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A B S T R A C T

Maritime industry has set ambitious goals to drastically reduce its greenhouse gas emissions through stipulating
and enforcing a number of energy assessment measures. Unfortunately, measures like the EEDI, EEXI, SEEMP
and CII do not account for the operational and environmental uncertainty of operations at sea, even though
they do provide a first means of evaluating the carbon footprint of ships. The increasing availability of high-
frequency operational data offers the opportunity to quantify and account for this uncertainty in energy
performance predictions. Current methods to evaluate and predict energy performance at a whole energy
system level do not sufficiently account for operational and environmental uncertainty. In this work, we
propose a digital twin that accurately predicts the fuel consumption and carbon footprint of the hybrid
propulsion system of an Ocean-going Patrol Vessel (OPV) of the Royal Netherlands Navy under the aggregate
effect of operational and environmental uncertainty. It combines first-principle steady-state models with
machine learning algorithms to reach an accuracy of less than 5% MAPE on both mechanical and electrical
propulsion, while bringing a 40% to 50% improvement over a model that does not utilise machine learning
algorithms. Results over actual voyage intervals indicate a prediction accuracy of consumed fuel and carbon
intensity within 2.5% accounting for a confidence interval of 95%. Finally, the direct comparison between
mechanical and electrical propulsion showed no clear energy-saving benefits and a strong dependency of the
results on each voyage’s specific operational and environmental conditions.
1. Introduction

Human influence has unequivocally warmed the atmosphere and
oceans, and the current speed of climate change and its impact on
the living environment for mankind is unprecedented (IPCC, 2021). To
reduce the impact of shipping on the environment, the International
Maritime Organization (IMO) adopted mandatory energy efficiency
measures already back in 2011 (MEPC, 2011). However, adopting
these measures did not prevent a further 9.6% increase of green house
gas emissions from shipping between 2012 and 2018 (IMO, 2020).
Therefore, additional measures are urgently needed to reach a 40%
reduction of carbon emissions per transport work by 2030 compared
to 2008 (MEPC, 2018).

Literature provides a wide range of technological and operational
solutions to comply with these measures (Vergara et al., 2012; Bouman
et al., 2017; Damerius et al., 2022; Tadros et al., 2022). The main diffi-
culty in their energy performance assessment, though, is the high uncer-
tainty level of the required power for propulsion, mission, and auxiliary
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loads at the different design and operational phases (Georgescu et al.,
2018; Vrijdag, 2014; Tillig et al., 2018; Vrijdag et al., 2018). This
uncertainty is mainly caused by the heterogeneous operational and
environmental conditions ships operate in, as demonstrated by Parkes
et al. (2018) for merchant vessels and by Vasilikis et al. (2022) for
multi-function service vessels.

Current IMO regulations and regulations in preparation by interna-
tional authorities such as IMO and the European Union require ships to
comply with reference limits of indices and indicators that, in principle,
indicate the amount of carbon dioxide (CO2) emissions per transport
work. Their calculation is done either on a single sailing point as
in the case of EEDI (MEPC, 2014) and EEXI (MEPC, 2021a) or by
averaging the carbon footprint over a year of operations as in the
case of CII (MEPC, 2021b). However, Lindstad et al. (2019) demon-
strated that one sailing point does not consider the operational and
environmental uncertainty at sea. Moreover, balancing out the effect
of this uncertainty over the course of similar voyages does not provide
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substantial feedback on the operational and design decisions, especially
in the case of multi-function vessels that do not perform the same type
of operations over time (Vasilikis et al., 2022). Therefore, this work
aims at developing a digital twin that accounts for both operational
uncertainty and unpredictability in environmental conditions.

The use of actual operating profiles or multiple operating condi-
tions can improve the accuracy of the assessment of lifetime energy
savings when comparing the impact of novel operational procedures
and energy efficiency measures or design solutions (Trivyza et al.,
2020; Gypa et al., 2023; Diez et al., 2018). The advent of new tech-
nological advances in collecting, storing, and transferring data has
the potential to support the maritime industry to evaluate operational
and design measures over more realistic operating conditions (Trodden
et al., 2015; Nikolopoulos and Boulougouris, 2020). The increasing
availability of high frequency operational data in contrast to bias-
sensitive noon reports and research on data-driven techniques makes it
possible to quantify operational and environmental uncertainties and
accurately assess the energy efficiency of real-time operations (Aldous
et al., 2015). In this work, we thus provide a novel methodology to
account for realistic operating conditions in evaluating operational pro-
cedures, leveraging digital twin technologies that utilise high frequency
operational data.

1.1. Related work

Uncertainties in operational and environmental conditions signif-
icantly affect the energy efficiency of power and propulsion systems
(Baldi et al., 2015b; Esmailian et al., 2022). Operational uncertainty is
the result of differences in loading condition, rudder activity, hull, and
propeller fouling, but also of the selected vessel speed and acceleration.
Alternatively, environmental uncertainty is mainly related to wind and
wave conditions, currents, and ambient air and sea temperatures. Many
authors account for those uncertainties differently by formulating their
problem accordingly.

Some studies examine the efficiency of the whole energy conver-
sion chain of ships’ power supply and propulsion systems. Shi et al.
(2010) and Sui et al. (2019) evaluate fuel consumption over the whole
vessel speed range, accounting for one resistance curve that is assumed
representative of the ship’s operation. Other studies provide results for
multiple resistance curves in order to demonstrate the effect of different
weather and hull fouling conditions (Geertsma et al., 2017, 2018).
Another practice is to provide the total fuel consumed over certain
sailing time periods. For example, Sui et al. (2020) estimated energy
gains over three voyages that each involved three parts of different
sailing speeds and sea margins and a number of manoeuvres. More-
over, Trivyza et al. (2018, 2020) used actual vessel speed distributions,
and finally, some authors examined actual vessel speed time profiles for
energy management applications (Zhu et al., 2018; Kalikatzarakis et al.,
2018). While these approaches partly consider the effect of diverse
conditions on system-level energy performance with multiple single-
point conditions, they do not account for the full spread of actual
conditions.

Another set of studies focuses on individual operational and envi-
ronmental parameters. They usually use hindcast data of monitored
weather, vessel speed, and loading parameters. The main applications
are on weather routing problems (Avgouleas and Sclavounos, 2014;
Zhang et al., 2019; Zis et al., 2020), on operational parameters opti-
misation as trim (Coraddu et al., 2017) and vessel speed (Farag and
Ölçer, 2020), but also on identifying hull fouling (Coraddu et al.,
2019). Monte Carlo simulations have also been used to quantify uncer-
tainty on attained energy efficiency (Coraddu et al., 2014; Fan et al.,
2020). Furthermore, there is a third branch of studies that examine the
energy performance of individual components and subsystems. They
use statistical distributions of the main engine, auxiliary engine, and
thermal power for thermodynamic cycle optimisation (Baldi et al.,
2

2015a,b; Shu et al., 2017) or a number of typical steady state operating
Table 1
Acronyms and symbols.

