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Chapter 1

Introduction

The increasing accessibility of satellite data (aka remote sensing data) has spurred an
ever-increasing interest in research and analysis of remote sensing data. One of these
areas of research is change detection, which is defined as "the process of identifying dif-
ferences in the state of an object or phenomenon by observing it at different times"[85]. In
2008 the United States Geological Survey (USGS) opened the Landsat archive to the
public [53]. Predictably, this triggered a whole new wave of research that employed
multi-spectral and multi-temporal methods of change detection using remote sens-
ing data. Change detection is employed in a variety of use cases, some of which are
given below:

• Land use/land cover (LULC) change detection, as described in [17, 61, 69]

• Urban change detection, as described in [62, 15, 4]

• Natural disaster change detection, as described in [38, 92, 99]

• Forest cover change detection, as described in [101, 44, 48, 103]

Historically, forests were monitored by land-based and/or aerial surveys. These
surveys are very time consuming and require a lot of financial resources and signifi-
cant manpower. Owing to this, developing and under-developed countries often lag
behind advanced nations in accurately mapping the extent of forested land within
their borders. This in turn causes more problems, as it becomes difficult to establish
the true level of deforestation (or afforestation).

Several methodologies have been proposed to monitor forests using satellite im-
agery. Some approaches are global [91, 52, 82], while some are more localised/regional
[18, 51, 32]. Other attempts have focused on a specific kind of forest cover [25, 87] or
structure [56]. A recurring theme, however, is bi-temporal change detection or statis-
tical machine learning techniques to detect changes. According to [82] "In all global
mapping efforts and the majority of the others, data from optical sensors have been
used and maps have been generated for a single year or period, largely because of
requirement of multiple acquisitions to obtain cloud-free images."

For the purposes of this thesis, we will focus on replicating one existing DL-
based forest cover change detection framework called. Replicating and comparing
multiple DL frameworks is out of the scope of this document. In subsequent sections
we will discuss the criteria behind choosing AI-ForestWatch for replication, what
would constitute a successful replication, and define our research question and con-
tributions.
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1.1 Selection criteria

Given the complexity and enormous heterogeneity of papers exploring the idea of
DL-based forest change detection, choosing just one to replicate and reproduce was
a tough ask. To simplify this task (at least a little bit), we formulated a set of "mini-
mum" criteria predicated on the conclusions arrived upon in the papers referenced
above:

1. Analysis carried out in a relatively less explored part of the world;

2. Code was publicly available (preferably on GitHub);

3. Data was publicly available;

4. Data was present in a non-proprietary format; and

5. No paid software was used for any task, no matter how insignificant

Papers had to meet all the requirements listed above to be considered. The rea-
soning being that it should be as easy as possible for researchers (or grad students)
to replicate a software based study. Since running code authored by someone else
is already a tricky proposal, we attempted to eliminate or at the very least, minimise
additional barriers further hindering reproducibility and replicability. But selecting
one paper to replicate was trickier than we anticipated. There are a lot of papers
published in the area of forest change detection, but a lot of them do not have ei-
ther publicly available data or code, and sometimes both are not available. Table 1.1
shows a sample of the papers that were considered and the status of their data and
code availability.

Title Data available? Code available?

AI-ForestWatch: semantic segmentation based end-to-end framework
for forest estimation and change detection using
multi-spectral remote sensing imagery

Yes Yes

Automated prediction system for vegetation cover based on
MODIS-NDVI satellite data and neural networks

Yes No

Proposal of Prediction Technique for Future Vegetation
Information by Climate Change using Satellite Image

No No

Satellite Image Prediction Relying on
GAN and LSTM Neural Networks

Yes No

MCSIP Net: Multichannel Satellite Image
Prediction via Deep Neural Network

No No

Combined Use of Multi-Temporal Optical and
Radar Satellite Images for Grassland Monitoring

No No

Object-based multi-temporal and multi-source land cover
mapping leveraging hierarchical class relationships

Yes No

Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping
via a multi-source DL architecture

Yes No

Vegetation cover estimation using convolutional neural networks No No

TABLE 1.1: Some papers considered for replication along with their
data and code availability

Based on these criteria, we chose the DL-based forest cover change detection
framework AI-ForestWatch[103] for reproduction and replication. In it, the au-
thors introduce an original end-to-end framework that "uses deep convolution neural
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network-based semantic segmentation to process multi-spectral space-borne images to quan-
titatively monitor the forest cover change patterns by automatically extracting features from
the dataset"[103].

In simpler terms, a slightly modified CNN, called a UNet, is used to scrutinise
multi-spectral (covering multiple sections of the electromagnetic spectrum) and multi-
temporal (covering multiple years from 2014 to 2020) images from the Landsat-8 satel-
lite, with the goal of generating forest cover change maps for several years at a time.

Before proceeding further, in Section 1.1.1 below, we provide a brief explana-
tion of the difference between reproduction and replication to ensure clarity for the
reader.

1.1.1 Reproduction vs. replication

Although these 2 terms are used interchangeably in the common vernacular, they
carry specific meaning in academia. Peng[76] provides a simple and lucid definition
for both:

1. Reproduction - Analysis of an existing study to see if we get the same results
using the same methodology on the same set of data as the original publica-
tion.

2. Replication - Analysis of an existing study to see if we get the same results
using the same methodology on a different set of data.

1.2 Research questions

We outline certain conditions that would constitute successful reproduction and
replication of AI-ForestWatch.

• Results of the original paper have to be re-created on the original input files:

– Yearly forest cover maps for each district under study (from 2014 to 2020)

– Temporal forest change maps for each district under study

• Results have to be re-created on new input files (for The Netherlands) that the
algorithm has not yet encountered.

Based on the criteria listed above, we can then define our objective/research
questions as follows:

1. Are the results presented in our chosen DL research paper fully reproduced
and replicated?

2. If not, then what factors could have contributed to an unsuccessful
reproduction or replication?

3. What proposals (if any) can we present for improving reproducibility?



4 Chapter 1. Introduction

1.3 Contributions

Our contributions are as follows:

1. Reproduce a novel deep learning algorithm that performs forest cover change
detection on Landsat-8 satellite images:

• The original paper analysed 15 districts in Pakistan

• Source code and data-sets available on GitHub/Google Drive

2. Replicate the algorithm in a different context:

• We used Landsat-8 images of The Netherlands for this purpose

3. Use the problems we encountered during the replication/reproduction
process as a foundation for devising with a simple, programming
language-agnostic framework to help ensure better reproducibility for future
research in this field

1.4 Thesis outline

The rest of the thesis is organised as follows: in Chapter 2 we present the related
work in land cover classification and forest change detection; in Chapter 3 we
explain some of the fundamentals of remote sensing; in Chapter 4 we detail the
original approach/methodology; in Chapter 5 we explain the steps taken to
reproduce the original paper and the issues encountered therein; in Chapter 6 we
detail the process of replicating the AI-ForestWatch framework on our own input
data; and finally in Chapter 7 we present the conclusions of our replication study.
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Chapter 2

Related work

Hussain et al.[40] classifies the methods of forest change detection as falling under
2 categories:

1. Pixel-based change detection; and

2. Object-based change detection

They’re explained in detail in Sections 2.1 and 2.2 below. Section 2.3 gives a little
more background on DL-based change detection methods.

2.1 Pixel based change detection

In pixel-based methods of analysing forest cover change, a pixel-wise comparison
is carried out on multi-spectral images in order to discern changes between
different images [42, 58, 57]. A list of pixel based change detection methods and
their corresponding description is given below. All definitions are taken from [40],
and have been cited appropriately.

