.). The coefficients are
the corresponding weights, which give an indication about the contribution of a given source
and can reflect the expert knowledge about the reliability of each source. The examples are
a linear opinion pool and the logarithmic opinion pool. In voting, each source has to produce
a decision regarding each class. Subsequently, the decisions are combined in majority voting.

An example of a work using the decision level fusion is [20]. Oh et al. combine the clas-
sification results of unary classifiers applied to each sensor for the task of object detection
and classification. Two independent convolutional neural networks (CNNs) are processing the
data from lidar and from camera (see Figure 2-9). The method uses basic belief assignment
(within the aforementioned evidential theory) to fuse the resulting object bounding boxes
and classes. In result, the performance of the detection algorithm is better than of the two
methods individually.

2-3-3 Deep fusion

Deep fusion approach was introduced in [22]. The main idea of deep fusion is to fuse data
or feature vectors multiple times within the neural network. The features extracted with the
part of each network used in the architecture serve as an input to the remaining piece of each

Master of Science Thesis Dominik Jargot

14 Theoretical background

Figure 2-9: Decision level fusion of two CNNs [20]. Data from a camera and a lidar are processed
independently. Both are fed into separate CNNs and only the network outputs are fused together.

network. One can notice, that deep fusion reminds an early fusion approach in which feature
vectors are fused multiple times. Figure 2-10 depicts the idea behind deep fusion.

The authors of [22] claim that deep fusion has many advantages over a traditional shallow
fusion, such as improved flow of the information or the capability to use multiple networks to
learn multi-scale representations. A comparison of shallow and deep fusion can be found in
[22].

The methods that utilize this approach are, for instance, [10, 23, 24].

Figure 2-10: Shallow fusion (a) in comparison with deep fusion (b) [22].

Dominik Jargot Master of Science Thesis

Chapter 3

Related work

The task of object detection is crucial for any autonomous driving application. In order to be
able to classify or, for instance, track an object, it has to be first localized in the scene. There
are different approaches available, from the classical ones from early 2000s to the very recent
deep learning methods. Nowadays, deep learning is the mostly applied, as it outperforms the
classical approaches. An example outcome of one of the novel object detection networks can
be seen in Figure 3-3a.

There are different sensors that can be used as data source, such as cameras, lidars, radars,
ultrasonic sensors, or infrared sensors. Here, only methods which make use of camera and
lidar data are considered.

Below, 2D object detection algorithms are described. Later on, the object detection in 3D is
discussed. Three groups of 3D methods are presented, namely, the ones using cameras, the
ones using lidars, and the ones using both of these sensors. Also, multiple options for the
representation of 3D bounding-boxes are discussed, as they are an inherent part of the object
detection task.

3-1 Classical approaches for object detection

Before the great success of deep learning techniques in the computer vision domain, most
scientists were using hand-crafted features and shallow classifiers for object detection.

The most known detector of its time is an algorithm for object detection developed by Viola
and Jones in 2001 [25]. Their method makes use of the Haar features which are obtained
using a set of rectangular regions and the difference between the sum of pixels within them.
Later on, AdaBoost is used for a cascade classification. The advantages of Viola and Jones
detector are its robustness and speed, it is able to process a 384×288 pixel image in 0.067
seconds, using the computational power commonly available back in 2001.

Another remarkable work in the object detection field has been done by Dalal and Triggs in
2005 [26]. They introduced the Histogram of Oriented Gradients (HOG) as feature descriptors

Master of Science Thesis Dominik Jargot

16 Related work

(see Figure 3-1). Later on, in their specific application of pedestrian detection, a linear SVM
is employed for a classification between ’person’ and ’non-person’.

Figure 3-1: The principle behind the Histogram of Gradients (HOG) feature descriptor [26]. At
first, an image is divided into cells. Then, a histogram of intensity gradient directions is calculated.
Image [27].

An approach that is also based on HOG features is the Deformable Part Models (DPM)
detector [28], primarly developed to detect people. Felzenszwalb et al. exploit the fact that
the object is composed of deformable parts which are at some specific relative locations (see
Figure 3-2). Therefore, instead of using only a model of a whole human body (as in [26]),
the authors also use models of particular parts of the body, such as head, arm, or leg. An
advantage of this approach is that it can handle situations where an object is partly occluded
or, for instance, deformed. A classifier that is used is a latent SVM.

Figure 3-2: A scheme presenting the DPM approach [28].

Dominik Jargot Master of Science Thesis

3-2 Deep learning based object detection 17

3-2 Deep learning based object detection

In the deep learning field, there are two different approaches on how to perform the task of
the object detection, namely two-stage and single-stage detection.

Two-stage detectors

The general rule of a two-stage detector is the following: at first, region proposals in which
an object is expected are generated, then, in the second stage these regions are classified.
This approach allows to use fast and not very demanding networks in the first stage to
generate proposals. Then, in the second stage, an accurate and more complex classifier has
to deal only with generated proposals rather than the whole input data. Such an architecture
helps to keep satisfactory runtime of the method while obtaining high accuracy. Examples
of methods adopting this approach are a Region-based Convolutional Network (R-CNN) [29]
together with its improvements, namely Fast R-CNN [5] and Faster R-CNN [6], as well as a
Region-based Fully Convolutional Network (RFCN) [30].

In R-CNN, at first, a selective search algorithm is used for generating region proposals. Then,
each region is fed into a CNN and the output is classified with SVMs. A downside of this
method is that it is extremely slow (single image inference time is approx. 50 seconds).

The performance of the R-CNN has been improved in the Fast R-CNN. There, the core CNN
uses a whole image as an input instead of individual region proposals and the selective search
is applied to obtained feature maps. Later, together with the Faster R-CNN (see Figure 3-3b,
a Region Proposal Network (RPN) was presented, which was able to directly generate the
proposals and predict the bounding boxes using a CNN feature map [6]. In the Faster R-
CNN the RPN has a set of common convolutional layers with the Fast R-CNN, what makes
the whole algorithm faster compared to using the selective search separately. The average
inference time for a single image is 2.0 s and 0.2 s for the Fast R-CNN and the Faster R-CNN,
respectively. Example detections obtained from Faster R-CNN are depicted in Figure 3-3b.

The RFCN also uses the RPN in order to generate the Regions of Interest (RoIs). The core
CNN is using a whole image as an input and outputs a set of the so called position-sensitive
score maps, which are specialized in detecting a particular class at a specific location. Later
on, the RoIs are compared with the obtained feature maps and depending on the activation,
the collective vote for a whole RoI is given (yes or no) and an object is detected accordingly.

Single-stage detectors

On contrary, there are single stage detectors that perform a detection task in one forward
pass. In these methods the region proposals generation is eliminated and all computation is
performed in a single network. The most popular single-stage detectors are You Only Look
Once (YOLO) [4] and the Single Shot MultiBox Detector (SSD) [3]. Figure 3-4 presents an
overview of both architectures [31].

In YOLO an input image is divided into a grid. Each grid cell is predicting a fixed number
of bounding boxes with an associated confidence score. The classification is performed over
all of the predicted bounding boxes. Moreover, unlike previously described detectors, YOLO

Master of Science Thesis Dominik Jargot

18 Related work

(a) (b)

Figure 3-3: Examples of detections in the images, together with bounding boxes, labels, and
scores obtained with the Faster R-CNN [6] (a), the architecture of the Faster R-CNN [6] (b)

uses a custom CNN architecture. This rather simple approach allows YOLO to be very fast
and operate in real-time. Currently, also improved versions of the algorithm are available
[32, 33].

A different approach is adopted in SSD. At first, SSD uses a base CNN to extract feature
maps, namely the VGG-16 [34]. Then, additional convolutional layers which allow to predict
detection at multiple scales are added to the end of the base network. In contrast, YOLO only
uses one scale feature map. Each layer produces a number of detection predictions, based on
default bounding boxes associated to each feature map cell.

Figure 3-4: An overview of SSD (top) and YOLO (bottom) architectures [31].

Dominik Jargot Master of Science Thesis

3-3 3D object detection in the context of autonomous driving 19

3-3 3D object detection in the context of autonomous driving

While 2D object detection is a well developed and mature field of science, 3D object detection
has still many open and unsolved problems. To motivate why one needs to perform 3D object
detection, one can cite the example of an autonomous vehicle. In order to properly react to
dynamic situations, such a vehicle needs to reason about which objects are present in the
scene as well as about their 3D location, orientation, and 3D extent.

3-3-1 3D bounding-box representation

The easiest way to describe a 3D object is a bounding box that covers object’s full volume.
The smallest number of parameters for a unique representation of a 3D bounding box equals
to nine, i.e. three spatial coordinates of the bounding box’s centre, three dimensions (length,
width, height), and three angles (roll, pitch, yaw). However, many other redundant represen-
tations are also popular. Some of the examples are given in Figure 3-5.

Figure 3-5: Different 3D bounding box representations used in the literature [23]. Left: 8
corners representation [10], middle: axis aligned representation [35], right: 4 corners + 2 heights
representation [23].

Apart from the bounding box representation, some methods try to fit the best 3D models
(e.g. CAD models in [36]) to the objects in regions of interest.

3-3-2 Camera based methods

Regarding the object detection methods that are using cameras, one can divide them into
the ones using a single camera and the ones using a stereo camera setting. Using a setup of
two cameras has an advantage of being able to provide more information about the observed
environment, e.g. a depth map. A downside of this approach is the need of a precise calibra-
tion. Another problem is that, most of the mono camera methods for 3D object detection
prove to be too slow for real time applications [37]. For instance the best performing method
in KITTI benchmark for 2D object detection with orientation estimation [37] is around 0.7
seconds. For many of the methods in this section the performance in 3D benchmark [1] is not
available, thus, the 2D benchmark [37] scores are used for comparison.