Acronyms Description

EEDI Energy efficiency design index
EEXI Energy efficiency existing ship index
CII Carbon intensity indicator
CI Carbon intensity of a voyage interval
SEEMP Ship energy efficiency management plan
IPMS Integrated platform monitoring system
DT Digital twin
MM Mechanical mode
EM Electrical mode
MDE Main diesel engine
M Electrical motor
DGEN Diesel generator
PSH Propeller shaft
CPP Controllable pitch propeller
GB Gearbox
MAE Mean average error
MAPE Mean absolute percentage error
APE Absolute percentage error
REP Relative error percentage
MS Model selection
EE Error estimation
RF Random forest
SVR Support vector regression
MLP Multilayer perceptron network
RLS Regularised least square

Symbols Description

𝑣 Vessel speed
𝑣a Speed in the ship’s wake
𝑤 Taylor’s wake factor
𝑇p Propeller thrust
𝑝 Propeller pitch
𝑝nom Nominal propeller pitch
𝑝0 Zero-thrust propeller pitch
𝐷 Propeller diameter
𝑛 Propeller shaft speed
𝑛e Main diesel engine speed
𝑛m Electrical motor speed
𝑟e Reduction ratio of main diesel engine
𝑟m Reduction ratio of electrical motor
𝑀psh Propeller shaft torque
𝑃psh Propeller shaft power
𝑃m Power provided by the electrical motors
𝑃m,el Electrical power provided to the motors
𝑃e Main diesel engine power
𝑃gen Generated electrical power
𝑃hotel Hotel electrical power
�̇�f ,e Main diesel engines fuel consumption
�̇�f ,gen Diesel generators fuel consumption
�̇�f ,tot Total fuel consumption
𝑇air Ambient air temperature
𝜌 Sea water density
𝑀f ,tot Amount of fuel consumed on a voyage interval
𝛥𝑡 Duration of a voyage interval
𝛥𝑠 Distance of a voyage interval
𝑣 Average speed of a voyage interval

conditions (Sakalis and Frangopoulos, 2018). A similar strategy uses
these power profiles in the time domain to examine different system
configurations (Dedes et al., 2012, 2016; Ancona et al., 2018). The
work proposed in this paper differs from these studies as it examines the
aggregate effect of different operational and environmental conditions
over selected voyages of the complete energy system rather than each
parameter or subsystem separately.

Fuel consumption prediction of ships usually requires the develop-
ment and use of simulation models of their energy systems (Moreno-
Gutiérrez et al., 2015; Bulten, 2016). Literature provides many exam-
ples of such models, which usually consider different system limits and
fidelity level. In general, simulation models can be categorised into
first-principle models, that provide insight in the underlying physical
processes, semi-empirical models, that use the experience of similar

systems, and empirical models, that are built using the preceding
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knowledge of the examined system’s operation. Another way to cat-
egorise different models is a division into dynamic and steady-state
models, based on whether they consider dynamic phenomena or not.
Finally, simulation models can also be categorised into stochastic and
deterministic models, depending on whether they consider the uncer-
tainty of the input and output parameters or not. The application scope
determines what would be a suitable model type and what should be
the necessary fidelity level.

This trade-off between model type, application scope, and fidelity
level has been discussed by many authors (Baldi, 2016; Geertsma et al.,
2018; Sui et al., 2019). Energy performance prediction of ship energy
systems usually utilises steady state models (Shi et al., 2010; Trivyza
et al., 2018, 2020; Sui et al., 2019, 2020; Zhu et al., 2018). This is
a practice followed in automotive applications as well (Barsali et al.,
2004; Zuurendok, 2005; Zhou et al., 2016). Those models usually
consist of two or three-dimensional look-up tables provided by com-
ponent manufacturers or they are the result of regression analysis over
a certain amount of available data. Some models use constant energy
efficiencies to model different components too. In general, the modelled
components include the main propulsion engines, gearboxes, shafts,
and propellers. In some cases, auxiliary power generation is modelled
too. Control strategy applications on the other hand require the use of
dynamic models (Zahedi et al., 2014; Geertsma et al., 2018; Haseltalab
et al., 2019). In the specific case of energy management applications,
both steady state (Zhu et al., 2018) and dynamic (Al-Falahi et al., 2018;
Kalikatzarakis et al., 2018; Haseltalab and Negenborn, 2019) models of
the energy system can be used.

Prediction of fuel consumption in certain environmental and oper-
ational conditions usually follows two modelling strategies. The first
combines steady state energy system models with semi-empirical resis-
tance prediction models (Lu et al., 2015) or more advanced computer
fluid dynamics models (Avgouleas and Sclavounos, 2014). The second
uses statistical models to predict fuel consumption in a one step calcu-
lation as in Coraddu et al. (2017) or in a two step main shaft propulsion
power and fuel consumption prediction (Farag and Ölçer, 2020). A
review of statistical models and methods used in the fuel consumption
prediction of ships can be found in Gkerekos et al. (2019), Huang et al.
(2022). The modelling strategy in this paper differs from this practice
as the main aim is to preserve the first principle understanding of the
system components.

Finally, energy performance analysis and optimisation at a com-
ponent and subsystem level is also dominated by the use of steady
state models, although these models can vary in their level of detail.
For example, applications in finding optimal configurations use look-up
tables (Dedes et al., 2012, 2016; Ancona et al., 2018), but appli-
cations on optimising thermodynamic working cycles require much
more detailed models based on energy efficiency analysis (Sakalis and
Frangopoulos, 2018) or even exergy analysis (Baldi et al., 2015a,b; Shu
et al., 2017). Those studies focus on the low-level examination of the
system, nevertheless, they confirm the general practice of sacrificing
time dependency for more detailed models and a higher number of
simulations.

1.2. Gaps

Researchers use actual operational and environmental conditions
coupled with empirical models to examine energy efficiency gains from
optimising operational decisions such as weather routing, vessel speed
selection, and optimal loading of the vessel. When the focus lies on
alternative system configurations and settings, they tend to test their
technological innovations on scenarios that are not representative of
the actual conditions at sea. Hence, a methodology on the aggregate
effect of actual operational and environmental conditions is missing.
Moreover, ship energy systems consist of a large number of interacting
components that show non-linear behaviour (Baldi, 2016). Modelling
3

discrepancies of those components result in accumulating prediction
errors. On the occasion that large datasets of operational data are
available, calibration and validation of the whole energy system model
become challenging too. At a component level, there is a number of
examples of calibrating, validating, and enhancing the accuracy of
different models as in the case of main diesel engines (Hountalas, 2000;
Coraddu et al., 2018; Kalikatzarakis et al., 2021; Coraddu et al., 2021).
However, such methodologies at a whole system level are lacking due
to different sensor availability of monitoring platforms and diversity in
system architecture.

1.3. Aim and contribution

The main aim of this paper is to develop an accurate and com-
putationally low-cost operational data-driven methodology that can
predict the fuel consumption and carbon intensity of ship operations
under the aggregate effect of diverse and uncertain operational and
environmental conditions. This methodology can be used to establish
optimal settings and evaluate future design alternatives. Therefore, the
contribution of this paper can be summarised as follows:

• It provides a methodology to build a digital twin of ship energy
systems that can be used to evaluate operational decisions, design
changes, and contribute to enhanced future designs.

• It proposes a novel methodology to account for realistic opera-
tional and environmental conditions.

• It proposes a systematic methodology to validate models of the
whole energy system in the presence of large operational datasets.

• It proposes statistical modelling techniques to compensate for
uncertainty related to sensor measurements and the limited avail-
ability of information from shipbuilders and component manufac-
turers.

• It provides a case study that demonstrates the capability of steady-
state models coupled with data-driven techniques in accurately
predicting fuel consumption over actual dynamic and quasi-static
sailing conditions.

• It provides a direct comparison between electrical and mechanical
propulsion over actual sailing profiles.

The rest of the paper is organised as follows. Section 2 presents
the main characteristics of the examined vessel and the used datasets.
Section 3 presents our proposed methodology to build and utilise a dig-
ital twin of the vessel’s energy system. Section 4 provides a description
of the data-driven techniques applied. Section 5 provides all accuracy
metrics for the developed models. Section 6 presents our results and
Section 7 the drawn conclusions. To assist the readability of the paper,
Table 1 summarises the used acronyms and symbols.

2. Case study vessel and dataset description

The case study vessel in this paper is an Ocean-going Patrol Vessel
(OPV) of The Royal Netherlands Navy (RNLN). A schematic represen-
tation of its energy system can be seen in Fig. 1. Two controllable
pitch propellers are driven either mechanically by two main diesel
engines rated at 5,400 kW, or electrically by two electrical motors rated
at 400 kW. Propeller shaft speed is reduced by two gearboxes which
utilise one speed reduction stage of 4.355 in the case of mechanical
propulsion or two stages with a total reduction ratio of 17.880 in the
case of electrical propulsion. Finally, electrical power is produced by
three diesel generators rated at 920 kW. All component specifications
can be found in Table 2. The proposed methodology utilises operational
data logged by the automation system of the vessel. Cleaning and pre-
processing was done as in Karagiannidis and Themelis (2021), but
vessel speed was selected as the prime parameter and the top and
bottom 0.1% percentile was used to discard outliers instead of standard
deviation. The dataset is characterised by a sampling frequency of 3 s
and covers a time window of 15 months. The main parameters used in
this paper are reported in Table 3. These parameters are all measured
by the automation system, except for the thrust parameter, which is
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Fig. 1. The case study energy system: (a) main diesel engine, (b) electrical motor, (c)
gearbox, (d) controllable-pitch propeller, (e) diesel generator.