1. "Image differencing - Two precisely co-registered multi-temporal images are
used to produce a residual image to represent changes. The difference can be
measured directly from radiometric values of the pixel or on the extracted
/derived/ transformed images such as texture or vegetation indices.
Mathematically, the difference image is:

Id(x, y) = I1(x, y)− I2(x, y)

Where I1 and I2 are images from time t1 and t2 and (x, y) are coordinates and
Id is the difference image. Pixels with no change in radiance are distributed
around the mean [65], while pixels with change are distributed in the tails of
the distribution curve [85]. Since change can occur in both directions, it is
therefore up to the analyst to decide which image to subtract from which
[24]." [40]

2. "Image rationing - A ratio between two co-registered images is computed.
Mathematically:

Ir(x, y) =
I1(x, y)
I2(x, y)

Unlike in image differencing,the order of the images in the division is not
important as the change results are expressed in ratios,and areas that are not
changed should theoretically have a value of 1." [40]
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3. "Image regression - The image I2 from time t2 is assumed to be a linear
function of image I1 from time (t1). The image I2 is taken as the “reference”
image and I1 as a “subject” image. The subject image is then adjusted to
match the radiometric conditions of the reference image. A regression
analysis, such as least-squares regression, can help identify gains and offsets
by radio-metrically normalising the subject image to match the reference
image [66]. Change Id is detected by subtracting regressed image from the
first-date image." [40]

4. "Vegetation index differencing - Vegetation indices are mathematical
transformations designed to evaluate the impact of vegetation on
observations in multispectral mode. These indices enhance the spectral
differences on the basis of strong vegetation absorbance in the red and strong
reflectance in the near-infrared band. For CD, generally, the vegetation
indices are produced separately for two images and then standard pixel based
CD (e.g. differencing or ratioing) are applied. Different vegetation indices
have been developed such as:

• Ratio based, including Ratio Vegetation Index (RVI) and the Normalized
Difference Vegetation Index (NDVI);

• Orthogonal indices, including Perpendicular Vegetation Index (PVI) and
Difference Vegetation Index (DVI); and

• Soil Adjusted Vegetation Index (SAVI) and modified soil adjusted
vegetation index(MSAVI) [10].

RVI =
n
r

NDVI =
n − r

nr

TVI =
√

n − r
n + r

+ 0.5

SAVI =
n − r

n − r + L
(1 + L)

MSVI =
2n + 1 −

√
(2n + 1)2 − 8(n − r)

2
Where n is near infrared band and r is the red band. The L in SAVI confirms
the same bound between NDVI and SAVI. [94] modifying RVI and NDVI by
calculating angle vegetation index [93] and developed a bi-temporal
vegetation Time-Dependent Vegetation Indices (TDVI)." [40]

5. "Change vector analysis (CVA) - It allows simultaneous analysis of multiple
image bands for CD. The idea behind CVA is that a particular pixel with
different values over time resides at substantially different location in the
feature space [45]. The pixel values are treated as vectors of spectral bands
and change vector (CV) is calculated by subtracting vectors for all pixels at
different dates [68]. The direction of the CV depicts the type of change
whereas the magnitude of the change corresponds to the length of the CV.
CVA can also be performed on the transformed data (e.g.
Kauth-ThomasTransformation, KTT)." [40]
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6. "Principal component analysis (PCA) - PCA, mathematically based on
“Principal Axis Transformation”, is a transformation of the multivariate data
to a new set of components, reducing data redundancy [59]. PCA uses either
the covariance matrix or the correlation matrix to transfer data to an
uncorrelated set. The eigenvectors of the resulting matrices are sorted in
decreasing order where first principal component (PC) expresses most of the
data variation. The succeeding component defines the next largest amount of
variation and is independent (orthogonal) of the preceding principal
component." [40]

"[12] argued to examine the eigen-structure of the data and visual inspection
of the combined images to analyze change types. Sometimes, to determine
change type, a grouping of values in a PCA ordination plot is done; however,
[104] argued that it can be inaccurate or misleading without knowledge of the
actual change that has occurred." [40]

7. "Kauth-Thomas Transformation (KT)/Tasseled Cap transformation - The KT
is orthogonalization (linear transformation) of a multi-band, and multi-date
dataset and differs from PCA in terms that it is fixed. These output features
represent the greenness brightness and wetness. Presented by [50] it analyses
the structure of the spectral data, which is a function of a particular
characteristic of scene classes. Unlike the PCA, MKT is not scene-dependent
and uses of stable and calibrated transformation coefficients which ensures
that its application is suitable between regions and across time [13]. The
change is measured based on the brightness, greenness and wetness values
[64]." [40]

8. "Post-classification comparison - It is arguably the most obvious quantitative
CD method because it provides from-to change information [6, 41, 46].
Originally used in the late 70s, it compares two classified images to generate a
change matrix, it is often used as a benchmark for the qualitative evaluation
of emerging CD techniques [66]. In this approach, bi-temporal images are first
rectified and classified. The classified images are then compared to measure
changes. The classes for both the images have to be identical to enable
one-to-one comparison. The errors from individual image classification are
propagated in the final change map, reducing the accuracy of the final CD [14,
59, 9]. In order to improve CD results, the classification of individual images
has to be as accurate as possible." [40]

9. "The composite or direct multi-date classification - The composite or direct
multi-date classification technique is among the earliest semi-automated
approaches to generating land-use and land-cover change maps where a
single analysis for multi-date data-sets is performed [66]. Multi-temporal and
rectified images are first stacked together. PCA technique is often applied to
reduce the number of spectral components to a fewer principal components
[70, 85]. The minor components in PCA tend to enhance the spectral contrast
and represent changes [11]. The temporal and spectral features have equal
status in the combined dataset, making it difficult to separate the spectral
changes within one multi-spectral image from temporal changes between
images in the classification [80]." [40]

10. "Machine Learning - Artificial neural networks (ANN) algorithms for image
based CD belong to the classification-based CD category. ANN algorithms are
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non-parametric and make no assumptions about data distribution and
independency. They adaptively estimate continuous functions from data
without specifying mathematically how outputs depend on inputs [41]. ANN
algorithm learns from the training dataset and build relationships (networks)
between input (image) and output nodes (changes). The trained network then
is applied to the main dataset to create a change map [14, 28]. The ANN
approach can provide better CD results when land- cover classes are not
normally distributed [64].

"The Support Vector Machine (SVM) is a supervised non-parametric statistical
learning technique and makes no assumption about the underlying data
distribution. The SVM is based on statistical learning theory which
implements structural risk minimization for classification [95]. When applied
to stacked multi-temporal images, the change and no-change is treated as a
binary classification problem [39]. The algorithm learns from training data
and automatically finds a threshold values [7] from the spectral features for
classifying change from no-change." [40]

"The decision tree (DT) classification algorithms are also non-parametric with
no assumption about data distribution and independency. These DT
algorithms build a flow-chart-like tree (hierarchical) structure in which each
node represents a test on a number of attribute values, each branch represents
an outcome of the test, and tree leaves represent classes or class distribution
[31, 54]. The classification rules at the node of the DT are based on the
analysis of attribute values. Once a DT is built it can be used for classifying
the unknown cases. Change vs. no-change can be treated as a
binary-classification problem or a post-classification comparison can be
performed to measure changes." [40]

11. "GIS based - Most of the current image processing systems are either
integrated or compatible with geographic information systems (GIS). GIS
provides a base for data integrating, visualizing, analyzing and map
producing. The flow of the data can be bidirectional, as GIS data can be used
to overlay onto an image; alternatively, the results from image analysis and
can be used to update the GIS data. For example, the parcel layers stored in a
GIS database are used to assist classification and CD from an image (see e.g.
[86]). Similarly, image data is used to update the GIS database." [40]

"The applicability of GIS with RS integration is enhanced by the more
frequent use of object-based image analysis techniques. The spatial and
aspatial information about objects stored in the GIS database can play an
important role when linked to the objects extracted from RS image for CD
along with other image analysis [6]. For example, [98] presented an
object-based technique for CD where the training data is extracted from the
GIS database to classify the image. The classified objects from the images were
then compared against the objects stored in GIS to measure changes." [40]

12. "Texture analysis based change detection - Texture features from images are
measured and compared for CD. Texture provides information about the
structural arrangement of objects and their relationship with respect to their
local neighborhoods [8]. Change is measured by comparing the textural
values from images. Among several texture measuring algorithms, a common
is a greylevel co-occurrence matrix (GLCM) which is a second order statistics
[34, 79]. GLCM examine the spectral as well as spatial distribution of grey
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values. Rather than per-pixel comparison, the image is normally divided into
smaller windows; texture is calculated and comparison is done at window
level. [36] emphasized using texture information only in conjunction with
spectral data." [40]

