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Abstract
Introduction. Three-dimensional (3D) ultrasound (US) offers significant potential to enhance diag-
nostic imaging or intraoperative guidance by providing comprehensive volumetric insights in a non-
invasive and cost-effective manner. However, existing methods for 3D reconstruction often rely on
external tracking devices or specialized 3D transducers, which are costly and less suited for intraoper-
ative and point-of-care settings.
Aim. This thesis aims to advance trackerless 3D US reconstruction, leveraging a point-of-care hand-
held ultrasound (POCUS) probe integrated with an inertial measurement unit (IMU) and a novel deep
learning architecture.
Method. A high-quality dataset was acquired using a custom setup that included a POCUS probe with
an integrated IMU, facilitating precise positional tracking and controlled movement of complex random
motion trajectories. A CNN-Transformer network was developed, leveraging 2D US images and opti-
cal flow, to predict both local and global transformation parameters utilized for 3D US reconstruction.
Ablation experiments were conducted to optimize model performance.
Results. A dataset comprising 361 US sweeps from ex-vivo surgical specimens and phantommodels
was collected. The optimized model, integrating IMU orientation data and applying sequence augmen-
tation, achieved a mean Final Drift Ratio (FDR) of 11.63 ± 8.63% on an unseen test set, with a median
FDR of 8.11%. Quantitative evaluations demonstrated that the model accurately captured the shape
of the sweeps, particularly in translations along the x-axis, y-axis, and rotation around the x-axis. The
predicted reconstructions enabled correct segmentation and visualization of anatomical structures in
3D, crucial for application in clinical settings.
Conclusion. This thesis presents a novel approach for 3D US reconstruction without external track-
ing devices, utilizing an integrated IMU and a CNN-Transformer network. The results demonstrate
competitive performance with state-of-the-art methods, highlighting the feasibility and potential of this
approach for applications in diagnostic imaging, surgical planning, and intraoperative guidance, ad-
vancing 3D US toward clinical integration and improved patient outcomes.
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1
Introduction

Two-dimensional ultrasound (2D US) has established itself as an invaluable imaging modality in clinical
settings due to its low cost, portability, and non-invasive nature. Its real-time visualization capability
offers significant utility in intraoperative procedures, providing clinicians with essential anatomical and
functional information. Despite these advantages, 2D US is hindered by limitations such as limited
spatial orientation, lacking valuable 3D context, and its dependence on the operator’s experience and
interpretive skills. These constraints underscore the inherent variability and the potential for subjectivity
in 2D US [1]. The introduction of three-dimensional ultrasound (3D US) marks a significant advance-
ment, addressing many of these limitations. Specifically, 3D US provides a more comprehensive visu-
alization of anatomical regions of interest (ROIs) and provides the flexibility of examining the acquired
data from multiple viewpoints post-acquisition, reducing the variability due to operators. Moreover, this
technology could democratize access to advanced imaging techniques, by seamlessly integrating with
other 3D imaging modalities such as CT or MRI, providing a comprehensive view of patient anatomy
and enabling more personalized and effective treatment plans.

With these advancements, 3D US extends the potential of 2D US across a broader spectrum of
clinical applications and has the potential to revolutionize fields such as surgical planning and diagnostic
imaging [2, 3]. Providing real-time, detailed 3D visualizations could enhance the precision of surgical
procedures, reduce operation times, and improve patient outcomes, which can be illustrated by the
assessment of tumor margins in oncological surgery. While histology results offer delayed feedback
regarding resection margins, 3D US can provide real-time assessment during the surgical procedure.
A clinical trial has demonstrated that intraoperative 3D US is an accurate method for assessing ex
vivo surgical margins during tongue cancer surgery [4]. Consequently, the implementation of this tech-
nology may ultimately lead to an improvement in the number of free margins achieved after cancer
treatment. In diagnostic imaging, reconstructing 3D structures facilitates quantitative volume measure-
ments. This is particularly relevant in assessing prostate volume, a critical factor for diagnosing and
managing prostate cancer, where current methods often lack sufficient accuracy [5]. Enhanced vol-
ume measurements, utilizing 3D US, may contribute to earlier detection and more effective treatment
monitoring. This could be achieved in a non-invasive, low-cost, point-of-care setting, making advanced
diagnostics more accessible, particularly in primary-care environments [6].

The path to realizing 3D US reconstructions has seen various methodologies, including the use of
3D US transducers, external tracking, and image-based reconstruction methods. 3D US transducers
employ 2D crystal arrays rather than traditional 1D crystal arrays. This design facilitates the elec-
tronic steering and focusing of the US beam in multiple dimensions, thereby enabling the real-time
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2 1. Introduction

acquisition of 3D volumetric data [7]. However, since the transducer elements are spread across two
dimensions, this configuration results in fewer elements in each dimension. Therefore, to maintain a
sufficient spatial resolution the imaging system must limit the coverage area, resulting in a smaller field
of view (FOV), particularly at greater depths. External tracking devices such as mechanical, optical,
or electromagnetic (EM) systems are designed to position the US probe in 3D space. These systems
are prone to artifacts caused by magnetic interference or optical occlusion and have constraints in the
range of motion. Considering the high costs and cumbersome set-up of 3D US transducers and exter-
nal tracking systems, their suitability for certain clinical applications like intraoperative and point-of-care
US (POCUS) is diminished [8, 9].

Image-based freehand 3D US represents a promising alternative, eliminating the need for both
external tracking devices and 3D transducers, thereby capitalizing on the potential for integration with
cost-effective, portable and sometimes wireless, US devices [10]. The computational challenge of
these systems lies in the reconstruction process, which necessitates an accurate estimation of the
probe’s trajectory, divisible into in-plane and out-of-plane (elevational) movements. While in-plane
movements are more readily quantified, out-of-plane estimations remain complex. Prior research on
out-of-plane motion dates back to seminal work by Chen et al. [11] and has been mainly based on
speckle noise, the granular gray-scale textures in B-mode US images. Speckle decorrelation methods
map the transformation between neighboring US images to the correlation of their speckle patterns,
i.e. the higher the speckle correlation, the lower the elevational distance between neighboring frames
[12]. Under Rayleigh scattering conditions, where the size of these scatters is much smaller than
the wavelength of the sound waves, this speckle pattern is theoretically predictable. However, when
applied to dynamic clinical scenarios, these models often fall short, as speckle variability and real tissue
movement introduce errors that accumulate, leading to drift and a compromise in accuracy [13–15].

Recent advancements in artificial intelligence (AI), especially deep learning (DL) techniques, have
expanded the horizons for extracting detailed information from image data [16]. This has enabled
significant progress in overcoming the intrinsic difficulties of image-based 3D US reconstruction. DL
networks can automatically learn to identify and prioritize essential features within the US images by
leveraging labeled transformations associated with each image. This data-driven approach enables
the network to capture complex spatial and temporal patterns inherent in the imaging data, which is
crucial for accurately estimating probe trajectories and enhancing the precision and efficiency of the
reconstruction process. While traditional tracking technologies that require external reference are less
suited to point-of-care and intraoperative settings, inertial measurement units (IMUs) have emerged as
a viable and less obtrusive alternative for position tracking [17]. These devices integrate a tri-directional
magnetometer, a gyroscope, and an accelerometer into compact units. This offers a favorable balance
between hardware independence and the need for positional information in trajectory reconstruction.
With the growing adoption of IMU technology in clinical devices and developments in DL techniques,
image-based reconstruction methods without external tracking are becoming increasingly viable. Fur-
thermore, leveraging this IMU technology aligns with the ongoing shift towards more accessible and
efficient POCUS applications.

Given the rapid developments in the novel field of trackerless 3D US reconstruction, a literature
review was conducted to systematically evaluate the current state-of-the-art methodologies [18]. This
review revealed that studies employing convolutional neural networks (CNNs), sometimes combined
with IMU data, have shown promising results in refining freehand 3D reconstruction techniques com-
pared to traditional approaches. However, several challenges persist, associated with dataset char-
acteristics, reconstruction accuracy, and clinical applicability, highlighting the necessity for continued
research in this field. Although this literature review showed the importance of variance in trajectories
and anatomy, only 4 out of 23 datasets reported on sweeps encompassing different types of motion
like angular movements or wave-shaped trajectories, affecting model training and generalization capa-
bilities. Moreover, half of the datasets were confined to phantoms or arms, which may not adequately
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represent the variability and challenges encountered in clinical practice.
These findings highlight the need for more comprehensive datasets and advanced modeling ap-

proaches to improve reconstruction accuracy and clinical applicability. Therefore, the aim of this thesis
is twofold. First, it aims to acquire a high-quality dataset suitable for training a 3D US reconstruction
model, utilizing a POCUS probe with an integrated IMU. Although this methodology can be adapted to a
variety of clinical applications, this thesis specifically emphasizes data acquisition from resected ex vivo
tumor specimens. This dataset aims to encompass a variety of tissue types and a wide range of sweep
trajectories, including not only linear but also complex motions. The built-in IMU of the POCUS probe is
leveraged to enhance reconstruction accuracy, eliminating the need for manual sensor mounting and
enhancing clinical feasibility.

Secondly, this thesis develops a novel deep learning model with a CNN-Transformer architecture.
While previous studies have employed CNNswith various strategies to capture temporal dependencies,
Transformers represent the state-of-the-art in sequence modeling and have yet to be fully explored in
this context [19]. By integrating a Transformer, the model aims to capture long-range dependencies
within the data more effectively, possibly enhancing reconstruction accuracy.

In conclusion, this work seeks to lay the foundation for a workflow that can be leveraged for several
clinical applications. By advancing trackerless 3D US reconstruction, this research aims to bring this
technology one step closer to integration into routine clinical practice.





2
Methods

This chapter outlines the methodologies employed in this thesis, which are divided into three primary
sections. Section 2.1 details the experimental design, including how a dataset of sweeps of 2D ultra-
sound images was collected, along with the corresponding inertial and positional tracking data. Conse-
quently, all required data preparatation and preprocessing steps are discussed in Section 2.2. Finally,
Section 2.3 details the development and training of a deep learning model for 3D trajectory recon-
struction utilizing the collected dataset, encompassing the different methodologies employed for model
optimization and evaluation.

2.1. Experimental design
The following section outlines the experimental design, encompassing the patient inclusion criteria and
the hardware used in the data acquisition setup. Subsequently, the data collection process is described,
comprising of the employed scanning procedures, specifications of the trajectories and the method by
which the US images, inertial data and positional data are extracted to form the dataset.

2.1.1. Patient inclusion criteria
To develop a comprehensive dataset feasible for 3D reconstruction of 2D US images, data were ac-
quired from two primary sources: a variety of ex-vivo specimens and a US phantom. This approach
ensured variability in anatomical structures and tissue properties, enhancing the robustness and gen-
eralizability of the deep learning model.

Ex-vivo specimens were obtained directly after surgical resection procedures at the Netherlands
Cancer Institute (NKI) in Amsterdam, including mastectomies, lumpectomies, colorectal surgeries, and
sarcoma excisions. Both benign and malignant tissues were included to capture a spectrum of patho-
logical and normal tissue characteristics. Immediate post-resection imaging of these specimens pre-
served tissue integrity and acoustic properties, providing realistic data for model training. Specimens
that were too large to fit within the scanning setup (greater than 25 cm) or too small to provide suffi-
cient imaging data (less than 4 cm) were excluded to ensure equipment compatibility. Specimens with
excessive fluids or leakage that could pose a risk to equipment safety or tissue integrity were also not
included. All patients gave their informed consent to participate in scientific research, ensuring compli-
ance with ethical standards and patient confidentiality. Patient anonymity and data confidentiality were
strictly maintained throughout the study.

In addition to ex vivo specimens, an abdominal intraoperative and laparoscopic ultrasound Phan-
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6 2. Methods

tom ‘IOUSFAN’ was used (Kyoto Kagaku Co., Ltd., Kyoto, Japan). This phantom simulates detailed
abdominal anatomy and is designed for training of intraoperative and laparoscopic US procedures. It
offers a controlled environment to collect data that mimics the acoustic properties of human tissue.

2.1.2. Hardware of the acquisition setup
A custom data acquisition setup was designed to facilitate precise tracking of the US probe during
scanning. The configuration of this setup was critical for obtaining accurate ground truth positional
data necessary for training the 3D reconstruction model. By integrating the US probe with a motor-
ized scanner, controlled movements and synchronization between imaging and positional data were
achieved.

