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Abstract: It is known that thermodynamic properties of a system change upon confinement. To know
how, is important for modelling of porous media. We propose to use Hill’s systematic thermodynamic
analysis of confined systems to describe two-phase equilibrium in a nanopore. The integral pressure,
as defined by the compression energy of a small volume, is then central. We show that the integral
pressure is constant along a slit pore with a liquid and vapor in equilibrium, when Young and
Young–Laplace’s laws apply. The integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure inside the pore. The pressure
at mechanical equilibrium, now named differential pressure, is the average of the trace of the
mechanical pressure tensor divided by three as before. Using molecular dynamics simulations,
we computed the integral and differential pressures, p̂ and p, respectively, analysing the data with
a growing-core methodology. The value of the bulk pressure was confirmed by Gibbs ensemble
Monte Carlo simulations. The pressure difference times the volume, V, is the subdivision potential of
Hill, (p− p̂)V = ε. The combined simulation results confirm that the integral pressure is constant
along the pore, and that ε/V scales with the inverse pore width. This scaling law will be useful for
prediction of thermodynamic properties of confined systems in more complicated geometries.

Keywords: pressure; confinement; equilibrium; thermodynamic; small-system; hills-thermodynamics;
pore; nanopore; interface

1. Introduction

It is well known that thermodynamic properties of fluids significantly change when the fluid
phases become confined [1,2]. Given the importance of porous media for applications in for example
fuel cells [3], batteries [4], and membranes for drinking water production [5–7], it is essential to
understand how properties change upon confinement. In particular, one would like to be able to
predict how thermodynamic properties of the system change with size. We have earlier documented
how the thermodynamic factors and the pressures of some systems scale with a characteristic inverse
system size (surface area over volume) [8–10]. The aim of the present work is to continue this line
of work and present a geometric scaling law for the pressure of a nanopore. This work can, in a
general context, be seen as an extension of Hill’s thermodynamics of small systems [11]. The essential
idea of Hill was to introduce a large ensemble of N small systems, enabling the use of standard
thermodynamic tools for the ensemble. System properties were obtained by dividing the ensemble
value by N . In this way, he was able to deal with the impact of shape- and size-variation of the
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small system, within the normal structure of thermodynamics. The dimensions of a nano-pore, which
make molecular interactions at the pore surface important, can promote changes in phase transitions,
surface adsorption, pore vapor pressure, and phase stability [2,12–14]. The literature offers, however,
several definitions of the pressure inside a nano-porous material [15,16]. This situation calls for a
robust definition of the representative elementary volume (REV) of the small system, to serve as a
basis for a definition of pressure. Kjelstrup et al. [17] offered a definition of the REV-pressure based
on the compression energy of the REV. Galteland et al. [18] showed, by evaluating this property for a
single component in a nanoporous system, that the REV was not sufficiently described by the bulk
fluid pressure. Also the integral pressure, p̂, as defined by Hill was required to describe the degree of
confinement in the REV. In Hill’s [11] terminology, one distinguishes between the integral pressure p̂,
and the differential pressure, p. Erdos et al. [10] provided an expression for the ratio of the driving
forces for adsorption into a pore, by means of the integral and differential pressures. They expressed
the ratio by the cross-correlation of the volume and the integral pressure.

Hill defined the difference of the two pressures times the volume by the subdivision potential
ε = (p − p̂)V [11]. The integral pressure can differ significantly from the differential pressure in
confined systems [10,18]. In the limit of a bulk fluid, they are the same, however. Galteland et al.
studied pores between an fcc type-lattice of spheres [18], and found that the difference in the differential
and integral pressure depended on the inverse radius of the spheres in the lattice. Here, we investigate
a slit pore of nano-scale dimensions, with a constant pore slit-width ranging from 3 to 5 nm, and filled
with a vapor and liquid phase of the same component. The purpose is to find thermodynamic and
mechanical equilibrium conditions in terms of the pressures defined by Hill, and compare these to
existing descriptions in terms of Young’s and Young–Laplace’s laws. The analysis leads to a new
equilibrium condition, stated in terms of the integral pressure: This property is constant along the
nano-sized pore. When this condition is combined with Youngs’ equation for the contact angles,
one recovers the Young–Laplace equation.

For the geometry studied here, it is possible to derive a scaling law for the integral pressure.
The pore shape is kept constant in the derivations, as shape is a variable in small system
thermodynamics [19]. The new scaling law relates properties of one system size to another size,
with the same shape. This is helpful in a situation where measurements are lacking. Hill extended
the thermodynamic variable set, including an ensemble of the small system, thereby providing a new
basis for introduction and examination of size effects in thermodynamics. Hill’s formulation of surface
thermodynamics contain Gibbs’ method [20].

Molecular dynamics and Monte Carlo simulations [10,21] are excellent tools for equilibrium
studies of confined systems. Two fluid phases will be simulated in a slit pore of varying width. Focus
is directed to the equilibrium conditions, when single phases are in contact with each other and the
wall. The choice of the system was motivated by the simple geometry, which makes it possible to test
particular scaling laws for slit pores and cylindrical pores.

The structure of the paper is as follows: We first present the equations of a REV leading to the
relation between the differential pressure p and the integral pressure p̂. We next test the derived
equations for slit pores of different sizes and different interactions between pore wall and fluid.
The new growing-core methodology, brings out the difference between the differential and the integral
pressure. Finally, results are discussed and put in perspective.