Table 2
Component specifications.

Diesel generators Value Unit

Nominal power 910 [ekW]
Nominal speed 1800 [rpm]
Nominal fuel consumption (ISO) 235 [kg/h]

Main diesel engines

Nominal power 5400 [kW]
Nominal speed 1000 [rpm]
Nominal fuel consumption (ISO) 1077 [kg/h]

Electrical motors

Nominal power 400 [kW]
Nominal speed 1788 [rpm]

Gearboxes

Reduction ratio (MDE) 4.355 [–]
Reduction ratio (M) 17.880 [–]

CPP Propellers

Diameter 3.2 [m]
Nominal pitch to diameter 1.221 [–]
Zero-thurst pitch to diameter 0.144 [–]

estimated based on the dataset enrichment methodology described in
the authors’ earlier work (Vasilikis et al., 2022).

The examined vessel uses a number of operational modes in order
to serve its multifunction mission. The focus of this study lies in the
two main operational modes. The first one is designed for sailing on
two main diesel engines while in transit, from now on referred to
as Mechanical Mode (MM). The second main mode is designed for
4

Table 3
Dataset parameters.

Parameter Unit

Vessel speed through water [knots]
Propeller pitch to diameter [–]
Propeller thrust [kN]
Propeller shaft speed [rpm]
Propeller shaft torque [kNm]
Electrical motors power [kW]
Generated electrical power [kW]
Main diesel engines fuel consumption [kg/h]
Diesel generators fuel consumption [kg/h]
Ambient air temperature [◦]
Time [sec]

patrolling or low speed transits up to 10 knots on the two electric
motors, from now on referred to as Electrical Mode (EM). Fig. 2
provides distributions of dataset parameters for the examined two
propulsion options. Vessel operation below 5 knots is discarded as part
of manoeuvring which does not have an important impact on attained
energy performance and carbon footprint.

3. Methodology

The methodology of this paper proposes a two-phase approach to
accurately predict the energy performance of complex ship energy
systems under realistic operational and environmental conditions, by
leveraging steady-state first-principle models (Coraddu et al., 2014; Sui
et al., 2019; Vasilikis et al., 2022) and the high-frequency operational
data described in Section 2, as follows:

• Phase I: a digital twin (DT) (Grieves and Vickers, 2017; Mauro
and Kana, 2023) of the vessel’s hybrid energy system is devel-
oped to capture the quasi-static behaviour of the vessel in terms
of energy, fuel consumption, and emissions. Due to the hybrid
approach of using data-driven and first-principle techniques, we
can achieve accurate predictions that capture the aggregate effect
of operational and environmental uncertainty. The description of
this DT is reported in Section 3.1 and its validation in Section 5.

• Phase II: the developed DT is employed in predicting the energy
performance (i.e., fuel consumption) and carbon intensity of the
vessel over a number of actual voyages, and it also provides a
direct comparison between Mechanical Mode (MM) and Electrical
Mode (EM).

A schematic representation of the methodology can be found in Fig. 3.

3.1. Phase I: Digital twin development

The developed DT predicts the fuel consumption of main diesel
engines and generators and the propeller shaft torque for tuples of
different vessel speed, propeller thrust, and ambient temperature. For
each component depicted in Fig. 4, a short description of the modelling
approach follows in the next subsections.

First, the model evaluates water speed in the ship’s wake 𝑣a from
vessel speed 𝑣:

𝑣a = (1 −𝑤) 𝑣 , (1)

using Taylor’s wake fraction 𝑤 which is provided by towing tank tests
in Fig. 5. Next, it evaluates rotational speed 𝑛 and pitch 𝑝 of the
controllable-pitch propeller based on an iteration algorithm described
in Fig. 6. This algorithm iterates to the pitch setting for the given vessel
speed using the fixed-pitch propeller matching algorithm and the ship’s
combinator curve as reported in Stapersma and Klein Woud (2005) to
estimate rotational speed. Propeller’s thrust coefficient 𝐾T,ship curve is
provided by:

𝐾T,ship =
𝑇
2 2

𝐽 2 , (2)

𝜌 𝑣a 𝐷
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Fig. 2. Dataset parameters distribution.
where 𝑇 is propeller thrust, 𝜌 is water density, 𝐷 is propeller diameter
and 𝐽 is the advance coefficient. The initial value for virtual shaft speed
𝑛virt,i is assumed a linear function of vessel speed:

𝑛virt,i = 𝑐1 𝑣 − 𝑐0, 𝑣 > 2knots . (3)

Propeller pitch is provided as a function of virtual shaft speed 𝑛virt using
the corresponding combinator curve for the selected operational mode
in Fig. 7. Thrust coefficient curves 𝐾T are established with the propeller
open water diagrams, as shown in Fig. 8. Propeller speed is evaluated
5

using the advance coefficient as follows:

𝑛 =
𝑣a
𝐽 𝐷

. (4)

Virtual shaft speed 𝑛virt is provided by:

𝑛virt =
𝑝 − 𝑝0

𝑝𝑛𝑜𝑚 − 𝑝0
𝑛 , (5)

where 𝑝0 is zero thrust pitch and 𝑝𝑛𝑜𝑚 is nominal pitch. Following the
successful convergence of the iteration procedure, the pitch value and
the advance coefficient are used in to establish the torque coefficient in
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Fig. 3. Schematic representation of the proposed methodology.
Fig. 4. Flowchart of the Digital Twin.

open water conditions 𝐾Q,o using Fig. 9. Propeller torque in open water
conditions 𝑀𝑄,𝑜 is then estimated from:

𝑀 = 𝐾 𝜌 𝑛2 𝐷5 , (6)
6

Q,o Q,o
Fig. 5. Taylor’s wake fraction based on towing tank tests.

while propeller torque 𝑀Q is evaluated using the relative rotative
efficiency 𝜂RQ:

𝑀Q =
𝑀Q,o

𝜂RQ
, (7)

the background of which is discussed in the following two paragraphs.
The use of propeller open water diagrams in predicting propeller

thrust, torque, and speed is based on decoupling the problem of the
self-propelled ship into the problem of open water propeller operation
and the problem of the towed ship (Taylor, 1910). Typically, a selection
between thrust or torque identity is made by introducing relative
rotative efficiency. It is usual to select the first option of thrust identity,
suggesting that the thrust coefficient stays the same in actual and
open water conditions (ITTC, 2014). Literature provides semi-empirical
formulas for evaluating relative rotative efficiency as in Holtrop (1984).
The use of those formulas corresponds to nominal design conditions,
and their accuracy on modern ships and off-design conditions has not
been examined (Carlton, 2019). Only recently, was the effect of control
strategies and scaling discussed further Huijgens et al. (2022).

Nonetheless, the availability of operational data offers the opportu-
nity to assess the accuracy of those formulas in design and off-design
conditions. The utilised IPMS dataset includes measurements of pro-
peller torque, pitch, rotational speed, and vessel speed. Eq. (6) provides
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Fig. 6. Controllable pitch propeller pitch and rotational speed evaluation algorithm.
Fig. 7. Combinator curves.

