

Delft University of Technology

The Next Generation Arecibo Telescope (NGAT)

Aponte, N.; Araya, E.; Arce, H.; Baker, L. A.; Baan, W.; Becker, T. M.; Breakall, J. K.; Brown, R. G.; Gurvits, L.; More Authors

DOI 10.3847/25c2cfeb.d6cc0b85

Publication date 2023

Document Version Final published version

Published in Whitepapers for the Decadal Survey for Solar and Space Physics

Citation (APA)

Aponte, N., Araya, E., Arce, H., Baker, L. A., Baan, W., Becker, T. M., Breakall, J. K., Brown, R. G., Gurvits, L., & More Authors (2023). The Next Generation Arecibo Telescope (NGAT). Whitepapers for the Decadal Survey for Solar and Space Physics, 55(3). https://doi.org/10.3847/25c2cfeb.d6cc0b85

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

THE NEXT GENERATION ARECIBO TELESCOPE (NGAT)

Contact Author: D. Anish Roshi, Arecibo Observatory, aroshi@naic.edu.

Authors: N. Aponte, Arecibo Observatory, E. Araya, Western Illinois University, H. Arce, Yale University, L. A. Baker, Cornell University, W. Baan, ASTRON, the Netherland Institute for Radio Astronomy, T. M. Becker, Southwest Research Institute, J. K. Breakall, Penn State University, R. G. Brown, NASA Kennedy Space Center, C. G. M. Brum, Arecibo Observatory, M. Busch, Johns Hopkins University, D. B. Campbell, Cornell University, T. Cohen, New Mexico Tech F. Cordova, Arecibo Observatory, J. S. Deneva, George Mason University, M. Devogèle, Arecibo Observatory, T. Dolch, Hillsdale College, F. O. Fernandez-Rodriguez, Arecibo Observatory, T. Ghosh, Green Bank Observatory, P. F. Goldsmith, Jet Propulsion Laboratory, L. Gurvits, Joint Institute for VLBI ERIC, M. Haynes, Cornell University, C. Heiles, University of California, Berkeley D. Hickson, Arecibo Observatory, B. Isham, Inter American University, R. B. Kerr, Computational Physics Inc. J. Kelly, University of Central Florida, J. J. Kiriazes, NASA Kennedy Space Center, S. Kumar, Delft University of Technology, J. Lautenbach, Arecibo Observatory, M. Lebron, University of Puerto Rico, N. Lewandowska, West Virginia University, L. Magnani, , University of Georgia, P. K. Manoharan, Arecibo Observatory, S. E. Marshall, Arecibo Observatory, A. K. McGilvray, Arecibo Observatory, A. Mendez, University of Puerto Rico, PR R. Minchin, USRA, SOFIA, NASA Ames Research Center, V. Negron, Arecibo Observatory, M. C. Nolan, University of Arizona, L. Olmi, INAF-Arcetri Astrophysical Observatory, F. Paganelli, Green Bank Observatory, N. T. Palliyaguru, Texas Tech University, C. A. Pantoja, University of Puerto Rico, Z. Paragi, Joint Institute for VLBI ERIC, S. C. Parshley, , Cornell University, J. E. G. Peek, Johns Hopkins University/ Space Telescope Science Institute, B. B. P. Perera, Arecibo Observatory, P. Perillalt, Arecibo Observatory, N. Pinilla-Alonso, , University of Central Florida/Arecibo Observatory, L. Quintero, Arecibo Observatory, H. Radovan, University of California, Los Angeles, S. Raizada, Arecibo Observatory, T. Robishaw, National Research Council Canada, M. Route, Purdue University, C. J. Salter, Green Bank Observatory, A. Santoni, Arecibo Observatory, P. Santos, Arecibo Observatory, S. Sau, Arecibo Observatory, D. Selvaraj, Arecibo Observatory, A. J. Smith, Arecibo Observatory, M. Sulzer, Arecibo Observatory, S. Vaddi, Arecibo Observatory, F. Vargas, University of Illinois, F. C. F. Venditti, Arecibo Observatory, A. Venkataraman, Arecibo Observatory, A. K. Virkki, Arecibo Observatory, A. Vishwas, Cornell University, S. Weinreb, California Institute of Technology, D. Werthimer, University of California, Berkeley, A. Wolszczan, Pennsylvania State University, and L. F. Zambrano-Marin, Arecibo Observatory.

