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Abstract

This thesis concerns the implementation of parallel Schwarz domain decomposition using node-level paral-
lelism, focusing on the parallel Schwarz method in comparison with the Jacobi iterative method. The study
goes into the complexities of domain decomposition methods for solving partial differential equations, which
are essential in fields such as fluid dynamics, solid mechanics, quantum mechanics, and financial mathemat-
ics. The research examines the convergence and performance of these methods within a parallel computing
framework. A large portion of the work involves the comparison of varying configurations of block sizes
and overlaps within the use of the block Jacobi iterative method, used for the implementation of the parallel
Schwarz method. Numerical experiments are conducted for a stationary heat problem on a 2-dimensional
grid with 256 points in each direction. The results show optimal performance for small block sizes, attributed
to the use of a dense solver for the subdomains. Larger blocks and larger overlaps show superior convergence
properties, up to the limit of an overlap of half the block size. The efficiency of the parallel Schwarz method
remains high for an increasing number of threads unlike the standard Jacobi iteration, showing it is better
suitable to a parallel environment.

ii



Contents

Abstract ii

1 Introduction 1

2 Fundamental Concepts
and Problem Formulation 2

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Schwarz Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Alternating Schwarz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Parallel Schwarz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Node Level Parallelization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Nodes and Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Types of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Evaluating Parallel Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 8

3.1 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Jacobi Iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Block Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.3 Block Jacobi Iteration With Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Convergence of Iterative Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Implementation and Software 15

4.1 Functions and Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Parallel Implementation of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Jacobi Iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



iv Contents

4.2.2 Block Jacobi Iteration (with Overlap) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Numerical Results 21

5.1 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Theoretical vs Experimental Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Influence of Block Size and Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Parallel Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Discussion 25

7 Conclusion 26

A Additional Numeric Results 29

A.1 Convergence results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.2 Parallel performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



1
Introduction

Within the field of high-performance computing, domain decomposition methods (DDMs) are a widely adopted
approach for solving partial differential equations (PDEs). These methods involve partitioning the computa-
tional domain into subdomains, allowing for parallel execution. DDMs employ diverse linear algebra tech-
niques to solve PDEs on parallel architectures, tackling problems derived from various scientific domains,
including the Navier-Stokes equations in fluid dynamics, elasticity systems in solid mechanics, Schrödinger
equations in quantum mechanics or the Black and Scholes equations in financial mathematics [7]. The com-
plexity of these equations often calls for large-scale computations, driven by the increasing demand for pre-
cision and the expanding availability of computational resources.

This thesis focuses on Schwarz methods, the earliest form of DDMs. The alternating Schwarz method, intro-
duced by mathematician Hermann Amandus Schwarz in 1869 [21], utilizes the decomposition of a domain
into overlapping subdomains, iteratively solving the differential equations within these subdomains. The up-
rise of parallel computing sparked renewed interest in this method, resulting in the development of the par-
allel Schwarz method by Lions in 1988, allowing for large-scale parallelization [9][11]. This research provides
a comprehensive study on the convergence and performance of the parallel Schwarz method in comparison
to the Jacobi iterative method, within the Kokkos parallel computing framework [23], focusing on node-level
parallelism. The aim is to align theory with numerical experiments, and test to which extent the parallel
Schwarz method allows for better use of computational resources.

The structure of this thesis is as follows: Chapter 2 offers preliminary information, starting with a formula-
tion of the problem used for convergence and performance analysis, followed by a formulation of both the
alternating- and parallel Schwarz method, and concluding with an introduction into node-level paralleliza-
tion. Chapter 3 showcases the methodology of applying the parallel Schwarz method by relating it to the
block Jacobi iterative method, after introducing the regular Jacobi iterative method which will be the point of
comparison. This chapter concludes with an analysis of the convergence properties of these methods. Chap-
ter 4 discusses several software routines used for the (parallel) implementation of the previously presented
methods. The numerical results of this implementation are presented in Chapter 5, starting with experimen-
tal convergence results, followed by the parallel performance. Finally, Chapter 7 presents the conclusions
drawn from this study, complemented by a reflection and suggestions for further research in Chapter 6.