13. "Multi-temporal spectral mixture analysis - Spectral mixture analysis (SMA)
has been used to address the increased dimensionality (more than one target
class in one pixel) because of high spectral resolution. The assumption in
SMA is that multi-spectral image pixels can be defined in terms of their
sub-pixel proportions of pure spectral components which may then be related
to surface constituents in a scene. In a simple case, linear mixture model,
end-member (scene element with a spectral response that is indicative of a
pure cover type) spectra weighted by the percent ground cover of each
end-member are linearly combined [97]. A linear spectral mixture model is
given as:

ri =
n

∑
j=1

aij f j + ei

ri = measured reflectance of a given pixel in spectral band i, n is the number fo
mixture components, f j is the areal proportion, or fraction, of endmember j in
ri, aij is the reflectance of endmember j in spectral band i, and ei is the residual,
the difference between the observed (ri) and modeled pixel values [97]." [40]

14. "Fuzzy change detection - Fuzziness deals with the ambiguity of class
labeling and implies that the boundaries between different classes and
phenomena are fuzzy and that there is heterogeneity within a class perhaps
due to the physical differences [63]. This becomes important when there is
difficulty in selecting a threshold valued to distinguish change from
no-change. The results of fuzzy reasoning are not discrete and crisp, but are,
rather, expressed in terms of ‘probabilities’ [71]. It can contain elements with
only a partial degree of membership. Fuzzy membership differs from
probabilistic interpretation as fuzzy set is defined by a membership function
(degree of membership) and the class with highest probability is interpreted
as actual class. Post-classification comparison can then be applied to measure
the change [19, 21, 22, 23]." [40]

15. "Multi-sensor data fusion for change detection - Acquiring RS data at varied
spatial, spectral and temporal resolutions formulate an image pyramid that
allows getting data at different resolutions. The data from different sensors
reflect specific aspects of terrain and using data from different sensors might
help identify certain properties. Although working with different sensors is
not ideal, it is sometimes useful especially when time series analysis is
performed and one of the sensors may not be available [81]. Multispectral RS
data is also useful when dealing with heterogeneous land uses and three
dimensional structures especially in urban areas [29, 77]." [40]

2.1.1 Limitations of pixel-based methods

Important contextual information, such as geospatial data is often not modeled
while performing pixel-based change detection. These methods are also not
suitable for analysing VHR (very high resolution) images [41]. This is mainly due
to the fact that VHR images have high variability, which results in an excessive
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number of changes being detected - this is known as the "salt and pepper" effect
[74].

2.2 Object based change detection

In contrast to pixel based detection methods, object based change detection
methods rely on assimilating contextual (for e.g., spatial data) and spectral
information [5]. Usually, this is done via unsupervised machine learning
techniques for object-based approaches. These do perform better since they are able
to prevail over spectral variations due to noise. However, they have the downside
of sometimes generating imprecise segmentation results [40]. Object-based
methods utilise an image object (i.e., image segmentation), which often contain a lot
more contextual information than a single pixel (or group of pixels) does -
including texture, shape, spatial information, etc.
Similar to pixel-based methods, a list of object-based change detection methods and
their corresponding descriptions is given below. All definitions are taken from [40],
and have been cited appropriately.

1. "Direct Object change detection (DOCD) - A direct comparison between the
image-objects from different dates is performed for CD, which is similar to
the pixel-based approaches. Change is detected either by (a) comparing the
geometrical properties (width, area and compactness) [55, 102], or (b)
comparing spectral information (mean band values) [30], and/or extracted
features (e.g. texture) [55, 90] of the image objects." [40]

"Broadly speaking, two strategies are developed. In the first, objects from
image at time t1 are extracted, and are assigned to or searched from image at
time t2 without segmentation [72]. In the second approach, segments from
multi-temporal images are extracted and compared for CD [74]. The
disadvantage of the first approach is that change is linked to only the objects
extracted from first image and will not provide new objects that might be
created in the second image because of change. The second approach,
however, allows using all the objects from both images for change analysis."
[40]

2. "Classified Objects change detection (COCD) - Perhaps the most commonly
used OBCD methodology that allows the creation of a change matrix
indicating the “from– to” changes. OBIA is performed on multi-temporal
images to extract objects and independently classify them. The classified
objects are compared for a detailed change analysis. Objects are compared
based on both the geometry and the class membership [16, 35, 47]. A
theoretical framework of OBCD based on post-classification comparison was
provided by Blaschke (2005) for the comparison of multi-temporal map
objects to detect and identify changes."[40]

"The performance of COCD is strongly related to the performance and
accuracy of the classification algorithm, similar to pixel-based approached.
The classification accuracy in OBIA is also related to the selection of image
segmentation technique which can results objects of different sizes based on
different segmentation parameters." [40]
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2.3 DL based forest change detection methods

As outlined in [103], there are 2 categories of forest cover classification -
patch-based and pixel-based.
In patch-based classification, the entire multi-spectral image is dissected into equal
size patches, for e.g., 64x64 pixels each. Then, a deep learning neural network,
usually a CNN, allocates/assigns just one class to every single patch based on
whichever class happens to have the most dominant distribution in a given patch.
The 2 most well known and oft-cited examples of this method are ResNet [37] and
GoogleNet [89]. Although their performance has been well-documented, they end
up producing low-resolution maps since an entire patch is labelled with one class.

In pixel-based classification methods, a very commonly used technique is utilising
an encoder-decoder topology like the one found in [2] (aka SegNet) and [20]. In
AI-ForestWatch, the authors have used images from 2015 (combined with
vegetation indices) for estimating the forest cover and generated change maps for
all the other years (2014 and 2016 to 2020). Additionally, UNet-based semantic
segmentation is done on patches of the input data (from Landsat-8) in order to
achieve pixel-wise classification. "The advantage of using this approach is that the
high resolution of the image can be fully exploited to generate detailed forest cover
maps at the same spatial resolution." [103]
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Chapter 3

GIS and remote sensing
fundamentals

Before delving into the technicalities of AI-ForestWatch, we must learn a few
crucial terms used in the world of GIS and remote sensing. It’s important for us to
understand these fundamentals because they’re important to understanding the
working of AI-ForestWatch itself. The concepts of vector data, raster data,
shape-files, and ground truth data are important to understanding what the
original paper and our attempts to replicate it are trying to accomplish.

Based on the manner of collecting data, remote sensing can be classified as either
active or passive. Examples of active remote sensing are RADAR and Li-DAR,
which measure factors such as distance, angle, and radial velocity by emitting radio
waves (RADAR) or lasers (Li-DAR) at objects located considerable distances away.
In contrast, passive remote sensing is the detection and measurement of "radiation
emitted by the Sun and reflected or emitted by the Earth."1. Landsat-8 falls under
passive remote sensing.

3.1 Vector data

Vector and raster data describe the features around us (rivers, houses, trees, etc.)
within a GIS (Geographic Information System) environment. In the case of vector
data, this is done via geometric features - points, polylines, and polygons:

• "A point feature is described by its X, Y and optionally Z coordinate. The
point attributes describe the point e.g. if it is a tree or a lamp post."2. Shown
in Figure 3.1

• "A polyline is a sequence of joined vertices. Each vertex has an X, Y (and
optionally Z) coordinate. Attributes describe the polyline."3. Shown in Figure
3.2

• "A polygon, like a polyline, is a sequence of vertices. However in a polygon,
the first and last vertices are always at the same position."4. Shown in Figure
3.3

The reason we need to understand the importance of vector data is because the
geographical information about our physical world - coordinates, boundaries, etc. -

1PennState, Dept. of Geography
2Point Features - QGIS documentation
3Polyline Features - QGIS documentation
4Polygon Features - QGIS documentation

https://www.e-education.psu.edu/natureofgeoinfo/node/1890
https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/vector_data.html#id2
https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/vector_data.html#id3
https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/vector_data.html#id4
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FIGURE 3.1: Point features

FIGURE 3.2: Polyline features

is often represented or encoded in this manner.

There are some downsides to working with vector data. It needs a large amount of
ongoing work and long-term maintenance to preserve a high level of accuracy and
reliability. Overshoots happen when line features (like roads) don’t meet other line
features exactly at an intersection. Undershoots happen when line features (like
rivers) fall short of meeting other line features before the point where they should
be connected. 5.

3.1.1 Shape-files

Shape-files are a very commonly used form of vector data for storing and
representing the geographic location and attributes of geographic information. As
the name suggests, shape-files are used to identify the "shape" of a region - aka the
boundaries of the region being studied. Figure 3.4 illustrates what a shape-file for
The Netherlands looks like.