Point-Of-Care Ultrasound (POCUS) probe
The Clarius HD3 L20 was used for the acquisition of 2D US images. This is a wireless handheld
POCUS scanner equipped with an internal 9-degree-of-freedom (9-DOF) IMU sensor. The Clarius
HD3 L20 features a 25 mm wide field of view and operates within a frequency range of 8–20 MHz, with
a maximum imaging depth of 4 cm [20]. This device facilitates real-time streaming of both US images
and IMU data, enabling synchronized acquisition potentially of great value for 3D reconstruction tasks.
In this study, the probe operated in Research Mode, permitting customization of imaging parameters
and enabling of the IMU sensor.

Ultrasound images
Images were captured in B-mode at an imaging depth of 2 cm, utilizing a frequency of 14 MHz and a
frame rate ranging between 10 and 25 frames per second (fps), depending on the probe’s temperature
and battery life. The 2 cm imaging depth was chosen to visualize superficial structures such as tumor
margins using higher frequencies, providing high-resolution images while maintaining a sufficient frame
rate for accurate spatial reconstruction of the images during continuous probe movement.

Inertial Measurement Unit (IMU)
The integrated IMU comprises an accelerometer, a gyroscope, and magnetometer, providing compre-
hensive motion tracking capabilities that can be valuable for reconstructing 3D volumes from sequential
2D images. Each US frame was associated with multiple IMU data points, varying between one and
three. The coordinate system of the IMU follows an East-North-Up configuration for the 𝑥, 𝑦 and 𝑧
axis, respectively. The accelerometer and gyroscope are positioned at an offset from the center of the
imaging array of (−107.50 mm, −7.20 mm, 6.54 mm) along the 𝑥, 𝑦, and 𝑧 axis. The magnetometer
is located at (−92.19 mm, −21.73 mm, 6.46 mm). These spatial offsets are critical for accurate align-
ment between the IMU data, US images and ground truth position tracking during data processing. The
orientation and offsets relative to the probe are illustrated in Figure 2.1(a).

Motorized scanner
To facilitate controlled movement of the US probe and obtain accurate ground truth positional data, a
motorized scanner was employed to execute the US sweeps. The scanner was based on a modified
NEJE laser engraver machine, from which the laser component was removed to accommodate the
Clarius US probe. The original apparatus operated along two perpendicular linear axes (𝑥 and 𝑧), which
were extended to increase the range of motion, allowing comprehensive coverage of the specimens.
Linear motion along these axes was driven by two NEJE stepper motors, providing precise positioning
relative to the starting point of each sweep on the horizontal plane (𝑋𝑍). A manually adjustable 𝑦-
axis was introduced to position the probe at the correct height above the specimen, ensuring optimal
visualization.
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To replicate the complex movements performed during manual scanning and to create a represen-
tative dataset, an additional degree of freedom (DOF) was added by incorporating a rotation about the
lateral 𝑥-axis. This represented a tilting motion in the scanning direction, considered the most critical
angular movement for this application. Introducing more DOF increases mechanical complexity and
requires more sophisticated control algorithms. Therefore, a trade-off was made to balance represen-
tativeness and system complexity.

The original machine was modified to include this rotational DOF by integrating a third stepper
motor connected to the NEJE motherboard via an additional rotational interface. A custom 3D-printed
gearbox connected the framework of the motorized scanner, the US probe holder, and the third stepper
motor, facilitating controlled tilting of the probe. The 3D-printed probe holder was designed to precisely
fit the Clarius probe, eliminating any unwanted movement during scanning and ensuring consistent
positioning across all sweeps. The rotation point was aligned with the midline of the probe and located
at an offset of 82.5 mm from the imaging array. The final design enables automated movement along
the 𝑥- and 𝑧-axes and rotational tilting, introducing small additional variations in the manual set height
(𝑦) of the image acquisition. This configuration provides realistic movements while maintaining the
integrity of positional data, closely replicating manual scanning procedures. A schematic overview of
the motorized scanner and its components is shown in Figure 2.1(b).

Detailed specifications of the NEJEmachine, including themotherboard settings and steppermotor
configurations, are provided in Appendix A. These settings were optimized to ensure smooth and fluent
movements with minimal jerks or vibrations, which could adversely affect image quality or positional
accuracy. Specifically, the step sizes were calibrated such that one step corresponds to 1 mm of
linear motion along the 𝑥 and 𝑧 axes. The rotational step size for the tilting motion was configured to
correspond to an angular increment of 0.038 degrees, determined through calibration experiments.

Figure 2.1: Schematic representation of (a) the Clarius HD3 L20 US probe illustrating the orientation of the IMU and locations of
the accelerometer, gyroscope and magnetometer relative to the imaging array; (b) the US probe mounted in customized holder
attached to gearbox and motorized scanner.
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2.1.3. Data collection
Scanning procedure
To perform the US sweeps, the previously described hardware was utilized in a controlled scanning
procedure designed to collect high-quality data for 3D reconstruction. Specimens were placed inside
vacuum-sealed bags and submerged in a water-filled container to ensure optimal acoustic coupling, as
the US probe was not in direct contact with the tissue to prevent movement and deformation. The use of
vacuum bags allowed for secure mounting of the specimens using magnets, preventing movement due
to floating during the scanning process. For the phantom measurements, the phantom was similarly
immersed in water to facilitate acoustic contact. An illustration of this data acquisition setup is shown
in Figure 2.2(a).

Multiple sweeps were performed per specimen to capture sufficient data across different areas.
In order to maintain integrity and ensure variety of the dataset, the scanning trajectories did not show
any overlap. Depending on the specimen size, the motorized scanner executed a number of prede-
fined, randomly generated grids, following the criteria described in the next section. The scanner was
programmed to move the probe along these grid coordinates at a consistent speed randomly selected
within a range of 1.5 to 3 mm/s. Speed settings remained constant for all grids per specimen due
to time efficiency, as the settings were configured on the scanner’s motherboard. After each sweep,
the probe was manually repositioned to a new start position corresponding to the end position of the
executed sweep.

Figure 2.2: (a) Data acquisition setup with motorized scanner over water filled abdominal US phantom. (b) Side view with an
example of a grid trajectory on the horizontal plane (𝑋𝑍) in yellow and tilting range in blue.

Grid trajectory specifications
The grids were designed to simulate representative probemovements similar to those performed during
manual scanning, introducing variability in scanning trajectories. Randomized trajectories constrained
by predefined limits (e.g., maximum deviation on the 𝑥-axis and maximum length in the scanning di-
rection (𝑧-axis)) were created to mimic realistic motions while remaining within the physical capabilities
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of the setup. The grids consisted of G-code commands driving the stepper motors, representing linear
coordinate points (𝑥, 𝑧) with associated tilt angles (𝜃𝑥) relative to the start position (0, 0, 0).

The 𝑥-axis represented lateral movements, in which random step sizes between 0.05 mm and
1 mm were made, with direction changes introduced randomly to mimic natural scanning patterns.
The 𝑧-axis corresponded to the scanning direction along the length of the specimen, in which random
step sizes between 1 mm and 3 mm were made, ensuring consistent forward progression over the
specimen. This approach generated a meandering path over the specimen, resembling the exploratory
movements of manual scanning.

Tilt angles (𝜃𝑥) were incorporated to vary the orientation of the probe during scanning. This was
established by generating sinusoidal functions with random frequencies, amplitudes, and phase shifts
within set limits, resulting in a range of tilt angles from negative to positive values relative to the start
position. The tilt angles were generated to start with negative values and progress to positive values,
simulating the tilting motion a clinician might perform. In addition, random offsets were introduced to
the sinusoidal trajectory to provide more variation in the tilt of the probe. An example of a generated
scanning grid over the phantom is illustrated in Figure 2.2(b), in which the tilt motion is visualized by
the range of angular variation facilitated by the grids.

Due to the offset between the probe’s rotation point and its imaging array (82.5 mm), tilting the
probe affects the imaging plane’s position in both 𝑧 (forward) and 𝑦 (upward) directions. To account
for this displacement and maintain a consistent forward motion of the imaging array, a correction factor
was applied to the 𝑧-coordinate in the grid based on the tilt angle, using the trigonometric relationship:

Δ𝑧 = 82.5 ⋅ cos(3𝜋2 + 𝜃𝑥) ,

where Δ𝑧 is the correction applied to the 𝑧-coordinate on the trajectory grid and 𝜃𝑥 is the angle of tilt in
radians. This correction ensured that the imaging plane remained aligned with the intended scanning
path, preventing excessive forward or backward shifts due to probe rotation.

Data extraction and synchronisation
The scanning process was controlled through a custom software developed in Python (version 3.8.18),
that simultaneously executed the movement of the scanner, captured ground truth positional data, and
streamed data from the Clarius probe. US images and IMU data of the Clarius were retrieved through
Python using the Clarius Cast API (version 11.2.0), which requires the Clarius App (version 11.2.2) to
be running simultaneously. Each frame and IMU data was tagged with a time of acquisition relative to
the device startup time, designated as ’timestamp’. The movement of the scanner was controlled using
G-code programming, allowing precise control of the movement and facilitating the implementation of
customized scanning trajectories. Simultaneously, the ground truth position was continuously extracted
using serial communication, where the motors’ responses to the G-code commands provided machine
position data for each axis, along with machine status data. A detailed overview of the collected data
is shown in Table 2.1.

To ensure synchronization of the data streams, the data acquisition of the Clarius probe was ini-
tiated first. A two-second delay was incorporated to ensure stable connections and synchronization,
before movement of the scanner along the predefined grid was initiated. Upon completion of the move-
ment, a 20-second delay was incorporated to account for data buffering, ensuring all data were received
before saving. Since the data retrieved from Clarius provided timestamps relative to the device startup
time, absolute time synchronization was achieved by aligning the initial timestamp from Clarius with
the initial ground truth position, adjusted by the two-seconds advance of initialization. Wireless con-
nections and buffering could introduce delays in data acquisition and retrieval from the Clarius device.
By utilizing the USB serial connection for the ground truth data and carefully accounting for timing off-
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Table 2.1: Dataset specifications

Acquisition Tool Data Type Measurements Units Temporal info
Clarius (Cast API) US image PNG image (480 × 640

pixels)
Grayscale Timestamp

Clarius (Cast API) Inertial data

- Accelerometer (x, y, z)
- Gyroscope (x, y, z)
- Magnetometer (x, y, z)
- Orientation quaternion

- m/s2

- rad/s
- Gauss
- Dimensionless

Timestamp

Motorized scanner
(USB Serial)

Ground truth
position

X, Y, Tilt positions relative to
start

Stepper motor
coordinates

Execution time
(wall-clock)

sets, accurate synchronization between the datasets was achieved. This synchronization was critical
for aligning the US images and inertial data with the corresponding positional ground truth, providing a
comprehensive dataset for subsequent 3D reconstruction.

2.2. Data preparation and preprocessing
Data preprocessing is a crucial step in preparing the acquired dataset for developing a deep learning
model for 3D trajectory reconstruction. The raw data, comprising US images, inertial data, and ground
truth positional data, require alignment, synchronization, and formatting to ensure consistency and
usability. This section first details the preparation required for the synchronized sweep trajectory data
and the determination of the ground-truth US position labels for training of the model. Secondly, the
preprocessing of the input data is outlined, including the US images, the computation of optical flow,
and lastly the inertial data from the IMU measurements. This process ultimately provides the data that
is input into the model.

2.2.1. Preparation of sweep trajectory
The preparation of the complete sweep of streamed data acquired during data collection, comprising
US images and IMU data, was conducted in three stages. The initial stage involved alignment, followed
by cropping and then subsampling to obtain the final datasets. Subsequently, ground truth position in-
formation was assigned to each frame in the dataset based on the movement of the motorized scanner.
These steps are outlined in Figure 2.3.

Figure 2.3: Workflow for preparing the collected data for data preprocessing, including alignment, temporal cropping, subsam-
pling of the dataset and ground truth position labeling.
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Temporal cropping
After initial alignment and synchronization of the US images, inertial data and positional data, the com-
bined dataset was visualized to verify the accuracy of the alignment and to detect any potential lags
or interruptions in data streaming due to network connectivity issues. Visualization involved plotting
the positional data over time and overlaying it with the timestamps of the US images and IMU data.
Segments with interruptions or inconsistencies between data sources were excluded to maintain the
integrity of the dataset. To focus on the region of interest, the US images and inertial data were tem-
porally cropped to include only relevant portions of the streamed data, corresponding to the movement
interval of the motorized scanner. This step was essential to ensure that the datasets were correctly
synchronized and included relevant data with no discrepancies that could adversely affect model train-
ing.