Master of Science Thesis Dominik Jargot

20 Related work

Mono camera

One of the approaches is to first generate object proposals and then pass them to a CNN. This
is used in Mono3D [38], where the authors generate 3D object proposals in three different
sizes of the bounding boxes, corresponding to cars, cyclists, and pedestrians. They take into
account segmentation, contextual features, as well as location priors. Subsequently, obtained
proposals are fed into a CNN to generate final labels and oriented bounding boxes. The
network used by the authors is the same as the one used for a stereo setting in [39], written
by the same authors.

A similar approach is taken by Mousavian et al. in [40], who propose Deep3DBox, where an
already well-performing 2D object detector is extended by training a deep CNN to additionally
regress oriented 3D bounding box. The method makes use of the fact that a 2D bounding
box fully encloses the perspective projection of a 3D bounding box of the same object.

Whereas other methods use only 3D bounding-boxes, a different approach is taken in Deep
MANTA (Deep Many-Tasks) introduced by Chabot et al. in [36]. This method additionally
uses a special 3D mask vehicle dataset for the 3D detection of cars. In Deep MANTA, at first,
convolutional layers provide feature maps, which are later fed into a network outputting object
proposals with associated vehicles’ parts, parts visibility, and 3D mask template similarity.
After removing any redundant detections, the best fitting 3D model is chosen from the vehicle
dataset and 2D/3D matching is performed in order to obtain the position and orientation of
the car in the image plane.

Deep MANTA is currently the best performing method in KITTI benchmark for 2D object
detection with orientation estimation [37]. However, its runtime in this benchmark is around
0.7 seconds which is not fast enough for a real time application.

Stereo camera

A stereo camera system makes it possible to compute depth and therefore, it can be used
for the 3D detection. The depth information can be further used to generate a point cloud.
This approach is adopted by Chan et al. in the 3DOP method [39] and by Pham and Jeon
in [41]. Both methods share the same approach to the initial proposal generation and the
detection. The proposal generation problem is formulated as energy minimization task, using
Markov Random Field with energy function. The generated bounding boxes are scored with
Fast R-CNN [5] with added context branch after the last convolutional layer and orientation
regression loss for simultaneous location and orientation learning. Additionally, in [41] the
authors introduce a re-ranking algorithm with a two-stream CNN called a DeepStereoOP,
that exploits features such as a disparity map and a ’distance to the ground’ map.

In the KITTI benchmark, the DeepStereoOP outperforms 3DOP by a small margin in the
2D car detection with orientation estimation, but is still slightly worse in pedestrian and
cyclists classes. Both methods have a runtime of more than 3 seconds per image, which is
not applicable to real time detection tasks.

Dominik Jargot Master of Science Thesis

3-3 3D object detection in the context of autonomous driving 21

3-3-3 Lidar based methods

There are two substantially different approaches to tackle lidar data. One of them is based
on voxels and the other one is based on projection maps. Detailed description of both repre-
sentation methods can be found in Section 2-1-2.

Voxels

One of the ways to work with voxels is to use voting. Examples of methods using this approach
are Vote3D [42] by Wang et al. and Vote3Deep by Engelcke et al. [43].
In Vote3D, the authors use a sliding window in a point cloud, but first, in order to avoid huge
computational expense, the point cloud is discretized into a voxel grid and voting is used to
determine whether each cell is occupied or empty. Vote3D, apart from voting, uses exhaustive
search for detection and SVM for classification.
On the contrary to the Vote3D, Vote3Deep processes a full 3D point cloud using a neural
network. Depending on the class (car, pedestrian, or cyclist), the network’s last layer’s kernel
has a corresponding size. This method outperforms the one that uses sliding window detection
and SVM classification in terms of accuracy (only 2D detection results are available), but runs
noticeably slower with a runtime of 1.5 seconds per point cloud.
A method using a different approach to process voxels is presented in [9]. Zhou and Tuzel
introduce VoxelNet, which consists of three main parts: feature learning network, convolu-
tional middle layers, and region proposal network (RPN), see Figure 4-2. The key innovation
proposed by the authors is a voxel feature encoding (VFE) layer that is able to learn features
from a raw point cloud. A more detailed description of the VoxelNet architecture is given in
Section 4-2.
In [44] Yan et al. present the network SECOND (Sparsely Embedded CONvolutional Detec-
tion), which introduces significant improvements to the VoxelNet approach. The authors use
sparse convolutions to deal with the sparse lidar data. This approach allows them to achieve
much faster detection than the original VoxelNet, with the speed of the detector of 20 FPS.

Projection maps

A different way of handling lidar point cloud data is to use projection maps instead of voxels,
thus bringing point cloud data in an image-like structure.
A projection map approach is adopted, i.a. in LMNet [11] using front-view projection and in
RT3D [45] or [46] using BEV.
In the LMNet, Minemura et al. use front view maps obtained from the lidar point clouds. A
cylindrical projection is used to obtain a sparse 2D point map. At first, five different feature
maps are generated representing reflection, range, longitudinal and lateral coordinate values,
and height. Then, these maps are fed into the LMNet network. There are two outputs of the
network, one is the objectness classification with a softmax loss function and the second one
is the bounding box’s corners offset regression with smooth L1 loss. The inference time for
one point cloud is 0.02 seconds, however, the method achieves relatively poor results in 3D
object detection benchmark.

Master of Science Thesis Dominik Jargot

22 Related work

Regarding the works using bird-eye-view projections, in the Real-Time 3-D Vehicle Detection
(RT3D) network by Zeng et al. [45], a depth map is encoded by taking maximum, average, and
minimum height of projected points in each grid cell. The authors propose pre-RoI pooling
convolution technique for better computation efficiency and obtain the detection time of 0.09 s.
However, this speed increase is achieved at the cost of accuracy of the detection.

While RT3D uses only depth map as the input to the feature extractor, Wirges et al. in
[46] use features such as intensity maps, or height difference maps. They also remove the
estimated ground plane. As the meta architecture the Faster R-CNN [6] is employed. Both
RT3D and the work by Wirges et al. use two-stage detectors and use Resnet [47] as an initial
feature extractor.

3-3-4 Camera and lidar based methods

Among the top performing methods in the KITTI 3D Object Detection Benchmark most of
the algorithms fuse the data from camera and lidar (see Table A-1). This allows to benefit
from the advantages of both sensors, i.e. the human-like perception of the scene provided by
a camera and the depth information provided by lidars.

There are different approaches to data fusion. More information about fusion methods are
presented in Section 2-3.

In general, one can discriminate between early, late, and deep fusion. In the case of early
fusion, what is being combined is the raw data from two sources or the initially processed
data, for instance, feature maps. In the late fusion, the data from two sources is first fully
processed separately and then, the outcomes are accordingly combined. Deep fusion approach
fuse data or feature vectors multiple times within the neural network. Deep fusion is similar
to an early fusion approach in which feature vectors are fused multiple times.

Among the available methods, some of them use the early fusion approach, e.g. F-PC_CNN
[48]. Deep fusion can be found in the MV3D method [10], AVOD [23], and in the work by
Liang et al. [24].

Additionally, some methods use data from different sources sequentially and the data from
camera and lidar are not directly fused. To this group belong, i.a. F-PointNet [49] or RoarNet
[50]. In this thesis such approaches are referred to as sequential fusion.

Early fusion

An example of a 3D object detection method using early fusion can be F-PC_CNN by Du et
al. [48], which focuses on car detection only. In this method, a 2D detection network generates
a bounding box of the candidate cars and the result is fused with a 3D point cloud to obtain
a 3D information. To detect subset of points that belong to the car Du et al. make use of
the generalized car models. After that, a 3D bounding box of the vehicle is generated and
a two-stage CNN is used to perform the fine tuning of the detected bounding box and to
assign objectness score. The inference time for each scene is equal to 0.5 seconds which is not
satisfactory for real-time applications.

Dominik Jargot Master of Science Thesis

3-3 3D object detection in the context of autonomous driving 23

Figure 3-6: General pipeline for fusion of any 2D detector with 3D point cloud [48]. In the image
all point clouds are in 3D, but shown from the top. The color indicate height and red encode
the ground. A part of point cloud is selected based on 2D detection. A specially designed model
fitting algorithm is applied to find vehicle points. At this point a bounding box can be assigned
to the car. In the last step, a two-stage CNN is used to tune both the 3D bounding box and an
objectiveness score.

Deep fusion

Several methods for 3D object detection perform deep fusion of data obtained from a camera
and from a lidar. Among them are MV3D by Chen et al. [10], AVOD by Ku et al. [23], and
a method proposed by the researchers from Uber by Liang et al. [24].

The MV3D method [10] is applied to car detection only. It takes three inputs, i.e. an RGB
camera image, and two images of projections of a point cloud. The first projection is a bird-
eye view (BEV), which is encoded by height, intensity, and density. The second projection of
the point cloud is a front view (FV) with height, distance, and intensity maps. The network
for the proposals generation is inspired by RPN [6]. The proposals are generated from BEV
map and projected to all views. As features from different sources can have nonuniform sizes,
a ROI pooling [5] is applied to each region in each view. The obtained fixed-size feature maps
are an input to deep fusion network which generates the final representation. Deeply fused
features are used for objectness classification and oriented 3D box regression. MV3D is rather
slow in comparison to other state-of-the-art detectors, with an inference time for one scene
equal to 0.36 seconds. An overview of the MV3D approach is shown in Figure 3-7.