Synopsys: The Arecibo Observatory (AO) hosted the most powerful radar system and the most sensitive radio telescope in the world until the unexpected collapse of the 1000-ft "legacy" AO telescope (LAT) on December 1, 2020. For 57 years, the facility uniquely excelled in three separate, major scientific areas: planetary science, space and atmospheric sciences, and astronomy. In the tremendous wake of the LAT, we envision a new, unparalleled facility, one which will push forward the boundaries of the planetary, atmospheric, and radio astronomical sciences for decades to come. In order to accomplish the overarching scientific goals stated above, we present a concept for the Next Generation Arecibo Telescope (NGAT) - an innovative combination of a compact, phased array of dishes on a steerable plate-like structure. *Compared to the LAT, the NGAT will provide 500 times wider field of view, 2.5 times larger sky coverage, 3 times more frequency coverage, nearly double the sensitivity in receiving radio astronomy signals, and more than four times greater transmitting power required for both Planerary and Atmospheric investigations.*

Through its final day of operation, the LAT continued to produce new, groundbreaking science, adding to its long history of extraordinary achievements, including a Nobel Prize in Physics. Its collapse has produced a significant void in these scientific fields, which echoed across the extensive, world-wide scientific community. It also produced a deeply-felt cultural, socioeconomic, and educational loss for Puerto Ricans, and a tragic deprivation of opportunity, inspiration, and training for Science, Technology, Engineering, and Mathematics (STEM) students in Puerto Rico and across the U.S., all of whom represent the next generation of America's scientists and engineers.

In the tremendous wake of the LAT, we envision a new, unparalleled facility, one which will push forward the boundaries of the planetary, atmospheric, and radio astronomical sciences for decades to come. A future multidisciplinary facility at the site should enable cutting-edge capabilities for all three of the science branches that form the cornerstones of AO exploration. To facilitate the novel, consequential science goals described in this document, the new facility must meet the capability requirements described below, which ultimately drive our telescope concept design.

Planetary Science: 5 MW of continuous wave transmitting power at 2 - 6 GHz, 1-2 arcmin beamwidth at these frequencies, and increased sky coverage.

Atmospheric Science: $\pm 45^{\circ}$ sky coverage from zenith to observe both parallel and perpendicular directions to the geomagnetic field, 10 MW peak transmitting power at 430 MHz (also at 220 MHz under consideration) and excellent surface brightness sensitivity.

Astronomical Science: Excellent sensitivity over 200 MHz to 30 GHz frequency range, increased sky coverage and telescope pointing up to -48° from zenith to observe the Galactic Center.

In the following sections of this summary, we describe the key scientific objectives and novel capabilities that the new facility will offer to the three science areas and space weather forecasting, a unique new interdisciplinary application.

Planetary Radar Science

A key role of the LAT as the host to the world's most powerful radar system was to characterize the physical and dynamical properties of near-Earth objects (NEOs), in support of NASA's Planetary Defense Coordination Office and in line with national interest and security. In recent years, AO observed hundreds of NEOs as a part of NASA's mandate by the US Congress [George E. Brown, Jr. [ADD: Near-Earth Object Survey] Act (Public Law 109-155 Sec. 321)] to detect, track, catalogue, and characterize 90% of all NEOs larger than 140 meters in size. Post-discovery tracking of NEOs with radar is an unparalleled technique for accurately determining their future trajectory and assessing whether they pose a real impact threat to Earth. These radar measurements secure the position and velocity of NEOs with a precision of tens of meters and millimeters per second, respectively. The LAT radar was also used to map the surfaces of Mercury, Venus, Mars, and the Moon, *supporting human and robotic exploration of the Moon, Mars, and near-Earth asteroids*. A new facility, with a more powerful radar system (5 MW at 2 to 6 GHz) and large sky coverage, will support Planetary Defense, Solar System science, and Space Situational Awareness by providing the following capabilities:

Planetary Defense and Solar System Exploration					
	Post-discovery characterization and orbit determination of up to 90% of possible asteroid impactors	Study the surface and sub-surface of ocean worlds around Jupiter, Saturn and other Solar System objects	Observe asteroids in the outer regions of the main-belt and beyond		
	Space Situational Awareness (SSA) to categorize space debris down to mm-size in LEO, and smaller than one meter in GEO and cislunar space	Support NASA Human Exploration program by characterizing spacecraft landing sites and identifying potential hazards at low cost	Support and extend the science return of missions including NASA's DART, Janus, Europa Clipper, and Dragonfly missions; and ESA's JUICE mission		