Subsampling of data
Due to the high frame rate of the US images and the relatively low scanning speed, the relative trans-
formations between consecutive frames were minimal. However, translations between consecutive
frames smaller than the pixel size of 0.04 mm by 0.04 mm, are indistinguishable in the image, resulting
in a low signal-to-noise ratio (SNR) in the training data. Training the 3D reconstruction model on such
data might cause it to focus on noise rather than meaningful movements, potentially degrading perfor-
mance. To address this issue, additional datasets were created by subsampling the streamed data at
lower frame rates, effectively increasing the displacement between frames and reducing the temporal
resolution. By selecting every 4-th (interval of 3 frames), 6-th (interval of 5 frames) and 11-th frame (in-
terval of 10 frames) as consecutive frame, three additional datasets were created and subjected to the
data preprocessing workflow. However, it was essential to avoid excessively large frame intervals, as
this could result in a loss of continuity and omission of important intermediate spatial information nec-
essary for accurate 3D reconstruction. The characteristics of the subsampled datasets are presented
in Table 2.2.

Table 2.2: Characteristics of subsampled datasets, representing the mean relative transformations between consecutive frames.

Subsampling
Dataset

Frames (n)
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

ΔX (mm)
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

ΔY (mm)
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Δ Z (mm)
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

ΔTilt (°)
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Consecutive 617 (±174) 0.018 (±0.006) 0.008 (±0.006) 0.080 (±0.017) 0.065 (±0.017)
Interval 3 154 (±43) 0.073 (±0.022) 0.031 (±0.025) 0.313 (±0.071) 0.254 (±0.064)
Interval 5 103 (±29) 0.109 (±0.033) 0.046 (±0.037) 0.469 (±0.106) 0.376 (±0.095)
Interval 10 56 (±15) 0.198 (±0.060) 0.080 (±0.066) 0.861 (±0.197) 0.663 (±0.167)

Ground-truth position labels
As a result of the alignment, the cropped and subsampled datasets were synchronized with the ground
truth data from the motorized scanner through timestamps. As positional data from the motorized scan-
ner were retrieved every 0.001 seconds, the nearest corresponding ground-truth position was identified
based on the timestamp of each US image. The extracted machine position data were converted to
transformation matrices including translation parameters (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) in millimeters and rotation parame-
ters (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧) in radians, using the calibration values discussed in Section 2.1.2. In this setup, 𝜃𝑦 and
𝜃𝑧, remained zero due to the limited DOF of the motorized scanner. As described in Section 2.1.3, tilting
of the probe (𝜃𝑥) influenced the effective position of the imaging array in both 𝑧- and 𝑦-directions, which
required a correction of the generated 𝑧-coordinates for motor input, to match the intended trajectory.
Using the same trigonometric relationship, considering the offset of 82.5 mm between the probe’s rota-
tion point and its imaging array, the extracted motor position was now transformed to the location of the
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Figure 2.4: Illustration of a scanning trajectory on the horizontal an lateral planes. (a) A random generated grid (𝑥, 𝑧). (b)
Corresponding 3D US reconstruction using ground-truth US position labels (𝑋𝑍-plane). (c) A random generated tilt grid (𝑧, 𝜃𝑥).
(d) Corresponding 3D US reconstruction using ground-truth US position labels, illustrating the tilt and height along the scanning
direction (𝑍𝑌-plane).

imaging array. This provided a ground-truth trajectory of the imaging array, corresponding to the top
border of the US images. An example of the US sweep using ground truth position labels, along with
the generated trajectory grid, is presented in Figure 2.4. The final labels for the ground-truth trajectory
of the images in each sequence were defined as:

• Local transformations (Δ𝑡𝑥 , Δ𝑡𝑦 , Δ𝑡𝑧 , Δ𝜃𝑥 , Δ𝜃𝑦 , Δ𝜃𝑧): Representing the relative translation and ro-
tation parameters between consecutive frames.

• Global transformations (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 , 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧): Representing the absolute translation and rotation
parameters for each frame, normalized to zero at the start position of the sweep. This provides
the cumulative position and orientation of the probe at each time point.

Normalization of the labels was required to address differences in scales between parameters
(millimeters vs. radians) and differences in the magnitude of movement between axes. Parameter-wise
normalization was performed by dividing each parameter by its standard deviation computed from the
training dataset, without subtracting the mean to maintain zero as the stationary value. The absence of
motion was thereby accurately preserved. This approach ensured equal contribution of all parameters
during model training, preventing those with larger magnitudes from dominating the loss function.

2.2.2. Preprocessing of input data
Following preparation of the sweep trajectory data, several preprocessing steps were applied to the
US images and IMU datain order to enhance data quality and ensure consistency, facilitating effective
training of the deep learning model. A summary of the conducted preprocessing steps per data type is
presented in Figure 2.5.

Ultrasound images
The original US images of 480 × 640 pixels contained 22 black pixels on both the left and right sides
due to the probe’s field of view. As these pixels only serve as padding, the images were cropped to
a multitude of 32 and resized to a square of 480 × 480 pixels, to meet the input requirements of the
deep learning network. Pixel intensities, ranging between 0 and 255, were normalized to standardize
the input data, using an approximation of the mean (𝜇) and standard deviation (𝜎) computed on the
training set, centering the values around zero with unit variance.
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Figure 2.5: Overview of the preprocessing workflow, detailing steps for the US images, optical flow computation, and IMU data.

Optical flow
The ability of the model to capture in-plane motion between consecutive US frames, critical for ac-
curate 3D reconstruction, is enhanced by including optical flow information as additional input for the
model. Previous studies have demonstrated a consistently positive effect on performance using optical
flow, providing a rationale for this approach [21–25]. Optical flow represents the apparent motion of
anatomical structures, surfaces, and edges within a US image, as observed from changes in pixel val-
ues between consecutive frames [26]. In the context of 3D reconstruction, this can serve as valuable
information, as the movement of pixels between successive US images occurs due to the movement
of the probe. However, US images inherently contain a significant amount of speckle noise and arti-
facts, which can adversely affect the computation of optical flow by introducing false motion vectors.
To improve the quality of the optical flow estimation, a series of denoising steps were applied to the US
images before computation of the optical flow. The final parameters employed per denoising step are
presented in Appendix B.

First, a Gaussian blur was applied which effectively suppresses noise by smoothing the image
while preserving the overall structure. Subsequently, a bilateral filter was used, which considers both
the spatial distance and intensity differences between pixels. This further reduces noise in homoge-
neous regions (small intensity differences) while maintaining sharp edges (high intensity differences),
which are important for distinguishing structural features for motion estimation. Finally, a sharpening
kernel was applied to accentuate edges and features within the image. This improves the detection
of structural details within the US image, aiding in the accurate computation of optical flow vectors
corresponding to actual movements.

After denoising, the Farnebäck optical flow algorithm was used to compute the optical flow be-
tween consecutive frames [27]. This algorithm estimates the displacement of each pixel between two
images by modeling the motion as polynomial expansions. It includes several parameters that were
fine-tuned based on experimental evaluations to optimize the balance between sensitivity to motion and
robustness to noise. Specifically, to converge to optimal denoising filters and parameters for optical
flow computation, test cases were created by manually translating frames by known amounts and di-
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Figure 2.6: Visualization of a test case for a horizontally translated US frame, and its computed optical flow represented by
motion vectors, downsampled for visualization purposes.

rections. The computed optical flow vectors were then compared to the expected movement to ensure
that the optical flow algorithm and denoising steps accurately captured the true motion between frames
and was not significantly affected by noise. An example of the computed optical flow, demonstrated
over the original US image using the final configuration, is shown in Figure 2.6.

Finally, the optical flow vectors were normalized in the same manner as the transformation param-
eters using only the standard deviation computed across the training dataset. By not subtracting the
mean, zero-valued vectors representing no movement between frames were preserved.

Inertial Measurement Unit (IMU)
The IMU integrated into the US probe provides valuable data comprising readings from the accelerom-
eter, gyroscope, and magnetometer, as well as orientation quaternions. These data have the potential
to offer information about the probe’s orientation and translation during scanning. However, signifi-
cant preprocessing is required to extract meaningful insights due to inherent noise and instability in the
signals [28].

Despite the implementation of several preprocessing steps, significant challenges were encoun-
tered in obtaining reliable displacement estimates from the accelerometer data. The steps performed
are described in Appendix C. As a result, the accelerometer data were excluded for further use in the
model, focusing on the orientation data solely.

Processing orientation data
The orientation of the IMU is represented by quaternions, consisting of one real component (𝑤) and
three imaginary components (𝑥, 𝑦, 𝑧). This four-dimensional number system provides a non-singular
representation of 3D rotations. For the purpose of this study, the quaternions were converted to Euler
angles to facilitate interpretation and alignment with the ground truth tilt angles of themotorized scanner.
The conversion used the 𝑍𝑋𝑌 Euler sequence, which corresponds to rotations around the 𝑧, 𝑥, and 𝑦
axes, respectively.

The global reference frame of the IMU sensor in the US probe, as discussed in Section 2.1.2, was
aligned in a flat position. However, when mounted in the 3D-printed probe holder, the IMU sensor had
an offset angle of 90 degrees in pitch, facilitating scanning in a vertical position, as shown in Figure
2.7. To account for this offset, the Euler angles were normalized by subtracting the mean of the initial
stationary measurements acquired before the start of each sweep. This normalization set the initial
orientation to zero degrees for all angles, ensuring alignment with the ground truth orientation labels at
the start of the sweep.

To align the IMU data with the US images and motorized scanner coordinate system, the IMU axes
were redefined accordingly (see Table 2.3). In this configuration, the pitch angle (𝜃𝑥) corresponds to
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Figure 2.7: Example of the measured Euler angles yaw, pitch, and roll in initial measurement position, relative to the global
reference frame, used for normalization to an initial offset of zero.

Table 2.3: Mapping of IMU Euler angles to the coordinate system of the image acquisition setup.

IMU Euler angle Rotation axis IMU Rotation axis setup Motion
Yaw Rotation around z-axis (𝜃𝑧) z-axis (𝜃𝑧) Scanning direction (stable)
Pitch Rotation around y-axis (𝜃𝑦) x-axis (𝜃𝑥) Lateral (tilting)
Roll Rotation around x-axis (𝜃𝑥) y-axis (𝜃𝑦) Height (stable)

the tilt motion introduced by the scanner, while yaw (𝜃𝑧) and roll (𝜃𝑦) angles are expected to remain
constant, as the scanner only facilitates rotation around the x-axis. Any variation in yaw or roll would
therefore indicate unintended movements or noise.

Exclusion of Yaw and Roll
During preliminary analyses, it was observed that the yaw angle (𝜃𝑧) exhibited significant instability and
noise, primarily due to magnetic interference from external sources such as the stepper motors, the
magnets stabilizing the specimen, or other surrounding metal structures. This interference affected the
reliability of the magnetometer readings, which are critical for accurate yaw measurements. Given the
constant yaw and roll angles during scanning, they were excluded from further analysis as this would
merely introduce noise and did not contribute meaningful information. Focusing solely on the pitch
angle (𝜃𝑥) provided the necessary information allowing for a more accurate estimation of the probe’s
orientation during scanning, critical for reconstructing the 3D position of the US images.

Local and Global pitch
To incorporate the IMU orientation data in the deep learning model, the local pitch and global pitch,
were computed to match the ground-truth local and global rotation labels. For each US image, the
closest IMU measurement in time was associated, providing the pitch angle (𝜃𝑥) at that time point.
An example is illustrated in Figure 2.8. Both sets were normalized by dividing each parameter by its
standard deviation, ensuring consistent scaling during model training and maintaining an angle of zero
at zero.

Figure 2.8: Global pitch (𝜃𝑥) of the IMU measurements compared to the ground truth orientation, over a US sequence of n
frames.
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2.3. Development of 3D reconstruction model
This section outlines the methodology employed in the development and training of the deep learning
model, which has been designed for the purpose of 3D trajectory reconstruction of 2D US sequences.
The section starts with a description of the baseline network architecture, followed by an overview
of four categories of ablation experiments designed to enhance model performance. As illustrated in
Figure 2.9, these include the integration of the IMU orientation, the implementation of generalization
techniques, and training with different loss functions and different subsampled datasets (Section 2.3.2
− Section 2.3.5). Subsequently, the implementation details of model training are discussed, and the
iterative methodology and outcomemetrics used for evaluation of the ablation experiments are outlined,
which ultimately lead to the final optimizedmodel. Finally, the application of the 3D reconstructionmodel
to the test set is presented, encompassing inference and visualization steps.