2. Theory

2.1. Thermodynamic Relations for Small Systems

Hill used the name “small system” for systems with properties that are not extensive in the
system volume [11]. Such systems are frequently confined, i.e., bounded by the surroundings.
To obtain a generalized thermodynamic description of small systems, and to deal with size and
shape-dependencies, Hill [11] introduced an ensemble of N identical and independent replicas of the
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small system. Keeping the total entropy St, and particle number, Nt, constant, while increasing the
number of small systems N (each with constant volume V) in the ensemble, an extended version of
the Gibbs equation was obtained:

dUt = TdSt − pNdV + ∑
j

µjdNj,t − p̂VdN (1)

which we call the Hill-Gibbs equation. Here, Ut is the total internal energy of the ensemble, T is
the temperature, p is the pressure, and µj is the chemical potential of component j. The new term,
− p̂VdN , is the reversible work needed to change the total volume, by changing the number of small
systems, keeping St, V, and Nt,j constant.

Hill [11] distinguished between p and p̂ by calling the properties the differential and integral
pressure, respectively. This work aims to elucidate the difference of these variables for a small system
which is confined to a pore, in the grand-canonical ensemble.

The average values in the grand-canonical ensemble for a single small system are

U =
Ut

N , Nj =
Nj,t

N , S =
St

N . (2)

By introducing these equations into Equation (1), we obtain the usual Gibbs equation for dU, and
what we call the Hill-Gibbs-Duhem’s equation.

d( p̂V) = SdT + ∑
j

Njdµj + pdV (3)

The equation reduces to the usual Gibbs-Duhem equation when p̂ = p. When T and µj are
constant in Equation (3), we obtain a relation between the integral and differential pressure when the
shape of the system is controlled [11]:

p =

(
∂ p̂V
∂V

)
T,µ

= p̂ + V
(

∂ p̂
∂V

)
T,µ

. (4)

The expression shows that p and p̂ differ for small systems, for which p̂ depends on the volume.
In a macroscopic system, with V → ∞, p and p̂ are the same. The relation clarifies the chosen names;
p is obtained by differentiation.

The above equations will be applied to a two-phase system in a slit pore and a cylindrical pore.
Inside the pore, the differential pressure of the liquid differ from that of the vapor phase. For the
time being, we introduce the notation pv

d and pl
d for the differential pressure of the vapor and liquid,

respectively, and p f
d to indicate either of the two. The difference of the differential and the integral

pressure times the volume is equal to the subdivision potential [11], ε. By rearranging Equation (4),
using p f

d = p, we obtain:

p− p̂ =
ε(T, V, µj)

V
= V

(
∂ p̂
∂V

)
T,µj

. (5)

The subdivision potential is an additive thermodynamic property [11]. When such a property is
divided by the small system volume, a scaling law can be found; of a similar type as we have found
earlier [8,9]. The ratio ε/V is proportional to the the inverse characteristic size Ω/V of the system,
where Ω is the surface area between the fluid and the solid [18]. In general terms,

p− p̂ =
ε

V
= ζ∞ + ζs

(
Ω
V

)
+ ζse

(
Ω
V

)2
+ ... (6)

The coefficients ζ∞, ζs and ζse do not depend on Ω/V, but are functions of T and µj. As p and p̂
are equal in the thermodynamic limit, it follows that the coefficient ζ∞ = 0.
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2.2. The Integral Pressure of a Representative Volume Element

To define the differential and integral pressures, and the conditions for thermodynamic and
mechanical equilibrium between two phases within a pore, we need suitable REVs. In a porous
medium with two fluid phases, we need more than one type of REV, one for each phase. A REV needs,
as the name says, to be representative for all molecular interactions in the system [17]. It should be
large enough to contain a statistically representative amount of the fluids and solids. The purpose
of the REV is to define a volume element, to be used to define equilibrium, but also to define local
equilibrium in a large system where fluid transports take place [17].

A liquid droplet in equilibrium with its vapor inside a slit pore is an example of a two-phase
confined fluid. The droplet system is illustrated in Figure 1. Various REVs are possible. Each REV
need to cover the whole cross section of the pore. In the following we are concerned with two REVs,
one in the vapor- and one in the liquid phase. None of them includes the surface between liquid and
vapor. Two examples of REVs (REV1 and REV2) are illustrated in Figure 1. The x-axis is located at the
center of the pore.

Figure 1. Slit pore of width 2a with a liquid droplet in the middle, which is in equilibrium with a vapor
phase on both sides. The representative volume elements are REV1 (vapor of volume Vv) and REV2

(liquid of volume Vl), both with length d. The x-axis is located at the center of the pore.

The integral pressure of an isothermal REV with constant chemical potentials is expressed in
terms of the compression energy, p̂V, which is defined by the grand potential, Υ [11].

p̂V = −Υ ≡ kBT ln Ξ (7)

Here kB is the Boltzmann constant and Ξ the grand-canonical partition function. Similar to ε,
also the compression energy is additive. It is the sum of contributions from all phases and interfaces
present within the REV. The grand potential provides then the statistical mechanical link to particle
behaviour, and is a tool for pressure computations (see below). The system is small in the sense of Hill,
when the integral pressure deviate from the (bulk) fluid pressure.

