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Abstract: The dynamics of metastructures, incorporating both conventional and internally coupled
resonators, are investigated to enhance vibration suppression capabilities through a novel mathe-
matical framework. A close-form formulation and a transfer function methodology are introduced,
integrating control system theory with metastructure analysis, offering new insights into the role of
internal coupling. The findings reveal that precise internal coupling, when matched exactly to the
stiffness of the resonator, enables the clear formation of secondary bandgaps, significantly influenc-
ing the vibration isolation efficacy of the metastructure. Although the study primarily focuses on
theoretical and numerical analyses, the implications of adjusting mass distribution on resonators
are also explored. This formulation methodology enables the adjustment of bandgap characteristics,
underscoring the potential for adaptive control over bandgaps in metastructures. Such capabilities
are crucial for tailoring the vibration isolation and energy harvesting functionalities in mechanically
resonant systems, especially when applied to demanding heavy-duty applications.

Keywords: metastructures; internally-coupled resonators; modal analysis; distributed parameter
model; spatial variation

1. Introduction

Locally resonant metamaterials have revolutionized the field of material science by
enabling the manipulation of mechanical waves through unique structural designs that
are not possible with conventional materials. Such metamaterials utilize an intricate
arrangement of embedded resonators to selectively amplify or attenuate waves, yielding
capabilities like enhanced vibration isolation, targeted wave trapping, and precise steering.
The cross-disciplinary value of these materials is evident in their wide-ranging applications,
from improving acoustic insulation and energy harvesting to managing seismic waves and
developing advanced sensors.

The concept of metamaterials is not exclusive to structural dynamics; its origins can
be traced back to research in optics by Shelby et al. [1], and it has since become a subject of
extensive study in various fields, including acoustics. Moreover, the concept of mechanical
locally resonant metamaterials was first introduced by Liu et al. [2], who demonstrated
an elastic locally resonant bandgap phenomenon, akin to a mass-spring oscillator. Since
then, various types of mechanical locally resonant metamaterials have been extensively
investigated in the literature.

The field of resonator couplings and dispersion has seen substantial progress in
recent years. For instance, Hazra et al. [3] innovated a superconducting architecture
utilizing a ring resonator for multiqubit connectivity, enhancing the efficiency of quantum
processors. In the realm of optics and spectroscopy, Rozenman et al. [4] developed a novel
experimental setup to measure the dispersion of organic exciton polaritons, revealing the
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quantized interactions between light and matter in organic materials. Additionally, Li
et al. [5] demonstrated the coherent internally coupled distant magnonic resonators via
superconducting circuits for integrated magnonic networks that can operate coherently at
quantum-compatible scales.

From optics and materials science to structural vibration and energy harvesting, these
advancements bridge diverse fields to pioneer new applications and efficiencies. Hu
et al. [6] proposed a modified metamaterial beam that combined vibration suppression and
energy harvesting functions in internally coupled resonators in the low-frequency range.
In their design, local resonators were alternately coupled, with piezoelectric elements
attached for energy conversion. Oyelade and Oladimeji [7] also contributed by introducing
a novel metamaterial with a multiresonator mass-in-mass lattice system, where the internal
coupling was achieved through a linear spring, leading to the formation of two additional
bandgaps over conventional designs.

The research trajectory in metastructure system formulation has been significantly
advanced by Erturk et al. [8], who developed a robust framework that culminates in
transfer functions, allowing for nuanced manipulation and control of system responses.
Sugino et al.’s mathematical framework, leveraging Laplace transformations, further sim-
plifies the analysis of metastructures, especially in damping low-frequency vibrations, thus
enhancing the practical applicability of these complex systems in engineering solutions.
Sugino et al. [9] developed the mathematical framework using Laplace transformations
for analyzing locally resonant metastructures, simplifying examination of their responses,
and deriving a closed-form expression for bandgap frequency range, validated through
dispersion analysis and experimental tests.

Traditional methods focus on dispersion analysis and limit the scope of analysis to
wave propagation without offering insights into control strategies. This work develops
a mathematical framework to derive a close-form formulation for analyzing both con-
ventional and internally coupled resonators in metastructures, integrating control system
theory and the transfer function method to provide enhanced control mechanisms and
bandgap tuning methods through resonator stiffness adjustments. This advancement has
the potential to revolutionize metastructural design for industrial applications, enabling
the creation of structures with multiple bandgaps and diverse functionalities.

This framework not only enhances our understanding of metastructures but also
provides novel methods for tuning bandgaps, thereby improving vibration isolation and
facilitating energy harvesting. With implications spanning industrial machinery and noise
cancellation, these advancements promise to revolutionize engineering practices by en-
abling more efficient and effective control mechanisms in various industrial applications.

This work addresses the knowledge gap in linear internal coupling in metastructures,
and aims to improve wave manipulation and dynamic control through a new mathematical
framework, expanding the applications and functionalities of metastructures.

It claims that transfer function methodology can model and control metastructure dy-
namics, including internally coupled resonators. It highlights a gap in understanding linear
internal coupling effects on bandgap manipulation, and demonstrates the maintenance of
primary bandgaps and the emergence of secondary bandgaps through internal coupling,
suggesting adjustable resonator mass distribution for further tuning.

This leads to the following research questions:

• How does internal coupling affect the bandgap characteristics of a metastructure?
• What is the role of internal coupling in enhancing or merging bandgaps for vibration

isolation in continuous (distributed) metastructures?
• Can the integration of control system theory and transfer function methodology lead

to real-time adaptive tuning of metastructure bandgaps?
• Can an alternative method, such as modifying the mass distribution on resonators,

offer a practical way to alter bandgap characteristics without restructuring, while
also being suitable for heavy-duty applications where piezoelectric solutions are
less viable?
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The key contributions of this paper are as follows:

• We enable the transfer function approach as an analysis method for metastructures,
enhancing dynamic bandgap characteristics through the use of different functionalities
and precise control engineering techniques.

• We develop a mathematical method for formulating closed-form equations describing
the behaviors of internally coupled resonators, providing a deeper understanding of
their impact on metastructure dynamics.