5Common problems with vector data - QGIS documentation

https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/vector_data.html#id13
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FIGURE 3.3: Polygon features

3.2 Raster data

Raster data is a matrix of pixels (called cells), wherein each pixel contains
information specific to the area covered by that particular pixel/cell. Rasters can
include categorical (e.g. "forest", "building", etc.) or continuous data (e.g.
elevation). Certain features cannot be represented easily using vector data.
Grasslands for example, would lose a lot of their contextual information (like
variations in colour, plant type, and density of cover) if represented as a vector file.
This happens because if you assign an attribute to a vector feature, it will be
automatically applied to entire feature. Essentially, any feature that is not
completely homogeneous cannot be accurately represented as vector data.6

"Raster data is not only good for images that depict the real world surface (e.g. satellite
images and aerial photographs), they are also good for representing more abstract ideas. For
example, rasters can be used to show rainfall trends over an area, or to depict the fire risk on
a landscape. In these kinds of applications, each cell in the raster represents a different value
e.g. risk of fire on a scale of one to ten."7

3.2.1 Raster data in satellite images

In the context of satellite images, it’s important to grasp the concept of raster
bands. Using Landsat-8 images as our frame of reference, we see that every single
image captured by Landsat-8 is made up of multiple layers, called "raster bands".
The key word here is bands, and it refers to a portion of the electromagnetic
spectrum (visible, infrared, and ultraviolet) that is captured by each of the sensors
present on Landsat-8. The spectral bands along with their description and
wavelength are provided in Table 3.1

3.3 Geo-referencing

Geo-referencing is the process of adding geographical information to a digital
image, like a satellite photograph. This is done so that GIS software can accurately

6Raster data - QGIS documentation.
7Introduction to raster data - QGIS documentation.

https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/raster_data.html
https://docs.qgis.org/3.22/en/docs/gentle_gis_introduction/raster_data.html
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FIGURE 3.4: Netherlands shape-file

Band Description Wavelength (µm)
B1 Coastal/aerosol 0.43-0.45
B2 Visible blue 0.45-0.51
B3 Visible green 0.53-0.59
B4 Visible red 0.64-0.67
B5 NIR 0.85-0.88
B6 SWIR 1 1.57-1.65
B7 SWIR 2 2.11-2.29
B8 Panchromatic 0.50-0.68
B9 Cirrus 1.36-1.38
B10 Thermal Infrared (TIRS) 1 10.6-11.19
B11 Thermal Infrared (TIRS) 2 11.50-12.51

TABLE 3.1: Landsat-8 spectral bands

pinpoint the "real world" location of the data present in a digital image. 8

3.4 Ground Truth data

The "ground truth", as the name suggests, is the reality that we want to model or
predict. Framed in the context of DL in remote sensing, "during inference, a
classification model predicts a label, which can be compared with the ground truth
label". In other words, the ground truth data tells us if our label prediction was
right or not.

8Encyclopedia of Database Systems, pp 1246–1249

https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_181
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Chapter 4

Original approach/methodology

4.1 Study area

The original paper looked at 15 districts in the Khyber Pakhtunkhwa (KP) province
in Pakistan. These districts are shown in Figure 4.1. Their names and
corresponding coordinates are listed in Table 4.1.

FIGURE 4.1: Geographic location of the districts under study

4.2 AI-ForestWatch framework

Figure 4.2 is taken from the original paper [103] and it represents the workflow as
carried out by the authors. We begin with a brief step-by-step description of the
original approach that was executed for the original study area which is then
further expounded upon in ensuing subsections. We must note at this point that
our replication of AI-ForestWatch differs from the original approach with regard to
the generation of ground truth data. This will be detailed in later sections.

1. "Clean" Landsat-8 images are created by selecting only those that have less
than 10% cloud cover.



4.2. AI-ForestWatch framework 17

BTAP Locations Coordinates (longitude, latitude)

Hangu (70.49 deg, 33.21 deg), (71.24 deg, 33.61 deg)

Karak (70.75 deg, 32.79 deg), (71.49 deg, 33.38 deg)

Kohat (71.05 deg, 33.75 deg), (72.03 deg, 33.05 deg)

Nowshehra (71.68 deg, 34.14 deg), (72.26 deg, 33.69 deg)

Battagram (72.85 deg, 34.97 deg), (73.51 deg, 34.55 deg)

Abbottabad (72.96 deg, 34.37 deg), (73.52 deg, 33.81 deg)

Kohistan (72.68 deg, 35.89 deg), (73.97 deg, 34.89 deg)

Haripur (72.47 deg, 34.45 deg), (73.27 deg, 33.75 deg)

Tor-Ghar (72.71 deg, 34.78 deg), (72.94 deg, 34.33 deg)

Mansehra (72.81 deg, 35.18 deg), (74.17 deg, 34.20 deg)

Buner (72.20 deg, 34.72 deg), (72.78 deg, 34.14 deg)

Lower Dir (71.50 deg, 35.07 deg), (72.20 deg, 34.62 deg)

Malakand (71.63 deg, 34.66 deg), (72.24 deg, 34.36 deg)

Shangla (72.52 deg, 35.17 deg), (73.02 deg, 34.52 deg)

Swat (72.08 deg, 35.89 deg), (72.86 deg, 34.56 deg)

TABLE 4.1: Coordinates of the original study area

2. The PDF land use maps for each district are geo-referenced and digitised,
creating the ground truth data of red, green, and black pixels.

3. The UNet is trained using a combination of the Landsat-8 image and the
ground truth.

4. After training, inference is performed on the images from 2014 to 2020, which
yields a series of forest cover maps for each district/year combo.

5. Finally, a pixel-wise difference between the forest cover maps is calculated to
generate the change maps. These maps indicate the change in forest cover for
a particular district.

4.2.1 Dataset preparation

Satellite images are available to the public from a variety of different remote
sensing programs such as Landsat, MODIS, and Sentinel. AI-ForestWatch uses data
from Landsat-8, which was launched in 2013 with a temporal resolution of 16 days
and a spatial resolution of 30 metres per pixel.[73]. The authors of AI-ForestWatch
used Landsat-8 "Top of Atmosphere" (or TOA) imagery, which has data available
from 2013 onward.
Using the Earth Engine JavaScript API1, images that had less than 10% cloud cover
(for each district/year) were selected. Then the set of these images was sent
through a median filter that determined the median value of each pixel in each
raster band of the Landsat-8 image and generated a clean composite image of the

1Get Started with Earth Engine

https://developers.google.com/earth-engine/guides/getstarted
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FIGURE 4.2: AI-ForestWatch framework

land cover for that region for 1 year. The resulting image served as the input to the
AI-ForestWatch framework.
As outlined in Section 3.2.1, Landsat-8 captures data across 11 spectral bands (listed
in Table 3.1) at a spatial resolution of 30 metres per pixel. Considering the high
resolution of these images, 7 additional vegetation indices are appended to the
image as 7 extra bands. These indices provide highly useful information for land
cover classification.[100] Their definitions and corresponding formulae are given
below. [96]

1. Normalised difference vegetation index (NDVI) - Chlorophyll absorbs the
visible red wavelength and reflects infrared wavelength, which is the
property used to calculate NDVI. The value is always between −1 and +1. A
value close to −1 indicates water, a value close to 0 indicates barren land and
a value close to +1 means healthy vegetation.2

NDVI = B5 − B4 / B5 + B4 (4.1)
2NDVI from USGS

https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index
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2. Enhanced vegetation index (EVI) - Similar to NDVI and can be used to
quantify vegetation greenness. However, EVI corrects for certain atmospheric
conditions and canopy background noise. It is also more sensitive in areas
with dense vegetation.3

EVI = 2.5 ∗ ((B5 − B4) / (B5 + 6 ∗ B4 − 7.5 ∗ B2 + 1)) (4.2)

3. Soil adjusted vegetation index (SAVI) - Used to account for the effect of soil
brightness in areas with low vegetation cover.4

SAVI = 1.5 ∗ ((B5 − B4) / (B5 + B4 + 0.5)) (4.3)

4. Modified soil adjusted vegetation index (MSAVI) - Helps mitigate the effect of
soil brightness on the SAVI.5

MSAVI = 0.5 ∗ (2 ∗ B5 + 1 −
√
(2 ∗ B5 + 1)2 − 8 ∗ (B5 − B4)) (4.4)

5. Normalised difference moisture index (NDMI) - "Used to determine
vegetation water content".6 Computed as a ratio of NIR and SWIR in
traditional fashion.