1



2
Fundamental Concepts

and Problem Formulation

Before going into the analysis of this thesis, several foundational concepts must be introduced. We begin by
defining the differential problem to be solved in Section 2.1. Following this, Section 2.2 addresses domain
decomposition, discussing two Schwarz methods: the alternating and the parallel Schwarz method. This
chapter concludes with a brief introduction to node-level parallelization in Section 2.3.

2.1. Problem Formulation

The differential problem used in this thesis is a stationary heat equation in two dimensions with constant
thermal conductivity, defined on the squareΩ= [0,1]2 ⊂R2 with Dirichlet boundary conditions:

∆u(x) =−Q(x)

k
onΩ,

u = 0 on ∂Ω,

where u(x) is the temperature at position x = (x, y) ∈ Ω, Q(x) is the generated heat inside the domain at
position x = (x, y) ∈Ω, k is the thermal conductivity inside the domain, taken to be constant, and ∂Ω is the
boundary ofΩ.

As k is taken to be constant, we can simplify the expression −Q(x)
k = b(x), resulting in the following form:

{
∆u(x) = b(x) onΩ,

u = 0 on ∂Ω.
(2.1)

For simplicity, we choose a forcing function b that vanishes at the boundaries of the domain and for which
the solution of problem (2.1) is easily derived:

b(x) =−2π2 · sin(πx) · sin(πy). (2.2)

which implicates u(x) = sin(πx)sin(πy) as the solution, depicted in Figure 2.1.

2



2.1. Problem Formulation 3

Figure 2.1: Exact solution of stationary heat equation (2.1) with forcing function (2.2).

Next, we discretize the domain, and with that, the differential problem. We use an equidistant discretization
grid of the unit square [0,1]2 ⊂R using n +2 discretization points in each direction, resulting in the nodes:

(xi , y j ) = (h · i ,h · j ), h = 1

n +1
, for i , j ∈ {0,1, . . . ,n,n +1}.

Recalling problem (2.1) and noting that the boundary values are known, there are n unknowns in both di-
rections for a total of n2 unknown values. We denote these unknowns by ui , j = u(xi , y j ). To approximate
the Laplacian of problem (2.1), we use a 5-point central difference scheme which has a discretization error of
O (h2), see [2]:

(∆u)i , j =
ui−1, j +ui , j−1 −4ui , j +ui+1, j +ui , j+1

h2 +O (h2).

This discretization allows us to formulate the differential problem (2.1), at each internal node (xi , y j ) as:

ui−1, j +ui , j−1 −4ui , j +ui+1, j +ui , j+1

h2 = bi , j for i , j ∈ {1, . . . ,n}.

Considering that ui , j = 0 for i , j ∈ {0,n+1}, and writing the entries of u and b in lexicographic order, we derive
the linear system:

Au = b, (2.3)

where A ∈Rn2×n2
, u,b ∈Rn2

, and the entries of the sparse matrix A are given by

A = 1

h2


B I
I B I

. . .
. . .

. . .
I B I

I B

 , B =


−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4

 . (2.4)
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and Problem Formulation

where I ,B ∈ Rn×n , and I is the identity matrix. This matrix A will be referred to as the 2D Laplacian. We
can see that with n +2 discretization points in both directions, we get a linear system (2.3) of n2 equations,
resulting in an n2×n2 matrix. When the solution is required at many grid points, this system quickly becomes
very large, making direct solutions for (2.3) infeasible. In the following sections, an iterative method will be
discussed to decompose this problem into smaller sub-problems.

2.2. Schwarz Methods

As mentioned in the introduction, Schwarz methods, named after Hermann Amandus Schwarz, are the earli-
est domain decomposition methods. These methods form the foundation for many of the domain decompo-
sition techniques used in numerical analysis and computational science. The alternating Schwarz method,
one of the earliest of these methods, was initially developed to rigorously validate results established by Bern-
hard Riemann. Riemann had proven that a harmonic function, which is a solution of the Laplace equation
∆u = 0 on a bounded domainΩwith Dirichlet boundary conditions, is the infimum of the Dirichlet integral:

∫
Ω
|∇v |2d x

over all functions v satisfying the boundary conditions. While the Dirichlet principle had readily been proven
for simple domains on which Fourier analysis was possible, Schwarz developed a domain decomposition
method to extend this to more complicated domains. [9]