• We address the challenge of merging bandgaps from internally coupled and conven-
tional resonators, offering insights into continuous vibration control in distributed systems.

The structure of the remaining sections of this paper is as follows: Section 2 delves
into the methodology, detailing the theoretical foundations and optimization strategies
employed for bandgap generation. Results and discussion are presented in Section 3, where
the implications of the applied methodologies are interpreted in the context of mechanical
system design and enhancement. A “Finite Element Study” is detailed in Section 4, show-
casing the vibrational behaviors and bandgap characteristics of the metastructures under
study. This section includes a focused examination of the effects of spatial variations on
bandgap properties, emphasizing the utility and implications of these findings for practical
applications. Finally, Section 5 concludes the paper, summarizing the key findings and
proposing directions for future research.

2. Modal Analysis and Bandgap Formation in Mechanical Metastructures

The research primarily employs modal analysis in the design and optimization of
mechanical locally resonant metastructures. This analysis is crucial for identifying key
vibration characteristics, such as natural frequencies, mode shapes, and modal damping
ratios, under specific conditions. These insights enable the engineering of metastructures
with tailored mechanical wave propagation behaviors.

The study employs a distributed parameter model approach, utilizing partial dif-
ferential equations (PDEs) to capture the system dynamics more precisely than lumped
parameter models. This methodology is particularly applicable to systems where spatial
variations are non-negligible, affecting phenomena such as wave propagation, heat transfer,
and fluid dynamics. Analytical models are derived using modal analysis through the
frequency determinant method, providing a solid theoretical foundation for understanding
the intricate behavior of internally coupled resonators within metastructures.

The standard distributed model of the metastructure under investigation, subject to
base excitation and external forces, is illustrated in Figure 1. Employing Newtonian me-
chanics and drawing from classical vibration textbooks, the behavior of the metastructure
is captured by the following partial differential equation, as detailed in Equation (1).

Lw(x, t) + C ∂w(x, t)
∂t

+M∂2w(x, t)
∂t2 −

Nr

∑
r=1

(
krzr(t) + cr

∂zr(t)
∂t

)
δ(x − xr) = Fbm(x, t) (1)

which includes structural flexibility L, damping C, and inertia M. The interaction with the
resonators is represented by the summation term, encompassing the stiffness kr, damping
cr, and location xr of each resonator. The dynamic of the system is a linear homogeneous
differential operator, exhibiting orders of 2p and 2q, respectively, with q ≤ p. The spatial
coordinate x extends over domain D. The function w(x, t) captures the system’s relative
transverse vibration compared to the base motion, essentially reflecting the displacement
at specific points relative to the base’s harmonic movement. On the other hand, zr(t)
denotes the resonator’s relative vibration in absolute coordinates, providing insight into
its displacement to the overall structure’s vibration. The δ(x − xr) is the Kronecker delta
function to pinpoint the resonators’ locations on the beam, with xr specifying the position
of the r-th resonator. Moreover, F symbolizes the external force, distributed across D, and
incorporates the impact of the base excitation on the beam.
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Figure 1. Example of standard locally resonant metastructures, where m represents the mass of the
resonators, c is the damping, and k is the stiffness of the resonators.

Similarly, the governing equation for the resonators, derived from Newton’s second
law of motion, is expressed as follows:

mr
∂2zr(t)

∂t2 + cr
∂zr(t)

∂t
+ krzr(t) + mr

∂2w(xr, t)
∂t2 = Fbr (t) (2)

The boundary conditions for the system, as outlined in Equation (1), are defined by
Equation (3), where each Bi is a linear homogeneous differential operator of order no
greater than 2p − 1.

Bi[w(x, t)] = 0, i = 1, 2, . . . , p (3)

Proportional damping, a method often used in real-world structures for estimating
natural frequencies and mode shapes, relates the damping matrix to the mass and stiffness
matrices. This concept allows C to be expressed as a combination of mass and stiffness
operators L and M, as shown in Equation (4), with c1 and c2 being non-negative constants,
determined based on the physical properties of the system. However, engineers usually use
experimental modal analysis or fit data from vibration tests to find them. This approach, as
referenced in [10], maintains consistent mode shapes and similar natural frequencies for
both damped and undamped systems.

C = c1L+ c2M (4)

The eigenfunctions ϕm(x) of the system are derived by solving the eigenvalue problem
of the undamped version of Equation (1), presented in Equation (5).

L[ϕm(x)] = λmM[ϕm(x)], m = 1, 2, . . . , Nm (5)

The symbol λm represents an eigenvalue associated with the mth eigenfunction ϕm(x)
of the system. For structures like beams equipped with resonators, the system is defined by
coupled differential equations for each resonator and the structure itself. These equations
account for the mutual influence of each component on the system’s dynamics. The mode
shapes of the base structure alone are not the exact mode shapes of the entire metastructure,
but using them simplifies the analysis significantly. The solution to Equation (5) is provided
in Appendix A.

In the case of an Euler beam spanning domain D = [0, L], assumed to be linearly
elastic and homogeneous, the operators L, M, C, B1, and B2 are defined in terms of the
beam’s physical properties: flexural rigidity (EI), density (ρ), and cross-sectional area (A).

L = EI
∂4

∂x4 , M = ρA, C = c,

B1 = 1, B2 = EI
∂2

∂x2

(6)

In advancing the understanding of modal expansion in the system, the orthogonality
of eigenfunctions is critical for solving Equation (1). The self-adjoint (Hermitian) nature
of the eigenvalue problem ensures this orthogonality. For any two eigenfunctions ϕm(x)
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and ϕn(x), the problem is self-adjoint if they satisfy the conditions given in Equation (7), as
highlighted by [11]. ∫

D
ϕm(x)L[ϕn(x)]dx =

∫
D

ϕn(x)L[ϕm(x)]dx∫
D

ϕm(x)M[ϕn(x)]dx =
∫

D
ϕn(x)M[ϕm(x)]dx.