NDMI = B5 − B6 / B5 + B6 (4.5)

6. Normalised burn ratio (NBR) - Used to detect the existence and severity of
burned regions.7

NBR = B5 − B7 / B5 + B7 (4.6)

7. Normalised burn ratio-2 (NBR2) - Alters NBR to accentuate the water
sensitivity in vegetation and could potentially be useful in post-fire recovery
research.8

NBR2 = B6 − B7 / B6 + B7 (4.7)

4.2.2 Input file configurations

Four different configurations of the input files were tested. The only difference
between these configurations was the number of input channels i.e., bands. These
are as follows:

• RGB - Only 3 bands (B2, B3, and B4) from the Landsat-8 images are given as
input to the model, in which case the input image size to the network is 128 ×
128 × 3.

• Full spectrum - All 11 Landsat-8 bands listed in Table 3.1 are given as input to
the model, in which case the input image size is 128 × 128 × 11.

• Vegetation indices - The 7 indices described earlier are given as input to the
model, in which case the input image size is 128 × 128 × 7.

3EVI from USGS
4SAVI from USGS
5MSAVI from USGS
6NDMI from USGS
7NBR from USGS
8NBR2 from USGS

https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index
https://www.usgs.gov/landsat-missions/landsat-soil-adjusted-vegetation-index
https://www.usgs.gov/landsat-missions/landsat-modified-soil-adjusted-vegetation-index
https://www.usgs.gov/landsat-missions/normalized-difference-moisture-index
https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio
https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio-2
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• Augmented - The 7 indices are stacked with the 11 Landsat-8 bands to create
an 18 channel input, in which case the input image size is 128 × 128 × 18.

4.2.3 Generating ground truth data

As outlined in Section 3.4, the ground truth data lets us know the reality on the
ground. The authors carried out a series of steps to generate ground truth data
based on the land cover maps for each district made publicly available by the
provincial government, for the year 2015 only. An open source tool named QGIS
was utilised for the digitisation task. It has a built-in Georeferencer which
simplifies this process.9

1. The land cover maps were used as a reference for digitisation. A sample map
for Abbottabad is depicted in Figure 4.3. As we can see, there are 10 classes
being labelled. Since we only detect forests, the remaining 9 classes are
combined to form a single non-forest class.

2. Distinct features (like lakes and rivers) present in the Landsat-8 images and
the land cover maps are marked as our Ground Control Points (GCP). This
step correlates points on a satellite image with their actual locations on the
land cover map.

3. Thin plate spline was the transformation utilised. The land cover map was
placed on top of the corresponding Landsat-8 image to ensure that the GCP’s
lined up exactly on both images. This created a digitised map. According to
the authors of AI-ForestWatch, "For all the maps digitised, the georeferencing error
was <1 × 10-13."[103]

4. Since the land cover maps had already colour-coded forest areas as dark
green, all dark green pixels in the digitised map were converted to "forest"
labels and the rest were converted to "non-forest" labels.

5. Finally, individual shape-files for each district were used to mark all pixels
outside the boundaries of that district as invalid/NULL, since the labelling
only occurs within the borders of a particular district.

The results at different steps of the above-mentioned process are shown in Figure
4.4. These digitized maps are in the form of binary images with each pixel labelled
as 2 or 1 indicating forest/non-forest for each pixel while 0 indicates an
invalid/NULL pixel. NULL pixels are used for training but test scores are reported
only for the forest/non-forest classes as a binary classification task. A similar
procedure is adopted for all 15 districts. These digital maps are used as target
annotations for the rest of our research. It is important to mention here that no
numerical assessment of the accuracy of these maps was performed as the available
ground truth data (i.e., the land cover maps) were paper maps.

4.2.4 Forest estimation using semantic segmentation

The AI-ForestWatch framework has a 2-stage forest change detection pipeline.
First, pixel-wise segmentation is performed on a trained UNet (Step 6 in Figure 4.2)
to generate binary forest/non-forest cover maps (Step 7 in Figure 4.2). Second,

9QGIS - Georeferencer tutorial

https://docs.qgis.org/3.22/en/docs/user_manual/working_with_raster/georeferencer.html
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FIGURE 4.3: Abbottabad land cover map of 2015

pixel-wise difference between two consecutive binary forest/non-forest cover maps
generates a change map (Step 7 in Figure 4.2). For pixel-wise segmentation, a UNet
topology as shown in Figure 4.5 with encoder and decoder[78] stages is used.
The operators used in the encoder are convolution, batch normalisation, activation,
and pooling. Four such modules comprise the encoder section of the UNet
topology, and hence it’s called a four-stage encoder. The other part of the UNet is
the decoder. It is the mirror image of the first half, meaning it is a four-stage
decoder. Each module in a decoder consists of transposed convolution operation
followed by a copy-and-fuse connection between the corresponding stages of
encoder and decoder. It is followed by convolution, batch normalization,
activation, and pooling layers. This concatenation operation of encoder and
decoder outputs allows the decoder to utilise the features extracted by the encoder
at subsequent stages. The detailed network topology is shown in Figure 4.5. The
encoder (dotted square on the left) is where the input tensor is down-sampled and
encoded into a smaller dimensional vector. The decoder (dotted square on the
right) decodes this vector and produces full resolution segmentation for the input
image. Each decoder module concatenates its output with the encoder output at the
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FIGURE 4.4: The digitisation steps for BTAP land cover maps into bi-
nary forest cover maps. (a) A portion of the ground truth land cover
map of district Abbottabad. GCPs being labelled are encircled in pink
colour. (b) The same portion of district Abbottabad as it appears in its
corresponding Landsat-8 image of 2015. Same GCPs are encircled in
red colour for comparison. (c) The land cover map of Abbottabad af-
ter georeferencing the map onto the Landsat-8 image of 2015. It has
also been processed using its shape file to nullify all pixels outside
the district boundary in order to extract only valid pixels for training.
The dark green pixels are colour coded in the ground truth map in-
dicating forest pixels. (d) Final digitized map of district Abbottabad
after converting all dark green pixels to forest label, shown in green,
and all the other non-forest classes into non-forest label, shown in red.
The NULL pixels are shown in black which includes all pixels outside

the district boundary.

corresponding stage. The final decoder tensor is passed through a convolution
layer again followed by a softmax layer, which normalises the output probabilities
for both classes in each pixel.

Implementation and training

The deep learning part of the AI-ForestWatch framework is implemented in Python
using the PyTorch framework. The district images (at 30m per pixel spatial
resolution) were quite large in volume so the authors divided them into smaller
patches of size 256 × 256 × C pixels, where C is the number of channels in the input
image - 3 for RGB, 11 for full spectrum, 7 for vegetation indices, and 18 for
augmented input image. All district images are of different sizes, and with an
average image size of 4000 × 4000 × C pixels, a dataset of 3375
[(4000/256) ∗ (4000/256) ∗ 15] image patches for training and testing are created.
80% of these patches were randomly chosen for training, 10% for validation and
10% for testing. Table 4.2 presents the number of patches used for each of the
aforementioned sets. The random selection of patches for each set resulted in
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FIGURE 4.5: UNet topology for the AI-ForestWatch framework to de-
tect the forest change. The arrows from encoder toward decoder indi-
cate tensor outputs (feature maps) from the encoder being copied and
concatenated with the transposed convolution decoder output along

the depth dimension.

unique parts of each district going into the training, validation, and test sets,
ensuring that maximum distribution was captured. The network itself accepts
inputs of size 128 × 128 × C, which are randomly cropped from these patches at
training time (Step 6 in Figure 4.2).
Furthermore, for fast training of the model, the encoder layers are initialized by
pre-trained weights of the VGG layers[84]. At inference, these patches are
generated directly with dimensions of 128 × 128 × C in order to cover the whole
image in a raster scan manner. The network was trained using back propagation
with the RMSprop optimiser. The learning rate was scheduled to drop
exponentially from an initial value of 1 × 10-06. The model was trained for 200
epochs with a batch size of 64. The loss gradients were clipped at 0.05 to avoid
exploding gradients. The training and testing was performed only for 2015 since
that was the sole year for which annotated maps were available. The authors also
experimented with different loss functions including cross-entropy loss function,
focal loss[60] and dice loss[88] in both weighted and unweighted settings.
Unweighted focal loss outperformed the other losses and hence it was adopted for
this work.