Fig. 8. Thrust coefficient open water diagram.
7

Fig. 9. Torque coefficient open water diagram.

an estimation of propeller torque in open water conditions. In theory,
the fraction of this torque value with measured torque provides an
estimation of the relative rotative efficiency �̂�RQ:

�̂�RQ =
𝑀Q,o

𝑀Q
, (8)

where the hat symbol is used to distinguish our estimation to the
theoretical value 𝜂RQ, as it involves uncertainty related to the accuracy
of our measurements and of the diagrams used. Parameters like the
thrust deduction factor 𝑡, wake factor 𝑤, and the relative rotative
efficiency are usually used to compensate for this uncertainty (MAN
Energy Solutions, 2018). In this paper, the estimated relative rotative
efficiency based on Eq. (8), from this point called propeller uncer-
tainty correction factor, is modelled as a statistical model following the
procedure described on Section 4.

Furthermore, the model evaluates propeller shaft torque 𝑀psh using
the propeller torque and propeller shaft torque losses 𝑀loss,psh according
to:

𝑀 = 𝑀 +𝑀 , (9)
psh Q loss,psh
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Table 4
Original brake specific fuel consumption contour lines provided by the manufacturer
and percentage correction.

𝑏e Correction 𝑏e Correction 𝑏e Correction
[g/kWh] [g/kWh] [g/kWh]

236 −1.7% 213 no 199 +1.5%
230 −1.7% 209 no 195 +1.5%
217 no 204 no 193 +2.1%

where the latter is provided as a linear function of shaft speed by the
manufacturer,

𝑀loss,psh = 𝑐3 𝑛 + 𝑐2 , (10)

onsequently, propeller shaft power is evaluated from 𝑃psh = 𝑀psh
2𝜋 . Main diesel engine power 𝑃e and electrical motor power 𝑃m are

estimated based on gearbox losses 𝑃loss,gb:

𝑃e = 𝑃psh + 𝑃loss,gb , (11)

m = 𝑃psh + 𝑃loss,gb. (12)

he linear torque losses model proposed in Godjevac et al. (2015) is
sed. It is calibrated with the data provided by the gearbox manufac-
urer as a function of input power and speed:

loss,gb =

{

𝑐6 𝑃e + 𝑐5 𝑛e2 + 𝑐4 𝑛e (MM),
𝑐9 𝑃m + 𝑐8 𝑛m2 + 𝑐7 𝑛m (EM),

(13)

here 𝑛e and 𝑛m derive using the corresponding speed reduction ratios
e and 𝑟m:

𝑛e = 𝑟e 𝑛 , (14)

m = 𝑟m 𝑛. (15)

ollowing the substitution of Eqs. (11) and (12), gearbox losses are
iven from:

loss,gb =
𝑐6 𝑃psh + 𝑐5 𝑛e2 + 𝑐4 𝑛e

(

1 − 𝑐6
) , (16)

𝑃loss,gb =
𝑐9 𝑃psh + 𝑐8 𝑛m2 + 𝑐7 𝑛m

(

1 − 𝑐9
) . (17)

Fuel consumption of the main diesel engines �̇�f ,e is evaluated from
he specific fuel consumption 𝑏e as:

̇ f ,e =
𝑏e 𝑃e 3600

1000
, (18)

which is interpolated using speed 𝑛e and power 𝑃e from Fig. 10. This
ook-up table was built out of the brake specific fuel consumption
ontour curves provided by the manufacturer in van Straten and de
oer (2012), corrected with the available dataset according to Table 4.

The electrical power delivered to the motors 𝑃m,el is evaluated based
n their energy efficiency 𝜂m and delivered power 𝑃m:

m,el =
𝑃m
𝜂m

. (19)

The energy efficiency of the motors is modelled as a function of the
delivered power as described hereafter:

𝜂m = 𝑐12 𝑧2 + 𝑐11 𝑧 + 𝑐10 , (20)

here

= log𝑃m. (21)

he constants are estimated based on the test results for an induction
otor provided in Kalikatzarakis et al. (2018) (see Fig. 11).

Fuel consumption of the diesel generators �̇�f ,gen is derived from the
pecific fuel consumption 𝑏gen as:

̇ =
𝑏gen 𝑃gen 3600

. (22)
8

f ,gen 1000
Fig. 10. Brake specific fuel consumption map of the main diesel engines.

Fig. 11. Electrical motor’s energy efficiency against produced power.

pecific fuel consumption is modelled using the available dataset pa-
ameters as a function of the total generated electrical power 𝑃gen (see

Fig. 12):

𝑏gen =
𝑐14
𝑃gen

+ 𝑐13 , (23)

which is the sum of the hotel load 𝑃hotel and the power provided to the
electrical motors 𝑃m,el:

𝑃gen = 𝑃hotel + 𝑃m,el. (24)

The system and auxiliary electrical load is influenced by many factors,
such as the mission of the vessel that determines which sensor and
weapon systems are active and the activities undertaken by the crew.
From the analysis of our dataset, we have established that the corre-
lation with outside air temperature 𝑇air is the strongest correlation of
all parameters. This is caused by the fact that the electrical capacity
of the chilled water plant for cooling of all systems is one of the
largest electrical non-propulsion loads that is directly influenced by the
outside air temperature. Thus, hotel electrical load 𝑃hotel is modelled as
a quadratic function of the external air temperature 𝑇air (see Fig. 13):

𝑃hotel = 𝑐17 𝑇air
2 + 𝑐16 𝑇air + 𝑐15. (25)

Ultimately, total fuel consumption of the vessel �̇�f ,tot is provided by:

̇ f ,tot = �̇�f ,e + �̇�f ,gen. (26)

All model constants of the developed digital twin can be found in

Table 5.
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Fig. 12. Diesel generators’ specific fuel consumption against produced electrical power.

Fig. 13. Electrical hotel load as a function of ambient air temperature.

Table 5
Model Constants.

Constant Value Constant Value Constant Value

Initial virtual shaft speed Gearbox losses (EM) Diesel generators

𝑐0 11 𝑐7 0.00297 𝑐13 230.7
𝑐1 7.9 𝑐8 1.025e−05 𝑐14 10.05

𝑐9 0.0050

Propeller shaft losses Electrical Motors Ambient Temperature

𝑐2 1.4 𝑐10 0.2161 𝑐15 530
𝑐3 0.0134 𝑐11 0.553 𝑐16 0.6

𝑐12 −0.1065 𝑐17 0.099

Gearbox Losses (MM)

𝑐4 0.0081
𝑐5 9.002e−05
𝑐6 0.0050

3.2. Phase II: Carbon intensity evaluation

The second phase of our methodology examines the hypothesis that
the developed DT can accurately predict carbon emissions over a selec-
tion of actual voyage intervals in line with existing regulations (MEPC,
2021b). The selection of those intervals involved finding periods of
at least four hours of continuous sailing on the same operational
mode. The total duration 𝛥𝑡, covered distance 𝛥𝑠, and total amount
of consumed fuel 𝑀f ,tot was approximated by midpoint rule numerical
integration as follows:

𝛥𝑡 = ∫ 𝑑𝑡 ≃
𝑁
∑

𝛿𝑡 = 𝑁 𝛿𝑡 , (27)
9

𝑗=1
𝛥𝑠 = ∫ 𝑣log 𝑑𝑡 ≃
𝑁
∑

𝑗=1
𝑣log 𝛿𝑡 , (28)

𝑀f ,tot = ∫ �̇�f ,tot 𝑑𝑡 ≃
𝑁
∑

𝑗=1
�̇�f ,tot 𝛿𝑡. (29)

Mean sea margin SM was evaluated as the mean difference of thrust
and calm water resistance 𝑅0:

SM =
(

𝑇 − 𝑅0
)

∕𝑅0. (30)

Mean speed 𝑣 = 𝛥𝑠∕𝛥𝑡 and Carbon Intensity (CI) derive as:

CI =
𝑀f ,tot 𝑓CO2

𝛥𝑠
, (31)

where 𝑓CO2 is the carbon factor equal to 3.206 for diesel oil according
to EEDI regulations (MEPC, 2014). The evaluated characteristics of
the selected intervals can be found in Tables 10 and 11 in the case
of mechanical and electrical propulsion, respectively. The prediction
accuracy of the selected intervals is examined using the Mean Average
Percentual Error (MAPE) of total fuel consumption �̇�f ,tot , and the
Absolute Percentage Error (APE) of the predicted amount of consumed
fuel 𝑀f ,tot , consequently carbon intensity.