(7)

When considering unique eigenvalues ω2
m and ω2

n with their respective eigenfunctions
ϕm(x) and ϕn(x), these functions are normalized with respect to M. This normalization
leads to the generalized orthogonality condition outlined in Equations (8) and (9), with δmn
being the Kronecker delta function.∫

D
ϕm(x)M[ϕn(x)]dx = δmn (8)

and ∫
D

ϕm(x)L[ϕn(x)]dx = δmnω2
m (9)

Assuming proportional damping, the structural damping characteristics are captured
by Equation (10). Here, ζm denotes the damping ratio of the m-th mode, which is precisely
defined in Equation (11) utilizing the constants c1 and c2. Equations (8)–(10) are integral to
constructing a set of orthonormal eigenfunctions, which together form a complete basis for
the solution space pertinent to the eigenvalue problem.∫

D
ϕm(x)C[wm(x)]dx = c1δmnω2

m + c2δmn = 2δmnζmωm (10)

with
ζm =

1
2ωm

(
c1ω2

m + c2

)
(11)

Modal decomposition is a method used to describe the structure’s vibration across
a domain D by representing it as a sum of modal shapes in one direction. This method
assumes that the behavior of the structure can be accurately captured using a finite set of
modes. For instance, the Euler–Bernoulli beam theory, commonly used in these analyses,
may not provide sufficient accuracy in high-frequency situations. This technique, widely
used in modal analysis, produces convergent solutions to the boundary value problem
as formulated.

Using modal decomposition, the beam’s deflection in the domain D is expressed as a
sum of modal shapes in one direction. This assumes that the behavior of the beam can be
accurately represented by a finite number of modes, as expressed in Equation (12):

w(x, t) =
Nm

∑
m=1

ϕm(x)zm(t), (12)

Here, ϕm(x) denotes the spatial mode shape, and zm(t) is the time-dependent modal
coordinate for the m-th mode. These modal representations are crucial in modeling the
dynamics of a flexible beam with integrated discrete resonators.

Incorporating the modal expansion from Equation (12) into the system’s governing
differential equation, given by Equation (1), yields Equation (13). This resultant equation
effectively combines the modal decomposition with the system’s differential operators,
capturing the influence of the resonators. It provides a complete representation of the
beam’s dynamic response, encompassing both the modal characteristics and the interactive
effects of the resonators.
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L
Nm

∑
m=1

ϕm(x)zm(t) + C ∂

∂t

Nm

∑
m=1

ϕm(x)zm(t) +M ∂2

∂t2

Nm

∑
m=1

ϕm(x)zm(t)−

Nr

∑
r=1

(
krzr(t) + cr

dzr(t)
dt

)
δ(x − xr) = Fbm(x, t)

(13)

Multiplying Equation (13) by ϕn(x) and integrating over the domain D, and applying
the orthogonality conditions Equations (8)–(11) of the mode shapes, gives

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t)−

Nr

∑
r=1

mrω2
r zr(t)ϕm(xr) = Qbm(x, t), m = 1, 2, . . . , Nm (14)

Similarly for resonators, substituting the modal expansion Equations (12) into (2)
yields

z̈r(t) + 2ζrωr żr(t) + ω2
r zr(t) +

Nm

∑
m=1

z̈m(t)ϕm(xr) = Qbr (t), r = 1, 2, . . . , Nr (15)

Here, Nm and Nr denote the number of modes and resonators, respectively. Each mode
has a specific modal frequency ωm, and each resonator has a mass mr and its own natural
frequency ωr. The damping ratios ζm for the modes and ζr for the resonators quantify
energy dissipation.

To simplify, the superscript “dot” indicates time derivatives, and “prime” indicates
spatial derivatives. Each equation in the model represents the dynamics of modal coor-
dinates or resonator displacement as a second-order ordinary differential equation. The
dynamics are influenced by modal and resonator parameters (natural frequencies ωm and
ωr, damping ratios ζm and ζr), their interactions, and base excitation forces (Qbm and Qbr ).

Decoupling of these equations is achieved through an orthogonal transformation,
involving pre- and post-multiplication by the mode shape matrix. This leads to diagonaliza-
tion of the mass and stiffness matrices, thanks to the orthogonality of eigenvectors to both
matrices. The result is a set of decoupled ordinary differential equations. This normal mode
method applies in the absence of damping or with proportional damping, where the damp-
ing matrix is a linear combination of the mass and stiffness matrices. The transformation
becomes orthonormal when the mode shape is normalized to the mass matrix.

Combining the structural dynamics represented in Equation (14) with the dynamics
of resonators from Equation (15) enables the coupling of inertial terms and decoupling
of stiffness in the system, facilitating analysis in the frequency domain. This process is
expressed in Equation (16), where Hbm(x, t) is determined by integrating the effects of ex-
ternal forces, base motion, and damping into a net external force, as shown in Equation (17).
Equations (15) and (16) together form a set of coupled second-order linear ordinary differ-
ential equations, which, upon solving, yield the mode shapes and resonant frequencies of
the entire system and its steady-state response to harmonic excitation.

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t) +

Nr

∑
r=1

mrϕm(xr)
Nm

∑
p=1

z̈m(t)ϕp(xr)+

Nr

∑
r=1

mr z̈r(t)ϕm(xr) + 2
Nr

∑
r=1

mrϕm(xr)ζrωr żr(t) = Hbm(x, t), m = 1, 2, . . . , Nm

(16)

Hbm(x, t) =
∫ L

0
Fe(x, t)ϕm(x)dx − ẅb(t)

(∫ L

0
Mϕm(x)dx +

Nr

∑
r=1

mrϕm(xr)

)
−

ẇb(t)
∫ L

0
Cϕm(x)dx

(17)
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The Laplace transform is applied to the system of equations, assuming zero initial con-
ditions, to transition the analysis to the frequency domain, as seen in Equations (18) and (19).
In these equations, Zm(s) and Zr(s) represent the Laplace transforms of the modal and
resonator displacements, respectively. This transformation simplifies the algebraic manipu-
lation and analysis of the system’s dynamics.