The general expression for the compression energy for a REVn, with n = 1, 2 is then

p̂REVn V = p̂ f V f − γ̂ f sΩ f s (8)

where V is the volume of the REV, V f is the volume of the fluid, Ω f s is the surface area between the
fluid and the wall, and γ̂ f s is the integral surface tension at the wall, or the surface tension of the small
system. In the present case, the two REVs are completely filled with a fluid; a vapor (REV1) or a liquid
(REV2). The REV volume in both cases obeys V = V f = Vv = V l = 2adw, where a is the slit pore half
width, d the REV length and w the width of the REV. Superscripts v and l refer again to the vapor and
the liquid. The surface area between fluid and solid is Ω f s = 2dw. The surface tension between fluid
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and pore surface are γ̂ls and γ̂vs, respectively, where the hat indicate that the system may be small.
In that case, the surface tension is a function of the contact area / system geometry.

For sufficiently large values of a, the fluid in the center of the pore has macroscopic bulk properties.
In that case; the integral pressure in the vapor p̂v and the liquid p̂l are independent of Vv or V l ,
respectively, and

p̂v = pv, p̂l = pl . (9)

Here, pl and pv are bulk pressures of the liquid and vapor, respectively.
In a slit pore, the wall surface is not curved. When the distance between the walls (2a) is sufficiently

large, the fluid–solid surface tension show macroscopic behaviour, and:

γ̂vs = γvs, γ̂ls = γls. (10)

By introducing the expressions, Equations (9) and (10), the volume and the fluid–solid surface
area into Equation (8), we obtain expressions for the integral pressure of the liquid and vapor REVs:

p̂REV2 = pl − γls

a
, p̂REV1 = pv − γvs

a
. (11)

Suppose now that integral pressure is constant everywhere at equilibrium, or that:

p̂REV2 = p̂REV1 . (12)

This means we can write:

pl = pv +
γls − γvs

a
(13)

Young’s law derives from a force balance at phase equilibrium:

γls = γvs + γlv cos θ, (14)

Here γlv is the liquid-vapor surface tension. We introduce this law in the equation above
and obtain:

pl = pv +
γlv

a
cos θ = pv +

γlv

R
. (15)

This is Young–Laplace’s equation for a slit pore. Young–Laplace’s equation has been verified
in the experimental literature numerous times [22,23]. The radius of curvature of the liquid-vapor
surface, R = a/ cos θ, was used, where θ is the contact angle at the pore wall, see Figure 1. We have
found this equation without examining the liquid-vapor interface per se.

Equation (12) is thus equivalent to validity of the laws of Young and Young–Laplace.
These familiar laws apply to thermodynamic and mechanical equilibrium, so we expect the equality to
do the same. In this sense we have derived a new way to express phase equilibrium in nanopores.

Consider again a state of equilibrium where the integral pressure is constant. The integral
pressures of the fluids are shown by Equation (11). For each fluid, the difference of the differential and
integral pressure for the slit pore follows from Equation (4):

p− p̂ = a3
(

∂ p̂
∂a3

)
T,µ

=
γ f s(α)

3a
. (16)

where we have indicated that the surface tension depends on a parameter α which characterizes
the molecular interactions of the fluid and the wall. The shape is a variable in small system
thermodynamics, and remains constant when we determine the derivative. To keep the shape constant,
means to take the isomorphic derivative of the integral pressure in Equation (16).
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A change from the slit pore to a cylindrical pore, will change the proportionality factor in a
concrete way. The ratio of the area over the volume in the REV of a cylindrical pore is double the value
in a slit pore. The ratio of the slope in a cylindrical pore over that from a slit pore is therefore equal
to 2. The corresponding scaling law for a cylindrical pore becomes:

p− p̂ = a3
(

∂ p̂
∂a3

)
T,µ

=
2γ f s(α)

3a
. (17)

By changing the geometry of the pore only, keeping the fluid wall interactions constant, we predict
that the slope of pressure difference vs the surface tension will change by a factor 2.

For large systems (when a → ∞), the difference between p and p̂ disappears, leading to
p = p̂ = p f in the REV. For small systems, however, the difference between p and p̂ is described
by the ratio between fluid–solid surface tension and the half channel width (γ f s/a) divided by 3.
We have thus found that the pressure difference follows a scaling law, similar to the one proposed by
the Small System Method [8,9], and given in Equation (6).

Equation (16) can be tested by molecular dynamics simulations. In such a test, one can identify
independently all terms in the equation, and confirm that the condition p̂REV1 = p̂REV2 holds. Essential
in the calculation is that p and p̂ refer to the same volume.

These theoretical results demonstrate why it may pay to take the effort to invoke the perhaps
more complicated thermodynamic scheme of Hill. Young and Young–Laplaces’ laws describe
the same physical phenomenon as Equations (16) and (17). Hill’s theory shows how the two
Equations (16) and (17) are linked to each other and to new variables (e.g., ε), in manners which
can be tested.

2.3. A Mechanical Interpretation of the Pressures

The above derivation showed that the condition of constant integral pressure at equilibrium is
required by Young’s and Young–Laplace’s laws. The integral and differential pressures are therefore
also related to the mechanical pressure tensor. The mechanical pressure tensor will from now be
denoted with upper case P, while the thermodynamic pressures are denoted as before, with lower case
p. A complete set of relations between P and p is provided in the Appendix A. Here, we present the
main relations.