Figure 2.9: Flow diagram for the model development and iterative optimization of the baseline network architecture by ablation
experiments 1 to 4.

2.3.1. Baseline Network Architecture
The proposed deep learning model combines a lightweight convolutional neural network (CNN) back-
bone with a Transformer decoder. By combining these two architectures, we leverage the CNN’s ability
to efficiently extract spatial features from individual images and the Transformer’s capacity to model
temporal dependencies across sequences [19]. Consequently, the model is capable of considering in-
formation from other frames within the sweep, thereby providing context that can enhance the prediction
of transformations between frames. The objective of this design is to achieve an accurate 3D recon-
struction while maintaining computational efficiency, which makes it suitable for real-time processing
requirements.

The CNN backbone is based on the compact MobileNetV4 architecture, which has been pre-
trained on ImageNet [29]. This has been selected for its efficiency and suitability for handling the
large amount of sequential data in this study. The CNN processes each successive pair of US im-
ages with corresponding optical flow data in order to extract high-level spatial features, resulting in a
set of feature maps with reduced spatial dimensions and increased depth. To prepare these features
for sequential modeling by the transformer, an embedding projection module transforms the feature
maps into fixed-length embeddings. Positional encodings are added to the embeddings to incorpo-
rate temporal information, enabling the Transformer to distinguish the position of each frame within the
sequence, a crucial aspect for modeling motion dynamics.

The Transformer decoder processes the entire sequence of embeddings to model temporal de-
pendencies. It effectively captures motion dynamics and long-range relationships across the sequence
without the limitations of recurrent neural networks, such as vanishing gradients or limited memory ca-
pacity that would be insufficient for the large number of frames in the sequence. It has a multi-layer,
multi-head self-attention mechanism, which allows the model to weigh the relevance of different frames
when making predictions.

Finally, the enriched embeddings from the Transformer are fed into four distinct classification heads
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to predict the transformation parameters: local translation (LT), local rotation (LR), global translation
(GT), and global rotation (GR). By using separate classification heads for local and global transforma-
tions, the model can discern both immediate changes between frames and movements relative to the
initial position, thereby facilitating specialized learning leading to potentially more accurate predictions.

Figure 2.10: Overview of the CNN-Transformer architecture used as baseline model. In addition, it incorporates the IMU 1 and
IMU 2 components, which pertain to the integration methods outlined Section 2.3.2.

2.3.2. Experiment 1: Integration of IMU orientation
To enhance the model performance for 3D reconstruction, the baseline network architecture was aug-
mented with the integration of IMU orientation data. Given the lack of consensus on an optimal method-
ology for incorporating IMU data, two integration strategies, illustrated in Figure 2.10, were examined
to assess effectiveness in this context,.

In the first strategy, the local and global pitch angles derived from the IMU were employed as
supplementary input channels, in conjunction with the US images and optical flow data. By directly
incorporating the IMU orientation data into the model’s input, the network has the potential to learn
complex relationships between the IMU measurements and spatial features extracted from the im-
ages. This approach allows the model to leverage spatial correlations by providing explicit orientation
information at the earliest stage of processing.

The second strategy involved concatenating the IMU orientation data to the network’s feature rep-
resentation prior to the classification heads. By involving the IMU data at this stage, the model retains
the distinct features learned from the images and optical flow while integrating the orientation infor-
mation to inform the final predictions. This method reduces the risk of overfitting or over-engineering
of features, as the IMU data are introduced after the main feature extraction and temporal modeling
processes, allowing for a clearer contribution of the IMU to the final output.

For both methods, referred to as 1A and 2A, the models were trained to predict both orientation
and translation labels, utilizing the full potential of the combined data sources. In addition, a second
evaluation strategy was examined for both models, referred to as 1B and 2B, whereby the translation
parameters were predicted by the model, while the orientation labels adhered strictly to the local and
global pitch angles provided by the IMU. This resulted in four final methods being evaluated for the
integration with IMU orientation.
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2.3.3. Experiment 2: Generalization methods
In the second experiment to improve model performance, data augmentation strategies and architec-
tural modifications were employed to prevent overfitting and improve the model’s generalization capa-
bilities. Data augmentation was applied at two different levels; sequence-level and image-level. This
was done with the objective of introducing variability and better representing the diversity of trajectories
and images. As a third method, architectural modifications were introduced, applying regularization di-
rectly within the network’s architecture. This resulted in three distinct models, each evaluated for their
impact on overall performance.

Data augmentation
At the level of sequence augmentation, three techniques were applied; flipping the temporal order of
frames within the sequence, mirroring the images horizontally and random cropping by using different
start and end points within the sequence. These augmentations were carefully designed to maintain
the spatial relationships between frames, with corresponding optical flow and transformation labels
adjusted accordingly to reflect the augmentations applied. This contributes to the model’s robustness
with regard to variations in temporal order, spatial characteristics, as well as sequence length.

Data augmentation at image level included random applied adjustments to the image including
brightness, contrast and gamma correction, within the limits of preset magnitudes. These adjustments
introduced variability in the appearance of the US images, enhancing the model’s robustness to varia-
tions of imaging conditions or settings.

According to the augmentation method, whether sequence-level or image-level, the augmentation
technique was applied to all images in the sequence with a probability of 0.5, thereby enabling multiple
augmentations to occur concurrently. A visual representation of the three sequence-level augmenta-
tion techniques is presented in Figure 2.11(a), and an example of image-level augmentation in Figure
2.11(b).

Figure 2.11: (a) Illustration of sequence augmentation techniques, including direction change, random cropping or horizontal
mirroring. (b) Example of image augmentation by adjustments in brightness, contrast and gamma correction of two US images.

Network architecture level
Regularization at the level of the network architecture included deployment of dropout layers and in-
put channel dropout. Dropout layers were integrated in the embedding and classification layers, with
dropout rates set to 0.2 and 0.3, respectively. During training, dropout randomly deactivates a fraction
of neurons to prevent certain neurons from relying too heavily on specific patterns and encouraging the
network to learn more robust and generalizable features. During inference all neurons remain active,
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and their outputs are scaled to reflect the training dropout rates, ensuring consistency in predictions.
In addition, an input channel masking method was applied, where one of the input channels, either
the first US frame, the second US frame, or the horizontal or vertical components of the optical flow,
was randomly set to zero with equal probability during training. This approach forces the model to rely
on multiple modalities and prevents over-reliance on a single input channel, enhancing its ability to
generalize.

2.3.4. Experiment 3: Loss functions
As third experiment, alternative loss functions were employed in model training. The adopted network
architecture is capable of predicting four distinct types of transformations through its four classification
heads, namely local translation, local rotation, global translation, and global rotation. In order to train
the model effectively, separate loss functions are computed for each of these outputs, focusing on
both translation and rotation parameters for both local and global parameters. The total loss used
for backpropagation is the sum of the individual losses computed for each transformation type. This
approach allows the model to learn multiple related tasks simultaneously, while ensuring that each task
contributes appropriately to the learning process after normalization.

Specifically, three different types of loss functions were employed to evaluate and optimize the
model’s performance:

Mean Absolute Error (MAE)
The initial approach, employed in the baseline model, entailed the Mean Absolute Error (MAE), also
known as the L1 loss. This loss function is robust to outliers and provides a stable gradient, ensuring
that the model minimizes the average absolute difference between the predicted and ground truth
parameters over all frames in a sequence. It is defined as:

MAE = 1
𝑁

𝑁

∑
𝑘=1

‖𝑇pred𝑘 − 𝑇true𝑘 ‖
1

(2.1)

where:

• 𝑁 is the number of frames.

• 𝑇pred𝑘 and 𝑇true𝑘 are the predicted and ground truth transformation matrices, consisting of either
translation (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) or rotation (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧) parameters for frame 𝑘, representing local or global
coordinates.

• ‖⋅‖1 denotes the L1 norm, which is the sum of absolute differences.

However, the MAE treats each frame independently and does not account for temporal dependencies,
potentially leading to drift accumulation over time.

MAE and Pearson Correlation Loss
To address the limitations of using MAE alone, a combined loss function was introduced, inspired by
approaches in literature that incorporate a Pearson Correlation Loss term [21, 30–32]. The MAE com-
ponent ensures that the model minimizes the average absolute error between the predicted and ground
truth parameters, focusing on the frame-wise magnitude of errors. The Pearson Correlation Loss com-
plements this by focusing on the overall shape and trends of the predicted sequences by measuring the
linear relationship between predicted and ground-truth parameters. It ensures that the predicted tem-
poral dynamics align with those of the ground truth. By combining these two loss functions, the model
could benefit from both point-wise accuracy through the MAE, and temporal consistency through the
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correlation loss. The combined loss function is defined as:

𝐿total = 𝐿MAE + (1 −
Cov (𝑇pred, 𝑇true)

𝜎𝑇pred𝜎𝑇true
) (2.2)

where:

• 𝐿MAE is the MAE loss computed as in Equation (2.1).

• Cov (𝑇pred, 𝑇GT) is the covariance between the predicted and ground truth sequences.
• 𝜎𝑇pred and 𝜎𝑇true are the standard deviations of the predicted and ground truth sequences.

• Cov(𝑇pred , 𝑇true)
𝜎𝑇pred𝜎𝑇true

is the Pearson correlation coefficient.

By subtracting the Pearson correlation coefficient from 1, the loss function encourages higher
correlation (lower loss) between the predicted and ground truth parameters, encouraging the model to
capture the correct temporal trends and relationships.

Mean Squared Error (MSE)
As a third loss function, the MSE, or L2 loss, was employed. It calculates the average squared differ-
ence between the predicted and ground truth parameters, and is defined as:

MSE = 1
𝑁

𝑁

∑
𝑘=1

‖𝑇pred𝑘 − 𝑇true𝑘 ‖
2

2
(2.3)

where ‖⋅‖2 denotes the L2 norm. The MSE penalizes larger errors more heavily due to the squaring of
the error terms. This property makes the MSE more sensitive to outliers and noise, compared to the
MAE. However, it encourages the model to focus on minimizing significant deviations, which is valuable
when large errors are particularly undesirable.

2.3.5. Experiment 4: Subsampled datasets
As a final experiment for model optimization, the model was trained on the three subsampled datasets
described in Section 2.2.1. Up until this point, the dataset with an interval of 5 frames was utilized.
Subsequently, training was conducted on datasets with reducing interval of 3 frames, with smaller in-
terframe distances, and an increasing interval of 10 frames, with larger interframe distances. This
resulted in a different distribution of transformation parameters, requiring recomputation of normaliza-
tion parameters. As the average number of frames in a sequence varied per dataset, the dimensions
for random cropping in data augmentation were adjusted.

2.3.6. Implementation details
In all experiments, except for the specific modifications examined, consistent training parameters and
procedures weremaintained to ensure that any observed differences in performance could be attributed
solely to the experimental variables.

For model development, the complete dataset, comprising both phantom and ex-vivo data, was
randomly divided into a training set (80%) and a test set (20%) without patient stratification, as each
trajectory was unique and no overlap between sweeps occurred. The test set was exclusively reserved
for the final evaluation and visualization. To evaluate the effect of the different experiments, a 5-fold
cross-validation strategy was employed for the training set, with a fixed random seed to ensure consis-
tent data splits across all experiments. This facilitated reliable comparisons between different models
and configurations.
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The CNN and Transformer decoder were implemented using PyTorch (version 2.3.1) and trained
on a single GPU. The input of the CNN included pairs of US images and their corresponding optical flow
components (in horizontal and vertical direction), resulting in four input channels per sample. Training
was performed with a batch size of 1, as transformers require input sequences within a batch to be
of equal length. Due to the variable lengths of US sequences, a larger batch size would necessitate
padding all sequences to match the longest one, leading to computational inefficiency. Models were
optimized using different loss functions described in Section 2.3.4, with an Adam optimizer and an initial
learning rate of 5 × 10−4. A one-cycle learning rate scheduler was used, which briefly increases the
learning rate to a peak before gradually decreasing it over the course of training. This approach helps
in achieving better convergence and avoiding local minima. Models were trained for 100 epochs, pro-
viding sufficient time for convergence without significant overfitting. Model performance was monitored
using the validation loss and evaluation metrics on the cross-validation folds. Consistent decreases in
validation loss and stable evaluation metrics indicated proper convergence.