In the work by Liang et al. [24], a deep continuous fusion method for the camera image and
the BEV image is proposed. Fusion is performed on multiple scales. The method makes
use of the continuous convolution concept to construct the continuous fusion layers, in which
the camera image and the BEV image are combined. In some cases the pixels of the BEV
image cannot be directly matched with the ones from a camera image, as they may be not
observable. The presented approach uses k nearest lidar points and their projection onto the
camera plane to find the missing feature pixel via interpolation and then proceeds further
with the feature fusion (see Figure 3-8). The method is very fast, it runs at more than 15
FPS.

Moreover, the Aggregate View Object Detection (AVOD) by Ku et al. [23] uses a fusion
method called the Feature Pyramid fusion. In this case, the fusion is performed multiple times
between intermediate feature maps. The method takes as an input an RGB image and a bird-
eye view (BEV) projection of a lidar point cloud. Then, each input is fed into a VGG-16 [34]
based network for feature extraction. Subsequently, its output is passed through upsampling
layer to obtain higher resolution feature maps. Later on, an RPN regresses the difference

Master of Science Thesis Dominik Jargot

24 Related work

Figure 3-7: MV3D architecture [10]. The method takes three inputs to the network. At first,
3D object proposals are generated from BEV map and projected to all three views. ROI pooling
is performed to obtain region-wise features of the same size. A deep fusion network is used to
combine the region-wise features, which are used to regress an oriented 3D bounding box and
predict the class of the object.

Figure 3-8: Architecture of the model presented in [24]. The camera and lidar streams are fused
using continuous fusion layers.

between prior 3D boxes (anchors) and the ground truth. Given an anchor in 3D, two regions
of interest are obtained by projection of the anchor onto the BEV and the image feature maps
and they are used to extract crops from the maps. These are later fused via element-wise
mean. Two branches of fully connected layers of size 256 are used to regress object proposal
boxes and to obtain the objectness score. Best proposals are projected onto feature maps,
cropped, resized, and fused using an element-wise mean. More detailed description of this
method can be found in Section 4-1.

Dominik Jargot Master of Science Thesis

3-3 3D object detection in the context of autonomous driving 25

Sequential fusion

One of the methods using sequential fusion is F-PointNet by Qi et al. [49]. This method first
detects the object in a 2D image and then searches for this object in a 3D space. It is based
on 3 modules: frustum proposal, 3D instance segmentation, and 3D amodal bounding box
estimation. At first, a 2D object detector proposes 2D object regions in RGB images and the
2D box is subsequently lifted to a frustum defining a 3D space for the object, see Figure 3-9.

Then, an instance segmentation is performed in 3D point cloud using PointNet [51]. Given
the segmented object points, the last module estimates the object’s amodal oriented 3D
bounding box. It contains the full object even if occluded or truncated. F-PointNet achieves
very high accuracy in the 3D object detection benchmark for cars, cyclists, and pedestrians.
The runtime of the method is 0.17 seconds per scene.

Figure 3-9: Object detection pipeline for F-PointNet [49]. At first, 2D object region proposals
are generated in the RGB image using a CNN and for each 2D region a 3D frustum is extracted.
Each frustum contains points from depth data obtained from lidar point cloud. Finally, PointNet
[51] uses points within each frustum to predict an oriented 3D bounding box of the object.

A similar concept is implemented in the Region Approximation Refinement Network (Roar-
Net) by Shin et al. in [50]. The authors first use mono camera image to estimate the 3D poses
of objects in the scene and, in result, choose potential regions with objects to be detected.
This allows to reduce the search space significantly. Further, the second part of the network
processes the point cloud data from the proposed regions. This part is a two-stage detector
based on the PointNet [51]. According to the authors, RoarNet performs well not only on the
synchronized data but also can handle cases in which the camera and lidar synchronization
is not very precise.

Master of Science Thesis Dominik Jargot

26 Related work

Dominik Jargot Master of Science Thesis

Chapter 4

Method

Based on the analysis of the already existing methods a new approach to address the problem
of 3D object detection is proposed in this thesis. The proposed architecture uses data from
an RGB camera and a lidar.

One of the methods that performs well in the KITTI benchmark [1] is AVOD [23], see Table A-
1. AVOD is a deep learning approach that uses data from both a camera and a lidar for
detecting objects. The method projects the point cloud collected from the lidar into the
BEV images and processes them in the same way as the input from camera. The fact that
data from two substantially different modalities are processed with the same approach is the
factor that can potentially worsen the performance. Additionally, with BEV projection, some
height information is lost before even entering the trainable network. Thus, improvements
can be made in the AVOD architecture that could help to achieve better performance of the
detection, especially regarding how the method deals with the point cloud data.

A method that uses only point cloud data and still achieves a very good results is VoxelNet [9],
see Table A-1. In this approach, features are learned from points in their raw form, meaning
that all 3D information is being kept. VoxelNet discretizes the space into voxels of equal sizes
in order to apply 3D convolutional networks that learn features. Even though, the method
achieves good results, it does not utilize data from camera which potentially could improve
the performance.

A method to leverage the advantages of both AVOD and Voxelnet is the main contribution of
this work, i.e. using the two sensor modalities of camera and lidar in a deep fusion framework
with learned features from camera and lidar data.

In this chapter, at first, the details of both AVOD and VoxelNet that are crucial for this work
are explained. Subsequently, the proposed network architecture for 3D object detection is
presented, together with a detailed description of the design and the training processes.

Master of Science Thesis Dominik Jargot

28 Method

4-1 Aggregated View Object Detection

Aggregated View Object Detection (AVOD) takes as inputs an image and a point cloud. The
image input modality is taken as RGB tensors which are preprocessed in two steps. At first,
images are bilinearly resized to the same shape. Later on, for each RGB channel a mean of
a particular channel across all images is subtracted from each image.
The point cloud is also preprocessed to obtain a dense structure that can be fed into a feature
extraction network composed of several convolutional layers. In particular, the point cloud is
cropped in the area of camera’s range in the lateral and longitudinal directions, from −40 to
40 meters and from 0 to 70 meters, respectively, relative to the origin of camera coordinate
system. This space is discretized with the resolution of 0.2 meters resulting in a feature map
of size 400× 350. For each cell of the feature map there are six channels obtained as follows.
First, to keep the information about the height, the point cloud is cropped from −0.2 to 2.3
meters in the horizontal dimension, measured from the ground plane. The authors do not
provide details on the ground plane estimation algorithm. The height is divided into cells of
0.5 meters. The first five channels are the maximum height of the points contained in each
cell. The last channel contains point density information and is defined as min(1.0, log(N+1)

log(16))
where N is the number of points in each cell. This results in a preprocessed point cloud,
represented as a tensor of 400× 350× 6.
An overview of the AVOD architecture can be found in Figure 4-1. The architectures of
feature extractors are the same for both the image and the preprocessed point cloud and they
are based on the VGG16 network [34] with some modifications. In particular, the number of
channels in each layer is reduced by half and some layers at the end of the original network
are cut [23, 34].

Figure 4-1: AVOD architecture [23]. Feature extractors are depicted in blue, the RPN in pink,
and the second stage network in green.

AVOD is structured as a two stage detector (see Section 3-2) and is using a 3D anchor grid
to obtain object proposals in the first stage. The anchors are placed on the ground plane
with intervals of 0.5 meters in longitudinal and lateral dimensions. The size of the anchors is
determined by clustering the sizes of ground truth boxes for each class that is being used.
Feature maps from both sources are passed to Region Proposal Network (RPN). To reduce
the memory demand, feature maps are passed through 1×1 convolutional layer (see Section 2-
2-4). Subsequently, an anchor grid is used in order to take crops from these reduced feature

Dominik Jargot Master of Science Thesis

4-2 VoxelNet 29

maps. The crops are further bilinearly resized, such that the spatial size of crops from both
feature maps is the same. The fusion of the features from both modalities is implemented by
taking the mean of the corresponding values. Fused data from crops is passed through a fully
connected neural network to regress boxes and obtain objectness score with smooth L1 and
cross-entropy losses, respectively [5, 6]. During training, the best 1024 proposals are kept.
In the second stage, crops from full, non-resized feature maps are taken, but only from those
1024 best proposals obtained with RPN. Similarly to what is done in RPN, they are later
resized, fused, and passed through fully connected network to obtain final results for bounding
box and objectness score.

4-2 VoxelNet

In opposite to AVOD, VoxelNet uses only point cloud data from lidar to perform 3D object
detection. Unlike in most of the other approaches, in VoxelNet, features are learned from the
raw points. An overview of the VoxelNet architecture can be found in Figure 4-2.

Figure 4-2: The overview of VoxelNet architecture with the emphasis on the Feature Learning
Network [9].