Space and Atmospheric Sciences

Space and Atmospherics Sciences (SAS) at AO has traditionally utilized multiple approaches to atmospheric research. The LAT's Incoherent Scatter Radar (ISR), the Light Detection and Ranging (Lidar) facility, the onsite and remote passive optical facilities, and the High Frequency facility formed the cornerstones of SAS research at AO. The powerful LAT's ISR was the only instrument of its kind and was capable of profiling ionospheric parameters beyond 2000 km of the Earth's atmosphere. The high resolution, range-resolved observations of electron concentrations, temperatures, ion compositions, and inference of electric fields in the ionosphere are important for the investigations of the coupling processes between different atmospheric regions, influence of solar and space weather disturbances on the Earth's environment, and fundamental plasma processes, since the ionosphere acts as a natural plasma laboratory. The LAT's ISR provided unique contributions in the space sciences due to its high sensitivity and power. However, a major drawback was its limited beam steering capabilities, which will be overcome with the proposed

new facility. Increased sky coverage (> \pm 45° zenith coverage), and more power (\gtrsim 10 MW at 430 MHz; a 220 MHz radar is also under consideration) open up new possibilities that will lead to innovative research and discoveries in the following topics.

Advances in Space and Atmospheric Sciences					
Investigate global climate change and its influence on the upper atmosphere	Unravel the mysterious causes of short-period perturbations in the ionosphere	Understand interactions in Earth's atmosphere in the northern and southern hemispheres			
Investigate coupling between Earth's atmospheric layers to improve satellite navigation, radio wave propagation, and weather forecasting models	Disambiguate between the influence of meteorological and space weather on the neutral and ionized coupling phenomena in Earth's atmosphere	Understand the neutral and ionized atmospheric benavior by combined active and passive observations			

Radio Astronomy

LAT's unique capabilities enabled several key discoveries in radio astronomy. The loss of the instrument was felt most keenly by pulsar, galactic and extragalactic researchers. The new facility should enable complementary observations with other existing and upcoming radio facilities. For example, the new facility must provide a substantial increase in sensitivity for Very Large Baseline Interferometry, of which the LAT was a contributing instrument whenever higher sensitivity was required. In addition, wider sky coverage, greater collecting area, increased frequency coverage, and a larger field-of-view (FoV) will substantially increase the research potential in a wide range of fields, some of which are highlighted below.

New Frontiers in Radio Astronomy

Test General Relativity with Galactic Center pulsars	Illuminate underlying physics of pulsars, the emission mechanism, and propagation of radio waves in the interstellar medium	Gain new insights into the causes and physical processes of Fast Radio Bursts
Constrain cosmological theories for Dark Matter in the local Universe	Search for Exoplanets and Earth-like Worlds including studies on habitability and magnetic fields	Measure the distribution of matter to moderate redshifts to constrain Dark Energy
Observe Active Galactic Nuclei with Very Long Baseline Interferometry	Detect the fingerprints of prebiotic molecules in our Galaxy and beyond	Detect and study Gravitational Waves using pulsar timing
Probe the star formation history of the Universe by observing ¹² CO emission from massive galaxies at redshift > 3	Study the formation of massive stars through ammonia observations	Search for Technosignatures from advanced life forms

Interdisciplinary science - Space Weather Studies

The US "space weather preparedness" bill [116th Congress Public Law 181 (10/21/2020)] emphasizes the importance of space weather research and forecasting efforts. It is important to efficiently track and understand the propagation and dynamics of solar storms to improve space weather forecasting and to provide sufficient warnings for the safety of the technological systems and humans in space. The new capabilities for interplanetary space observations enabled by extended FoV coverage will facilitate solar wind measurements that probe the dynamics of space weather between the Sun and Earth at several points inaccessible to current space missions, with the goal of improving the lead-time and advanced warning capabilities for space weather events.

Forecasting Space Weather

Protect humans in space and ground and spacebased technology by tracking solar storms and predicting their arrival at Earth

Study the effects of space weather on Earth's atmosphere and the near-Sun environment Perform high frequency and spatial resolution observations of solar radio bursts associated with powerful coronal mass ejections

The Concept of a Next Generation Arecibo Telescope.