2.3.7. Ablation experiments
Ablation experiments were conducted to systematically assess the impact of specific model compo-
nents on the performance, thereby elucidating the contribution of individual elements within the model
architecture.

The experiments were performed iteratively, with the best model from each experiment serving
as the new baseline for the subsequent one. This allowed for a systematic assessment of each mod-
ification while limiting the number of models trained. The sequence of experiments was designed to
proceed from those expected to have the greatest impact on performance to those with potentially
lesser effects. This approach began with the integration of IMU data, as prior studies indicate its signif-
icant influence onmodel performance [21, 22, 30, 31]. Subsequent experiments focused onmethods to
enhance generalization and robustness, such as data augmentation and dropout. Finally, adjustments
like alternative loss functions and dataset subsampling were evaluated.

Within each experiment, model performance was assessed per parameter using the outcome met-
rics discussed in Section 2.3.8. Models were ranked based on these metrics, and the best-performing
model was statistically compared to the baseline model per parameter. As the outcome metrics were
not normally distributed, aWilcoxon signed-rank test was employed to assess significant improvements
[33]. A p-value less than 0.05, after applying Holm’s correction for multiple testing due to the number
of outcome measures and parameters, was considered significant [34]. A model was considered to
perform better than the baseline if it demonstrated significant improvements in more parameters than
those exhibiting a decline in performance. This model subsequently served as the new baseline for the
next experiment and culminated in the configuration of the final model.

2.3.8. Quantitative outcome measures
To evaluate the performance of the models, several quantitative outcome measures were employed,
focusing on the accuracy of the predicted transformation parameters and the reconstruction of the
probe’s trajectory.

Mean Absolute Error (MAE)
The metric employed for the assessment of error for each distinct parameter along each axis, at each
time step, was the MAE. It quantifies the mean of the absolute difference between the predicted and
ground-truth transformation parameters. This metric directly corresponds to the MAE loss function
defined in Equation 2.1.
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Final Drift (FD) and Final Drift Rate (FDR)
Another key metric in trajectory reconstruction is the final drift (FD), defined by the Euclidean distance
(in millimeters) between the positions of the center of the last frame of the estimated trajectory and the
last frame of the ground truth trajectory. Since the prediction of the trajectory of the sweep is based
on a transformation between successive frames, errors accumulate over the length of the sweep. This
accumulated error is reflected in the metric FD.

To account for the varying lengths of different sweeps, the Final Drift Rate (FDR) was computed by
normalizing the FD by the total length of the ground truth trajectory, and is expressed as a percentage.
The FDR provides a relative measure of the drift, making it comparable across sequences of different
lengths. It is important to note that a minimal FD or FDR does not necessarily indicate a satisfactory
reconstruction for complex scan strategies, as only the location of the last frame is taken into account.

Selection for evaluation of ablation experiments
To fairly assess significant improvements of a model compared to the baseline, a selection of trans-
formation parameters and outcome metrics was made. Since the rotations around the y-axis (𝜃𝑦) and
z-axis (𝜃𝑧) remained constant at zero in the dataset, the evaluation of orientation parameters focused
on rotation around the x-axis (𝜃𝑥). Together with three translation parameters, this resulted in a selec-
tion of four transformation parameters assessed using the MAE.

Additionally, as similar data was used in all ablation experiments (Section 2.3.2 - Section 2.3.5),
thus had consistent lengths, the FD and FDR provided similar information. While FD is a valuable
metric in assessing performance, it was redundant in the context of ablation experiments. Therefore,
the FDR was selected for evaluation of the experiments, allowing for better comparison across different
sequences as it normalizes for the length of the sweep.

For the first three ablation experiments, the MAE and FDR were considered for both local and
global transformations, resulting in a total of tenmetrics for evaluation. In the fourth ablation experiment,
utilizing different subsampled datasets, the focus was on solely the global parameters assessed byMAE
and FDR. The varying data distributions, specifically the interframe distances, impacted the values of
local MAE, making comparisons challenging. However, global transformations provided a consistent
basis for evaluation. An overview of the selected parameters and metrics per ablation experiment is
provided in Table 2.4.

Table 2.4: Selected metrics for evaluation of the ablation experiments

Ablation Experiment Metrics (local parameters) Metrics (global parameters)
1. IMU MAE (𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥) MAE (𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥)
2. Generalization FDR FDR
3. Loss functions
4. Subsampling datasets N/A MAE (𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥)

N/A FDR

Selection for evaluation of the final model
For final model evaluation, the FD, FDR and MAE excluding rotations around the y-axis (𝜃𝑦) and z-axis
(𝜃𝑧), were considered for both local and global transformations.

The CNN-Transformer architecture further provides the flexibility to predict two distinct output
types: local and global parameters. As both local and global parameters can be used for 3D reconstruc-
tion, this allows for a comparative analysis. Specifically, the local labels, representing frame-to-frame
transformations, were accumulated over time to form global labels. These cumulative local labels were
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then compared to the global labels predicted directly by the Transformer using the MAE and FDR met-
rics. Statistical comparisons were conducted using theWilcoxon signed-rank test due to the non-normal
distribution of the data, with Holm’s correction applied to adjust for multiple comparisons.

2.3.9. Inference and visualization of 3D reconstruction model
While the quantitative evaluation of 3D trajectory reconstructions provides a basis for selecting the most
accurate model based on trajectory errors, visualizing the 3D reconstructions offers valuable insights
into the practical applicability of the model. Accordingly, following the quantitative assessment of the
final optimized model on the separately reserved test set, the inference and visualization of a sample
within the test set was demonstrated. The predicted transformations were reconstructed in 3D as
follows:

1. Positioning frames in space: The predicted transformations were applied to position each US
frame in 3D space, reconstructing the trajectory of the probe. This spatial arrangement provides
a visual representation of the sweep and demonstrates the model’s ability to accurately track the
probe’s movement, aligning with the scope of this thesis.

2. Filling voxel gaps: Nearest neighbour interpolation was employed to fill the voxel spaces between
frames. This step aimed to generate a continuous 3D structure, enhancing the visual complete-
ness of the reconstruction and to facilitate the interpretation of the anatomical features.

3. Segmentation: As a practical use case, anatomical structures in the ex-vivo specimen were man-
ually segmented on the 2D US frames and reconstructed to a 3D volume using nearest neighbor
interpolation.
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Results

3.1. Data acquisition
3.1.1. Dataset characteristics
The dataset acquired in this thesis comprised a total of 361 US sweeps, including 340 sweeps derived
from ex-vivo specimens and 21 sweeps from a phantom model. Multiple sweeps were acquired per
specimen, each at different locations, to capture a diverse range of tissue characteristics ensuring no
overlap. An overview of the dataset, categorized by tissue type, is presented in Table 3.1.

Each sweep captured a unique trajectory to encompass variability in probe movement. The trajec-
tory characteristics extracted from the ground truth data across the entire dataset revealed a median
sweep length of 49.97 mm (range: 9.9-60.2 mm). The lateral movements along the x-axis ranged from
−5 mm to 7.8 mm, while vertical movements along the y-axis ranged from 0 to 15.9 mm, relative to
the start position. The probe orientation varied by tilt movements ranging from -36.2° to 16.6°. Lastly,
motion speed of the US probe varied between 1.8 mm/s and 2.6 mm/s.

Table 3.1: Overview of acquired dataset categorized by tissue type.

Data type Tissue Number of
inclusions

Number of US
sequences

Ex-vivo Breast 16 244
Colorectal 5 80
Sarcoma 1 16

Phantom IOUSFAN 1 21
Total 23 361

3.2. Development of 3D reconstruction model
This section presents the results of the developed baseline network architecture utilizing US images
and corresponding optical flow data, followed by the results of the ablation experiments. The quanti-
tative outcomes of each experiment, obtained through cross-validation, and key findings are detailed
in Section 3.2.1. An iterative approach was used to identify the best-performing model within an ex-
periment. Whether significant improvements were achieved compared to the baseline model, was
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assessed using a Wilcoxon signed-rank test (p-value < 0.05). This iterative evaluation process led to
the selection of the final model, which was evaluated on the reserved test set in Section 3.2.2. Lastly,
the final model was demonstrated for inference through a visual representation of the 3D reconstruction
in Section 3.2.3.

3.2.1. Quantitative outcomes of ablation experiments
Experiment 1: Integration of IMU orientation
The first ablation experiment examined the added value of integrating IMU orientation data by two
methodologies; using it as additional input channel alongside the US images and optical flow (IMU 1),
and concatenation of the IMU orientation with the feature representation prior to classification (IMU 2).
Each method was evaluated using two distinct strategies, designated as A and B. In strategy A, the
evaluated transformation parameters were predicted by the model, whereas in B, the orientation labels
were replaced with the IMU orientation data before quantitative evaluation.

Quantitative outcome metrics for strategy A are represented in Table 3.2, comparing the baseline,
IMU 1A, and IMU 2A models. With regard to the local parameters, model IMU 2A showed an improved
MAE for 𝑡𝑦 and 𝜃𝑥 in comparison to both the baseline model and IMU 1A. Specifically, IMU 2A achieved
a significant reduction in MAE for 𝑡𝑦 from 0.018 ± 0.019 mm (baseline) to 0.012 ± 0.008 mm, while 𝑡𝑥
showed a significant increase in MAE for IMU 2A from 0.044±0.028mm (baseline) to 0.052±0.023mm.
At the global level, both IMU 1A and 2A demonstrated significant improvements over the baseline for
all transformation parameters, with a particular note on the MAE of 𝑡𝑧 decreasing from 6.606 ± 21.340
mm in baseline to 2.684 ± 1.923 mm in IMU 2A.

In strategy B, replacing the predicted orientation with IMU data affected only 𝜃𝑥 and did not influ-
ence the FDR due to the relatively small magnitude of 𝜃𝑥. Accordingly, Figure 3.1 illustrates the MAE
for the rotation parameter 𝜃𝑥 to evaluate both models and strategies. Integration of IMU data consis-
tently improved the MAE for 𝜃𝑥 in comparison to the baseline, following a similar trend for both local
and global labels. IMU 2A outperformed other models significantly, even the models using strategy B,
with a local MAE of 0.071 ± 0.031° and global MAE of 0.393 ± 0.295°, compared to 0.098 ± 0.071° and
1.342 ± 1.418° for baseline, respectively. This suggests that integrating IMU data within the feature
representation (IMU 2A) is more effective than simply replacing the output during evaluation.

In conclusion, IMU 2A demonstrated the best overall performance among the evaluated methods.
Despite a significant increase in MAE for 𝑡𝑥 at the local level, IMU 2A showed significant improvements
in six out of ten evaluated metrics compared to the baseline. Therefore, IMU 2A was considered
superior and was selected as the new baseline for subsequent experiments.

Table 3.2: Quantitative outcome metrics for the baseline, IMU 1A, integrating the orientation as input channel, and IMU 2A
integrating the orientation prior to classification, with the best performing method presented in bold.

Model MAE FDR
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Local Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (US + OF) 0.044 ± 0.028 0.018 ± 0.019 0.103 ± 0.069 0.098 ± 0.071 10.46 ± 7.81
IMU 1A 0.057 ± 0.022 0.018 ± 0.020 0.127 ± 0.063 0.093 ± 0.049 16.37 ± 17.93
IMU 2A 0.052 ± 0.023* 0.012 ± 0.008* 0.110 ± 0.053 0.071 ± 0.031* 11.13 ± 10.48
Global Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (US + OF) 1.430 ± 1.633 0.211 ± 0.426 6.606 ± 21.340 1.342 ± 1.418 14.48 ± 12.40
IMU 1A 1.142 ± 0.686 0.163 ± 0.340 3.018 ± 2.095 0.815 ± 0.741 14.18 ± 13.88
IMU 2A 1.068 ± 0.628* 0.082 ± 0.122* 2.684 ± 1.923* 0.393 ± 0.295* 13.83 ± 13.35*

* indicates a significant difference with the baseline model, with a p-value < 0.05 after Holm’s correction.
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Figure 3.1: Comparison of the MAE (°) of the local and global rotation (𝜃𝑥) for model IMU 1A, IMU 1B, IMU 2A and IMU 2B.

Experiment 2: Generalization methods
The second ablation experiment evaluated the impact of three generalization methods, including data
augmentation at sequence level, data augmentation at image level, and generalization methods at the
level of network architecture, which included dropout layers and input channel masking.