The point cloud is cropped in the range of [xmin, xmax]× [ymin, ymax]× [zmin, zmax] meters in
the longitudinal, lateral, and horizontal dimensions, respectively, with an origin at the lidar
coordinate system. The cropped point cloud is discretized into voxels of equal sizes. The
height of each voxel is vz meters, the width is vy meters and the length is vx meters. For the
purpose of evaluation, the authors use KITTI dataset [7] and benchmark [1]. In the training
specifications for the car class, the following values (in meters) for the above variables are
given:

[xmin, xmax]× [ymin, ymax]× [zmin, zmax] = [0, 70.4]× [−40, 40]× [−3, 1] (4-1)

[vx, vy, vz] = [0.2, 0.2, 0.4] (4-2)

Master of Science Thesis Dominik Jargot

30 Method

Thus, the considered 3D space has the size of 352 × 400 × 10 voxels. For each non-empty
voxel, the maximum number of N points residing in the voxel is sampled. This serves the
purpose of increasing computation efficiency and having more uniform distribution of points.
Additionally, for each non-empty voxel, a mean of the points is computed, and for each point
within the voxel, the mean is subtracted and concatenated creating the input to the network.

A point cloud grouped in the described way is passed to the Voxel Feature Encoding (VFE)
layer (Figure 4-3) that learns features from points in each non-empty voxel. Specifically, all
points in the voxel are passed to the fully connected neural network that transforms the input
data into a point-wise feature. Subsequently, the element-wise pooling is applied to compute
a locally aggregated feature. Finally, each point-wise feature is augmented with the locally
aggregated feature.

Figure 4-3: Voxel feature encoding layer introduced in VoxelNet [9]. At first, for each point,
a fully connected neural network transforms the input data into the point-wise feature. Then,
the locally aggregated feature is computed with element-wise max pooling. At last, the locally
aggregated feature is concatenated to each point-wise feature.

Each VFE layer can be denoted as VFE(xin, yout), meaning that the input feature of size xin

is transformed into the output feature of size yout. Multiple VFE layers can be stacked to
learn more complex feature maps (see Figure 4-2). For the training on the KITTI dataset,
two VFE layers are used, namely VFE(7, 32) and VFE(32, 128). The output from the last
VFE layer is passed to another fully connected neural network followed by element-wise max
pooling operation which transforms the point-wise feature into a voxel-wise feature.

After the process of voxel-wise feature extraction is done, each voxel is described with one
learned vector. For the KITTI dataset training, the space is described with a tensor of shape
352× 400× 10× 128.

To further process the data, three layers of 3D convolutions are applied to the voxel-wise
features (see Table 4-1 for KITTI dataset implementation details). Subsequently, 2D convo-
lutions are used.

At the last stage, similarly to AVOD, VoxelNet also uses the smooth L1 loss to regress boxes
and cross-entropy loss to obtain objectness score [5, 6].

Dominik Jargot Master of Science Thesis

4-3 Proposed method 31

4-3 Proposed method

The 3D object detector introduced in this thesis is inspired by the architecture of AVOD.
The proposed method uses camera images and lidar point clouds as inputs for a deep learning
based object detection network.

As mentioned before, AVOD preprocesses the point cloud to obtain a dense structure before
passing it to the feature extraction network. BEV projections that are used discard consider-
able amount of information about the height. Due to that fact, some information is lost in the
preprocessing step preceding a trainable object detection network. Additionally, in AVOD the
data from two substantially different modalities is processed with the same feature extractor.
In particular, the feature extraction network treats the projected point cloud input as images
and processes them with identical 2D convolutional networks.

In opposite, VoxelNet extracts features directly from points in 3D, keeping more spatial
information. VoxelNet discretizes the point cloud into voxels in order to impose a dense
structure on the data. For each non-empty voxel, a feature that represents the structure of
points is learned with fully connected neural network. A dense structure allows to use a 3D
convolutional network on voxel-wise features.

In the proposed architecture, the network layers which use preprocessed lidar point clouds in
AVOD are replaced with the voxel feature encoding layers as introduced in VoxelNet. This
allows for an end-to-end training that avoids any kind of hand-crafted features.

See Figure 4-4 for an overview of the proposed architecture.

Figure 4-4: The architecture of the proposed method. Image features are extracted by an
adapted VGG16 network. Point cloud features are extracted from voxel partitions by applying
Voxel Feature Encoding (VFE) layers and 3D convolutions. In a Region Proposal Network (RPN),
1× 1 convolution is applied to the feature maps to reduce their size. The anchor grid is used to
crop the proposals from the reduced feature maps. After resizing to a common size, the features
from both modalities are fused and a fully connected neural network outputs the best proposals.
In the second stage, the best proposals from RPN are cropped from the full feature maps and
fused. Object detection layers are implemented by fully connected layers operating on the fused
crops. This allows for an end-to-end network which detects 3D objects from camera and lidar
sensor data. Image adapted from [23, 9].

Master of Science Thesis Dominik Jargot

32 Method

4-3-1 Coordinate system for the point cloud

In AVOD all of the data being processed is represented in the camera coordinate system. For
the proposed architecture, a new coordinate system is introduced, hereinafter referred to as
voxel coordinate system. Both coordinate systems are pictured in Figure 4-5.

A transformation matrix from the camera coordinate system to the voxel coordinate system
is defined as follows:

Tvoxelbev_cam =


0 −1 0 xmax

1 0 0 ymax

0 0 −1 zmax

0 0 0 1

 (4-3)

Where xmax, ymax, and zmax correspond to the maximum object distances from the camera
origin in the camera coordinate system, thus defining the origin of the voxel coordinate system.

In the voxel coordinate system, all of the points of the cropped point cloud have a positive
sign. Additionally, longitudinal and lateral directions are stored in the first and the second
dimensions of the point cloud, respectively.

Figure 4-5: Camera and voxel coordinate systems placement.

4-3-2 Feature extraction from the point cloud

Point cloud is processed with the Feature Learning Network (FLN) adopted from VoxelNet.
However, the original architecture of the network (see Figure 4-4) is adapted. In particular,
the fully connected neural network after the last VFE layer is omitted and the voxel-wise
feature is obtained directly from applying an element-wise max pooling on the output from
the last VFE layer.

The processing layers from the raw point cloud data up to the extracted point cloud features
are detailed in Table 4-1.

Dominik Jargot Master of Science Thesis

4-3 Proposed method 33

Table 4-1: Convolutional layers for point cloud feature extraction. The voxel-wise input obtained
from stacked VFE layers is processed with 3D convolutional layers and then reshaped to obtain
the final feature map from the point cloud. Stride and padding are defined in each of the three
spatial dimensions which correspond to x, y, and z dimensions in the voxel coordinate system.

layer type kernel stride padding output size
voxel-wise

feature input
input n/a n/a n/a 350× 400× 10× 128

3D convolution 3× 3× 3 (1, 1, 2) (1, 1, 1) 350× 400× 5× 64
3D convolution 3× 3× 3 (1, 1, 1) (1, 1, 0) 350× 400× 3× 64
3D convolution 3× 3× 3 (1, 1, 2) (1, 1, 1) 350× 400× 2× 64

feature map reshape n/a n/a n/a 350× 400× 128
feature map
for RPN

2D convolution 1× 1 1 valid 350× 400× 1

4-3-3 Feature extraction from the image

In the proposed method, feature maps from images are obtained with an extractor similar to
the one from AVOD (see Section 4-1), which takes the RGB image as an input and consists
of an adapted version of VGG16. In particular, the number of channels in each layer of the
extractor from AVOD is reduced by half. This allows feature maps obtained from both the
image and the point cloud to have an equal number of output channels.

The processing layers from the RGB image up to the extracted image features are detailed
in Table 4-2.

Table 4-2: Image feature extractor. Image is processed by a series of 2D convolutional and max
pooling layers. Finally, the features are upsampled and reduced by a 1× 1 convolution.

of layers layer type kernel stride padding output size
image input 1 input n/a n/a n/a 480× 1590× 3

2 2D convolution 3× 3 1 valid 480× 1590× 16
1 max pooling 2× 2 2 valid 240× 795× 16
2 2D convolution 3× 3 1 valid 240× 795× 32
1 max pooling 2× 2 2 valid 120× 397× 32feature

extractor 3 2D convolution 3× 3 1 valid 120× 397× 64
1 max pooling 2× 2 2 valid 60× 198× 64
3 2D convolution 3× 3 1 valid 60× 198× 128

feature map 1 upsampling n/a n/a n/a 240× 795× 128
feature map
for RPN

1 2D convolution 1× 1 1 valid 240× 795× 1

Master of Science Thesis Dominik Jargot

34 Method

4-3-4 Feature proposals

As in AVOD, a Region Proposal Network (RPN) which projects the proposals into the two
input views. For camera images, the 3d proposals are projected into the camera image by
using the pinhole camera model projection. For the point cloud input, the 3d proposals are
transformed into the voxel coordinate system.

4-3-5 Dimensionality reduction and resizing

After feature extraction of the individual sensor input by VGG16 for the image input, and
FLN for the point cloud input, the activations of the last feature extraction layers are reduced
in dimensionality by using 1 × 1 convolutions. This operation helps to reduce the memory
demand in the RPN stage and increase the speed of the network, as there are usually dozens
of thousands of anchors to be processed there [23]. An example of the reduced feature map
with the corresponding image is pictured in Figure 4-6.

Figure 4-6: An example input image (top) and a corresponding point cloud feature map (bottom
left) after 1 × 1 convolution and an image feature map (bottom right). The feature are maps
obtained in the training process.

4-3-6 Deep fusion of image-based and point cloud-based features

Similarly to AVOD, the proposed architecture fuses resized crops from images and point cloud
data via Feature Pyramid fusion (see Section 3-3-4). Fusion takes place in the RPN and in
the second stage of the proposed architecture (see Figure 4-4).
For the purpose of evaluation, fusion in the second stage is performed in three different ways,
which are called early, late, and deep fusion. In the early fusion features from image and

Dominik Jargot Master of Science Thesis

4-3 Proposed method 35

point cloud are fused directly after cropping and resizing, before the very last fully connected
detection network, see Section 4-3-7. In the late fusion, features are fused before the very last
layer of the detection network. In the deep fusion features are fused in between all layers of
the detection network. For a better overview of different ways of fusion, see Figure 4-7.