Consider again the liquid droplet in a slit pore, as shown in Figure 1. The slit pore wall is
parallel to the yz-plane. The pressure tensor component acting normal to the wall is the xx-component,
PN = Pxx (cf. the Appendix A). There are two tangential components of the pressure tensor, the
yy-component and the zz-component, which are equal in equilibrium. The tangential pressure tensor
component is the average of the two, PT = 1

2 (Pyy + Pzz). The surface tension is minus the excess of the
tangential pressure tensor [24],

γ f s =
1
2

∫ a

−a
(PN(x)− PT(x))dx. (18)

The factor of one half accounts for the fact that the integral is for two fluid–solid surfaces.
By introducing the fluid–solid surface tension into the equation for the integral pressure of a single
fluid phase, cf. Equation (11), we obtain

p̂ = p f − 1
2a

∫ a

−a
(PN(x)− PT(x))dx, (19)

where superscript f again refers to either the liquid or vapor. The normal component of the mechanical
pressure tensor is constant through flat surfaces at mechanical equilibrium. The integral of the normal
component divided by 2a is therefore equal to PN . We assume that the normal component is equal to
the differential pressure of the bulk fluid, p f = PN . Below, the assumption is shown to hold.
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The differential pressure of the bulk fluid and the integral over the normal component of the
pressure cancel each other, and the integral pressure is equal to the average tangential component,

p̂ =
1
2a

∫ a

−a
PT(x)dx = 〈PT〉. (20)

This equation shows that the integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure.

The differential pressure can also be related to the mechanical pressure tensor. The difference
between the differential and integral pressures is equal to the fluid–solid surface tension divided by 3a.
By introducing Equation (18) for the fluid–solid surface tension, we obtain

p− p̂ =
1
6a

∫ a

−a
(PN(x)− PT(x))dx (21)

By reorganizing and inserting the average of the tangential pressure for the integral pressure,

p =
1
3
(〈PN〉+ 2〈PT〉) =

1
3

Tr〈P〉 (22)

The differential pressure is equal to the average of the trace of the mechanical pressure tensor
divided by 3.

3. Simulations

3.1. Molecular Dynamic Simulations

3.1.1. System

Simulations were carried out for a droplet in a slit pore. The droplet in the middle of the pore was
surrounded by its vapor phase on both sides (see Figure 2). The simulation box, with the side lengths
Lx = Ly 6= Lz had periodic boundary conditions in all directions.

Figure 2. System used in the simulation. The droplet in the middle of the slit pore is surrounded by a
vapor phase on both sides.

The simulation box was divided into n rectangular layers along the z-axis with a layer thickness
of ∆z = Lz/n. Both the pore-wall (grey) and the fluid (red) consisted of Lennard-Jones/spline
particles [25]. The particles of the wall were immobilized, such that the particles were able to interact
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with the fluid particles, but not move. Due to periodic boundary conditions, the wall thickness was
t = 3.5σ0 and had a density of ρwall = 1.05. The fluid inside the pore was initialized in a way that the
overall density inside the pore was ρ f luid = 0.27, thus in the two phase regime [25]. The averaged
density of the bulk liquid was ρliquid = 0.75± 0.0015 and the one of the vapor ρvapor = 0.03± 0.0025.

The simulations were carried out using LAMMPS [26] in the canonical (NVT) ensemble at a
temperature of T∗ = 0.70. The Nosé-Hoover thermostat [27] was used to keep the temperature constant.
We used Lennard-Jones reduced units, which are indicated by superscript * [28]. The system was
simulated for four slit widths, a = 8.7σ0, 10.45σ0, 12.2σ0 and 13.7σ0. The half channel widths were
chosen so that both, the pressure of the fluid in the center, p f , as well as the fluid–solid surface tension,
γ f s, are independent of the distance a, i.e., they show macroscopic bulk properties. Furthermore,
the slit widths are large enough to avoid the effect of the disjoining pressure, as discussed in [13].

3.1.2. Particle Interaction Potential

The interaction between particles of type i and j was defined by the Lennard-Jones/spline
potential [25,28],

uij(r) =


4εij

[(
σij
r

)12
− αij

(
σij
r

)6
]

if r < rs,ij

aij(r− rc,ij)
2 + bij(r− rc,ij)

3 if rs,ij < r < rc,ij

0 if r > rc,ij

(23)

where r is the distance between the particles. The interaction parameters, εij and σij, were set to 1 for
all particle pairs (Lennard-Jones units). The interaction parameter αij is used to control the attractive
interaction between the wall and the fluid, where we used αs f = 0.05, 0.15 and 0.25. For wall-wall and
fluid-fluid interactions the interaction parameter was set to αss = α f f = 1. All αs f values represent a
strong, repulsive interaction between wall and fluid, thus a non-wetting behaviour. The parameters aij,
bij, rc,ij and rs,ij were determined such that the potential and its derivative are continuous functions at
rs,ij = 1.24σ and rc,ij = 1.74σ [25].

3.1.3. Computation of REV Pressures and Wall-Fluid Surface Tension

The mechanical pressures in any layer l or combination of layers, or in a REV (core plus all layers
included), were computed following Kirkwood [24]:

Pβκ =
1

3V ∑
i∈l

mi(vi,β − vm,β)(vi,κ − vm,κ)−
1

6V ∑
i∈l

N

∑
j=1

(rij,β fij,κ). (24)

The subscripts β and κ denote the Cartesian coordinates, x, y and z, while V is the volume of the
layer, mi is the mass of particle i, vi,β is the velocity of fluid particle i in the β-direction, and vm,β is the
average velocity in the β-direction. This velocity is zero in our equilibrium simulations. The properties
rij,β and fij,β are, respectively, the distance and the force between particle i and j in the β-direction.
The first term is the kinetic energy contribution from the particles, and the second term arise from
pairwise interactions. Because of isotropy, the tensor is diagonal (see Appendix A).