Zr(s) =
Qbr (s)− ∑Nm

m=1 s2Zm(s)ϕm(xr)

s2 + 2ζrωrs + ω2
r

, r = 1, 2, . . . , Nr (18)

s2Zm(s) + 2ζmωmsZm(s) + ω2
mZm(s) +

Nr

∑
r=1

mrϕm(xr)
Nm

∑
p=1

s2Zp(s)ϕp(xr)+

Nr

∑
r=1

mrs2Zr(s)ϕm(xr) + 2
Nr

∑
r=1

mrϕm(xr)ζrωrsZr(s) = Hbm(s), m = 1, 2, . . . , Nm

(19)

For a deeper analytical understanding, applying Equation (18) to the Laplace transform
of Equation (14) yields the following expression in Equation (20).

(s2 + 2ζmωms + ω2
m)Zm(s)−

Nr

∑
r=1

mrω2
r

Qbr (s)− ∑Nm
p=1 s2Zp(s)ϕp(xr)

s2 + 2ζrωrs + ω2
r

ϕm(xr) = Qbm(s),

m = 1, 2, . . . , Nm

(20)

The analysis focuses on the transfer function Zm
Qbm

, particularly when the effect of Qbr is
ignored. Here, the mass ratio µ, a dimensionless quantity, relates the mass of each resonator
to a differential mass element of the system and is defined as µ = mr

m(xr)dxr
, where m(xr)

represents the mass per unit length at xr and dxr is an infinitesimal segment length at
this point. To simplify the system of equations, it is assumed that an infinite number of
resonators are distributed throughout the entire domain of x, and the regions represented
by xr become infinitesimally small.

lim
Nr→∞

Nr

∑
r=1

m(xr)ϕm(xr)ϕp(xr)dxr ≈
∫ L

0
m(x)ϕm(x)ϕp(x)dx = δmp, m, p = 1, 2, . . . (21)

Applying these assumptions results in the following expression:

Zm(s)
Qbm(s)

=
1

s2
(

1 + µ(2ζrωrs+ω2
r )

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

m = 1, 2, . . . , Nm

(22)

Equation (22) indicates that resonators add a frequency-dependent mass to the system.
With the assumption of an infinite resonator distribution, leading to continuous spatial
displacements, similar reductions apply to the resonator displacements. By substituting
Equations (22) into (18) and transitioning from the discrete xr to a continuous spatial
domain x, a simplified equation emerges as presented in Equation (23).

Zr(x, s) = − s2

s2 + 2ζrωrs + ω2
r

Nm

∑
m=1

Qbm(s)ϕm(x)

s2
(

1 + µ(ω2
r +2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

(23)
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Equation (23) defines the motion Zr(x, s) of resonators along the beam in the Laplace
domain, influenced by modal forces Qbm(s). The displacement of the resonators is presented
as a weighted sum of the beam’s modal shapes:

Zr(x, s) =
Nm

∑
m=1

Ψm(s)ϕm(x) (24)

Equation (25) expresses the relationship between the modal force Qbm(s) and the
modal coordinate Ψm(s) in the Laplace domain. It illustrates how resonator displacements
are influenced by the modes of the structure:

Ψm(s)
Qbm(s)

=
−s2

[s2 + 2ζrωrs + ω2
r ]
[
s2
(

1 + µ(ω2
r +2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

] , m = 1, 2, . . . , Nm (25)

The transfer function in Equation (25) clarifies how the input forces are transformed
into modal responses. The function’s poles, indicative of the system’s natural frequencies,
are the points at which the system exhibits peak responses.

By introducing an internal linear coupling term, κ, within the resonators illustrated
in Figure 2, the system evolves into internally coupled resonators. This transformation
creates an environment where the displacements of the resonators are no longer inde-
pendent but are coupled. Specifically, the displacement of one resonator influences the
displacement of the other, establishing a dynamic interaction. The energy associated with
this coupling is quantified by the coupling potential energy, in which each pair of res-
onators (1 and 2, 3 and 4, 5 and 6, etc.) forms a system with two degrees of freedom:
Vc(t) = 1

2 κ(zr1(t)− zr2(t) + w(xr1 , t)− w(xr2 , t))2. The equations for the coupled oscillator
system can be formulated as follows:

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t)−

Nr/2

∑
r=1

(
m2r−1ω2

2r−1z2r−1(t)ϕm(x2r−1)+

m2rω2
2rz2r(t)ϕm(x2r)

)
= Qbm , m = 1, 2, . . . , Nm, and Nr ∈ 2N

(26)

Figure 2. Locally resonant metastructures with internally coupled resonators. Each pair of resonators
forms one unit cell, with m representing the mass of the resonators, c the damping, k the stiffness of
the resonators, and κ the internal coupling stiffness between them.

Meanwhile, the equation for the resonators is given by the following:

z̈2r−1(t) + 2ξ2r−1ω2r−1ż2r−1(t) + ω2
2r−1z2r−1(t) +

Nm

∑
m=1

z̈m(t)ϕm(x2r−1)+

β
κ

m2r−1
= Qb2r−1 , r = 1, 2, . . . , Nr/2

(27)

z̈2r(t) + 2ξ2rω2r ż2r(t) + ω2
2rz2r(t) +

Nm

∑
m=1

z̈m(t)ϕm(x2r)

− β
κ

m2r
= Qb2r , r = 1, 2, . . . , Nr/2

(28)
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where

β = z2r−1(t)− z2r(t) +
Nm

∑
m=1

zm(t)ϕm(x2r−1)−
Nm

∑
m=1

zm(t)ϕm(x2r) (29)

These equations characterize the underlying dynamics of both the beam and the
internally linear coupled resonator system. The Laplace transform of Equation (26) with
zero initial conditions results in Equation (30).