4.2.5 Change detection statistics

Since the change is detected between consecutive years, the metrics devised in the
original paper are also based on two images under inspection. These metrics were
combined temporally to assess overall change trends. When 2 consecutive forest
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Band Percentage Number of images
Training 80 2700
Validation 10 338
Test 10 337
Overall 100 3375

TABLE 4.2: Number of patches in the train, validation, and test sets

cover maps generated by the classification model are subtracted, a pixel-wise
change map is obtained. Based on this the net change, gain, and loss in our regions
of interest can be calculated. These metrics are explained as follows.

1. Forest cover percentage - This is calculated on each individual forest cover
map generated by the model. It is the ratio of the number of forest pixels to
the sum of forest and non-forest pixels in a classified image. It provides a
percentage of the forest cover in the district under inspection but no
information about change.

FC% = forest pixels / forest pixels + non-forest pixels (4.8)

2. Gain percentage - Computed on the change map and it is the ratio of the gain
pixels (-1) to the total number of change map pixels (-1, 0, and 1)

GP% = gain pixels / gain pixels + loss pixels + no change pixels (4.9)

3. Loss percentage - Computed on the change map and it is the ratio of the loss
pixels (+1) to the total number of change map pixels (-1, 0, and 1)

LP% = loss pixels / gain pixels + loss pixels + no change pixels (4.10)

4. Effective forest cover change percentage - Effective forest cover change
percentage (ECP%) is also calculated on the change map in order to compute
the overall change in forest percentage with respect to the former year’s forest
percentage.

ECP% = forest% latter year - forest% former year pixels / forest% former year
(4.11)
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Reproducing AI-ForestWatch

As stated earlier in Section 1.1.1, the goal of a direct (or one-to-one) reproduction is
to successfully re-create results exactly as they are presented by the authors of the
original publication, or at least results that are very very close to the original. With
software, a little bit of variation is to be expected. We started by creating a fork of
the original repository1 on our own GitHub profile2. For the purposes of actually
executing the code, we relied on a Linux-based high performance compute cluster
provided by the university called DelftBlue[1], often shortened to DHPC.3

The authors tested 4 different configurations of the input file, as outlined in Section
4.2.2. For each of these configurations, along with testing the AI-ForestWatch
framework itself, 3 other ML algorithms were explored - decision tree, logistic
regression, and random forest. 5000 training points and 5000 testing points were
chosen for each classifier. Landsat-8 images were used as input while the digitised
data was used as ground truth.

The results of exploring different input configurations on all 4 algorithms are
presented in Tables 5.1 to 5.4. The semantic segmentation-based approach typically
outperformed the ML algorithms in terms of accuracy. Due to the inherent class
imbalance between the forest and non-forest classes, a combination of F1 score,
precision, recall, and accuracy was used to evaluate the performance of the models.

The key takeaways are:

• The RGB model yielded the best accuracy for semantic segmentation, but it
lacked in terms of the F1 score and recall for the forest class.

• The vegetation indices model gave the best results in terms of F1 score and
recall for the forest class but unfortunately lagged behind in precision.

• The augmented model with 18 input channels (11 Landsat-8 bands + 7
vegetation indices) produced the best results with regard to all measures except
recall for the forest class.

Since the 18-channel input provided the best overall results, the authors chose the
augmented model to perform forest estimation and change detection. The results
that are presented from here onward were derived using this input configuration.

1Original repo
2Forked repo
3Welcome to DHPC.

https://github.com/dll-ncai/AI-ForestWatch
https://github.com/srinathjayaraman/AI-ForestWatch-Srinath
https://doc.dhpc.tudelft.nl/delftblue/
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Classifier Precision Recall F1 score
Test
accuracy (%)

Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.41 0.82 0.50 0.75 0.45 0.78 68.78

Logistic regression 0.75 0.75 0.05 0.99 0.09 0.86 75.45

Random forest 0.57 0.84 0.50 0.87 0.53 0.85 77.60

Semantic segmentation (UNet) 0.69 0.86 0.41 0.95 0.52 0.90 83.88

TABLE 5.1: ML vs. UNet - RGB configuration

Classifier Precision Recall F1 score
Test

accuracy (%)

Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.45 0.84 0.56 0.77 0.50 0.80 71.31

Logistic regression 0.75 0.75 0.05 0.99 0.09 0.86 75.45

Random forest 0.65 0.87 0.60 0.89 0.62 0.88 81.67

Semantic segmentation (UNet) 0.62 0.86 0.43 0.93 0.51 0.89 82.52

TABLE 5.2: ML vs. UNet - Full spectrum configuration

Classifier Precision Recall F1 score
Test
accuracy (%)

Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.43 0.82 0.52 0.77 0.47 0.80 70.58

Logistic regression 0.68 0.82 0.39 0.94 0.50 0.87 79.89

Random forest 0.62 0.85 0.53 0.89 0.57 0.87 79.74

Semantic segmentation (UNet) 0.64 0.87 0.49 0.93 0.55 0.90 83.45

TABLE 5.3: ML vs. UNet - Vegetation indices configuration

Classifier Precision Recall F1 score
Test
accuracy (%)

Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.45 0.84 0.56 0.77 0.50 0.80 71.45

Logistic regression 0.66 0.84 0.48 0.92 0.55 0.87 80.44

Random forest 0.65 0.87 0.60 0.89 0.62 0.88 81.74

Semantic segmentation (UNet) 0.66 0.87 0.48 0.93 0.55 0.90 83.79

TABLE 5.4: ML vs. UNet - Augmented configuration
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5.1 Results and issues

After selecting the augmented model, forest cover and change maps for every year
from 2014 to 2020 for all 15 district were generated. Since the model was trained
and tested only on 2015 data, inference was performed on clean images for years
2014 and 2016 to 2020 using the augmented input configuration. The results
presented in the original paper are categorised as follows:

1. Forest cover maps for each district/year combo;

2. Forest change maps for each district; and

3. Percentage of forest gain or loss

We faced a couple of small programming issues while reproducing the paper that
were fixed quite easily.

• Permission issues when we attempted to run the code on Windows. Moving
to the Linux-based DHPC solved it.

• Missing positional argument while running inference.

5.1.1 Incomplete input data

There was also trouble with the actual input data itself. The original paper states
that "Chitral and Upper-Dir districts were also not considered for this study, since most
parts of these districts are covered with snow and we were unable to label any useful forest
data points in this region."[103]. However, the inference data provided contains
satellite images for both these districts. We skipped downloading the images for
these 2 districts. The other issue was that they also provided the images for 2013
despite the fact that the paper only analyses data from 2014 to 2020, so we skipped
the 2013 images too, in order to be as close to the original paper as possible. Lastly,
a few images were missing from the Google Drive shared by the original authors on
the official GitHub repository. For instance, images for the districts of Kohat and
Kohistan for the year 2017 were missing, as were images for Buner and Lower-Dir
for the year 2018. When we reached out to one of the authors, they gave us access
to the code they executed on Google Earth Engine for downloading these images.
We modified the district name and year, re-ran the code, and downloaded the
missing images for ourselves.

Unfortunately we were only successful in reproducing the yearly forest cover maps.
Our efforts to generate the forest change maps and statistics were futile. When we
reached out to the authors regarding this, we were directed to one of their personal
GitHub repositories containing scripts that were apparently used to generate the
forest change maps and loss/gain stats.

We surmise that the project repository is newer by quite a length of time, as there is
a very clear (temporal) gap between the official AI-ForestWatch repository and the
authors’ personal repository. One of the authors themselves emphasised that the
code on their personal repository was old and wasn’t shared with the public.
Efforts to run these scripts and replicate the results were ultimately unsuccessful.
The scripts didn’t fail completely, but their output did not resemble what the
original paper presented. The original results and our attempted reproduction are
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shown in Figure 5.2 and Figure 5.1 respectively for comparison purposes. As can be
seen, we were unable to generate the forest change map which would show the
change in forest cover between 2014 and 2020.

FIGURE 5.1: Our attempt at the forest change map

FIGURE 5.2: Original forest change map

5.1.2 Conclusions of the attempted reproduction

The yearly forest cover maps we generated seem to line up well with the samples
presented in the original paper for Abbottabad and Battagram. The final resulting
maps for the other 13 districts were not made publicly available by the authors.