Half the value of the pairwise energy contribution is assigned to the layer that contains particle
i, while the other half is assigned to the layer that contains particle j. A more precise distribution
of the contributions is available [29–32], but the present method has sufficiently small errors for the
volumes used.

The pressure of a fluid volume element was calculated, starting with the core of the pore (lightest
color in Figure 3), which has volume V1. Volume was gradually added to the core, including in the
end also the wall (black color in Figure 3). In this manner, the volume of the core was growing, layer
by layer, until in the end s− 1 layers were added to the central core. The pressure was computed for
the core (V1), for the core plus one subsequent layer (V2), and for the total volume (Vtot). The total
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volume, Vtot, is equal to the volume V of the REV (see Figure 1). Thus, the pressure was computed
in growing pore core -volumes until the volume was large enough to cover the whole width (2a) of
the pore. This new growing-core methodology enabled an calculation of the pressure in the center
of the pore (the core) and the averaged pressure of the whole cross section of the pore, including all
interactions with the pore wall. When all layers plus the wall inside the pore were included (Vtot),
we obtained p̂ of the REV. As long as there is no impact of the wall, (the core plus layers is sufficiently
far away from the wall) we observed the bulk fluid pressure, p f . This procedure was applied to two
REVs, one in the liquid and one in the vapor phase.

Figure 3. The core layer of the slit pore (lightest color) and subsequent layers (progressively darker
color) used in the calculation of the pressure tensor of the fluid. V1 and V2 are the volumes of the core
and the core plus one layer, respectively. Vtot is the total volume, covering all interactions with the
pore wall.

The fluid–solid surface tension was computed as the excess of the tangential pressure tensor
component [24] from Equation (18).

The extrapolated normal component PN was taken to be equal to the pressure in core, where
the fluid–solid surface has no effect on the pressure. The tangential component of the pressure was
calculated using PT = 1

2 (Pyy + Pzz). The value was obtained using a low resolution in x-direction and
by averaging over multiple chunks of the liquid phase, along the pore in the z-direction.

3.2. Gibbs Ensemble Monte Carlo

In the derivation of Equation (20), the pressure tensor normal to the slit pore wall, PN , is assumed
to be equal to the bulk pressure p f . This assumption was tested using Gibbs ensemble Monte Carlo
simulations for two values of p f (0.2 and 6.0 reduced units). The method is the same as reported
recently by Erdős et al. [10]. In the simulations, two simulation boxes were defined. Simulation box
1 represents a reservoir of a bulk fluid with periodic boundary conditions applied in all directions.
The fluid particles interact with the shifted and truncated Lennard-Jones potential with σ = 1, ε = 1
and cut-off rc = 2.5. The pressure, p f , and temperature, T, of the fluid in simulation box 1 are imposed,
while the number of particles, N1, and the volume of the box can fluctuate. Simulation box 2 was a slit
pore with fixed volume and temperature. The size of the slit pore was defined by the distance between
the two parallel planes, 2a. In simulation box 2, periodic boundary conditions were applied in the
directions parallel to the planes. The total number of particles, N1 + N2, was fixed in the simulations.
Simulation box 1 and 2 can exchange particles, which ensured that the two boxes were in chemical
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equilibrium. The pressure of the fluid in simulation box 2 was equal to the differential pressure in
equilibrium with the pressure imposed in the reservoir (box 1), p f . A more detailed description of the
simulation setup is given by Erdős et al. [10]. The high and low pressures were computed for varying
pore sizes a.

4. Results and Discussion

The results for the independent computations of the pressure of a bulk fluid and corresponding
pressure in the pore, using Gibbs ensemble Monte Carlo simulations, are shown in Table 1 in Section 4.1.
The results of the molecular dynamics simulations are shown in Figures 4–7 in Sections 4.2–4.5.
The figures show the pressure variation from the center of the slit to the wall, in the direction
perpendicular to the wall (Figure 4) and parallel to the wall (Figure 5). The next figures confirm,
as we shall see, that we can use a constant p̂ to define equilibrium, and that a small system scaling
law applies.

4.1. Pressure Component Normal to the Pore Wall

The normal component of the pressure tensor in simulation box 2 and bulk pressure in simulation
box 1 are shown in Table 1.

Table 1. The pressure tensor normal to the slit pore wall, PN , and the bulk pressure p f with varying
pore sizes a. Two total pressures are studied for various pore sizes.

Pore Size a/σ0 Normal Pressure, PN σ3
0 /ε0 Bulk Fluid Pressure, p f σ3

0 /ε0

5 6.178± 0.005 6.023± 0.005
6 6.017± 0.005 6.011± 0.005
9 6.014± 0.005 5.995± 0.006
12 6.011± 0.005 5.995± 0.003
15 6.029± 0.004 5.995± 0.004
21 6.011± 0.004 6.000± 0.003
27 5.997± 0.004 6.002± 0.003
35 5.998± 0.004 5.997± 0.003

5 0.2011± 0.0009 0.2002± 0.0002
6 0.1988± 0.0009 0.2005± 0.0002
9 0.2007± 0.0008 0.2000± 0.0002
12 0.2020± 0.0007 0.2002± 0.0002
15 0.1980± 0.0007 0.1997± 0.0002
21 0.1993± 0.0006 0.1997± 0.0001
27 0.2005± 0.0006 0.2000± 0.0001
35 0.2000± 0.0005 0.2001± 0.0001

The pressure tensor normal to the pore wall in simulation box 2 is according to Table 1 equal to
the bulk pressure in simulation box 1 within the accuracy of the simulation. The results show that this
assumption is correct. Therefore, the integral pressure can be understood as the average value of the
pressure tensor components tangential to the pore wall, p̂ = 〈PT〉.