(s2 + 2ζmωms + ω2
m)Zm(s)−

Nr/2

∑
r=1

(
m2r−1ω2

2r−1Z2r−1(s)ϕm(x2r−1)+

m2rω2
2rZ2r(s)ϕm(x2r)

)
= Qbm(s)

(30)

Given that the forces Qb2r−1 and Qb2r are equal to −ẅb(t), and considering that
m2r−1 = m2r or identical mass mr for all resonators, along with the distribution of nu-
merous resonators along a beam, it is assumed that the derivative of position within
each unit cell is the same, indicated by dx2r−1 = dx2r. This reflects a uniform position
derivative across all resonators. Furthermore, the following relationships are established:
m2r−1 = µm(x2r−1)dx2r−1, and m2r = µm(x2r)dx2r.

lim
Nr→∞

Nr/2

∑
r=1

m(x2r−1)ϕm(x2r−1)ϕp(x2r−1)dx2r−1 =
1
2

δmp, m, p = 1, 2, . . . (31)

lim
Nr→∞

Nr/2

∑
r=1

m(x2r)ϕm(x2r)ϕp(x2r)dx2r =
1
2

δmp, m, p = 1, 2, . . . (32)

Taking the Laplace transform of Equations (27) and (28), and applying the orthog-
onality of the mode shapes, as demonstrated in Equations (31) and (32), results in the
derivation of the transfer function for a metastructure with internally coupled resonators,
as represented in Equation (33).

Zm(s)
Qbm(s)

=
1

s2
(

1 +
µω2

2r−1
s2+ω2

2r−1

)(
1 +

µ
4 ω2

2r
s2+ω2

2r

)
+ ω2

m

m = 1, 2, . . . , Nm (33)

The transfer function presented in Equation (33) incorporates coupling effects through
the κ parameter, allowing for the interaction between multiple resonators, denoted as ω2r−1
and ω2r. This interaction can lead to complex dynamic behavior, including the potential
for multiple bandgaps or more pronounced resonant effects. The integration of damping
elements for both the plain structure and the resonators can be conveniently executed at
this stage.

In distributed parameter systems, such as beams, the resonators are two-degree-of-
freedom (2 DOF) systems. It can be proven that ω2r−1 = ωr, where ωr is the natural
frequency of a resonator when it is not coupled with its adjacent resonator. Addition-

ally, ω2r =
√

ω2
2r−1 +

2κ
mr

, where κ is the mechanical coupling coefficient and mr is the
mass of the resonator. This framework leads to the formation of secondary bandgaps in
metastructures with internally coupled resonators. These bandgaps are associated with a
180-degree phase shift in the resonators. Consequently, such metastructures exhibit both
primary and secondary bandgaps, a distinct feature compared to traditional structures.
The condition of no stretching in the coupling spring essentially renders its influence
negligible. Consequently, this scenario simplifies the equation, reducing it to a form that
corresponds to the conventional metastructure dynamics, as established in Equation (22).
This simplification allows for a more straightforward analysis of the metastructure by
reverting to a more basic, yet fundamental, form of the equation. On the other hand, if the
resonators differ in frequency or have the same frequency but with a phase difference, the
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parameter κ experiences stretching. This results in an additional pole and zero, creating an
extra bandgap.

Now, leveraging the transfer function method enables the utilization of the well-
known root locus analysis. By considering the modal response as the closed-loop transfer
function of a negative feedback system, which incorporates a proportional feedback gain of
ω2

m, and defining the feedforward transfer function as G(s), as specified in Equation (34),
one can observe this interpretation.

G(s) =
s2 + ω2

2r−1

s2
(
s2 + ω2

2r−1 + µω2
2r−1

) s2 + ω2
2r−1 +

2κ
mr(

s2 + (1 + ( µ
4 ))(ω

2
2r−1 +

2κ
mr
)
) (34)

The first transfer function accurately represents what is found in a conventional
metastructure. This function has two poles at the origin, characteristic of a system’s
inherent response dynamics. It includes an additional pole at

√
1 + µω2r−1, influenced by

the mass of the resonators. This pole is responsible for creating a bandgap with a length of√
1 + µ, indicative of the system’s frequency-selective behavior. The internal coupling of

resonators introduces additional dynamics, particularly influencing the system’s behavior
near resonant frequencies. The second transfer function introduces terms that model the
added poles and zeros in the metastructure due to the internal coupling of resonators. In

this function, the roots progress from zero at ω2r to a pole at
√

1 + µ
4 ω2r, creating a bandgap

with a length of
√

1 + µ
4 .

The comparative analysis of the root locus plots for a conventional metamaterial and
a metamaterial with internal resonator coupling, as depicted in Figures 3 and 4, clearly
indicate the influence of the coupling term κ on the system dynamics. Figure 3 illustrates
the resonance characteristics and bandgap frequencies of a metastructure, as indicated by
the poles of its transfer function. The system’s resonances correspond to the imaginary
components of these poles. Modal responses of the plain beam are modeled as a closed-loop
transfer function with proportional feedback. Bandgap edge frequencies are identified
using root locus analysis, with specific zeros and poles on the imaginary axis determining
these frequencies. Notably, within the bandgap defined by ω2r−1 < ω < ω2r−1

√
1 + µ,

and ω2r < ω < ω2r

√
1 + µ

4 , no poles are present. Root locus analysis is advantageous for
evaluating general linear attachments and facilitating the creation of multiple bandgaps.

Figure 3. (Left) Conventional metastructure root locus with ωm = 0.5, ω2r−1 = ωr = 1, kr = 1,
mr = 1, and µ = 0.5. (Right) Metastructure with internal coupling, showing narrow bandgap
with ωm = 0.5, ω2r = 1.7, κ = kr, and µ = 0.5. Internal coupling’s impact on system dynamics is
highlighted by the additional bandgap in the right plot.
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Figure 4. Bode and root locus plots for Equation (34). (Left) Root locus with K = ω2
m, showing

conventional and internally coupled bandgap for µ = 0.5 and κ = 1. Markers: system poles at ω2
m = 0,

solid lines: pole trajectory as ω2
m increases. Grey region: bandgap frequency range. (Right) Bode plot

showing frequency response, including resonance from coupling effect.

As mentioned earlier, the introduction of κ in the coupled system leads to additional
zeros and poles, as evidenced by the second root locus in Figure 4. This modification
is characterized by the resonant frequencies ω2r−1 = 1 (rad/s) and ω2r = 1.7 (rad/s),
suggesting the emergence of a second bandgap. Moreover, the root locus plot in Figure 4
(left) indicates that the internal coupling parameter influences the system’s pole trajectories.
Conversely, the Bode plot (right) reveals a pronounced resonant peak, suggesting an
increased selective sensitivity to certain frequencies. While the phase response indicates the
overall system’s stability under the new coupling condition, it must be carefully evaluated
to ensure robustness, especially in control applications where stability is critical.