The quantitative outcomes for these models are represented in Table 3.3. The model employing
data augmentation at sequence-level demonstrated the lowest errors across the majority of metrics and
was the only model showing improvements compared to the baseline model (IMU 2A). In contrast, both
the image-level augmentation and architecture-level modifications performed comparable to those of
the baseline model or exhibited minor reductions in performance.

Specifically, sequence-level augmentation exhibited a significant reduction in the MAE of local
transformation parameters 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 , 𝜃𝑥 compared to the baseline. At the global level, significant im-
provements were noted in 𝑡𝑥 , 𝑡𝑧. The FDR significantly improved for local parameters from 11.13 ±
10.48% to 9.11 ± 10.05%, and global parameters from 13.83 ± 13.36% to 11.47 ± 11.28%, respec-
tively. Although differences were not as extensive as those observed in employing IMU integration,
sequence-level augmentation effectively enhanced the model’s performance by introducing more vari-
ation in sweep trajectories. Based on these findings, the sequence-level augmentation model was
deemed to outperform the baseline and was selected as the new baseline model for subsequent ex-
periments.

Table 3.3: Quantitative outcome metrics for the generalization methods, employed at sequence-level, image-level and
architecture-level, compared to the baseline (IMU 2A), with the best performing method presented in bold.

Model MAE FDR
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Local Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (IMU 2A) 0.052 ± 0.023 0.012 ± 0.008 0.110 ± 0.053 0.071 ± 0.031 11.13 ± 10.48
Sequence-level 0.044 ± 0.022* 0.011 ± 0.008* 0.102 ± 0.068* 0.067 ± 0.032* 9.11 ± 10.05*
Image-level 0.053 ± 0.023 0.012 ± 0.008 0.114 ± 0.053 0.074 ± 0.033 11.75 ± 11.88
Architecture-level 0.055 ± 0.024 0.014 ± 0.011 0.117 ± 0.083 0.083 ± 0.074 12.50 ± 11.20
Global Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (IMU 2A) 1.068 ± 0.628 0.082 ± 0.122 2.684 ± 1.923 0.393 ± 0.295 13.83 ± 13.36
Sequence-level 0.861 ± 0.593* 0.088 ± 0.169 2.352 ± 1.697* 0.412 ± 0.321 11.47 ± 11.28*
Image-level 1.051 ± 0.624 0.088 ± 0.182 2.953 ± 2.293 0.392 ± 0.338 14.37 ± 13.58
Architecture-level 1.201 ± 0.732 0.123 ± 0.241 2.878 ± 2.052 0.608 ± 0.946 14.01± 11.88

* indicates a significant difference with the baseline model, with a p-value < 0.05 after Holm’s correction.
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Experiment 3: Loss functions
The effect of different loss functions was evaluated in the third ablation experiment, encompassing the
L1 loss within the baseline model, a combined loss incorporating the L1 loss with a Pearson correlation
term, and the L2 loss. A comparison of the selected outcome metrics for these models yielded no sta-
tistically significant differences, as presented in Table 3.4. The model utilizing the L2 loss demonstrated
slight, but statistically insignificant, improvements in several metrics. However, in evaluation beyond
the selected metrics, looking at the final drift, the L2 loss demonstrated a significant reduction from
4.749 ± 3.691 mm to 4.494 ± 3.629 mm. Accordingly, the L2 loss was selected, while acknowledging
that the L1 and combined loss are equally viable alternatives, given the minimal difference and high
standard deviations observed.

Table 3.4: Quantitative outcome metrics for the baseline model employing the L1 loss, the combined loss (L1 + Pearson corre-
lation), and the L2 loss, with the best performing method presented in bold.

Model MAE FDR
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Local Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (L1) 0.044 ± 0.022 0.011 ± 0.008 0.102 ± 0.068 0.067 ± 0.032 9.114 ± 10.047
L1+Pearson 0.045 ± 0.023 0.011 ± 0.007 0.101 ± 0.056 0.067 ± 0.033 9.009 ± 8.126
L2 0.044 ± 0.023 0.011 ± 0.007 0.100 ± 0.052 0.066 ± 0.029 8.995 ± 8.575
Global Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (L1) 0.861 ± 0.593 0.088 ± 0.169 2.352 ± 1.697 0.412 ± 0.321 11.466 ± 11.284
L1+Pearson 0.877 ± 0.634 0.084 ± 0.097 2.339 ± 1.820 0.413 ± 0.290 11.446 ± 11.250
L2 0.863 ± 0.589 0.082 ± 0.102 2.336 ± 1.852 0.394 ± 0.270 10.943 ± 10.851

* indicates a significant difference with the baseline model, with a p-value < 0.05 after Holm’s correction.

Experiment 4: Dataset
Lastly, different subsampled datasets were utilised, in which the evaluation focused on global parame-
ters only. An example illustrating the effect of subsampling of the dataset on the 3D US reconstruction
is shown in Figure ??. As presented in Table 3.5, subsampling with a smaller interval (interval 3) than
the baseline (interval 5) did not result in enhanced quantitative outcomes. Instead, the outcomes were
comparable, with only one instance of a significant difference, namely an increased FDR from 10.94 ±
10.85% to 11.54 ± 9.81%. With regard to subsampling with a larger interval, worse performance was
seen, indicating that larger interframe distances can result in a loss of information. Consequently, the
baseline model utilizing a dataset subsampled with an interval of 5 was maintained.

Table 3.5: Quantitative outcome metrics for training with different subsampled datasets, with the best performing method pre-
sented in bold.

Model MAE FDR
(𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑒𝑎𝑛 ± 𝑠𝑑)

Global Transformations 𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%)
Baseline (Interval 5) 0.863 ± 0.589 0.082 ± 0.102 2.336 ± 1.852 0.394 ± 0.270 10.94 ± 10.85
Interval 3 0.809 ± 0.572 0.082 ± 0.119 2.426 ± 1.897 0.398 ± 0.282 11.54 ± 9.83
Interval 10 1.001 ± 0.632 0.084 ± 0.109 2.621 ± 1.806 0.426 ± 0.288 12.00 ± 11.19
* indicates a significant difference with the baseline model, with a p-value < 0.05 after Holm’s correction.
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Summary of ablation experiments
In conclusion, the ablation experiments demonstrated significant improvements over the baselinemodel.
Incorporating US frames, corresponding optical flow, and concatenated IMU orientation into the feature
representation prior to the classification layer resulted in enhanced performance. Additionally, employ-
ment of sequence-level augmentation and utilizing the L2 loss function further improved the model’s
accuracy. Figure 3.2 illustrates the predicted global trajectories of these optimized models compared
to the baseline and ground truth trajectories for two different sequences. The predicted trajectory of
the final model is clearly less noisy and more similar to the ground truth model than the previous model
versions. In Appendix D, a similar representation of the reconstructed trajectories is shown using the
predictions of the local parameters. Although it shows a similar overall trend in optimization compared
with the global parameters, it is noteworthy that the trajectories using local parameters appear slightly
smoother, especially focusing on the previous model versions.

Figure 3.2: Comparison of the predicted trajectories from the selected models against the ground truth trajectory, based on the
global parameters, including top (left) and side views (right) of two sample sweeps.

3.2.2. Quantitative outcomes of the final model
The final optimized model, incorporating the enhancements identified during the ablation experiments
by utilizing five-fold cross-validation, was trained on the complete training set. The training process
required 4 hours and 22 minutes. The quantitative results of the final model evaluated on the reserved
test set are presented in Table 3.6.

Comparative analysis of the local and global parameters
The global parameters obtained by accumulating the local parameters (denoted as ∑ Local) were com-
pared with the global labels predicted directly by the network (denoted as global). Statistical analysis
revealed that the parameters 𝑡𝑦 and 𝜃𝑥 significantly improved for the global parameters from 0.146 ±
0.115 mm (∑ Local) to 0.086 ± 0.109 mm and 0.754 ± 0.496° (∑ Local) to 0.483 ± 0.340°, respectively.
Other metrics showed no significant differences.
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Table 3.6: Quantitative outcomes of the optimized model evaluated on the test set, including the comparative analysis of the
local and global parameters.

Final MAE FDR FD (𝑚𝑒𝑑𝑖𝑎𝑛
Model (𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑒𝑎𝑛 ± 𝑠𝑑) (𝑚𝑖𝑛 − 𝑚𝑎𝑥))

𝑡𝑥 (mm) 𝑡𝑦 (mm) 𝑡𝑧 (mm) 𝜃𝑥 (°) (%) (mm)
Local 0.046 ± 0.028 0.011 ± 0.008 0.113 ± 0.066 0.072 ± 0.037 11.80 ± 10.31 5.024 ± 3.974
Global 0.904 ± 0.763 0.086 ± 0.109* 2.651 ± 1.540 0.483 ± 0.340* 11.63 ± 8.63 4.882 ± 2.873
∑ Local 0.844 ± 0.782 0.146 ± 0.115 2.630 ± 2.002 0.754 ± 0.496 11.80 ± 10.31 5.024 ± 3.974
* indicates a significant difference with the cumulative local parameters (∑ Local), with a p-value < 0.05 after
Holm’s correction.

3.2.3. Inference and visualization of final model
To illustrate the value of the optimized model, inference and visualization was applied on a sample from
the test set. This sample was selected for its clear visibility of anatomical structures, which allowed for
accurate manual segmentation. These results were visualized in three consecutive steps. Figure 3.3
presents a parameter-wise comparison of the predicted and ground truth transformation parameters,
displaying both local and global labels. Additionally, the IMU orientation data are included for reference.
The inference time for one sample was 0.17 seconds.

Subsequently, utilizing the predicted transformation parameters, the 2D US frames were trans-
formed to reconstruct the probe’s trajectory in 3D. Figure 3.4 shows the reconstructed trajectory with
the US images positioned according to the predicted transformations. The ground truth trajectory is
superimposed in green for comparison, highlighting the model’s accuracy in spatial positioning.

To generate a continuous 3D reconstruction, voxel interpolation was applied to fill the gaps be-
tween frames using nearest neighbor interpolation. Figure 3.5 presents the resulting 3D volume, which
took 67.8 seconds to reconstruct the US sequence of 115 frames. Manual segmentation of anatomical
structures, including arteries and a colorectal tumor, was performed and incorporated into the 3D re-
construction using the predicted transformation parameters. In addition, a volume reconstruction of the
2D segmentations was performed using the average acquisition speed to determine 𝑡𝑧, and no trans-
formations were performed for 𝑡𝑥, 𝑡𝑦, and 𝜃𝑥. When this volume was placed in the 3D trajectory, it did
not align with the anatomical features visible in the US reconstruction, while the volume reconstruction
using the predicted transformation parameters demonstrated a high degree of similarity.

These visualizations translate the quantitative outcomes into practical demonstrations, underscor-
ing the value of the accurate predictions of transformation parameters, for reconstructing the 3D trajec-
tory and facilitating the assessment of anatomical structures, thereby highlighting the model’s potential
impact in clinical applications.
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Figure 3.3: Inference sample of the test set, showing a parameter-wise comparison of the ground truth parameters and predicted
parameters, with the IMU orientation for additional reference.

Figure 3.4: Spatial positioning of US frames in 3D space using the predicted transformation parameters, from four different
viewpoints, with the ground-truth trajectory outlined in green.
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Figure 3.5: Reconstructed volumes of the US trajectory, and segmentations of a colorectal tumor and artery, using nearest
neighbor interpolation. 3D volumes of the tumor and artery were reconstructed using the predicted transformation parameters,
and without transformations for 𝑡𝑥, 𝑡𝑦, 𝜃𝑥, and 𝑡𝑧 determined based on the average speed.
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Discussion

4.1. Interpretation of results
In this thesis, a deep learning-based 3D reconstruction model for POCUS imaging was developed,
utilizing a newly acquired dataset and a novel network architecture combining a CNNwith a transformer
decoder. The dataset comprised 361 sweeps from ex-vivo specimens and a phantom model, collected
using a customized measurement setup featuring a motorized scanner that facilitated ground truth
positional tracking and movement of the US probe. Extensive data preparation and preprocessing
resulted in an accurate aligned dataset of US images, optical flow and IMU data, all labeled with precise
ground truth positions.