4.2. Pressure Variation in the Direction Normal to the Pore Wall

The variation in the pressure component normal to the surface walls is shown for the liquid
(top) and the vapor phases (bottom) in Figure 4, for pore widths, 2a = 17.4σ0 (left) and 2a = 27.4σ0

(right), using αs f = 0.15 (repelling interactions). The horizontal straight line in all sub-figures is the
xx-component extrapolated to the walls. We know there is bulk fluid in the core, as the pressures in V1

and V2 are the same, so this component is equal to the bulk pressure. For the other curves in the figure,
the tangential components of the pressures (the yy- and zz-components) fall on top of each other. The
distances 2a, b and c between the 4 dashed lines and the pore wall (grey) in the figure represent three
fluid volumes, of increasing size (V1, V2 and Vtot). These are the core volume (width c, volume V1), the
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core plus layer 1 (width b, volume V2) and the whole volume (width 2a, volume Vtot). The distance 2a
is the width of the channel.

Figure 4. Pressure variation of the three pressure components normal to the surface shown for (a) the
liquid phase with pore width 17.4σ0, (b) the vapor phase with pore width 17.4σ0, (c) the liquid phase
with pore width 27.4σ0 and (d) the vapor phase with pore width 27.4σ0, for αs f = 0.15. The normal
component of the pressure, P′xx, is extrapolated from the center of the slit pore.

In the liquid phase (top), the tangential pressure component becomes negative close to the surface.
This variation was used to compute the surface tension between solid and liquid from Equation (18).
The value was found, within the accuracy of the calculation, to be independent of the distance between
the two surface walls, see Table 2.

For the vapor phase, there is no dip in the pressure tensor into the negative regime. In the vapor,
not only the extrapolated normal pressure component, P′xx, but also the two tangential components,
Pyy and Pzz, are constant and independent of the distance between the two surfaces. Therefore, the
surface tension between the vapor and the wall is negligible.

The pressure in the pore core depends on the distance between the surface walls, i.e., it is larger
in the pore with a smaller distance (left) than in the one with a larger distance (right). The bulk fluid
pressures are related to the curvature of the liquid-vapor meniscus by Young–Laplace’s law, which
depends on the slit pore width 2a.

4.3. Pressure Variation along the Pore

The pressure tensor components were computed for three volumes of increasing size (V1, V2 and
Vtot) using the growing-core methodology. V1 and V2 are subvolumes in the center of the REVs and Vtot

is the volume covering the whole REV, i.e., Vtot = V l = Vv (see Figures 1 and 3). In Figure 5, the pressure
components are plotted as a function of the z-direction. The z-direction is parallel to the pore wall and
passes through the vapor and the liquid droplet.

The volumes V1 and V2 contain bulk fluid, and are not influenced by the pore wall. The pressure
components of the two volumes in the center of the box are equal. It was shown (Table 1) that the
pressure was that of a bulk fluid in equilibrium with the pore. Therefore, the liquid bulk pressure is pl .
The pressures are equal to the vapor bulk pressure, pv, on both sides of the liquid droplet.

The volume Vtot includes the fluid and its interface with the pore wall. The pressure component
normal to the fluid wall is still equal to the fluid pressure, Pxx = p f . The pressure components
tangential to the fluid wall in the bulk liquid and bulk vapor, are equal to the integral pressure,
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p̂ = 〈PT〉. The integral pressure is the same in the liquid and vapor phases, in agreement with
Equation (20).

Figure 5. Pressure components (a) Pxx, (b) Pyy and (c) Pzz, as a function of the z- direction for three
regions defined using the growing-core methodology. The liquid droplet is in the center of the box,
from z = 30σ0 to z = 75σ0. There is a vapor phase on both sides of the liquid droplet.

4.4. Pressure Differences Across the Liquid-Vapor Interface

Figure 6 (left) shows the difference between the normal components of the bulk pressures in the
liquid and vapor. The pressure difference is shown as a function of the inverse half channel width,
a, for three values of the interaction parameter α, all values representing wall-fluid repulsive forces.
Figure 6 (right) shows the difference between the liquid and vapor for the tangential components
of the pressures, i.e., the integral pressure p̂ (dashed lines) and the bulk pressure = p f (solid lines).
Results are shown as a function of the inverse half channel width between the two pore walls, 1/a,
and three fluid–solid interactions parameters α. These plots allow us to test Equations (10) and (12).

We first observe that the integral pressure differences for the two fluids are zero, meaning that the
integral pressure is constant along the pore, see Figure 6 right bottom. The results support Equation (12).
In the bulk phases, the tangential and normal components are the same. This confirms the soundness
of the calculation procedures.
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Figure 6. Difference between (a) the normal components of the pressure of the bulk liquid and vapor
and (b) the difference in the tangential component of the pressure of the bulk liquid and vapor, for
three different solid-fluid interactions (α) plotted as a function of the inverse half pore width. The bulk
pressure, p f and the integral pressure are represented by solid and dashed lines, respectively.