Moreover, two fusion types, namely mean and concatenate, are evaluated. Mean uses the
element-wise mean activations of the resized crops from image and point cloud features.
Concatenate fuses by concatenating the cropped and resized activations, thus forming a longer
feature tensor.

4-3-7 Detection network

A detection network (Figure 4-7) is the very last stage of the whole architecture. It is based
on three fully connected layers with 2048 neurons. For regularization purposes, dropout
(Section 2-2-2) is applied with the probability of keeping the connection equal to 0.5. The
feature crop from each proposal is processed to output box regression, orientation estimation
and objectness estimation. As in AVOD, we employ a multi-task loss combining two Smooth
L1 losses for the bounding box and orientation vector regression tasks and cross-entropy loss
for the classification task.

Overlapping detections are removed by applying non-maximum suppression with a threshold
of 0.01.

This results in the overall network architecture, as depicted in Figure 4-4.

Figure 4-7: Fusion types for the proposed method. In the early fusion, the crops are first fused
and then are fed into three fully connected layers. Later on, the output goes into classification
and regression output networks. In the late fusion, three fully connected layers precede the fusion
node. In the deep fusion, the fusion is performed both at the beginning and at the end, and also
between the individual fully connected layers.

Master of Science Thesis Dominik Jargot

36 Method

Dominik Jargot Master of Science Thesis

Chapter 5

Experimental results

The proposed method is evaluated quantitatively on the cars subset of the KITTI dataset,
which will be presented in more detail in Section 5-1. Results are compared to the baselines
AVOD and Voxelnet.

The KITTI dataset is presented in Section 5-1. The model hyperparameters are evaluated
in Section 5-4. Evaluation metrics for 3D objets detection are discussed on Section 5-2 The
top-performing models are analyzed more thoroughly in Section 5-5. There, a quantitative
comparison to the baselines is performed alongside qualitative results showing the model
performance on the KITTI validation dataset. The last section displays qualitative results on
the TU Delft dataset.

5-1 KITTI dataset

KITTI dataset [52] is a dataset built by the Karlsruhe Institute of Technology and Toyota
Technological Institute at Chicago. The data were collected with a car equipped with two color
and two greyscale cameras, a Velodyne lidar, and a GPS/IMU unit (see Figure 5-1). Moreover,
the creators provide an online benchmark suite for such tasks as stereo matching and optical
flow estimation, 3D visual odometry/SLAM, and 2D, 3D, and BEV object detection. These
acpects cause that the dataset is widely used in the field of autonomous driving related
research. For the object detection, KITTI dataset provides RGB camera images and lidar
point clouds together with 3D annotations.

5-1-1 Dataset description

Each object in the dataset is described with a number of parameters. Among them is informa-
tion regarding the class of the object (eight available), truncation and occlusion, the location
and dimensions of the 3D bounding box associated with an object, as well as its orientation.
A detailed description of the parameters can be reviewed in Table 5-1.

Master of Science Thesis Dominik Jargot

38 Experimental results

Figure 5-1: A scheme of the sensor placement in the car used to collect the KITTI dataset [7].

Table 5-1: Explanation of the annotations in the KITTI dataset.

No. Contained information Possible values

1 type of the object ’Car’, ’Pedestrian’, ’Van’, ’Truck’, ’Cyclist’,
’Person_sitting’, ’Tram’, ’Misc’, ’DontCare’

2

the information whether the object is ’trun-
cated’ or ’not-truncated’, where ’truncated’
means that the part of the object is outside
of the image range

float value from 0.00 (’non-truncated’) to
1.00 (’truncated’), the higher the value the
smaller the visible part of the object

3 the information about the occlusion state of
the object

’0’ - fully visible
’1’ - partly occluded
’2’ - largely occluded
’3’ - unknown

4 alpha angle - the observation angle of the
object [−π, π]

5-8 2D bounding box of object in the image left, top, right, bottom pixel coordinates
9-11 3D object dimensions height, width, length (in meters)
12-14 3D object location x,y,z in camera coordinates (in meters)
15 rotation ry around Y-axis [−π, π] (in camera coordinates)

’DontCare’ label denotes that the objects in the region are not labeled (e.g. objects are outside
of lidar range). This prevents the situation in which objects are incorrectly counted as false
positives during evaluation. Objects detected in regions with ’DontCare’ label will not be
taken into consideration.

Moreover, the dataset items are divided into three groups with regard to its detection diffi-
culty. The difficulty is higher if the object is far away and hence, its camera image has fewer
pixels and the point cloud data is much sparser there. Furthermore, some of the objects are
occluded or truncated, what also hinders the performance of the detection. Table 5-2 presents
the conditions for each level.

Dominik Jargot Master of Science Thesis

5-2 Evaluation metrics 39

Table 5-2: Conditions for three difficulty levels in the KITTI dataset [7]

Difficulty min. bounding box height max. occlusion level max. truncation
Easy 40 pixels fully visible 15%

Moderate 25 pixels partly occluded 30%
Hard 25 pixels difficult to see 50%

5-1-2 Dataset splits

In the 3D detection benchmark, there are 7481 training samples of RGB image + lidar point
cloud provided. Together, the total number of labelled objects is 80256. Additionally, there
are 7518 test samples. The labels for the test set are not publicly available and the only way to
evaluate the performance on the test set is to upload the predictions to the online benchmark
[1]. Therefore, MV3D [10] has provided a split of the training data that is commonly used
by most methods. In particular, the training set is divided into a new training set with 3712
samples and a validation set with 3769 samples.

5-2 Evaluation metrics

An important metric used to evaluate the detection performance is the Intersection over Union
(IoU). It measures the ratio between the overlapping area, i.e. intersection of a predicted and
the ground truth box, and the joint area occupied by both boxes, i.e. the union. This is
depicted in Figure 5-2. Analogously, the concept of IoU can be lifted to 3D, which is used in
KITTI 3D object detection benchmark.

IoU = area of overlap
area of union (5-1)

Figure 5-2: A visualization of the Intersection over Union.

In the context of object detection and KITTI benchmark a detected box is considered as a
true positive (TP) if its Intersection over Union (IoU) with the ground truth is ≥ 0.7. A false
positive (FP) is when the IoU between the detected box and the ground truth is < 0.7. A
false negative (FN) denotes a case if there is an object but there is no box associated with it.

Master of Science Thesis Dominik Jargot

40 Experimental results

Precision is a measure expressing how many of selected items are actually relevant, i.e. the
ratio between the true positives and all items that are predicted as positive:

precision = TP

TP + FP
(5-2)

Recall says how many of relevant items are selected, i.e. the ratio between the true positives
and all ground truth positives:

recall = TP

TP + FN
(5-3)

Precision and recall, can be used to define a performance metric called an average precision
(AP), first introduced in [53]. To compute the AP, eleven different confidence thresholds are
used, for which the recall equals to {0, 0.1, . . . , 1}. For a given recall value the maximum
precision is used. The AP is then defined as the mean of the precision values at each of the
eleven recall values:

AP = 1
11

∑
r∈{0,0.1,...,1}

max
r̃:r̃≥r

p(r̃) (5-4)

where p(r̃) is measured precision for the recall value r̃. AP is the metric also used in the
KITTI benchmark [7].

Another metric that can be defined is an average orientation similarity (AOS) [7], which is
used to measure the performance of both object detection and 3D orientation estimation:

AOS = 1
11

∑
r∈{0,0.1,...,1}

max
r̃:r̃≥r

s(r̃) (5-5)

where s(r̃) is the orientation similarity at recall r̃. For the definition of the orientation
similarity refer to [7].

5-3 Data augmentation

Both methods presented in the related work section and the method proposed in this work
are data-driven. Unfortunately, the amount of publicly available data with 3D annotations
is limited. In order to overcome this issue, two different data augmentation techniques are
used for the purpose of this project. Firstly, the data from images and point clouds is flipped
horizontally. Secondly, the noise is added to the images by color perturbation. This results
in a larger and slightly more diverse dataset which is beneficial for the training process. In
terms of performance, it has been observed that applying data augmentation improves the
average precision scores for the proposed method by around 3 percentage points.

Dominik Jargot Master of Science Thesis

5-4 Hyperparameters 41

5-4 Hyperparameters

The proposed architecture presents different hyperparameters, which largely affect the model’s
performance. Here, parameters that are being changed, in order to find the best performing
setup, are briefly described.

• RPN proposal RoI crop size (RPN PRCS) - the size to which the crops from the reduced
feature maps from camera and lidar are resized in RPN (see Section 4-1),

• Second stage proposal RoI crop size (SecS PRCS) - the size to which the crops from the
full feature maps of the best proposals after RPN are resized,

• RPN non-maximum suppression size (RPN NMS) - the maximum number of proposals
that can be kept after the non-maximum suppression step,

• Initial learning rate (IRL) - the initial value of the learning rate,

• Decay steps - the number of training iterations after which the learning rate changes
(by the defined decay factor),

• Decay factor - the factor by which the learning rate is multiplied after particular number
of iterations defined by decay steps,

• Fusion method - the way the fusion between the crops from an image and a lidar feature
maps is performed, see Section 4-3-6,

• Fusion type - the fusion architecture to combine the crops from an image and a lidar
feature maps, see Section 4-3-6.