In order to accomplish the overarching scientific goals stated above, we present a concept for the Next Generation Arecibo Telescope (NGAT) - an innovative combination of a compact, phased array of dishes on a steerable plate-like structure. *Compared to the LAT, the NGAT will provide 500 times wider field of view, 2.5 times larger sky coverage, 3 times more frequency coverage, nearly double the sensitivity in receiving radio astronomy signals, and more than four times greater transmitting power required for both Planetary and Atmospheric investigations.* We summarize the new capabilities and direct applications of this facility in Table 1. The new telescope will coexist with an extended High Frequency (HF) facility, and a diverse set of radio and optical instrumentation that continue to operate at AO and at the Remote Optical Facility (ROF). The largely new proposed concept for a radio science instrument requires extensive engineering studies that will be the next step to ensure the new facility achieves the driving scientific requirements for the aforementioned science objectives.

Table 1: The significant technical improvements of the proposed concept and their impacts on the science studies.

	New NGAT Capability	Comparison with legacy Arecibo Telescope (LAT)	Enabled/Improved science
	High sensitivity (Gain > 18 K/Jy)	1.8 - 3.6 times more sensitive from 0.3 to 10 GHz	All fields of science enhanced by increased sensitivity, field of view, and frequency coverage
	Large sky coverage; zenith angle range ±48 deg.	2.5 times coverage increase	All fields of science benefit from increased sky coverage
Structural and Instrumental	Field of View ¹ ~6 deg. at 0.3 GHz ~3.5 arcmin at 30 GHz	~500 times increase in FoV	All survey observations immensely benefit from increased field of view

Improvement s	Frequency coverage from ~200 MHz to 30 GHz	A factor of 3x more frequency coverage	Enhanced spectroscopic capabilities, crucial for Space Weather studies
	High survey speed	Added Capability	Pulsar, FRB, and spectroscopic surveys at various frequencies
	Capable of mitigating radio frequency interference (RFI) through phased nulling	Added Capability	All observations benefit from RFI mitigation
	Dual observing modes as a phased array and interferometer	Added Capability	Improves HI intensity mapping, Detecting and monitoring Coronal Mass Ejections
Improved Transmitting	5 MW of continuous wave radar transmitter power at 2 - 6 GHz	A factor of 5× more power; maximum transmitter power was 900 kW at 2.38 MHz	Planetary defense: 90% of the virtual impactors can be tracked New space situational awareness capabilities and space mission support
Capabilities for Planetary			Radar of surfaces and subsurfaces of icy worlds
Atmospheric Sciences	10 MW peak transmitter power at 430 MHz (also at 220 MHz under consideration)	A factor of 4× more power	ISR studies: Better spatial and temporal resolution to study small-scale ionospheric structures, natural or human-caused, to unprecedented levels

¹ For the configuration given in Table 2a in the document.

The Necessity to Rebuild in Arecibo, Puerto Rico

We propose that NGAT be located at the Arecibo Observatory, preferably at the location of the LAT to take advantage of the existing infrastructure and the extension of the RFI active cancellation system, an active project in development at the AO location. Several other advantages for the Arecibo site include:

Advantages of Arecibo, Puerto Rico as a site

Scientific

- The proximity to equatorial latitudes is ideal for observing Solar System objects.
- The location uniquely enables ISR studies both parallel and perpendicular to the Earth's magnetic field lines.
- The geographic and geomagnetic location provides unique latitude coverage that is not offered by other facilities in the world.
- It is a strategic location from which to study the effects of the South Atlantic Magnetic Anomaly (SAMA) in the Caribbean upper atmosphere as well as on the trans-ionospheric radio signals.
- The location is critical for studying acoustic and gravity waves generated by extreme weather systems approaching the U.S. and Caribbean.

<u>Socioeconomic</u>

- To serve the minority population of Puerto Rico by inspiring and educating new generations while contributing to the socioeconomics of the island.
- To take advantage of the existing infrastructure, which is on federal property, and has the local government support, significantly offsetting costs.
- To leverage the strategic location in the Caribbean Sea, a region with the largest traffic vessels and for which accurate geopositioning is critical, and the ISR inputs for space weather forecast models are crucial.

Technical

AO is located in a Radio Frequency Interference (RFI) Coordination Zone which minimizes the effects of RFI, protecting the radio bands needed for science operations.

Legacy

To extend and further strengthen the 'longterm legacy' ionospheric data for future climate change investigations.