The baseline model demonstrated a reasonable accuracy in capturing local translations, with rela-
tively accurate MAEs and a FDR of 10.46%. However, it exhibited substantial limitations in estimating
global transformations, particularly the translation along the z-axis (𝑡𝑧), with a large MAE of 6.606 ±
21.340 mm. This indicates that the model struggled to accurately capture complex scan trajectories in-
volving out-of-plane movements, potentially leading to significant deviations during the sweep despite
an acceptable FDR at the endpoint. These limitations were addressed by conducting four iterative
ablation experiments successfully optimizing the model’s performance. Most enhancements were at-
tributed to Experiment 1, the integration of IMU orientation, and Experiment 2, employing sequence
augmentation, with less improvement achieved in subsequent experiments.

Incorporation of IMU orientation, using the best-performing method, significantly improved the es-
timation of the orientation parameter 𝜃𝑥, compared to utilizing US images and optical flow, from a
global MAE of 1.342 ± 1.418° to 0.393 ± 0.295°. While improvements in local translation parame-
ters were mixed, significant improvements were seen in overall global performance, indicating that
the transformer benefits from IMU data by effectively learning temporal dependencies that enhance
global trajectory predictions. Full potential of the IMU data was not completely leveraged, as only one
rotational angle was incorporated in this setup. Therefore, with a future perspective of incorporating
additional DOFs, or in the context of freehand scanning, integration of IMU data promises even more
significance.

Applying data augmentation at the sequence level introduced greater variability in sweep trajec-
tories, further reducing errors in MAE and FDR for both local and global parameters. This approach
likely enhanced generalization by improving robustness to a wider range of scanning patterns. In the
subsequent experiments, we selected the L2 loss function and maintained the dataset using subsam-
pling with an interval of 5 frames, resulting in a final FDR of 9.00 ± 8.58%. The final model configuration
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was selected based on the objective of reducing the trajectory error, with all performance metrics given
equal weighting, according to the samples in this particular training set. It is important to note that the
differences in outcomes between loss functions and datasets were minimal with high standard devia-
tions. Consequently, an alternative selection in loss function or dataset could be considered an equally
optimal choice.

Visualization of the optimized models over the ground truth trajectory yielded valuable insights for
interpretation of the results, leading to noteworthy findings. In sequence 1 (Figure 3.2), the distance
between frames was relatively consistent, and the final model achieved a FDR of 5.3%. In contrast,
in sequence 2 (Figure 3.2), which exhibited greater variability in frame-to-frame distances, reflecting
changes in speed, the model was less accurate (FDR of 9.8%). While the overall shape of the pre-
dicted sweep remained correct, the models tended to predict a shorter trajectory. In conclusion, in
cases where the predictions were not perfect, the reconstruction still captured the general shape, in-
cluding lateral deviations along the x-axis and accurate angles. However, due to the difficulties by the
model in adapting to varying speed during the acquisition, reconstructions appeared slightly stretched
or compressed.

When evaluated on the reserved test set, the final model exhibited a slight decrease in perfor-
mance yielding a mean FDR of 11.63 ± 8.63%, which is expected when applying the model to unseen
data. High standard deviations observed in both validation and test sets indicate variability in model
performance across different cases. This can be attributed to the presence of outliers as well as in-
herent variability in the data, highlighting areas for future refinement. Nevertheless, the overall metrics
and several highly accurate predictions on the unseen test set are considered to be promising.

Comparative analysis of the local and global parameters showed significant differences. Although
the local parameters appeared slightly smoother in reconstruction, there is a significant improvement in
𝑡𝑦 and 𝜃𝑥 using the global parameters, as evidenced by a reduction in MAE for 𝑡𝑦 from 0.146 ± 0.115mm
to 0.086 ± 0.109 mm, and for 𝜃𝑥 from 0.754 ± 0.496 to 0.483 ± 0.340. This can likely be attributed to the
transformer’s ability to recognize global patterns specific to the scanning setup, such as the correlation
between probe rotation and vertical movement. The capacity to learn temporal dependencies allows it
to capture relationships that might not be apparent in local feature extraction. While global predictions
are generated through the capability of global feature extraction by the Transformer, it is important
to note that no conclusions can be drawn about the added value of the Transformer based on this
comparison. A fair evaluation of the Transformer’s contribution would require training with a different
architecture that isolates the CNN and Transformer component and separates the losses.
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4.2. Comparison to literature
In this study, we employed a novel data acquisition setup using a motorized scanner for ground truth
positional tracking. Previous 3D US reconstruction studies predominantly utilized optical or EM track-
ing systems, often without reporting precise positioning accuracy. Some of them used optical systems
intended for surgical navigation, which achieve resolutions around 0.2 mm [22]. However, many used
EM systems with positioning resolutions of approximately 1.4 mm and orientation resolutions of 0.5°
[21, 30, 31]. While widely adopted, these systems are prone to artefacts such as optical occlusion
or drift and jitter due to electromagnetic interference from nearby metallic objects, resulting in limita-
tions in accuracy [35]. By customizing the NEJE laser engraver for our purposes, we offer potential
advantages in accuracy through precise control over probe movement, reducing reliance on external
tracking systems susceptible to noise. This is particularly important given the critical need for reliable,
low-noise data when dealing with minor frame-to-frame transformations. The motors in our setup have
a travel resolution of 80 steps per millimeter, with NEJE specifying point positioning accuracy of 0.075
mm [36]. While this precision is promising for reliable positional tracking, the exact accuracy of our
complete setup requires further validation, including direct comparisons with established optical and
EM tracking technologies to substantiate its advantages.

In previous studies on 3D US reconstruction, deep learning models have predominantly utilized
CNNs, including 2D CNNs like ResNet and EfficientNet [37]. Efforts to incorporate temporal depen-
dencies have involved employing 3D CNNs such as ResNext to process temporal sequences [32, 38],
integrating recurrent architectures like long short-term memory (LSTM) networks along with various
consistency losses [21, 30, 31], or utilizing recurrent neural networks (RNNs) [37]. However, no con-
sensus has emerged on the optimal architecture for modeling temporal information in US sequences.
Recognizing limitations such as the sequential processing constraints and memory limitations of RNNs,
and the limited temporal context provided by CNNs alone, we introduced a novel CNN-Transformer ar-
chitecture for 3D trajectory reconstruction, effectively capturing global contextual information without
the drawbacks of sequential processing inherent in RNNs. This could be particularly advantageous in
longer US sequences, where drift accumulates, while the transformer may capture nuanced tempo-
ral changes more effectively. However, up until now this approach has remained unexplored in this
context. The results of the current study demonstrate its feasibility for 3D US reconstruction.

It is essential to consider differences in datasets and trajectory complexities when comparing quan-
titative results with other studies, as these factors significantly impact performance metrics. Conse-
quently, absolute MAE values are challenging to compare directly across studies. Only two studies
reported parameter-wise MAEs, both demonstrating the highest errors in 𝑡𝑧 compared to the equally
high MAEs of 𝑡𝑥 and 𝑡𝑦 [22, 24]. This higher error in 𝑡𝑧 aligns with our findings that estimating out-
of-plane parameters is inherently more complex. In our case, the MAE for 𝑡𝑦 is much lower due to
minimal variation along this axis in our setup, but is expected to increase to the level of 𝑡𝑥, if we extend
our setup further.

The FDR, being normalized by the length of the sweep, provides a more suitable metric for quanti-
tative comparison across studies. As presented in Figure 4.1, state-of-the-art studies employing deep
learning-based 3D trajectory reconstruction reported values with mean FDRs ranging from 9.64% [32]
to 15.67% [30], and one study reported only the median FDR of 5.2% [22]. In our study, presented at
the right side, we achieved a median FDR of 6.98% on the training set using five-fold cross-validation,
and 9.00% on the unseen test set. Notably, the superior median FDR of 5.2% was achieved by Prevost
et al. on a dataset of 600 sequences, twice the size of ours, collected from the forearms of 15 sub-
jects, using two-fold cross-validation [22]. Additionally, the data from Luo et al.(2023b) consisted only
of linear sweeps performed by a robotic arm, encompassing less variation in motions [21]. Therefore,
considering our novel architecture and setup, our results demonstrate competitive performance with
the state-of-the-art values reported in the literature.
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Figure 4.1: Reported mean and/or median Final Drift Rates (%) per reconstruction method across different datasets in literature
(left), which are compared to the FDRs achieved in this study (right), with ’n’ denoted as the number of sequences in the dataset.

4.3. Limitations and future recommendations
4.3.1. Data acquisition set-up and data collection
Despite the promising results achieved in this study, several limitations inherent to the data acquisi-
tion setup and data collection process are acknowledged. While the custom setup was instrumental in
facilitating accurate positional tracking and data acquisition, providing precise data alignment and syn-
chronization, it also imposed certain constraints on the developed reconstruction model, highlighting
areas for future improvement.

Firstly, the application of the developed 3D reconstruction model is currently limited to the specific
configurations of the data acquisition setup. The existing setup primarily facilitates translations along
the x-axis (𝑡𝑥) and z-axis (𝑡𝑧), and rotations around the x-axis (𝜃𝑥), with minimal variations in the y-axis
(𝑡𝑦) resulting indirectly from rotational movements. Although this captures the primary movements
employed during scanning of a resected specimen, the model was neither trained nor validated on
transformation parameters such as roll and yaw (𝜃𝑦 and 𝜃𝑧) other than 0, or substantial variations in 𝑡𝑦.
Additionally, the scanning trajectories, while including meandering paths and loops, were restricted to
forward scanning without backward movements or repeated coverage of the same areas. This reduces
the model’s generalizability to more complex scanning patterns potentially encountered in freehand US
examinations.

Moreover, practical limitations of the setup were observed in the analysis of local transformation
predictions. Specifically, the 2D analysis revealed simultaneous peaks in local transformations across
all axes (Figure 3.3). While optical and electromagnetic tracking systems also introduce noise and
alignment challenges, we hypothesize that these peaks may be caused by the discrete movements of
the stepper motors. The operation of the motor is not yet entirely smooth and seamless, occasionally
manifesting as minor fluctuations or larger jumps in the local parameters. This often occurs simulta-
neously along all axes, as the G-code commands used to control the motors consist of three variables
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(𝑥, 𝑧, 𝜃𝑥), consequently initiating motion along all axes at the same time. However, these peaks are
minor and not discernible to the naked eye nor reflected in the global parameters.

To address these limitations, future research should focus on two main areas. First, enhancing
the data acquisition set-up by introducing more DOF and incorporating a wider variety of scanning tra-
jectories to provide a more comprehensive dataset. While the current dataset contains a substantial
number of frames, the number of sequences (n=361) may be unsatisfactory for training a deep learning
network to generalize across varied scanning patterns. As sequence level augmentation has shown
favorable results by introducing more variability, this may also help reduce the amount of outliers ob-
served [37]. Second, validation of the model on freehand scanning data in real-world clinical settings is
essential to assess its applicability in clinical practice. It is important to determine how representative
the trained model is when applied to data acquired outside of the controlled setup. In this regard, con-
sideration should be given to the requirements of the intended clinical application; for instance, whether
adherence to a specific scanning protocol is feasible or whether the model must accommodate the full
variability of freehand scanning.

4.3.2. Development and optimization of 3D reconstruction model
The second category of limitations pertains to the development and optimization of the 3D reconstruc-
tion model, which were limited by time constraints. A CNN-Transformer architecture was selected
based on its promising performance in handling temporal sequences. However, alternative architec-
tures might be equally suitable or could offer improved performance.

While this architecture showed potential for our problem and yielded promising results, it also
imposed certain limitations on the training implementation. Specifically, the Transformer component
restricted the batch sizes that could be used during training, which might have constrained the local
feature extraction by the CNN component. Alternatively, employing other architectures that are more
computationally efficient could alleviate this issue. A careful trade-off analysis between the added value
of the Transformer and the potential benefits of alternative approaches is warranted.

Moreover, while we experimented with common loss functions such as L1 and L2 losses, the
complexity of the problem, incorporating four different types of predictions, suggests that other loss
functions or strategies could be beneficial. Since errors can accumulate over the length of a sweep,
the impact of errors may increase towards the end of a trajectory for global parameters. Therefore, it
may be advantageous to consider percentage-based loss functions or those that account for cumulative
error. Incorporating smoothness constraints into the loss function could also promote more realistic and
physically plausible movements by penalizing abrupt changes in the predicted transformations.