Different experiments are performed by varying those hyperparameters (Section 5-5). The
values for the hyperparameters used in the experiments are presented in Table 5-3.

Table 5-3: Hyperparameters used in the experiments and their values

Hyperparameters Values
RPN proposal RoI crop size 3× 3, 5× 5, 7× 7
SecS proposal RoI crop size 7× 7, 9× 9, 11× 11

RPN NMS 300, 1024
initial learning rate 0.0001, 0.001

decay steps 30000, 100000
decay factor 0.1, 0.4, 0.8
fusion method concatenate, mean
fusion type late, early, deep

For evaluation on the KITTI dataset, the following parameters are fixated for the model:
The transformation matrix from camera coordinate system to voxel coordinate system (see
Section 4-3-1): xmax = 70 m, ymax = 40 m, and zmax = 2.92 m.

Master of Science Thesis Dominik Jargot

42 Experimental results

5-5 Evaluation

Multiple experiments are defined based on varying the hyperparameters introduced in Sec-
tion 5-4. The complete list of the experiments can be found in Table B-1.

Training is performed on the training subset of KITTI dataset for which the ground truth
annotations are publicly available. In order to be able to compare with other methods quanti-
tatively, the training set is split into training and validation sets as described in Section 5-1-2.

At first, the influence of the initial learning rate (ILR), decay steps, decay factor, and RPN
non-maximum suppression size (RPN NMS) on the performance is measured (Table 5-4,
Table 5-5, and Table 5-6). One can see that for the experiments with the ILR equal to 0.001
the model achieve a very low performance regardless of the RPN and second stage (SecS)
crop sizes. Another aspect that can be noticed is that in general, the higher the number of
proposals kept after RPN, the higher the AP score for the proposed method. Thus, for all
the other experiments (Table 5-7) values of 0.0001 and 1024 are used for ILR and RPN NMS,
respectively. For the experiments with RPN NMS equal to 1024, the selected values of the
decay steps and the decay factor do not have a very high influence on the performance. Decay
factor is set to 0.8 and decay steps to 30000 for further experiments.

When comparing Table 5-4, Table 5-5, and Table 5-6, it can be observed that for the RPN
and SecS crop sizes of 3× 3 and 7× 7, respectively, the AP score is in general lower than the
score for larger crops. This can be seen especially for a hard difficulty Table 5-2. Due to that
fact, only the larger crop sizes are being considered in the following experiments.

Table 5-7 describes experiments performed in order to analyze the influence of different fusion
methods. It can be noticed, that for all the experiments the late fusion combined with
concatenation of feature maps gave the best performance in terms of AP score. The most
significant difference can be spotted between hard difficulty results.

After the evaluation of all the described experiments, the two best setups are chosen to be
models from experiments 006 and 009. The training progress for these models, in terms of AP
scores, are pictured in Figure 5-3 and Figure 5-4. The precision-recall plots for both models
are depicted in Figure 5-5 and Figure 5-6.

Table 5-4: Experiments’ results. Constant parameters: RPN proposal crop size: 3 × 3, SecS
proposal RoI crop size: 7× 7, fusion method: concatenate, fusion type: late.

EXP# RPN
NMS

ILR decay
steps

decay
factor

AP (val) best after
itereasy moderate hard

000 300 0.0001 30000 0.8 76.21% 66.13% 64.83% 73000
001 1024 0.0001 100000 0.1 74.55% 64.98% 58.21% 44000
002 1024 0.0001 30000 0.8 76.71% 66.09% 58.97% 49000
003 300 0.001 30000 0.4 24.58% 21.21% 20.46% 9000

Dominik Jargot Master of Science Thesis

5-5 Evaluation 43

Table 5-5: Experiments’ results. Constant parameters: RPN proposal crop size: 5 × 5, SecS
proposal RoI crop size: 9× 9, fusion method: concatenate, fusion type: late.

EXP# RPN
NMS

ILR decay
steps

decay
factor

AP (val) best after
itereasy moderate hard

004 300 0.0001 30000 0.8 75.98% 66.70% 64.95% 46000
005 1024 0.0001 100000 0.1 76.24% 66.05% 64.29% 33000
006 1024 0.0001 30000 0.8 81.38% 67.02% 65.30% 51000
007 300 0.001 30000 0.4 71.01% 61.40% 56.14% 154000

Table 5-6: Experiments’ results. Constant parameters: RPN proposal crop size: 7 × 7, SecS
proposal RoI crop size: 11× 11, fusion method: concatenate, fusion type: late.

EXP# RPN
NMS

ILR decay
steps

decay
factor

AP (val) best after
itereasy moderate hard

008 300 0.0001 30000 0.8 76.52% 66.75% 65.23% 52000
009 1024 0.0001 100000 0.1 76.96% 67.36% 65.94% 75000
010 1024 0.0001 30000 0.8 76.32% 66.85% 65.23% 51000
011 300 0.001 30000 0.4 no conv no conv no conv no conv

Table 5-7: Experiments’ results. Constant parameters: RPN NMS: 1024, ILR: 0.0001, decay
steps: 30000, decay factor: 0.8.

EXP# RPN
PRCS

SecS
PRCS

fusion
method

fusion
type

AP (val) best after
itereasy moderate hard

006

5× 5 9× 9

concat
late 81.38% 67.02% 65.30% 51000

014 early 75.30% 65.48% 58.48% 48000
016 deep 74.32% 64.86% 64.15% 41000
018

mean
late 76.30% 66.68% 65.03% 37000

020 early 75.28% 65.24% 58.09% 34000
022 deep 76.47% 66.08% 58.79% 77000
010

7× 7 11× 11

concat
late 76.32% 66.85% 65.23% 51000

015 early 74.64% 65.23% 58.42% 83000
017 deep 75.30% 64.99% 58.44% 32000
019

mean
late 76.79% 66.82% 65.10% 49000

021 early 75.74% 65.56% 58.74% 66000
023 deep 76.76% 66.50% 59.12% 71000

Master of Science Thesis Dominik Jargot

44 Experimental results

0 50000 100000 150000
0

20

40

60

80

car_detection

0 50000 100000 150000
0

10

20

30

40

50

60

70

80

car_detection_3D

0 50000 100000 150000
0

20

40

60

80

car_detection_BEV

0 50000 100000 150000
0

10

20

30

40

50

60

70

80

car_heading_3D

0 50000 100000 150000
0

20

40

60

80

car_heading_BEV

easy
medium
hard

Figure 5-3: Experiment 006: Plots of average precision on the KITTI validation dataset over
training iterations. From left to right: image-projection based, 3D detection based, bird eye view
(BEV) based, car heading (yaw), car heading on BEV)

0 50000 100000 150000
0

20

40

60

80

car_detection

0 50000 100000 150000
0

10

20

30

40

50

60

70

80
car_detection_3D

0 50000 100000 150000
0

20

40

60

80

car_detection_BEV

0 50000 100000 150000
0

10

20

30

40

50

60

70

80
car_heading_3D

0 50000 100000 150000
0

20

40

60

80

car_heading_BEV

easy
medium
hard

Figure 5-4: Experiment 009: Plots of average precision on the KITTI validation dataset over
training iterations. From left to right: image-projection based, 3D detection based, bird eye view
(BEV) based, car heading (yaw), car heading on BEV)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(a) 2d detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(b) 3d detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(c) Bird eye view

Figure 5-5: Precision-recall curves for the 006 model for the case of 2D, 3D, and BEV detection

5-6 Qualitative results

Qualitative results for the models of experiments 006 and 009 are depicted in Figure 5-7
and Figure 5-8. The scenes are randomly selected from the KITTI validation dataset, which
is disjoint from the dataset used for training the models (see Section 5-1-2).

The models are able to predict cars with various orientations. They can handle some of the
cases in which cars are partly occluded. Both models struggle with detecting cars that are
far-away and create false positives for bushes, guard rails, or trash cans which occupy the

Dominik Jargot Master of Science Thesis

5-7 Comparison 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(a) 2d detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(b) 3d detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Car

Easy
Moderate

Hard

(c) Bird eye view

Figure 5-6: Precision-recall curves for the 009 model for the case of 2D, 3D, and BEV detection

volume similar to the size of a car.

5-7 Comparison

The models’ performance on validation set is compared to three other methods, namely
MV3D [10], AVOD [23], and VoxelNet [9]. The results are depicted in Table 5-8. The
proposed architecture for 3D object detection achieves the AP score comparable to the other
state-of-the-art methods.

Table 5-8: Comparison of results on the validation set for a car class. The proposed architecture
achieves results comparable to the presented state-of-the-art methods.

Method
AP (val)

easy moderate hard
VoxelNet [9] 81.97% 65.46% 62.85%
AVOD [23] 83.45% 74.19% 67.78%
MV3D [10] 71.29% 62.68% 56.56%

SECOND [44] 88.84% 78.43% 76.88%
RT3D [45] 72.85% 61.64% 64.38%

Mono3D [38] 2.53% 2.31% 2.31%
3DOP [39] 6.55% 5.07% 4.10%

Proposed 006 81.38% 67.02% 65.30%
Proposed 009 76.96% 67.36% 65.94%

Master of Science Thesis Dominik Jargot

46 Experimental results

Figure 5-7: Qualitative results for the 006 model on the KITTI validation set. The model can
predict cars with different orientations. Occlusions are also partly handled. The model misses far-
away objects and creates false positives for guard rails and trash cans which occupy approximately
the volume of a car. Ground truth: red. Predictions: green. Numbers on top of boxes: Detector
objectness, IoU.