Both figures show that the difference in bulk pressure components depends on the distance
between the two pore walls and the interaction parameter α. This is a consequence of a corresponding
decrease of the liquid-vapor curvature. The uncertainties in the results, did not allow a determination
of θ. We have therefore not computed the liquid-vapor surface tension, to confirm directly the
law Young–Laplace. However, results of the two REVs combined, imply the validity of this law.
The liquid–solid and vapor–solid surface tensions, computed with Equation (18), are given in Table 2
for the three α-values. The surface tension changes slightly with α.

Within the accuracy of the calculation, it was possible to estimate the slope of the three data sets.
Lines to guide the eye were fitted through zero in the left-hand side figure, following Young–Laplace
or the scaling law. The values of the slopes were 0.35/0.31/0.29, for α= 0.05/0.15/0.25, respectively.
The slope is equal to γlv cos θ which is approximately equal to γls since γvs ≈ 0 (see Equation (14) and
Table 2).

The slopes depended on the interaction parameter α. The value increased for decreasing values of
α. This is expected: The more repelling the surface is, the higher is the surface tension. The slopes are
in agreement with the liquid-solid surface tensions given in Table 2.

Table 2. Surface tensions for the liquid/solid and vapor/solid interfaces. Values are presented for three
interaction parameters α in the Lennard-Jones potential used in the computations. The surface tensions
were computed via the excess of the tangential pressure tensor (see Equation (18)).

α γls γvs

0.05 0.36 ± 0.02 0.0067 ± 0.0026
0.15 0.33 ± 0.01 0.005 ± 0.0035
0.25 0.31 ± 0.01 0.004 ± 0.0045

4.5. The Small System Scaling Law and the Subdivison Potential

Following the definition of Hill, the difference between the differential pressure, p, and the integral
pressure, p̂, was given by Equation (16), or ε/V = γ f s/(3a). The relation is an example of a small
system scaling law, cf. Equation (6).
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To investigate this further, the differential pressure, p, of the liquid REV minus the integral
pressure p̂ of the same was plotted in Figure 7 as a function of the inverse half channel width for
α = 0.15. The difference between p and p̂ was proportional to 1/a, and the slope was as predicted by
the liquid/solid surface tension from Table 2 divided by the half channel width, a, and a factor of 3.
The line goes through zero, when 1/a becomes zero. This is the thermodynamic limit value.

Figure 7. Difference between p and p̂ for the liquid REV2 as a function of the inverse half channel
width for α = 0.15..

Erdos et al. [10] reported slopes for cylinder pores in addition to slit pores. The ratio of slopes
between slit and cylinder pore was 0.52–0.58. From Equations (16) and (17), we obtain the ratio 0.50,
when the surface tension is constant. The surface tension is a function of the interaction parameter,
as we have seen. The surface tension may also depend on curvature. It follows that results from two
pores with different geometries, having the same α, and a surface tension which is independent of
curvature, will fall on top of each other.

The scaling law, that relate the integral and differential pressure of a REV, offer a new procedure
for calculation of surface tensions. This defined dependence on the inverse characteristic length, may
help distinguish between various other types of dependencies (curvature).

5. Conclusions

In this work we have confirmed, using molecular dynamics simulations, that the integral pressure
in a nano-confined single fluid in two phases is constant along a pore. This supports and extends
earlier investigations of Galteland et al. [18] for a single fluid between spheres arranged in a fcc lattice.
The results imply, that Young’s and Young–Laplace equations apply, equations which have been
validated experimentally numerous times. The integral pressure in mechanical equilibrium can be
understood as the average tangential component of the pressure. It is this component that is constant
through a pore at equilibrium. The differential pressure at mechanical equilibrium can be understood
as the average of the trace of the mechanical pressure tensor divided by 3.

The integral pressure, introduced by Hill, is relevant for descriptions of nano-pores. Using this,
we have developed a small system scaling law for nano-pores. Equation (6) is valid for a slit pore
and a cylindrical pore. The findings allowed us to speculate on wider applications of the scaling law.
One may imagine using the law for more complex geometries, where higher order terms are relevant
(line tension contributions). Once the subdivision potential is known, other thermodynamic quantities,
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like the enthalpy-hat, can also be computed for the confined system [33]. This opens up new ways to
study confined systems.
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Appendix A

In an isotropic system, the differential pressure p is normally defined by the trace of the pressure
tensor [34]:

p =
Pxx + Pyy + Pzz

3
(A1)

where Pii is the pressure component in the direction ii. Also the integral pressure can be understood in
terms of these pressure components. The integral pressure, p̂, in the present slit pore was expressed by
Equation (20):

p̂ =
1
2a

∫ a

−a
PTdx = 〈PT〉 =

Pyy + Pzz

2
(A2)

where Pyy and Pzz are the pressure components in tangential direction, and x is the direction normal to
the surface. The difference between p and p̂ can then be written as

p− p̂ =
Pxx + Pyy + Pzz

3
−

Pyy + Pzz

2
(A3)

which results in

p− p̂ =
Pxx

3
−

Pyy + Pzz

6
(A4)

By using the definition for the tangential pressure from Equation (A2), we obtain

p− p̂ =
Pxx

3
− 〈PT〉

3
(A5)

The normal pressure is equal to the tangential pressure in the thermodynamic limit (the bulk
fluid). For the bulk fluid;

Pxx = 〈PT〉 = p f (A6)