The last step of phase II is the selection of non-dynamic intervals
o simulate the energy performance of the vessel in MM and EM and
rovide a direct comparison between them.

. Data-driven models

One of the objectives of this study is to develop a model for
redicting the propeller uncertainty correction factor, denoted as �̂�RQ,

based on the input parameters outlined in Table 6. This model will
utilise the data described in Section 2. Fig. 14 illustrates the histogram
of relative frequencies for the target feature in both MM and EM. This
learning problem can be formulated as a supervised Machine Learning
(ML) problem, specifically a regression problem (Shalev-Shwartz and
Ben-David, 2014). In regression analysis, an input space  ⊆ R𝑑 is
comprised of 𝑑 features (in this case, the four parameters in Table 6).
The output space,  ⊆ R, corresponds to �̂�RQ. A dataset of 𝑛 examples,
denoted as 𝑛 = (𝒙1, 𝑦1),… , (𝒙𝑛, 𝑦𝑛), represents input/output relation-
hips where 𝒙𝑖 ∈  and 𝑦𝑖 ∈  ∀𝑖 ∈ 1,… , 𝑛. The aim is to learn

the unknown input/output function 𝜇 ∶  →  based solely on 𝑛.
An ML regression algorithm 𝒜 , characterised by its hyperparameters
, selects a model 𝑓 from a set of potential models  based on
vailable data 𝒜 ∶ 𝑛 ×  → 𝑓 . The set  is typically unknown
nd depends on the choices of 𝒜 and . Various ML algorithms exist
n the literature (Shalev-Shwartz and Ben-David, 2014; Goodfellow
t al., 2016; Fernández-Delgado et al., 2014; Wainberg et al., 2016).
owever, according to the no-free-lunch theorem (Wolpert, 2002),

here is no a priori method for determining the best ML algorithm for
specific application. Therefore, this study will consider an assortment
f state-of-the-art ML algorithms.

The accuracy of model 𝑓 in approximating 𝜇 is evaluated using
prescribed metric 𝑀 ∶ 𝑓 → R. Multiple metrics are available

or regression analysis in ML (Aggarwal, 2015). However, due to the
hysical significance of �̂�RQ, this study will focus on four primary
etrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error

MAPE), Relative Error in Percentage (REP), and the Coefficient of
etermination (R2). To identify the most suitable ML algorithms and

heir corresponding optimal hyperparameters, as well as to evaluate
he performance of the final model based on the desired metrics, a
tatistically consistent Model Selection (MS) and Error Estimation (EE)
rocess was conducted. The methodology for this process is detailed in
ection 4.2, following the recommendations presented in Oneto (2020).
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Fig. 14. Distribution of propeller uncertainty correction factor (relative rotative
efficiency obtained from the IPMS dataset), �̂�RQ.

Table 6
List of inputs and outputs of the ML models.

Space Symbol Description Unit

𝑣 Vessel speed [kn]
Input 𝑇 Thrust [kN]

𝑝 Pitch [–]
𝑛 Shaft speed [rpm]

Output �̂�RQ Propeller uncertainty correction factor [–]

4.1. Machine learning models

This section provides a concise overview of the four algorithms
employed in this study, highlighting the fundamental concepts, usage,
and hyperparameters associated with each algorithm. The chosen algo-
rithms represent the most effective approaches within the four primary
families of ML regression algorithms (Shalev-Shwartz and Ben-David,
2014; Goodfellow et al., 2016; Fernández-Delgado et al., 2014; Wain-
berg et al., 2016): Linear Methods (Zou and Hastie, 2005), Kernel Meth-
ods (Shawe-Taylor and Cristianini, 2004), Ensemble Methods (Zhou,
2012), and Neural Networks (Goodfellow et al., 2016).

4.1.1. Linear methods
Regularised Least Squares (RLS) is a regression method that intro-

duces a regularisation term to the traditional least squares problem
to control the complexity of the model and prevent overfitting. The
objective of RLS is to minimise the sum of squared residuals, similar
to ordinary least squares, but with an additional penalty term that
discourages large values of the model parameters. The regularisation
term is typically a function of the model parameters, such as the L2
norm (also known as Ridge regression) or the L1 norm (also known
as Lasso regression). The L2 norm encourages small parameter values,
leading to a more stable model with lower variance, while the L1
norm can lead to sparse solutions, where some parameters are exactly
zero, effectively performing feature selection. The balance between
the fit to the data and the regularisation is controlled by the only
hyperparameter of this algorithm 𝜆. A larger 𝜆 increases the impact of
he regularisation term, leading to a simpler model, while a smaller 𝜆
llows the model to fit more closely to the data, potentially at the risk
f overfitting.

.1.2. Neural networks
Neural Networks, inspired by human brain neurons, are complex

etworks built from numerous perceptrons (Rosenblatt, 1958). Their
tructure consists of layers linked by weights, determined through
ackpropagation (Rumelhart et al., 1986). A network with a single
10
hidden layer is a shallow neural network, while one with multiple
hidden layers is a deep neural network. Deep networks excel in complex
computations and learning high-level features, improving predictive
accuracy. Despite Cybenko’s Universal Approximation Theorem (Cy-
benko, 1989) suggesting equal representational capacities for both
architectures, deep networks often outperform shallow ones in tasks
like natural language processing and image analysis.

Given our study’s limited sample size and unstructured features,
we chose a shallow neural network to avoid overfitting (Bishop, 1995;
Goodfellow et al., 2016). We used the Multilayer Perceptron Network
(MLP) (Bishop, 1995; Goodfellow et al., 2016) with Dropout archi-
tecture, which has a single hidden layer. The training process uses
adaptive subgradient methods for dynamic learning rate adjustments.
We optimised various hyperparameters during the MS phase (Good-
fellow et al., 2016), including the number of neurons in the hidden
layer, dropout rate, batch size percentage, learning rate, fraction of
gradient to retain, learning rate decay, and the activation function. By
tuning these hyperparameters, we optimised the performance of our
MLP model for the given task.

4.1.3. Kernel methods
Kernel Methods are algorithms that use the ’Kernel trick’ to trans-

form linear methods for non-linear problems (Scholkopf, 2001). They
use kernel functions to map input data into a higher-dimensional
space, enabling linear separability for non-linear problems. This map-
ping allows the computation of inner products in the feature space
without explicit high-dimensional computations, extending linear algo-
rithms to work efficiently in the transformed space. Kernel methods
balance empirical performance and model complexity (Shawe-Taylor
and Cristianini, 2004; Shalev-Shwartz and Ben-David, 2014). Empirical
performance, measured by a pre-defined metric, assesses the model’s
fit and prediction reliability. Model complexity, evaluated by various
measures, assesses the solution space complexity. Higher complexity
can fit more functions but risks overfitting. Therefore, kernel methods
aim to strike an optimal balance between these two aspects: achieving
high performance on the data without over-complicating the model.

Support Vector Regression (SVR) is a well-known and efficient
Kernel method technique. It uses Support Vector Machines (SVMs)
principles and hyperparameters like the kernel function, often set to
a Gaussian or Radial Basis Function (RBF) kernel for its flexibility in
modelling complex, non-linear relationships (Keerthi and Lin, 2003).
The kernel hyperparameter, 𝛾, controls the non-linearity of the decision
boundary and the kernel function’s shape and scale. A small 𝛾 leads
to a more linear boundary, while a large 𝛾 creates a more complex,
non-linear boundary. The regularisation hyperparameter, 𝐶, balances
model accuracy and solution complexity. A small 𝐶 allows more mis-
classifications for a simpler boundary, while a large 𝐶 aims for higher
accuracy, potentially at the cost of a more complex boundary. Both 𝛾
and 𝐶 are critical to the performance of the SVR model and need to
be meticulously tuned during the MS phase to ensure optimal model
performance.