Dispersion Analysis and Model Validation of Internally Coupled Resonators by Plane Wave
Expansion Method

The plane wave expansion (PWE) method is commonly used for analyzing the propa-
gation of waves in periodic structures, and provides valuable insights into the behavior of
these waves, facilitating the design and optimization of these periodic structures for a wide
range of applications, such as vibration suppression and energy harvesting [12,13].

The transverse displacement of a metastructure with linearly internally coupled
resonators in absolute coordinates is defined as Wt(x, t) = Ŵtei(Gnx−ωt) for the beam,
z2r−1(t) = ẑ2r−1ei(ωt) for the first resonator, and z2r(t) = ẑ2rei(ωt) for the second res-
onator. The dispersion relation emerges from applying periodic boundary conditions to
find nontrivial solutions. The relationship between frequency ω and wavevector Gn in
one-directional transformation is established by multiplying the variable’s amplitude with
exp(i(Gnx − ωt)). With both kr1 = kr2 = kr and mr1 = mr2 = mr, the equation simplifies
as follows:

C1ω6 + C2ω4 + C3ω2 + C4 = 0 (35)

where:
C1 = −Am2

r ρ,

C2 = m2
r

(
EIG4

n + 2kr

)
+ 2Aρmrκ + 2Aρmrkr,

C3 = −
(

2κmrkr + Aρk2
r + 2Aρκkr + EIG4

nm2
r (κ + 2kr)

)
,

C4 = EIG4
n

(
2κkr + k2

r

)
.

(36)
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3. Results and Discussion

The rectangular beam under investigation has the following dimensions: a length of
0.91 m (Lm), a width of 40 mm (wm), and a height of 3 mm (hm). The material used for the
beam has a density of 2710 km per cubic meter (ρm) and a modulus of elasticity of 52 GPa
(Em). The beam is characterized by a damping ratio of 0.03 (ζm), and the analysis considers
a total of eight vibration modes (Nm). Each resonator (Nr) within the system has a mass of
80 g (mr) and a spring constant of 380 kilonewtons per meter (kr). The damping ratio for
the resonators is also set at 0.03 (ζr).

Figure 5 depicts the dispersion curve of the internally coupled metamaterial beam
(κ = kr) using the plane wave expansion method. The target frequency corresponds to the
resonator frequency. The diagram illustrates two bandgaps: the first is associated with
the in-plane behavior of both resonators within each unit cell, while the second bandgap
emerges due to the out-of-plane behavior of the two resonators in each unit cell. Here, Gn
represents the wave vector number and a denotes the lattice size.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Figure 5. Dispersion curve of an internally coupled metamaterial beam, displaying two distinct
bandgaps resulting from in-plane and out-of-plane resonator behavior.

Figure 6 illustrates the transmittance characteristics of a metamaterial beam with
internal resonator coupling in terms of tip displacement relative to the base displacement in
absolute coordinates. The presence of a common initial bandgap aligns with the theoretical
expectations discussed earlier, assuming that all resonators resonate at the same frequency
(ω2r−1 = ω2r = ωr) and maintain identical phase relationships. In the case of the internally
coupled metastructure, an additional bandgap is observed, which substantiates the theoret-
ical premise that variations in resonator frequencies or phase differences can extend the
parameter κ. This extension, facilitated by the assumption of a massless coupling spring,
introduces new dynamics to the system by adding an extra pole and zero, resulting in the
creation of an additional bandgap. The primary bandgap occurs at the target frequency,
which corresponds to the resonator’s frequency adjusted by the length factor

√
1 + µ. The

secondary bandgap’s location is contingent upon the stiffness of the internal coupling and

is defined by the length factor
√

1 + µ
4 . Notably, the dips in the graph signify areas of low

transmittance, indicating reduced vibration at the beam’s tip and effectively marking the
bandgap regions.



Appl. Sci. 2024, 14, 2447 13 of 20

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

Figure 6. Transmittance plot for a metamaterial beam with internal resonator coupling (k = kr)
comprising eight resonators, which equates to four unit cells.

Figure 7 presents a graphical analysis illustrating the influence of varying internal
coupling spring constant values, denoted as κ, on the bandgap frequencies within a metas-
tructure. Notably, alterations in κ do not induce substantial shifts in the frequency edges
of the primary first bandgap. However, as κ increases, it introduces additional, narrower
gaps at frequencies above the rest of the second bandgap. These narrower gaps under-
score the sensitivity of the metastructure’s dynamic response to specific ranges of internal
coupling strength.

Figure 7. Analysis of the influence of internal coupling stiffness κ on the metastructure’s bandgap
frequencies in Equation (33), showing the consistent edge of the first bandgap and the emergence of
narrow higher-frequency gaps within certain κ ranges.

Figure 8 presents a contour plot of the transmittance across the metastructure as a
function of the normalized internal coupling strength, κ/ωr, and normalized frequency,
ω/ωr. The color gradient represents the logarithmic scale of transmittance, indicating
the level of wave attenuation within the metastructure. Dark regions correspond to high
attenuation levels, signifying the presence of bandgaps. As observed, the contour lines
delineate the boundaries of the bandgaps, which become more distinct with specific values
of internal coupling strength. This visualization provides a comprehensive understanding
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of how internal coupling affects the bandgap frequencies, offering insights into the precise
tuning of the metastructure’s vibrational properties. It can be seen that the emergence of
additional bandgaps occurs within certain ranges of κ, demonstrating the metastructure’s
sensitivity to variations in internal coupling. The plot serves as a detailed map for predicting
the dynamic behavior of the metastructure under varying conditions of internal coupling,
which is critical for applications requiring targeted vibration isolation frequencies.

-20 -15 -10 -5 0 5 10 15 20

1

2

3

4

5

6

7

8

-3

-2

-1

0

1

2

3

4

Figure 8. Transmittance contour plot against normalized internal coupling strength and frequency,
highlighting bandgap boundaries and the metastructure’s sensitivity to κ variations.