These relations mean that there is no difference between p and p̂.
With the assumption used in Equation (A2), Pxx, is constant in the direction perpendicular to the

pore surface, and
Pxx = p f (A7)

also away from the thermodynamic limit. By combining Equation (A2) with the definition of p̂,
Equation (11), we obtain

〈PT〉 = p f − γ f s

a
(A8)



Nanomaterials 2019, 10, 608 16 of 17

By introducing Equations (A7) and (A8) into Equation (A5), we obtain

p− p̂ =
p f

3
− p f

3
+

γ f s

3a
(A9)

which is

p− p̂ =
γ f s

3a
(A10)

The difference between the differential pressure p and the integral pressure p̂ in this equation is
the same as the difference in Equation (16), which was obtained using Hills formalism.
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13. Gubbins, K.E.; Long, Y.; Śliwinska-Bartkowiak, M. Thermodynamics of confined nano-phases.
J. Chem. Thermodyn. 2014, 74, 169–183.

14. Giovambattista, N.; Rossky, P.J.; Debenedetti, P.G. Phase transitions induced by nanoconfinement in liquid
water. Phys. Rev. Lett. 2009, 102, 050603.

15. Eslami, H.; Mehdipour, N. Local chemical potential and pressure tensor in inhomogeneous nanoconfined
fluids. J. Chem. Phys. 2012, 137, 144702.

16. Bennethum, L.S.; Weinstein, T. Three pressures in porous media. Transport Porous Med. 2004, 54, 1–34.
17. Kjelstrup, S.; Bedeaux, D.; Hansen, A.; Hafskjold, B.; Galteland, O. Non-isothermal transport of multi-phase

fluids in porous media. Constitutive equations. Front. Phys. 2019, 6, 150. doi:10.3389/fphy.2018.00150.
18. Galteland, O.; Bedeaux, D.; Kjelstrup, S.; Hafskjold, B. Pressures inside a nano-porous medium. The case

of a single phase fluid. Front. Phys. 2019, 7, 60.
19. Bedeaux, D.; Kjelstrup, S.; Schnell, S.K. Nanothermodynamics. General theory.; PoreLab: NTNU Grafisk,

Trondheim, 2020.

https://doi.org/10.1080/00268976.2011.637524
https://doi.org/10.3390/nano10020293
https://doi.org/10.3389/fphy.2018.00150


Nanomaterials 2019, 10, 608 17 of 17

20. Bedeaux, D.; Kjelstrup, S. Hill’s thermodynamics is equivalent with Gibb’s thermodynamics for surfaces
of constant curvatures. Chem. Phys. Lett. 2018, 707, 40–43.

21. Tsai, D. The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 1979, 70, 1375–1382.
22. Chatterjee, J. Prediction of coupled menisci shapes by Young–Laplace equation and the resultant variability

in capillary retention. J. Colloid Interface Sci. 2007, 314, 199–206.
23. Gras, J.P.; Delenne, J.Y.; El Youssoufi, M.S. Study of capillary interaction between two grains: A new

experimental device with suction control. Granular Matter 2013, 15, 49–56.
24. Kirkwood, J.G.; Buff, F.P. The statistical mechanical theory of surface tension. J. Chem. Phys. 1949,

17, 338–343.
25. Hafskjold, B.; Travis, K.P.; Hass, A.B.; Hammer, M.; Aasen, A.; Wilhelmsen, Ø. Thermodynamic properties

of the 3D Lennard-Jones/spline model. Mol. Phys. 2019, pp. 1–16.
26. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
27. Braga, C.; Travis, K.P. A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys. 2005,

123, 134101.
28. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms To Applications; Elsevier:

Amsterdam, Netherlands, 2001; Volume 1.
29. Hafskjold, B.; Ikeshoji, T. Microscopic pressure tensor for hard-sphere fluids. Phys. Rev. E 2002, 66, 011203.
30. Ikeshoji, T.; Hafskjold, B.; Furuholt, H. Molecular-level calculation scheme for pressure in inhomogeneous

systems of flat and spherical layers. Mol. Simulat. 2003, 29, 101–109.
31. Todd, B.; Evans, D.J.; Daivis, P.J. Pressure tensor for inhomogeneous fluids. Phys. Rev. E 1995, 52, 1627.
32. Todd, B.D.; Daivis, P.J. Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications; Cambridge

University Press: Cambridge, UK, 2017.
33. Skorpa, R.; Simon, J.M.; Bedeaux, D.; Kjelstrup, S. The reaction enthalpy of hydrogen dissociation calculated

with the Small System Method from simulation of molecular fluctuations. Phys. Chem. Chem. Phys. 2014,
16, 19681.

34. Daivis, P.J.; Evans, D.J. Comparison of constant pressure and constant volume nonequilibrium simulations
of sheared model decane. J. Chem. Phys. 1994, 100, 541–547.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory
	Thermodynamic Relations for Small Systems
	The Integral Pressure of a Representative Volume Element
	A Mechanical Interpretation of the Pressures

	Simulations
	Molecular Dynamic Simulations
	System
	Particle Interaction Potential
	Computation of REV Pressures and Wall-Fluid Surface Tension

	Gibbs Ensemble Monte Carlo

	Results and Discussion
	Pressure Component Normal to the Pore Wall
	Pressure Variation in the Direction Normal to the Pore Wall
	Pressure Variation along the Pore
	Pressure Differences Across the Liquid-Vapor Interface
	The Small System Scaling Law and the Subdivison Potential

	Conclusions
	
	References