Although we were not able to reproduce the forest change statistics, when we
visually scrutinised the final PNG images created by running the inference code,
they looked quite similar to the original results. The maps are too large to fit here,
so they are made publicly available on our Google Drive.

https://drive.google.com/drive/folders/1tPoo8--dbfOdVZR1X0wSTmhS6AtGQTxb?usp=sharing
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For the purposes of this thesis, since we reproduced only 1 out of the 3 results that
we aimed for (cover maps, change maps, and statistics), we deem this as
constituting only a partial reproduction of AI-ForestWatch. It’s not a complete
failure, but the results aren’t very encouraging either.

We speculate that the possible reason behind only a partial reproduction is that
while the paper explicitly mentions generating forest change maps by performing
"multi-temporal change detection", neither the code nor the underlying methodology
were detailed. As noted earlier, the official repository on GitHub did not contain
the code needed to generate either of those results. Although forest change maps
and forest change statistics are presented in the original paper, most of the paper
only describes pixel based classification of forest/non-forest data and generation of
individual forest cover maps, which of course, we were able to successfully
reproduce.

Another problem, as we’ve outlined in Section 5.1.1, was the incomplete input data,
which meant that we had to download some of the images for a few districts
ourselves. However, it seems very unlikely that this had a big impact, because most
of the images we had to re-download were from several years ago (2017 & 2018).
These were already archived by Google Earth Engine and thus would not have
changed, i.e., the images would’ve been the same when the authors downloaded
them. The results claimed in the original paper are detailed in Appendix A.
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Chapter 6

Replicating AI-ForestWatch on The
Netherlands

As stated earlier in Section 1.1.1, the goal of a replication is to see if we get similar
results when we run the experiment on a different set of data. In this case, that
would mean running AI-ForestWatch on a set of input files that it has never
encountered before. To conduct a replication of AI-ForestWatch we used satellite
images of The Netherlands, excluding the overseas territories. Similar to the
original approach, we downloaded the images from Google Earth Engine. The
decision was made to download individual files for each province from 2014 to
2021 owing to file size considerations. For example, one satellite image of the entire
country for 2014 was 4GB, but downloading the data on a provincial basis resulted
in a total file size of 2GB.

6.1 Ground truth data for The Netherlands

Section 4.2.3 details the process by which ground truth data for the study area were
generated. This route was taken since reliable data for Pakistan was hard to come
by. However, as mentioned earlier in Section 4.1, we took a different route. PDOK,
an acronym for "Publieke Dienstverlening Op de Kaart" (Public Services On the Map),
is an open-source platform created as a result of inter-agency cooperation within
the Dutch Government. In collaboration with the "Centraal Bureau voor de Statistiek"
(Central Agency for Statistics), they have published land use data for 20151 and
20172. This data is in geopackage (or gpkg) format, so there was some
pre-processing that had to be done before they could be used as ground truth data.

Land use in The Netherlands is officially classified under 37 different categories, all
of which are listed in Table 6.1. We are concerned with number 23 on the list - "bos",
aka the forest classification.

Although we now have a lot of land use data available, extracting only the forest
labels is tricky, since a gpkg file is neither vector nor raster data. According to the
OGC (Open Geospatial Consortium), "a GeoPackage is the SQLite container and the
GeoPackage Encoding Standard governs the rules and requirements of content stored in a
GeoPackage container."[75] So we turned to the open source community for help in
extracting what was needed. A question was asked on the GIS stack exchange
forum, and it was answered in a few days, enabling us to create a proper ground

1Land use 2015
2Land use 2017

https://service.pdok.nl/cbs/bestandbodemgebruik/2015/atom/bestand_bodemgebruik_2015.xml
https://service.pdok.nl/cbs/bestandbodemgebruik/2017/atom/bestand_bodemgebruik_2017.xml
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Categorie English translation

Spoorterrein Railroad

Hoofdweg Highway

Vliegveld Airport

Woongebied Residential area

Detailhandel en horeca Retail and catering

Openbare voorziening Public facility

Sociaal-culturele voorziening Socio-cultural facility

Bedrijfsterrein Company premises

Stortplaats Dump

Wrakkenopslagplaats Wreckage Depot

Begraafplaats Cemetery

Delfstofwinplaats Mineral extraction site

Bouwterrein Construction site

Semi-verhard overig terrein Semi-paved other terrain

Park en plantsoen Park and park

Sportterrein Sports area

Volkstuin Allotment garden

Dagrecreatief terrein Day recreation area

Verblijfsrecreatief terrein Recreational area

Glastuinbouw Greenhouse horticulture

Overig agrarisch terrein Other agricultural land

Bos Forest

Open droog natuurlijk terrein Open dry natural terrain

Open nat natuurlijk terrein Open wet natural terrain

IJsselmeer & Markermeer IJsselmeer & Markermeer

Afgesloten zeearm Closed estuary

Rijn & Maas Rhine & Meuse

Randmeer Randmeer

Spaarbekken Savings basin

Water met recreatieve functie Water with recreational function

Water met delfstofwinningsfunctie Water with mineral extraction function

Vloei- en/of slibveld Liquid and/or sludge field

Overig binnenwater Other inland waters

Waddenzee, Eems & Dollard Wadden Sea, Ems & Dollard

Oosterschelde Oosterschelde

Westerschelde Western Scheldt

Noordzee North Sea

TABLE 6.1: Land use categories for The Netherlands
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truth data. The question and answer are linked here for reference.

The steps needed to extract the information we need from a gpkg file and convert
that into a GeoTIFF file are given below:

1. Add a new column to the original land use layer.

2. Use the field calculator to set the value of the new column to 1. This will
apply to all records/polygons.

3. Then use the select by attributes tool to select just the forest polygons,

4. Use the field calculator to set the value of the new column to 2. This will
apply to just the forest records.

5. Rasterize the layer using the new column as the attribute to burn in

The field calculator mentioned in Step 2 is an option available in the open source
QGIS tool, the tutorial for which is available on the QGIS website. After executing
the steps listed above, we obtained ground truth data for The Netherlands for 2015.
But since the land use gpkg file was not split by province, we added one final step
of our own by splitting the final ground truth data into 12 different files - one for
each province.

To accomplish this:

1. The ground truth data for the entire country was loaded into QGIS;

2. The shape-file for a province was placed on top of this image; and

3. The "Clip Raster by Mask Layer" option was used to extract data for that
particular province

• This option extracts only the data that lies INSIDE the boundary strictly
defined by the shape-file overlaid in Step 2

The final clipping step was carried out for all 12 provinces.

Sample ground truth data for The Netherlands and for one province (Zuid
Holland) for the year 2017 are shown in Figure 6.2 and Figure 6.1 respectively. The
white pixels are forest labels (with a value of 2), grey pixels are non-forest labels
(with a value of 1), and the rest are NULL pixels (with a value of 0). This
numbering follows the convention set by the authors of AI-ForestWatch.

6.1.1 Pakistan vs. Netherlands - possible sticking points

The Pakistani landscape is an amalgamation of mountains, deserts, forests, and
plateaus. In contrast, The Netherlands is almost entirely flat, except for some minor
hilly areas in the South. The highest point in The Netherlands is 322.7 metres,
whereas the highest point in Pakistan is literally the second tallest mountain in the
world - K2, at a height of 8611 metres! However, the authors of AI-ForestWatch
have avoided this by tackling it as a binary classification problem. Anything that
wasn’t explicitly tagged as "forest" in the land use map was blacked out i.e., tagged
as "non-forest".

https://gis.stackexchange.com/questions/440936/modify-a-ground-truth-image-geotiff-file-using-qgis-python
https://docs.qgis.org/3.22/en/docs/user_manual/working_with_vector/attribute_table.html?highlight=field%20calculator#editing-attribute-values
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FIGURE 6.1: Zuid Holland 2017 ground truth data

Another potential hurdle was the fact that not all forests are created equal. There
are different types with disparate characteristics and coverage on the earth’s
surface. This was overcome by relying on the fact that land use maps typically
mark this information quite distinctly. For instance, the land cover map for
Abbottabad shown in Figure 4.3 has 4 types of vegetation - "forest", "range land",
"shrubs and bushes", and "agriculture land". The authors of AI-ForestWatch only
considered areas that were explicitly tagged as "forest" on the land use map and
everything else was considered "non-forest". Similarly, in the Netherlands land use
categorisation shown in Table 6.1, "bos" is the explicit classification for "forest".
There were others for agriculture and the like which we did not consider to be
forest areas, and thus tagged them as "non-forest".