The results reveal that metastructures with internally coupled resonators retain the
primary bandgap found in conventional metastructures but also introduce an additional,
thinner bandgap at a higher frequency. This secondary bandgap remains separate from
the primary one, making it challenging to use internal coupling to merge both bandgaps
for vibration isolation in continuous and distributed metastructures. This difficulty arises
because the second bandgap’s nature is linked to a 180-degree phase change in resonators
with identical natural frequencies (ωr). It would be beneficial to investigate the impact
of varying ωr in different unit cells. Despite these challenges, it is noteworthy that in
lumped systems, metastructures with internally coupled resonators significantly widen the
bandgap compared to conventional configurations.

4. Finite Element Study

The dynamic behavior of metastructures incorporating internally coupled resonators
is investigated using finite element method (FEM) simulations, affirming theoretical pre-
dictions. The analysis outputs present the vibrational modes of the metastructure. These
modes are expressed as amplitude variations across a spectrum of normalized frequencies,
with a particular focus on resonant frequencies pertinent to bandgap development. Signifi-
cant findings from the analysis illustrate the variance in bandgap distribution and intensity
of resonant peaks as a function of stiffness ratio. This implies a substantial relationship
between internal coupling stiffness and the dynamic response of the metastructure. Visual-
ization of these results not only confirms primary and secondary bandgap presence but also
aligns with the theoretical implications of internal resonator coupling. Figure 9 concentrates
on the transmissibility for a specific stiffness ratio κ, reflecting a critical scenario where κ
is precisely matched with the resonator’s stiffness (κ/ωr = 0.003), an essential condition
for optimal bandgap definition. This particular observation underscores the necessity of
accurate internal coupling stiffness to achieve the designed dynamic response.

However, deviations from the ideal κ value lead to pronounced disorder within the
system’s response, emphasizing the metastructure’s sensitivity to variations in internal
coupling stiffness. Such irregularities pose challenges for ensuring predictability and
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consistent performance in practical applications, thus advocating for stringent precision in
design and manufacturing processes.

The contour plot depicted in Figure 10 utilizes a binary representation to mark regions
of transmittance reduction, set at log(10−0.1). The provided binary representation displays
two distinct white regions against a cyan background, illustrating the transmittance levels
across various stiffness ratios κ and normalized frequencies. The first white region, located
at the target resonator frequency ωr, corresponds to a bandgap typically observed in
conventional metamaterials. This bandgap represents a frequency range where the structure
prevents wave propagation, thereby indicating a strong vibration isolation capability at
the resonant frequency of the metamaterial. The second white region appears at a higher
frequency range and signifies the impact of internal coupling within the metamaterial
structure. This additional bandgap is a result of the specific design and internal resonator
interactions that are a characteristic of the studied metastructures. The emergence of this
second bandgap highlights the effect of internal coupling on the extension of vibration
isolation performance to higher frequency ranges.
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Figure 9. Transmissibility for a cantilever beam with stiffness ratio κ equal to kr, demonstrating
optimal internal coupling for bandgap clarity.
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Figure 10. Binary contour plot illustrating the presence and absence of transmittance corresponding
to bandgaps as a function of stiffness ratio κ and normalized frequency.
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Impact of Spacial Variations on Bandgap Characteristics

The established methodology enables manipulation of the transfer function, thereby
permitting exploration into how adjustments in the mass placement on a resonator af-
fect bandgap traits, a key factor for refining bandgap properties within a closed-loop
control system.

This section explores adjusting resonator stiffness while maintaining constant mass,
a method beneficial for heavy machinery applications where traditional piezoelectric
solutions may fall short. Stiffness tuning, as opposed to piezoelectric adjustments, offers
a more durable and practical solution for these demanding environments. The current
study examines a conventional metastructure that does not incorporate internally coupled
resonators. The resonators are of the cantilever type, with a mass that can be positioned
along the length from the tip to the base. The specific parameters defining the metastructure
and resonators are as follows: eight resonators (Nr = 8), with the beam dimensions being
300 mm in length, 25 mm in width, and 3 mm in height. The material density is 2700 kg/m3,
and the modulus of elasticity is 69.5 GPa. The damping ratio of the structure and resonators
is the same, at 0.01. An attached mass (ma) of 3.8 g is placed at distances that vary from
20 to 57.3 mm along the resonator. The natural frequency of the resonator (ωr), when the
attached mass is at the tip, is 32 Hz. This setup allows for an exploration of the resonator
stiffness’s impact on the bandgap properties of the metastructure.

Figure 11 provides a 3D visualization of how the position of the attached mass along
the length of a resonator affects the bandgap frequencies in a metastructure. The natural
frequency at which the bandgap starts is denoted as ωr, corresponding to the case when
the mass is located at the tip of the resonator. The graph demonstrates that as the mass
moves closer to the base of the resonator—decreasing δ—the resonator’s stiffness increases,
leading to a rise in ωr and a subsequent shift of the bandgap towards higher frequencies.

Figure 11. A 3D plot showing the shift in bandgap frequency related to mass positioning on the
resonator, with delta (δ) representing the mass location from the resonator’s tip to base.

The contour plot in the x–y plane clearly depicts the bandgap’s initiation at the initial
natural frequency ωr when the mass is at the resonator’s tip. From there, the bandgap
expands and moves as the location of the mass changes. This shift is particularly crucial
for applications requiring tunable vibration isolation, as it shows the potential to adjust
the bandgap frequency by simply repositioning the resonator mass without altering the
resonator or structure itself.

The binary representation in Figure 12 illustrates the influence of the mass location
along the resonator on the bandgap frequencies. With the bandgap depth limit set at a deci-
bel ratio of output to input displacement of 0.2, the plot shows that when the attached mass
is positioned at the tip of the resonator, the bandgap originates at the resonator frequency
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ωr. The white areas in the binary representation correlate to the regions of significant
transmittance reduction, effectively mapping the bandgap’s presence and evolution as the
mass moves closer to the resonator’s base.
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Figure 12. Binary contour plot of bandgap presence against resonator mass placement (δ) and
normalized frequency (ω/ωr), with white areas indicating effective vibration isolation regions.