Dominik Jargot Master of Science Thesis

5-7 Comparison 47

Figure 5-8: Qualitative results for the 009 model on the KITTI validation set. The model can
predict cars with different orientations. Occlusions are also partly handled. The model misses far-
away objects and creates false positives for guard rails and trash cans which occupy approximately
the volume of a car. Ground truth: red. Predictions: green. Numbers on top of boxes: Detector
objectness, IoU.

Master of Science Thesis Dominik Jargot

48 Experimental results

Dominik Jargot Master of Science Thesis

Chapter 6

Conclusions

In Section 1-1 several goals for this thesis were set. The most important objective was to:
Develop a new end-to-end deep learning based method for 3D object detection in the context
of autonomous driving using camera and lidar data, with a focus on car detection.

In this thesis a deep neural network for 3D object detection in the context of autonomous
driving was presented. The network is trained in an end-to-end manner. The network takes
as inputs data from two different sensors, namely an image from a camera and a point cloud
from a lidar. The output of the network is an oriented 3D bounding box and the class of the
detected object. The network was evaluated on the KITTI dataset [52] on the car class.

The most important aspect of the proposed architecture is that the network does not use any
kind of hand-crafted features. Instead, it learns features from the raw sensor inputs. This
approach achieves a performance comparable to the state-of-the-art methods, see Table 5-8.

Although the results of the presented method are similar to other state-of-the-art methods,
the network has some limitations. The obtained inference time for one scene equals 200 ms
which has limited applications in real-time systems.

6-1 Future work and recommendations

In order to achieve better results, several steps could be taken. First of all, more settings of
the network’s hyperparameters could be investigated. Secondly, for now, during the training
the network handles only one scene per one forward and backward pass. To improve the
performance the batch size could be increased, such that weights are updated based on more
data, i.e. higher number of scenes and objects. Also, other regularization techniques such as
skip links could be introduced for the network to be able to generalize better.

The presented approach was tested only on the car class of the KITTI dataset [52]. Never-
theless, the dataset provides the information for other classes as well, such as pedestrians or
cyclists. Hence, the network could be also trained to detect objects of other types. The impor-
tant remark is that the KITTI dataset has limited number of scenes and objects. Collecting

Master of Science Thesis Dominik Jargot

50 Conclusions

more labelled data could significantly increase the performance of the method introduced in
this work.

The highest amount of time during the inference is required for 3D convolutions. Thus, sparse
convolutions could be implemented similarly to what is done in [44] in order to speed up the
computations. Another recommendation would be to put a constraint on the maximum
number of points in each point cloud, as the number of points in various point clouds highly
differs.

Dominik Jargot Master of Science Thesis

Appendix A

KITTI benchmark results of published
methods

Master of Science Thesis Dominik Jargot

52 KITTI benchmark results of published methods

Table
A

-1:
3D

O
bject

D
etection

K
ITTIBenchm

ark
results

[1]for
the

best
perform

ing
m
ethods.

Values
in

bold
are

best
results

in
particular

category.

C
ar

A
P

[%
]

Pedestrians
[%

]
C
yclists

[%
]

M
ethod

D
ata

R
untim

e
M
oderate

Easy
H
ard

M
oderate

Easy
H
ard

M
oderate

Easy
H
ard

AV
O
D
-FPN

[23]
pcl+

im
0.10

s
71.88

81.94
66.38

42.81
50.80

40.88
52.18

64.00
46.61

F-PointN
et

[49]
pcl+

im
0.17

s
70.39

81.20
62.19

44.89
51.21

40.23
56.77

71.96
50.39

VoxelN
et

[9]
pcl

0.23
s

65.11
77.47

57.73
33.69

39.48
31.51

48.36
61.22

44.37
M
V
3D

[10]
pcl+

im
0.36

s
62.35

71.09
55.12

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

F-PC
_
C
N
N

[48]
pcl+

im
0.50

s
48.07

60.06
45.22

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

LM
N
et

[11]
pcl

0.02
s

15.24
14.75

12.85
11.46

13.64
11.57

3.23
2.84

3.28
B
irdN

et
[54]

pcl
0.11

s
13.44

14.75
12.85

11.80
14.31

10.55
12.43

18.35
11.88

SEC
O
N
D

[44]
pcl

0.05
s

73.66
83.13

66.20
42.56

51.07
37.29

53.85
70.51

46.90
R
oarN

et
[50]

pcl+
im

0.1
s

73.04
83.71

59.16
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

U
berAT

G
-C

ontFuse
[24]

pcl+
im

0.06
s

66.22
82.54

64.04
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

RT
3D

[45]
pcl

0.09
s

21.27
23.49

19.81
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

TopN
et-H

ighR
es

[55]
pcl

101
m
s

12.58
15.29

12.25
9.66

13.45
9.64

5.98
4.48

6.18

Dominik Jargot Master of Science Thesis

Appendix B

All results

In this appendix, in Table B-1 all of the performed experiments are listed together with all
of the varying training parameters.

Master of Science Thesis Dominik Jargot

54 All results

Table
B

-1:
The

list
ofthe

perform
ed

experim
ents

togetherwith
allvarying

training
param

eters.

EX
P

#
R
PN

PR
C
S

SecS
PR

C
S

R
PN

N
M
S

ILR
decay
steps

decay
factor

fusion
m
ethod

fusion
type

A
P

(val)
best

after
#

iter
easy

m
oderate

hard
000

3
×

3
7
×

7
300

0.0001
30000

0.8
concat

late
76.21%

66.13%
64.83%

73000
001

3
×

3
7
×

7
1024

0.0001
100000

0.1
concat

late
74.55%

64.98%
58.21

44000
002

3
×

3
7
×

7
1024

0.0001
30000

0.8
concat

late
76.71%

66.09%
58.97%

49000
003

3
×

3
7
×

7
300

0.001
30000

0.4
concat

late
24.58%

21.21%
20.46

%
9000

004
5
×

5
9
×

9
300

0.0001
30000

0.8
concat

late
75.98%

66.70%
64.95%

46000
005

5
×

5
9
×

9
1024

0.0001
100000

0.1
concat

late
76.24%

66.05%
64.29%

33000
006

5
×

5
9
×

9
1024

0.0001
30000

0.8
concat

late
81.38%

67.02%
65.30%

51000
007

5
×

5
9
×

9
300

0.001
30000

0.4
concat

late
71.01%

61.40%
56.14%

154000
008

7
×

7
11
×

11
300

0.0001
30000

0.8
concat

late
76.52%

66.75%
65.23%

52000
009

7
×

7
11
×

11
1024

0.0001
100000

0.1
concat

late
76.96%

67.36%
65.94%

75000
010

7
×

7
11
×

11
1024

0.0001
30000

0.8
concat

late
76.32%

66.85%
65.23%

51000
011

7
×

7
11
×

11
300

0.001
30000

0.4
concat

late
no

conv
no

conv
no

conv
no

conv
012

3
×

3
7
×

7
300

0.0001
30000

0.8
concat

deep
74.91%

65.04%
58.48%

55000
014

5
×

5
9
×

9
1024

0.0001
30000

0.8
concat

early
75.30%

65.48%
58.48%

48000
015

7
×

7
11
×

11
1024

0.0001
30000

0.8
concat

early
74.634%

65.23%
58.42%

83000
016

5
×

5
9
×

9
1024

0.0001
30000

0.8
concat

deep
74.32%

64.86%
64.15%

41000
017

7
×

7
11
×

11
1024

0.0001
30000

0.8
concat

deep
75.30%

64.99%
58.44%

32000
018

5
×

5
9
×

9
1024

0.0001
30000

0.8
m
ean

late
76.30%

66.68%
65.03%

37000
019

7
×

7
11
×

11
1024

0.0001
30000

0.8
m
ean

late
76.79%

66.82%
65.10%

49000
020

5
×

5
9
×

9
1024

0.0001
30000

0.8
m
ean

early
75.28%

65.24%
58.09%

34000
021

7
×

7
11
×

11
1024

0.0001
30000

0.8
m
ean

early
75.74%

65.56%
58.74%

66000
022

5
×

5
9
×

9
1024

0.0001
30000

0.8
m
ean

deep
76.47%

66.08%
58.78%

77000
023

7
×

7
11
×

11
1024

0.0001
30000

0.8
m
ean

deep
76.76%

66.50%
59.12%

71000

Dominik Jargot Master of Science Thesis

Bibliography

[1] Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago, “3d
object detection evaluation 2017.” http://www.cvlibs.net/datasets/kitti/eval_
object.php?obj_benchmark=3d. Retrieved 25 May 2018. i, vii, 19, 27, 29, 39, 52

[2] “ITS & vulnerable road users.” https://ec.europa.eu/transport/themes/its/road/
action_plan/its_and_vulnerable_road_users_en. Retrieved on 01 December 2018.
1

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD:
single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. 2, 17

[4] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” CoRR, vol. abs/1506.02640, 2015. 2, 17

[5] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. 2, 17, 20, 23, 29, 30

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object de-
tection with region proposal networks,” in Advances in Neural Information Processing
Systems (NIPS), 2015. v, 2, 17, 18, 22, 23, 29, 30

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361, June 2012. v, vi, vii, 2, 6, 29, 38, 39, 40