6.2 Results and issues

We ran into a few minor issues while replicating AI-ForestWatch on the NL data
files:

• A portion of code that searched for input files based on a pre-determined
naming scheme followed by the authors was modified to ensure that our
Netherlands files were properly identified and picked up for processing.

• A missing function call while generating pickle files for training was fixed.

Similar to our experience while reproducing AI-ForestWatch (outlined in Chapter
5), we were only able to generate the yearly forest cover maps for The Netherlands
using the 18-channel augmented input configuration. The files were too large to fit
properly in this document, so they can be viewed on our Google Drive here. We did
manage to generate the yearly forest cover maps for 2 other configurations (RGB

https://drive.google.com/drive/folders/1gBOSGy5eW8XIpc6IeqO3ICkuTZez5nf6
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FIGURE 6.2: Netherlands 2017 ground truth data

and full spectrum), which is not something the original paper talks about or makes
public. The authors merely noted that the augmented (18-channel) input
configuration provided the best maps, and based on the files generated during the
replication process, we agree.

6.2.1 Conclusions of the attempted replication

Similar to the experience we had while attempting a reproduction, we were able to
replicate only 1 out of the 3 results that we aimed for (cover maps, change maps,
and statistics). So we deem this as constituting only a partial replication of
AI-ForestWatch. The provincial maps seem to be accurate upon a visual
comparison with their corresponding ground truth data, but it is simply not
consistently accurate year-over-year as we had hoped, such as Drenthe 2018 vs.
Drenthe 2019 for example.

We surmise that a major reason for this is the limited availability of land use data.
Even though The Netherlands had more high-quality data, it was still limited to
just 2 years - 2015 and 2017. This could be overcome in the future as more land use
data becomes available for other years. Additionally, even though we used an extra
year of training data as compared to the original implementation, the effects of
seasonality combined with median filtering may have contributed to the
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irregularities seen in the final output.
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Chapter 7

Final thoughts

At the start of this venture, we set out to find a project that captured our attention
and that could also be replicated on a different dataset or use-case. After all,
building upon the work done by other researchers is at the core of the scientific
method. And so we were quite excited for the journey that lay ahead. What we
found was that reproducibility in deep learning is not given the attention it
deserves.

If you are thinking that it’s difficult or perhaps even unfair to arrive at that
conclusion after attempting a reproduction of just one paper, that would be a fair
judgement. However our experience is not an isolated one. Based on existing
literature that chronicles multiple attempts by others in this domain [43, 76, 3, 27,
26, 49, 67], one can conclude for themselves that ensuring replicability and
reproducibility is clearly not a priority in the larger sphere of deep learning.

Of course, we did not expect this endeavour to be a breeze in any way. Replication
studies are a complex undertaking and must not be taken lightly. Furthermore,
even though deep learning is a vast and incredibly intricate field, it has iron-clad,
verifiable mathematical foundations. We assumed that this would only help in our
bid to replicate and reproduce a published DL paper/algorithm that caught our
fancy. Unfortunately, this turned out to be a rather naive assumption. The whole
exercise was unnecessarily complicated in our opinion. Deep learning algorithms
are black boxes to begin with, so any additional complexity only serves to slow
down the pace of innovation; moreover, it may also end up discouraging
newcomers.

It is not all doom and gloom however. As the authors of AI-ForestWatch point out
in their conclusion, this was a first attempt at assessing the real world effects of a
public policy enacted by the local government of the KP province. And to their
credit, the primary objective of generating yearly forest cover maps (of an
under-studied region no less), was quite successful. We were able to reproduce the
final forest cover maps on the original input data that was provided. A first time
attempt like this lays the groundwork for improvements and refinements over time
that make the algorithm more robust and more accurate in picking up changes in
the input data.

Global forest cover information has been available for a while now, most notably in
[83] and [33]. However, such global maps often lack localised/regional context.
Forest species, coverage areas, quality, etc. are all highly dependent on local
circumstances, and deep learning offers a viable way for us to take native data into



7.1. Recommendations 37

account while performing this type of analysis.

In the interest of furthering openness, we have made our fork of AI-ForestWatch
available on our GitHub here.

7.1 Recommendations

We have devised a framework, not limited to any one programming languages,
that we feel could assist future researchers (and grad students!) in improving the
reproducibility and/or replicability of their work. This framework is outlined
below:

1. Ensure that all data necessary to run your code is publicly available,
preferably on a well known platform like Google Drive or Dropbox.

2. Ensure that all code is up-to-date and publicly available on a version control
platform like GitHub.

• Don’t skip any specific code that helps generate a portion of the final
results, no matter how simple it may seem.

3. Detail the exact reasons that prompted the choice of a particular algorithm or
input configuration rather than a generic "this combination was best overall
so we chose it".

https://github.com/srinathjayaraman/AI-ForestWatch-Srinath
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Appendix A

Results presented in the original
paper

Nowshehra was the only district to show a decrease in forest cover between 2014
and 2020. The rest of the districts show an increase. The ECP% column in Table A.1
is the percentage change in forest cover compared to 2014. This explains why
certain changes are very high (+764% for Haripur and +327.13% for Malakand),
since forest cover in these areas in 2014 was very low. A majority of the
afforestation was executed in these districts. The ’14 to ’20 LP% and ’14 to ’20 GP%
columns outline the forest loss and GP% respectively (as per the metrics outlined in
Section 4.2.5). Except Nowshehra, all other districts show more gain% than loss%,
thus explaining the overall gain in most districts.
Figure A.1 and Figure A.2 illustrate the forest cover and change maps as presented
in the original paper.

Region
2014
FC%

2015
FC%

2016
FC%

2017
FC%

2018
FC%

2019
FC%

2020
FC%

’14 to ’ 20
LP%

’14 to ’ 20
GP%

’14 to ’ 20
ECP%

Nowshehra 2.94 11.31 3.63 7.74 5.39 5.71 2.80 1.17 1.02 -4.92

Kohat 0.72 15.0 1.04 1.81 2.48 0.83 1.0 0.27 0.55 +38.93

Karak 1.08 13.84 2.85 5.21 3.45 3.56 2.51 0.35 1.78 +131.56

Hangu 0.15 4.03 1.62 4.53 1.62 1.76 0.58 0.11 0.54 +295.09

Battagram 17.84 23.92 23.96 25.90 27.81 28.18 33.80 1.92 17.88 +89.48

Abbottabad 17.22 29.33 15.84 24.95 30.68 17.16 23.53 0.72 7.03 +36.64

Haripur 0.75 21.78 1.27 12.40 17.14 5.00 6.50 0.21 5.87 +764.83

Kohistan 21.23 29.42 24.12 31.56 30.97 32.29 31.82 2.03 12.62 +49.88

Tor Ghar 15.95 25.43 16.89 24.55 35.67 22.04 25.76 0.48 10.29 +61.49

Mansehra 16.46 20.53 18.87 21.50 24.38 19.14 23.98 1.44 8.97 +45.72

Buner 2.97 25.63 5.63 21.40 18.50 8.83 12.19 0.24 9.46 +310.96

Lower Dir 4.29 11.94 10.54 12.53 11.88 4.43 7.71 1.06 4.49 +79.95

Malakand 0.94 13.15 11.01 15.11 8.63 6.62 4.03 0.24 3.33 +327.13

Shangla 17.68 31.91 27.81 32.02 31.45 25.30 32.17 0.83 15.32 +81.92

TABLE A.1: Forest stats presented in the original paper
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FIGURE A.1: Abbottabad district 2014 to 2020 statistics generated au-
tomatically by the AI-ForestWatch framework: (a)–(g) show the forest
cover maps generated by the UNet inference from years 2014 to 2020,
respectively, and (h) shows the forest change map of 2020 with re-

spect to 2014.
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FIGURE A.2: Battagram district 2014 to 2020 statistics generated auto-
matically by the AI-ForestWatch framework: (a)–(g) show the forest
cover maps generated by the UNet inference from years 2014 to 2020,
respectively, and (h) shows the forest change map of 2020 with re-

spect to 2014.
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