5. Conclusions

This study explored the dynamic behavior of metastructures, focusing on those with
conventional configurations and those augmented with internally coupled resonators,
through a theoretical lens. The development of analytical models deepened our under-
standing of bandgap dynamics, highlighting the prediction of primary and secondary
bandgaps as influenced by internal coupling stiffness. Finite element analysis (FEA) cor-
roborated these theoretical insights, yet it also exposed complexities beyond the analytical
models’ scope. Insights gained from this study stress the importance of accurately account-
ing for the physical characteristics of internal couplings and achieving exact stiffness ratios.
Additionally, this work shows that adjusting the natural frequencies of resonators through
stiffness manipulation—via the strategic positioning of mounted masses—provides a viable
approach for customizing vibration isolation solutions. This strategy is particularly rele-
vant for environments subjected to heavy loads and extreme conditions, offering tailored
responses to complex vibrational challenges.

The principal contributions of this research are as follows:

• We established a novel transfer function approach for the analysis of metastructures,
diverging from traditional bandgap investigation methods such as dispersion analysis
and wave finite element methods.

• We applied root locus analysis and transfer function modeling, offering new perspec-
tives on metastructure control.

• We demonstrated the enhanced dynamic bandgap characteristics achievable through
the use of internally coupled resonators, incorporating control engineering techniques
for refined metastructure management.

This research showcases the fusion of control system theory with metastructure analy-
sis, presenting a groundbreaking approach for the precise manipulation of bandgaps. This
methodology not only marks a significant advancement in the understanding and appli-
cation of vibration control technologies but also opens new avenues for energy-efficient
solutions across multiple industries. Specifically, in the automotive sector, the integration of
metastructures can significantly reduce noise and vibrations, enhancing vehicle durability.
In civil engineering, buildings and infrastructure equipped with optimized bandgaps offer
enhanced protection against environmental vibrations and seismic activities. Moreover,



Appl. Sci. 2024, 14, 2447 18 of 20

the innovative application of these metastructures in energy harvesting from vibrational
bandgaps paves the way for smart buildings to achieve superior energy sustainability.

Future studies will prioritize empirical validation through experimentation to confirm
the theoretical and numerical models’ applicability in real-world scenarios. Subsequent
research will focus on fabricating metastructures with internally coupled resonators, with
a particular emphasis on manufacturing precision to accurately match the stiffness of the
resonators, thereby ensuring optimal system performance. Additionally, the integration of
piezoelectric materials for vibration suppression and energy harvesting will be explored,
aiming to enhance the functional versatility of these advanced materials.
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Abbreviations
The following abbreviations are used in this manuscript:

L Structural flexibility parameter (N/m)
C Damping coefficient (Ns/m)
M Mass per unit length of the beam (kg/m)
kr Stiffness of the resonator (N/m)
cr Damping coefficient of the resonator (Ns/m)
xr Position of the r-th resonator (m)
δ(x − xr) Dirac delta function indicating resonator location
Fbm External force distributed across the beam due to modals (N)
Fbr External force distributed across the beam due to resonators (N)
mr Mass of the r-th resonator (kg)
ω Angular frequency of the wave (rad/s)
κ Internal coupling stiffness (N/m)
zr Displacement of the r-th resonator (m)
ϕm Mode shape function of the m-th mode
ϕn Mode shape function of the n-th mode
E Young’s modulus of the beam material (Pa)
I Moment of inertia of the beam cross-section (m4)
ρ Density of the beam material (kg/m3)
A Cross-sectional area of the beam (m2)
Nm Number of modes
Nr Number of resonators
δmn Kronecker delta function for modes m and n
ζm Damping ratio of the m-th mode
ζr Damping ratio of the r-th resonator
ωm Natural frequency of the m-th mode (rad/s)
ωr Natural frequency of the r-th resonator (rad/s)
zm Modal displacement amplitude
λm Eigenvalue associated with the m-th eigenfunction ϕm(x)
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µ Mass ratio
Gn Wave number of the n-th mode in the structure (rad/m)
2r−1 Subscript notation for odd-numbered resonators
2r Subscript notation for even-numbered resonators

Appendix A

Solution for a Cantilevered Beam

Equation (5) has a general solution of [14]:

ϕm(x) = C1m cos βmx + C2m sin βmx + C3m cosh βmx + C4m sinh βmx (A1)

where

β4
m =

ρAω2
m

EI
(A2)

The constant coefficients C1m, C2m, C3m, and C4m can be found from the boundary
conditions.

The frequency equation can be derived by applying the frequency determinant method
to the eigenfunctions given by (A1) and considering the boundary conditions for a cantilever
beam with length L, which involve zero displacement and slope at the fixed end, as well as
zero shear and moment at the free end.

A nontrivial solution for coefficients C1 to C4 is obtained when the coefficient matrix
is set to zero. Solving the resulting determinant yields the frequency equation.

cos(βL) cosh(βL) = −1 (A3)

The roots of this equation can be determined either numerically or graphically. Con-
sidering the speed of wave propagation in the material, applying βmL to Equation (A2)
gives the natural frequency of vibration.

ωm = (βmL)2

√
EI

ρAL4 , m = 1, 2, . . . (A4)

This equation provides the natural frequencies for different modes of vibration, where
βm represents the roots of the mode shape equation.

By determining the coefficients C1 to C4 and substituting them into Equation (A1), we
obtain the normalized equation for the mode shapes in Equation (A5).

ϕm(x) =
1√
ρLA

[
(sin βmx − sinh βmx)− (sin βmL + sinh βmL)

(cos βmL + cosh βmL)
(cos βmx − cosh βmx)

]
(A5)

There is no necessity to numerically solve for a large number of solutions to this
equation. For larger solutions, a reliable approximation can be obtained using the following
formula:

βmL ≈ (2m − 1)π
2

, m > 5 (A6)

Given the presence of hyperbolic functions in Equation (A3), it becomes crucial to
approximate the mode shape for values of m exceeding 10 to circumvent numerical issues.
An approximation can be derived by expanding the precise mode shape and presuming a
large value for βmL. This results in the expression in Equation (A7).

ϕm(x) ≈ 1√
ρAL

[
cos(βmx)− sin(βmx)− e−βmx − eβmx−βm L sin βmL

]
(A7)
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