[8] A. Marshall, “Waymo launches its self-driving armada.” https://www.wired.com/
story/waymo-launches-self-driving-minivans-fiat-chrysler/. Retrieved 15 De-
cember 2018. v, 2

[9] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud Based 3D
Object Detection,” arXiv, 2017. vi, 7, 21, 27, 29, 30, 31, 45, 52

[10] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for
autonomous driving,” in CVPR, 2017. v, 7, 14, 19, 22, 23, 24, 39, 45, 52

Master of Science Thesis Dominik Jargot

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://ec.europa.eu/transport/themes/its/road/action_plan/its_and_vulnerable_road_users_en
https://ec.europa.eu/transport/themes/its/road/action_plan/its_and_vulnerable_road_users_en
https://www.wired.com/story/waymo-launches-self-driving-minivans-fiat-chrysler/
https://www.wired.com/story/waymo-launches-self-driving-minivans-fiat-chrysler/

56 Bibliography

[11] K. Minemura, H. Liau, A. Monrroy, and S. Kato, “LMNet: Real-time Multiclass Object
Detection on CPU using 3D LiDAR,” may 2018. 7, 21, 52

[12] “CS231n Convolutional Neural Networks for Visual Recognition.” http://cs231n.
github.io/neural-networks-1/. Retrieved on 01 December 2018. 8

[13] N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network Methods for
Differential Equations, ch. 2, pp. 13–15. Springer, 2015. 7

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. 9, 10, 11

[15] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” ArXiv
e-prints, mar 2016. 11

[16] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol. abs/1312.4400, 2013.
12

[17] J. Thomanek and G. Wanielik, “A new pixel-based fusion framework to enhance object
detection in automotive applications,” in 17th International Conference on Information
Fusion (FUSION), pp. 1–8, July 2014. v, 12, 13

[18] G. Zhao, X. Xiao, J. Yuan, and G. W. Ng, “Fusion of 3d-lidar and camera data for scene
parsing,” Journal of Visual Communication and Image Representation, vol. 25, no. 1,
pp. 165 – 183, 2014. Visual Understanding and Applications with RGB-D Cameras. 13

[19] B. Khaleghi, A. Khamis, F. Karray, and S. Razavi, “Multisensor data fusion: A review
of the state-of-the-art,” Information Fusion, vol. 14, no. 1, pp. 28–44, 2013. 13

[20] S.-I. Oh and H.-B. Kang, “Object detection and classification by decision-level fusion for
intelligent vehicle systems,” Sensors, vol. 17, no. 1, 2017. v, 13, 14

[21] A. Sinha, H. Chen, D. G. Danu, T. Kirubarajan, and M. Farooq, “Estimation and
decision fusion: A survey,” Neurocomputing, vol. 71, pp. 2650–2656, Aug. 2008. 13

[22] J. Wang, Z. Wei, T. Zhang, and W. Zeng, “Deeply-fused nets,” CoRR,
vol. abs/1605.07716, 2016. 13, 14

[23] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint 3D Proposal Generation
and Object Detection from View Aggregation,” 2017. v, vi, 14, 19, 22, 23, 27, 28, 31, 34,
45, 52

[24] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for multi-sensor
3d object detection,” in ECCV, 2018. v, 14, 22, 23, 24, 52

[25] P. Viola and M. Jones, “Robust real-time object detection,” in International Journal of
Computer Vision, 2001. 15

[26] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, pp. 886–893 vol. 1, June 2005. v, 15, 16

[27] J. Kooij, “Slides from TU Delft course - Intelligent Vehicles (ME41105),” 2018. 16

Dominik Jargot Master of Science Thesis

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

57

[28] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, pp. 1627–1645, Sept 2010. v, 16

[29] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524, 2013.
17

[30] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based fully con-
volutional networks,” CoRR, vol. abs/1605.06409, 2016. 17

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in Computer Vision – ECCV 2016 (B. Leibe, J. Matas,
N. Sebe, and M. Welling, eds.), (Cham), pp. 21–37, Springer International Publishing,
2016. v, 17, 18

[32] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016. 18

[33] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR,
vol. abs/1804.02767, 2018. 18

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, 2014. 18, 23, 28

[35] S. Song and J. Xiao, “Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D
Images,” 2015. 19

[36] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau, “Deep MANTA:
A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monocular
image,” CoRR, vol. abs/1703.07570, 2017. 19, 20

[37] “Object detection and orientation estimation evaluation.” http://www.cvlibs.net/
datasets/kitti/eval_object.php?obj_benchmark=2d. Retrieved on 01 December
2018. 19, 20

[38] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular 3d Object
Detection for Autonomous Driving,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2147–2156, June 2016. 20, 45

[39] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, and R. Urtasun, “3d
object proposals for accurate object class detection,” in NIPS, 2015. 20, 45

[40] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d Bounding Box Estimation
Using Deep Learning and Geometry,” pp. 5632–5640, IEEE, July 2017. 20

[41] C. C. Pham and J. W. Jeon, “Robust object proposals re-ranking for object detection
in autonomous driving using convolutional neural networks,” Signal Processing: Image
Communiation, 2017. 20

[42] D. ZengWang and I. Posner, “Voting for Voting in Online Point Cloud Object Detection,”
Robotics: Science and Systems XI, 2015. 21

Master of Science Thesis Dominik Jargot

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

58 Bibliography

[43] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3deep: Fast ob-
ject detection in 3d point clouds using efficient convolutional neural networks,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 1355–1361,
May 2017. 21

[44] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sen-
sors, vol. 18, no. 10, 2018. 21, 45, 50, 52

[45] Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li, and N. Sun, “Rt3d: Real-time 3-d vehicle
detection in lidar point cloud for autonomous driving,” IEEE Robotics and Automation
Letters, vol. 3, pp. 3434–3440, Oct 2018. 21, 22, 45, 52

[46] S. Wirges, T. Fischer, J. B. Frias, and C. Stiller, “Object detection and classification in
occupancy grid maps using deep convolutional networks,” CoRR, vol. abs/1805.08689,
2018. 21, 22

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015. 22

[48] X. Du, M. H. A. Jr., S. Karaman, and D. Rus, “A general pipeline for 3d detection of
vehicles,” CoRR, vol. abs/1803.00387, 2018. v, 22, 23, 52

[49] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum PointNets for 3D Object
Detection from RGB-D Data,” 2017. v, 22, 25, 52

[50] K. Shin, Y. Kwon, and M. Tomizuka, “Roarnet: A robust 3d object detection based on
region approximation refinement,” arXiv preprint arXiv:1811.03818, 2018. 22, 25, 52

[51] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation,” 2016. 25

[52] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
International Journal of Robotics Research (IJRR), 2013. 37, 49

[53] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results.” http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html. 40

[54] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and A. de la Es-
calera, “Birdnet: a 3d object detection framework from lidar information,” CoRR,
vol. abs/1805.01195, 2018. 52

[55] S. Wirges, T. Fischer, C. Stiller, and J. B. Frias, “Object detection and classification
in occupancy grid maps using deep convolutional networks,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 3530–3535, Nov 2018. 52

Dominik Jargot Master of Science Thesis

Glossary

List of Acronyms

ADAS Advanced Driver-Assistance Systems

ACC Adaptive Cruise Control

SSD Single Shot MultiBox Detector

YOLO You Only Look Once

R-CNN Region-based Convolutional Neural Network

RGB Red Green Blue

HSV Hue Saturation Value

BEV Bird-Eye View

ANN Artificial Neural Network

NN Neural Network

DNN Deep Neural Network

MSE Mean Squared Error

MAE Mean Absolute Error

ReLU Rectified Linear Unit

CNN Convolutional Neural Network

HOG Histogram of Oriented Gradients

DPM Deformable Part Models

SVM Support Vector Machine

RFCN Region-based Fully Convolutional Network

Master of Science Thesis Dominik Jargot

60 Glossary

RPN Region Proposal Network

ROI Region of Interest

CAD Computer Aided Design

VFE Voxel Feature Encoding

FPS Frames per second

MV3D Multi-View 3D Object Detection Network

AVOD Aggregate View Object Detection

TP True Positive

FP False Positive

FN False Negative

TN True Negative

EXP Experiment

SecS Second Stage (of the proposed network)

RPN NMS RPN Non-maximum Suppression Size

ILR Initial Learning Rate

AP Average Precision

PRCS Proposal ROI crop size

CPU Central Processing Unit

GPU Graphics Processing Unit

Dominik Jargot Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Research goals
	Outline of the thesis

	Theoretical background
	Data representation
	Data from a camera
	Data from a lidar

	Neural networks
	Loss function
	Bias and variance
	Activation function
	Convolutional neural networks

	Fusion methods
	Early fusion
	Late fusion
	Deep fusion

	Related work
	Classical approaches for object detection
	Deep learning based object detection
	3D object detection in the context of autonomous driving
	3D bounding-box representation
	Camera based methods
	Lidar based methods
	Camera and lidar based methods

	Method
	Aggregated View Object Detection
	VoxelNet
	Proposed method
	Coordinate system for the point cloud
	Feature extraction from the point cloud
	Feature extraction from the image
	Feature proposals
	Dimensionality reduction and resizing
	Deep fusion of image-based and point cloud-based features
	Detection network

	Experimental results
	KITTI dataset
	Dataset description
	Dataset splits

	Evaluation metrics
	Data augmentation
	Hyperparameters
	Evaluation
	Qualitative results
	Comparison

	Conclusions
	Future work and recommendations

	Appendices
	KITTI benchmark results of published methods
	All results

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