4.1.4. Ensemble methods
Ensemble methods, like Random Forests (RF), use the ’wisdom of

the crowd’ principle by integrating many simple, independent models
to form a more complex and effective one. RF are notable exam-
ples, using Decision Trees as their base models. A Decision Tree is a
flowchart-like structure where each internal node represents a feature
test, each branch shows the test’s outcome, and each leaf node indicates
the tree’s output. A path from the root to a leaf represents a model rule.
Decision Trees are built recursively to a specified depth, with each node
constructed from the attribute and cut that best split the samples into
two subsets, based on information gain. RF enhances bagging, a process
where each tree is independently constructed using a bootstrap sample
of the dataset, with random subset feature selection. This approach

uses different bootstrap samples of the data for each tree and alters



Ocean Engineering 288 (2023) 115927N. Vasilikis et al.

𝑙

a

𝑡

how trees are constructed. RF splits each node using the best among a
subset of predictors, randomly chosen at that node. The final prediction
is derived from a straightforward majority vote. The accuracy of the
final RF model primarily hinges on three factors: the number of trees
in the forest, the accuracy of each tree, and the correlation between
them. As the number of trees in the forest increases, the accuracy for
RF converges to a limit. Simultaneously, it improves as the accuracy
of each tree increases, and the correlation between them diminishes.
Several hyperparameters shape the performance of the final model,
including the number of trees, the number of samples to extract during
the bootstrap procedure, the depth of each tree, the number of predic-
tors used in each subset during the growth of each tree, and finally, the
weights assigned to each tree.

4.2. Model selection and error estimation

MS and Empirical EE are critical tasks in the application of ML
algorithms, focusing on hyperparameter tuning and performance evalu-
ation. Resampling techniques, frequently used due to their effectiveness
in various scenarios, will be implemented in this study. Though alter-
native methods exist within Statistical Learning Theory, they often un-
derperform resampling techniques in practice. Resampling techniques
work by resampling the original dataset 𝑛 once or multiple times
(𝑛𝑟), either with or without replacement, to generate three independent
datasets: the learning set 𝑟

𝑙 , validation set 𝑟
𝑣, and test set  𝑟

𝑡 , where
𝑟 ∈ 1,… , 𝑛𝑟. These datasets adhere to the following conditions:

𝑟
𝑙 ∩ 𝑟

𝑣 = ⊘, 𝑟
𝑙 ∩  𝑟

𝑡 = ⊘, (32)

𝑟
𝑣 ∩  𝑟

𝑡 = ⊘ 𝑟
𝑙 ∪ 𝑟

𝑣 ∪  𝑟
𝑡 = 𝑛 (33)

To perform MS, i.e., select the optimal combination of hyperparam-
eters  from a set of possibilities H for the algorithm 𝒜 , we use the
following procedure

∗ ∶ arg min
∈H

𝑛𝑟
∑

𝑟=1
𝑀(𝒜 (𝑟

𝑙 ),
𝑟
𝑣), (34)

Here, 𝒜 (𝑟
𝑙 ) represents a model built using algorithm 𝒜 with its set

of hyperparameters  and data 𝑟
𝑙 , and 𝑀(𝑓,𝑟

𝑣) is the desired metric.
∗ should minimise error on a dataset independent from the training
set since 𝑟

𝑙 is independent from 𝑟
𝑣.

To perform EE, which assesses the performance of the optimal
model 𝑓𝒜 = 𝒜 (𝑛), we use the following procedure

𝑀(𝑓 ∗
𝒜 ) = 1

𝑛𝑟

𝑛𝑟
∑

𝑟=1
𝑀(𝒜 ∗

 (𝑟
𝑙 ∪ 𝑟

𝑣), 
𝑟
𝑡 ). (35)

Since the data in 𝑟
𝑙 ∪𝑟

𝑣 are independent of the ones in  𝑟
𝑡 , 𝑀(𝑓 ∗

𝒜 )
is an unbiased estimator of the true performance, measured with the
metric 𝑀 , of the final model (Oneto, 2020).

In this work, we will rely on Complete 10-fold cross-validation,
which means setting

𝑛𝑟 ≤
(

𝑛
𝑘

)(

𝑛 − 𝑛
𝑘

𝑘

)

, (36)

= (𝑘 − 2) 𝑛
𝑘
, (37)

𝑣 = 𝑛
𝑘
, (38)

nd

= 𝑛
𝑘

(39)

and the resampling must be done without replacement (Oneto, 2020).
The large size of the two utilised datasets, 1,331,972 and 338,918
elements in MM and EM respectively, guarantee sufficient representa-
tion of all parameters in the learning, validation and testing datasets.
Finally, the performance of the models in terms of accuracy is measured
in accordance with different metrics: four quantitative (MAE, MAPE,
REP, and R2) (Naser and Alavi, 2021) and two qualitative such as
the scatter plot actual versus predicted value and the histogram of the
11

Absolute Percentage Error (Sainani, 2016).
Table 7
ML models validation: quantitative metrics (MAPE, MAE, REP) employed to evaluate
performance of all examined algorithms (RF, SVR, MLP and RLS), on both propulsive
modes (MM and EM).

Mechanical mode (MM)

Algorithm MAPE MAE REP
[%] [-] [%]

RF 3.72 ± 0.04 0.041 ± 0.001 6.04 ± 0.02
SVR 3.97 ± 0.08 0.044 ± 0.001 6.41 ± 0.17
MLP 4.12 ± 0.05 0.045 ± 0.001 6.60 ± 0.10
RLS 6.71 ± 0.87 0.097 ± 0.013 9.75 ± 0.96

Electrical Mode (EM)

RF 3.95 ± 0.01 0.043 ± 0.001 6.61 ± 0.03
SVR 4.94 ± 0.14 0.054 ± 0.002 7.86 ± 0.31
MLP 5.64 ± 0.04 0.061 ± 0.001 8.08 ± 0.06
RLS 9.78 ± 0.96 0.120 ± 0.002 12.61 ± 1.03

5. Models validation

This section provides the attained accuracy results of the four differ-
ent ML algorithms of Section 4 used to model the propeller uncertainty
correction factor, and the prediction accuracy of the developed digital
twin described in Section 3.1.

5.1. Propeller uncertainty correction factor

In this section, we will report the performance of the ML models
described in Section 4, using the validation approaches described in
Section 4.2, and considering the different propulsive modes (i.e., MM
and EM). In particular, we will compare the results of the different
algorithms employed to build the models (RF, SVR, MLP, RLS).

Table 7 reports the different metrics used to evaluate the perfor-
mance for all algorithms employed and the different propulsive modes.
Fig. 15 provides a corresponding visual representation. Figs. 16 and 18
report the scatter plot for the best algorithm (RF) on each propulsive
mode, while Figs. 17 and 19 report the absolute percentage error
histogram of relative frequencies.

From Table 7 and Fig. 15, it is possible to observe that: (i) the se-
lected RF algorithm outperformed the rest of the examined algorithms
on both propulsion modes, (ii) the difference among the different algo-
rithms was relatively bigger in EM compared to MM, with a 5.8% and
3.0% MAPE improvement, respectively. As expected, the RLS algorithm
showed limited learning capability both on MM and EM. The inferior
performance of the algorithms on EM compared to MM is possibly
attributed to the pitch feature that stays almost constant on EM.

5.2. Digital twin

The prediction accuracy of the developed DT over the two opera-
tional mode datasets is reported here using the metrics in Section 4.2.
Table 8 shows the DT performances using the most performing ML
model (RF), assessed over the IPMS operational data on both MM and
EM. The prediction capability of the DT accounting for the effect of
actual operational and environmental conditions is confirmed by total
fuel consumption MAPE of 3.7% in EM and 4.9% in MM. MAE values
of main diesel engines and diesel generators also stand below 2% of
nominal values. The prediction accuracy of the other parameters lies
below 5.5% MAPE as well. Considering that both datasets contain
highly dynamic operating points and that the logging rate of 3 s did
not average this behaviour, the prediction capability of the quasi-static
approach used for the DT is confirmed.