Additionally, employing auxiliary losses or multi-task learning strategies could enhance model
performance by providing additional guidance during training. Introducing intermediate supervision
through loss functions at different layers of the network, for instance separating local losses from global
losses, can help the model learn more meaningful feature representations that benefit the final predic-
tion. Furthermore, predicting motion dynamics such as velocity, potentially by leveraging the currently
excluded IMU accelerometer data, could provide valuable context for the transformations and improve
the model’s ability to capture temporal dependencies. Exploring these alternative loss functions and
training strategies holds promise for further improving the accuracy and robustness of the 3D recon-
struction model.
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4.4. Clinical Perspective and Future Directions
Visualization of the reconstructed trajectories and volumes underscores the practical significance of
accurate transformation estimation and the potential of the developed model. Without precise transfor-
mation parameters, reflected by the trajectory errors, the reconstruction and segmentation of anatom-
ical volumes would be compromised. In Figure 3.5 it was shown that the predicted reconstruction
enables correct segmentation of anatomical structures, crucial for clinical applications such as tumor
localization and surgical planning.

While optimization of the 3D reconstruction model primarily aimed at reducing trajectory errors, it is
important to recognize that minimizing trajectory errors is not an end goal in itself but rather a means to
improve clinical outcomes. The level of accuracy required, measured in terms of MAE and FDR, largely
depends on the specific clinical application. Encouragingly, in cases where the model demonstrated
high performance, the current model may already be sufficient for certain clinical applications. However,
to ensure reliable performance across all cases, it is crucial to first reduce the occurrence and impact
of outliers.

Therefore, now that the technological feasibility of 3D US reconstruction with the current data ac-
quisition setup has been demonstrated, aligning optimization objectives with clinically relevant outcome
measures should be a priority in future research. This will enable the model to be optimized to meet
specific clinical needs rather than solely focusing on trajectory reconstruction. Next to accuracy, this
involves prioritizing factors such as computational efficiency, real-time processing capabilities, and the
feasibility of implementing scanning protocols versus completely freehand scanning in clinical settings.

For instance, although we found that utilizing datasets with smaller subsampling intervals reduced
performance in one metric in Experiment 4, there are substantial reasons to select such datasets when
considering visualization purposes, as they provide more detailed information for voxel reconstruction.
However, this comes at the cost of increased computational efforts. Similarly, while we observed that
using the L2 loss function improved drift errors, it is important to consider whether minimizing drift is
the most clinically relevant objective. An alternative approach would be to evaluate the tracking error
of the ROI, rather than the frames within the entire trajectory, which may offer more clinically relevant
insights. Furthermore, if the objective is to measure the volume as a crucial parameter for diagnosis,
the Dice coefficient is paramount [39].

By tailoring the development of the model to specific clinical applications, such as quantitative
volume measurements, tumor margin assessment, or integrating US reconstructions with advanced
imaging modalities like MRI or CT, further improvements can be achieved, maximizing the model’s
impact on patient care. Close collaboration with clinicians is essential to define relevant outcome mea-
sures, explore alternative architectures and loss functions that better capture clinically significant as-
pects of the reconstruction, and balance computational efficiency with the level of detail required for
clinical decision-making. In conclusion, while the current work represents a promising foundation for
3D trajectory reconstruction using deep learning, future efforts should prioritize clinical applicability by
aligning model optimization with specific clinical needs and outcomes.



5
Conclusion

In this thesis, we addressed the challenge of reconstructing 3D US volumes without relying on ex-
ternal tracking devices or specialized 3D transducers, aiming to enhance applicability in clinical and
point-of-care settings. A high-quality dataset was acquired using a POCUS probe with integrated IMU,
mounted on a custom-designed motorized scanner. This setup facilitated precise positional tracking
and movement control, allowing for the collection of 361 US sweeps from ex-vivo specimens and a
phantom model.

This dataset facilitated the development of a CNN-Transformer architecture, leveraging 2D US
images, optical flow, and IMU orientation data. Visual inspection and quantitative evaluations demon-
strated that the model accurately captured the general shape and lateral deviations of the sweeps,
reflected in low MAEs on the test set for translations along the x-axis (global MAE of 0.904 ± 0.763
mm), y-axis (global MAE of 0.086 ± 0.109 mm), and rotation around the x-axis (global MAE of 0.483
± 0.340°). While the estimation in the scanning direction (𝑡𝑧) showed a higher MAE of 2.651 ± 1.540
mm, reflecting challenges in adapting to varying speeds, this level of accuracy is still commendable
given the complexity of out-of-plane motion estimation. The optimized model achieved a mean FDR
of 10.94% on the training set using five-fold cross-validation and 11.63% on the unseen test set, with
median FDRs of 6.98% and 8.10%, respectively, demonstrating competitive performance with state-
of-the-art methods reported in the literature. Moreover, the predicted reconstructions enabled correct
segmentation and visualization of anatomical structures in 3D, which is crucial for clinical applications
such as tumor localization and surgical planning.

Consequently, this work demonstrates the feasibility and potential of combining advanced data
acquisition techniques with a CNN-Transformer network for 3D US reconstruction. Although further
validation and refinement of the methods is required, this work represents a significant contribution to
improving the accuracy of 3D reconstruction, ultimately taking a step toward the adoption of trackerless
3D US in clinical and point-of-care environments.
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Table A.1: Parameter settings for the system configuration, in which ‘$‘ serves as prefix for the systemconfigurations and is used
to configure or retrieve specific parameters in GRBL.

$ Nr Parameter Value
$0 Step pulse time, microseconds 10
$1 Step idle delay, milliseconds 255
$2 Step pulse invert, mask 0
$3 Step direction invert, mask 1
$4 Invert step enable pin, boolean 0
$5 Invert limit pins, boolean 0
$6 Invert probe pin, boolean 0
$10 Status report options, mask 3
$11 Junction deviation, millimeters 0.010
$12 Arc tolerance, millimeters 0.002
$13 Report in inches, boolean 0
$20 Soft limits enable, boolean 0
$21 Hard limits enable, boolean 0
$22 Homing cycle enable, boolean 1
$23 Homing direction invert, mask 1
$24 Homing locate feed rate, mm/min 250.000
$25 Homing search seek rate, mm/min 2500.000
$26 Homing switch debounce delay, milliseconds 250
$27 Homing switch pull-off distance, millimeters 1.000
$30 Maximum spindle speed, RPM 1000
$31 Minimum spindle speed, RPM 0
$32 Laser-mode enable, boolean 1
$40 Laser Focus Brightness 0.200
$41 Laser Temperature Auto-Reporting Interval 10
$42 Auto-Sleep Time 10
$43 Tilt Detection Sensitivity 0
$100 X-axis travel resolution, step/mm 80.000
$101 Y-axis travel resolution, step/mm 80.000
$102 Z-axis travel resolution, step/mm 800.000
$103 A-axis travel resolution 8.889
$110 X-axis maximum rate, mm/min 15000.000
$111 Y-axis maximum rate, mm/min 15000.000
$112 Z-axis maximum rate, mm/min 1200.000
$113 A-axis travel resolution 21600.000
$120 X-axis acceleration, mm/sec2 250.000
$121 Y-axis acceleration, mm/sec2 250.000
$122 Z-axis acceleration, mm/sec2 20.000
$123 A-axis travel resolution 250.000
$130 X-axis maximum travel, millimeters 170.000
$131 Y-axis maximum travel, millimeters 170.000
$132 Z-axis maximum travel, millimeters 45.000
$133 A-axis travel resolution 360.000



B
Optical flow parameters

Table B.1: Parameters used for denoising of ultrasound images and optical flow computation

Denoising Step Parameter Value
Gaussian Blur Gaussian Kernel Size (9,9)

Sigma Value 0 (auto)
Bilateral Filter Sigma Color 75

Sigma Space 75

Sharpening Sharpening Kernel
⎡
⎢
⎢
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎥
⎥
⎦

Optical Flow Parameters Pyramid Scale Factor 0.5
Pyramid Levels 3
Window Size 31
Iteration Count 20
Polynomial Neighborhood
Size

9

Polynomial Sigma 2
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C
Processing IMU accelerometer data

The accelerometer data of the IMU have the potential to provide information about the translational
movements of the probe during scanning by integrating over time to estimate velocity and displace-
ment. However, a significant challenge with accelerometer data is the high level of noise, which often
renders it unsuitable for accurate translation estimation. Therefore, effective preprocessing is essential
to mitigate noise and address issues such as coordinate system alignment, ensuring the data is more
reliable for subsequent analysis.

The raw data, which was extracted during data acquisition, is subjected to three processing steps.
These include the normalisation of the data to account for its orientation, the implementation of denois-
ing techniques and, finally, the integration of the data twice by time, which results in translation. The
steps are described in detail below, and an illustrative example of a data sample that has undergone
these steps is provided in Figure C.2.

1. Normalization for coordinate system
The accelerometer measures acceleration along three axes in its local device coordinate system, which
therefore changes with the probe’s orientation. To obtain acceleration readings in the global reference
frame, it was necessary to account for the probe’s orientation during scanning, in particular the varying
tilting motion introduced by the motorized scanner. The orientation of the probe is illustrated in Figure
C.1. Since the scanner only introduced rotation around the X-axis (pitch), applying a rotation matrix to
the accelerometer data at each time point for rotation around the X-axis was sufficient. Therefore, a
rotation matrix corresponding to the pitch angle (𝜃𝑥) was constructed to transform the accelerometer
data into the global reference frame:

𝑅𝑥(𝜃𝑥) =
⎡
⎢
⎢
⎣

1 0 0
0 cos𝜃𝑥 − sin𝜃𝑥
0 sin𝜃𝑥 cos𝜃𝑥

⎤
⎥
⎥
⎦

After correction for its variable rotation around the x-axis, the accelerometer data were normalized
to account for any initial biases or offsets in orientation of roll, pitch and yaw. This was achieved by
subtracting the mean of the accelerometer readings acquired during its initial stationary position prior
to the movement of each sweep. This step removed any constant acceleration components (e.g., due
to gravity or sensor bias) and set the baseline acceleration to zero.
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Figure C.1: Example of normalization for intial position by varying pitch during using the transformation matrix, and stable roll
and yaw using initial offset visualized in green

2. Denoising Strategies
The accelerometer readings were susceptible to high levels of noise due to factors such as electrical
interference, mechanical vibrations from the stepper motors, and the inherently low acceleration levels
associated with the scanner’s slow movement speeds (1.8–2.6 mm/s). These low acceleration signals
could be difficult to distinguish from the sensor’s noise floor, the level of background noise inherent in
the accelerometer’s output, even when no acceleration is applied. To improve the data quality, several
denoising techniques were considered. Low-pass filtering aimed to remove high-frequency noise while
preserving the low-frequency signals corresponding to actual movements. Band-pass filtering was
explored to isolate the movement-related frequencies by removing both low-frequency drift and high-
frequency noise. Lastly, Kalman filtering, an adaptive method accounting for measurement noise and
system dynamics, was also attempted.

3. Integration over time
Following denoising, the accelerometer data was integrated twice over time to estimate velocity and
displacement. To compare the derived displacement, the estimated ground truth position of the IMU
sensor was calculated based on the motor positions using the spatial offsets of the IMU components
with respect to the center of the imaging array, as described in Section 2.1.3. While these ground-truth
IMU positions were not used as labels for model training, they served as a reference for evaluating and
comparing denoising strategies applied to the accelerometer signals.

Conclusion
Despite several preprocessing steps, significant challenges were encountered in obtaining reliable dis-
placement estimates from the accelerometer data. Integration of residual noise led to substantial drift
over time in the displacement estimates, exacerbated by the low signal-to-noise ratio due to the slow
scanning speeds. The very small acceleration signals were often indistinguishable from the sensor’s
inherent noise, making it difficult to extract meaningful motion information. Additionally, movement
was initiated by stepper motors generating mechanical vibrations, which may have introduced high-
frequency noise. This complicated the filtering process and further degraded signal quality. Given
these challenges, it was determined that the accelerometer data were not suitable for providing accu-
rate translational information in this context. Consequently, the accelerometer data were not included
as input features for the deep learning model.
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Figure C.2: Visualization of accelerometer data x, y and z for a US sequence over time. (a) Raw accelerometerdata, cropped to
the ROI (movement of the sweep) (b) Normalized accelerometer data. (c) Filtered accelerometer data using bandpass filter. (d)
Comparison of IMU translation (double integration of accelerometer data) with the ground-truth position of the IMU.





D
Ablation experiments

Figure D.1: Visualization of the optimizedmodels against the baseline model and ground truth trajectory, based on the predictions
of the local parameters.
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