Table 9 shows the DT performances without using an ML model.
Relative rotative efficiency was estimated using the semi-empirical
formula for twin-screw ships provided by Holtrop and Mennen (1982).
This formula uses hull prismatic coefficient, longitudinal centre of
buoyancy, and nominal propeller pitch to diameter ratio, resulting in a
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Fig. 15. ML models validation: quantitative metrics (MAPE, MAE, REP) employed to
evaluate the performance of all examined algorithms (RF, SVR, MLP, and RLS), on both
propulsive modes (MM and EM).

value equal to 0.976. Results demonstrate the significant improvement
in accuracy from integrating ML in our DT. The improvement becomes
more apparent on MM as pitch value variates from the nominal value
used by the semi-empirical formula. The smaller improvement from
using ML on EM is explained by the nominal pitch value resulting from
sailing mostly above 50 rpm virtual shaft speed as can be seen in Fig. 7.

6. Results

6.1. Voyage intervals

In the previous section, the capability of the digital twin to predict
instant fuel consumption of the vessel and most logged parameters was
confirmed. This section provides prediction results over the selected
twenty two electrical propulsion and fifty mechanical propulsion voy-
age intervals that we selected for evaluating the method against real
operating conditions. Fig. 20 provides an example of five typical voyage
intervals. It provides qualitative means to examine the variation of
operational and environmental conditions, that can be assessed using
12
Fig. 16. ML models validation: scatter plot for RF (the best algorithm identified in
Section 5.1) on MM (see Table 7).

Fig. 17. ML models validation: absolute percentage error histogram of relative
frequencies for RF (the best algorithm identified in Section 5.1) on MM (see Table 7).

the spread of vessel speed and propeller thrust in corresponding figures.
The main characteristics of the selected voyage intervals as duration,
average speed, total fuel consumption and carbon intensity, but also
the achieved MAPE of the predicted instant fuel consumption and APE
of consumed fuel and carbon intensity over the intervals can be found
for MM in Table 10 and for EM in Table 11.

Results suggest that the average prediction accuracy over a voyage
interval on EM, with a 95% confidence interval, is 1.65 ± 0.49%. At the
same time, MAPE of instant fuel consumption is equal to 3.36 ± 0.35%.
This shows that increased prediction errors for individual samples of
a voyage have a smaller overall impact on a voyage time scale, due
to the random sampling behaviour, which is cancelled out over a high
amount of samples. This observation is also confirmed for MM with
an average prediction accuracy over a voyage of 2.16 ± 0.35% and an
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Fig. 18. ML models validation: scatter plot for RF (the best algorithm identified in
Section 5.1) on EM (see Table 7).

Fig. 19. ML models validation: absolute percentage error histogram of relative
frequencies for RF (the best algorithm identified in Section 5.1) on EM (see Table 7).

instant fuel consumption MAPE of 3.79 ± 0.52%. These errors are of
the same scale with the accuracy of many fuel consumption sensors
at ±1% (Kalikatzarakis et al., 2021), which means that the prediction
accuracy is partially limited by the accuracy of the sensors.

6.2. Comparison of electrical and mechanical propulsion

In this section, we provide the results of comparing mechanical and
electrical propulsion over ten voyage intervals characterised by non-
dynamic conditions when the ship transits between 5 and 10 knots
without manoeuvring. During these voyage intervals, the operator can
run on either MM or EM. Alternatively, during manoeuvring intervals,
which are excluded in this comparison, the operator often has to select
MM to have sufficient power available for the manoeuvres. The main
13
Table 8
DT performances using the most performing ML model (RF), assessed over the two
operational modes IPMS datasets.

Mechanical mode (MM)

Feature MAPE MAE REP 𝑅2

�̇�f ,tot 4.9% 40.1 kg/h 4.7% 0.984
�̇�f ,gen 4.4% 6.8 kg/h 6.0% 0.452
�̇�f ,e 6.2% 38.8 kg/h 5.2% 0.985
𝑒𝑃gen 4.2% 25.1 kW 5.3% 0.481
𝑃m – – –
𝑀𝑝𝑠ℎ 4.4% 3.8 kNm 5.3% 0.977
𝑝 0.5% 0.004 2.2% 0.862
𝑛 0.4% 0.6 rpm 1.2% 0.995

Electrical Mode (EM)

�̇�f ,tot 3.7% 10.4 kg/h 4.7% 0.913
�̇�f ,gen 3.7% 10.4 kg/h 4.7% 0.913
�̇�f ,e – – – –
𝑒𝑃gen 3.6% 40.2 kW 4.4% 0.941
𝑃m 5.3% 12.4 kW 6.3% 0.966
𝑀𝑝𝑠ℎ 5.4% 1.4 kNm 6.9% 0.933
𝑝 0.2% 0.002 1.0% 0.338
𝑛 0.6% 0.4 rpm 1.0% 0.995

Table 9
DT performances using the Holtrop and Mennen (1982) semi-empirical formula,
assessed over the two operational mode IPMS datasets.

Mechanical mode (MM)

Feature MAPE MAE REP 𝑅2

�̇�f ,tot 10.4% 101.3 kg/h 11.0% 0.918
�̇�f ,gen 4.4% 6.8 kg/h 6.0% 0.452
�̇�f ,e 13.1% 102.1 kg/h 12.5% 0.911
𝑒𝑃gen 4.2% 25.1 kW 5.3% 0.481
𝑃m – – –
𝑀𝑝𝑠ℎ 12.9% 13.0 kNm 14.0% 0.839
𝑝 0.5% 0.004 2.2% 0.862
𝑛 0.4% 0.6 rpm 1.2% 0.995

Electrical Mode (EM)

�̇�f ,tot 5.6% 16.2 kg/h 6.8% 0.818
�̇�f ,gen 5.6% 16.2 kg/h 6.8% 0.818
�̇�f ,e – – – –
𝑒𝑃gen 6.2% 70.1 kW 7.1% 0.849
𝑃m 9.9% 26.5 kW 11.9% 0.876
𝑀𝑝𝑠ℎ 10.6% 2.8 kNm 12.2% 0.788
𝑝 0.2% 0.002 1.0% 0.338
𝑛 0.6% 0.4 rpm 1.0% 0.995

constraint of running in EM is the electrical motor’s maximum power,
which limits the maximum ship speed for these voyage intervals to 10
knots.

The comparison of the fuel consumption prediction between MM
and EM is presented in Table 12. Fig. 21 provides a visual representa-
tion of the result and main influencing parameters. According to the
simulation comparison, MM would be, on average, 1.2 ± 1.7% less
efficient than EM, and the vessel would consume just 0.67% more fuel
in those ten voyage intervals combined. Nevertheless, it appears that
higher mean sea margin and speed favours MM. It is interesting to
compare these results with the results of previous work by Vasilikis
et al. (2022). In the data analysis performed on the same vessel’s
data, electrical propulsion appeared less efficient, but this was the
case for the specific operational and environmental conditions for each
mode selected, thus not comparing under similar conditions. Hence,
we conclude that simulation of the vessel’s energy performance on the
exact same voyage intervals demonstrates that there are no clear energy
efficiency benefits from sailing on one of the two operational modes,
while many other influencing parameters can have a more significant
impact on attained energy performance.
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Fig. 20. Typical voyage intervals.
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Table 10
Comparison between the MAPE of the instant fuel consumption and the APE of the
amount of fuel and carbon intensity over the selected mechanical mode (MM) voyage
intervals.

Duration Mean 𝑀f ,tot Carbon MAPE APE
speed intensity �̇�f ,tot 𝑀f ,tot/CI

[hours] [knots] [tons] [kgCO2\nm] [%] [%]

1 10.2 12.2 6.2 160.9 5.82 2.73
2 6.2 15.7 6.2 201.8 4.62 3.82
3 5.8 17.2 8.1 258.8 4.40 2.54
4 5.0 9.7 2.4 159.4 11.18 1.74
5 8.8 10.3 4.8 169.9 7.07 0.69
6 5.8 18.7 11.5 342.5 2.77 1.41
7 5.4 17.0 7.3 254.4 4.30 4.06
8 9.1 18.7 16.4 308.8 3.32 3.00
9 13.5 17.9 21.8 289.4 2.80 2.03

10 7.0 13.6 5.4 182.8 2.81 0.91
11 16.4 17.5 24.7 274.8 3.20 2.65
12 9.0 17.8 16.3 325.2 2.21 1.85
13 13.6 16.3 17.9 258.9 1.99 0.97
14 18.5 15.2 22.2 253.2 2.79 1.72
15 18.1 15.8 24.1 271.7 2.26 1.60
16 5.0 11.5 3.3 182.5 9.56 1.53
17 16.3 13.6 16.6 238.8 4.79 1.49
18 8.3 13.0 7.3 214.1 3.06 0.59
19 25.8 13.4 24.1 224.1 3.52 2.30
20 10.8 15.7 15.1 284.6 2.83 0.97
21 14.5 14.4 14.8 227.0 2.00 0.92
22 3.9 14.8 4.3 241.1 1.97 0.92
23 12.3 15.1 13.6 234.0 2.08 1.81
24 11.7 14.9 12.7 233.8 2.30 1.62
25 13.3 12.9 9.4 175.7 4.61 2.29
26 10.8 13.3 7.4 165.7 5.23 2.58
27 9.6 15.5 9.8 211.5 3.37 2.65
28 11.4 17.1 14.5 239.8 1.89 0.33
29 7.7 14.4 6.1 178.8 2.78 0.82
30 10.6 16.4 13.6 251.8 2.83 1.40
31 10.6 15.9 14.0 267.8 4.36 4.25
32 13.4 14.3 13.2 222.3 6.73 4.05
33 7.9 15.8 8.6 220.1 3.58 2.07
34 20.0 14.4 16.9 188.0 3.29 0.24
35 25.2 18.2 39.3 275.2 2.82 2.56
36 15.8 14.0 11.7 170.0 4.24 3.90
37 23.0 15.0 20.9 194.5 3.48 2.70
38 24.5 15.2 22.1 190.7 2.50 1.94
39 14.6 15.9 15.2 210.6 3.37 2.16
40 12.4 16.6 16.2 252.5 3.21 3.00
41 4.7 16.8 6.1 247.6 1.95 0.61
42 17.8 16.7 23.1 249.7 2.08 0.39
43 15.7 17.1 21.2 254.0 2.40 1.42
44 23.2 16.9 29.0 236.3 4.47 4.42
45 12.2 16.4 13.9 220.9 4.81 4.79
46 8.3 14.9 7.6 196.1 4.39 4.37
47 16.9 14.7 14.8 190.6 4.43 3.79
48 15.7 13.9 13.0 191.3 3.71 1.59
49 28.1 15.1 27.8 209.3 4.63 1.96
50 10.0 18.8 16.8 285.0 4.69 3.87

Average 3.79 ± 0.52 2.16 ± 0.35

7. Conclusions and recommendations

This work proposes a method to evaluate and predict carbon inten-
sity in actual operational and environmental conditions. This method
can be used to provide insight and guidance to improvements in the
operation and design of ship propulsion and power systems to achieve
more energy efficient designs and reduce the carbon intensity of ship
operation over the lifetime of a vessel. This paper proposes a novel
digital twin that accurately predicts the fuel consumption and carbon
intensity of mechanical, electrical, and hybrid propulsion systems under
the aggregate effect of operational and environmental uncertainties.
A combined approach with first principle steady state models and
machine learning models allows us to predict instantaneous fuel con-
sumption with an accuracy of less than 5% MAPE and carbon intensity
over voyage intervals within 2.5% at a confidence interval of 95% for
15
Table 11
Comparison between the MAPE of the instant fuel consumption and the APE of the
amount of fuel and carbon intensity over the selected electrical mode (EM) voyage
intervals.

Duration Mean 𝑀f ,tot Carbon MAPE APE
speed intensity �̇�f ,tot 𝑀f ,tot/CI

[hours] [knots] [tons] [kgCO2\nm] [%] [%]

1 5.3 9.3 1.7 110.1 4.02 3.23
2 9.1 6.2 1.9 109.2 3.88 1.19
3 7.1 7.3 1.9 119.8 3.75 0.46
4 8.0 7.9 2.2 109.8 3.95 3.46
5 10.5 7.4 3.0 123.2 4.08 3.14
6 13.2 8.0 3.7 111.0 2.91 2.27
7 4.7 7.8 1.3 119.3 3.20 2.25
8 9.8 5.3 2.1 127.9 4.75 3.42
9 10.1 7.4 2.7 118.2 2.58 2.29

10 5.3 7.4 1.5 118.2 2.54 1.82
11 13.1 7.0 4.5 157.6 1.92 0.83
12 21.2 8.0 7.5 142.5 4.43 3.25
13 10.1 8.1 3.5 138.7 4.31 0.14
14 12.6 6.4 3.5 140.0 3.38 1.31
15 8.5 7.1 2.5 134.7 2.32 0.90
16 6.8 6.8 2.0 136.3 2.88 1.83
17 11.3 4.9 2.5 143.2 3.77 0.93
18 9.2 6.3 2.3 129.6 3.59 0.23
19 11.4 5.9 2.9 135.5 3.24 1.03
20 22.6 6.2 5.8 132.7 2.77 0.73
21 21.0 7.1 5.6 120.5 3.55 0.85
22 13.7 8.0 4.2 124.7 2.03 0.69

Average 3.36 ± 0.35 1.65 ± 0.49

Table 12
Total fuel consumption prediction on mechanical (MM) and electrical mode (EM) on
selected electrical propulsion voyage intervals.

Mean Mean Actual Predicted

speed SM EM EM MM MM to EM
[knots] [%] [tons] [tons] [tons] [%]

1 9.3 24 1.67 1.72 1.78 +3.1
6 8.0 26 3.65 3.74 3.79 +1.6
7 7.8 55 1.35 1.38 1.40 +1.3
9 7.4 46 2.74 2.80 2.90 +3.4

10 7.4 43 1.46 1.49 1.53 +2.6
11 7.0 133 4.51 4.47 4.33 −3.3
13 8.1 85 3.54 3.54 3.45 −2.6
14 6.4 105 3.53 3.58 3.63 +1.5
15 7.1 88 2.53 2.55 2.57 +1.0
18 6.3 75 2.35 2.34 2.42 +3.3

Total accumulated 27.33 27.61 27.80 +0.7

Average +1.2 ± 1.7

the case study OPV. The use of machine learning algorithms contributes
to improving prediction accuracy on the scale of 40 to 50%.

This work provides proof that steady state models can accurately
predict fuel consumption and carbon footprint during both dynamic
manoeuvring and constant speed operations. The prediction accuracy
of the total amount of consumed fuel and carbon intensity over a
sufficiently long voyage is higher than the point wise accuracy of
the model. A combination of first principle and machine learning
models can be used to overcome uncertainty due to inaccurate sensor
readings and manufacturers’ data, the scale effect of hull and propeller
measurements, true operational conditions, and dynamic operational
decisions. We expect using data from a thrust sensor can provide even
more accurate predictions, as thrust measurement enables separating
the effect of uncertainty due to the environmental conditions and
scale effects from the effect of uncertainties in the efficiency of the
propulsion plant due to inaccurate manufacturers’ data and sensor
readings.

The proposed method can be used to make accurate comparisons be-
tween different operating modes for real operating profiles represented
by typical voyages under various conditions. The case study patrol
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Fig. 21. Comparison of MM and EM energy performance on the selected ten EM voyage
ntervals.

essel’s results indicate that electrical propulsion does not provide
tatistically significant fuel and carbon savings, even though electri-
al mode can prevent the main diesel engines from running at low
peed and can reduce noise levels. This result emphasises the need
o evaluate and predict carbon intensity with models that account for
perational and environmental conditions. In future work, we intend
o demonstrate how the method can be applied to the evaluation of
ropulsion and power systems configuration modifications, but also to
he evaluation of alternative design options for ships with a similar
perating profile.
16
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