2.2.1. Alternating Schwarz Method

We describe the alternating Schwarz method for the domain presented in Figure 2.2. This domainΩ consists
of two overlapping subdomains: a circle Ω′

1 and a rectangle Ω′
2. Here Ω1 = Ω \Ω′

2, Ω2 = Ω \Ω′
1, and the

intersection of these domains is Ω3 =Ω′
1 ∩Ω′

2. The boundaries of Ω1 and Ω2 that lie in the interior of Ω are
denoted as Γ1 = ∂Ω′

1 ∩Ω′
2 and Γ2 = ∂Ω′

2 ∩Ω′
1, respectively, where ∂ denotes the boundary of a domain.

Figure 2.2: Overlapping partition for the Schwarz alternating method with two subdomains [22]

When solving problem (2.1) using the alternating Schwarz method, the differential problem is iteratively
solved on subdomains Ω′

1 and Ω′
2, where on each iteration, the solution is updated within one of the two

subdomains, followed by the other. The method starts with an initial guess u0 on the whole domain that
vanishes on the boundary ∂Ω. On each iteration of the method, the values of the interior of one domain, say
Ω′

1 without loss of generality, are used as boundary values of Γ2, which is subsequently used to solve the dif-
ferential problem onΩ′

2. We use problem (2.1) together with the formulation of the method in [22] to denote
the alternating Schwarz method as follows:
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∆uk+ 1

2 = b inΩ′
1

uk+ 1
2 = 0 on ∂Ω′

1 ∩∂Ω
uk+ 1

2 = uk on Γ1


∆uk+1 = b inΩ′

2

uk+1 = 0 on ∂Ω′
2 ∩∂Ω

uk+1 = uk+ 1
2 on Γ2

. (2.5)

The iterations of this method proceed until a certain convergence criterion is met, either based on a known
exact solution or by an approximation of the error. The specific metric for determining convergence in this
study will be discussed in Section 3.2. The method presented above is inherently sequential as the values of

uk+ 1
2 are used in the process of updating uk+1. It thus does not allow for parallelization on the level of the two

subdomains. To enable this, we consider a variation on the alternating Schwarz method, the parallel Schwarz
method.

2.2.2. Parallel Schwarz Method

To be able to use parallel computing when using a Schwarz method, Lions introduced the parallel Schwarz
method [11]. This is a modification to the alternating Schwarz method where the differential problem is
solved on each subdomain simultaneously. Both internal boundaries Γ1 and Γ2 are initialized an initial guess
u0 onΩ. The problem is solved on both subdomains, with the values of Γ1 and Γ2 being exchanged between
the subdomains after each iteration. This is concretely formulated by Jovilet [15] as:


Duk+1

1 = b inΩ′
1

uk+1
1 = g on ∂Ω′

1 ∩∂Ω
uk+1

1 = uk
2 on Γ1


Duk+1

2 = b inΩ′
2

uk+1
2 = g on ∂Ω′

2 ∩∂Ω
uk+1

2 = uk
1 on Γ2.

(2.6)

This method allows for full parallelization on the level of the subdomains as the boundary updates per do-
main are independent on each iteration. This is especially beneficial when using multiple overlapping subdo-
mains, which allows information to be shared between multiple subdomains simultaneously. The multiple
overlapping regions allow the information of the known boundary to spread more quickly through the do-
main, improving the convergence of the method.

2.3. Node Level Parallelization

The basis of node-level parallelization is to divide up a large computational problem into smaller parts, called
tasks. Each of these tasks is a portion of the total problem that can be separately executed on a computational
core. In this section, we further explain the concepts of cores, nodes and tasks at the hand of the work of [13],
and highlight critical aspects that have to be addressed when using node-level parallelization.

2.3.1. Nodes and Cores

A node typically refers to one single physical or virtual machine within a larger system of computational
machines, see Figure 2.3. Key components of a node which are essential for understanding node-level par-
allelization include random access memory (RAM) to temporarily store data, and a central processing unit
(CPU) composed of multiple computational cores. Each of these cores can perform one or more tasks, which
are scheduled as threads. A thread is the smallest unit of processing that can be scheduled by a computer.
They are lightweight processes that are executed independently but can communicate through the use of
their shared memory.
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Figure 2.3: A schematic of several nodes in a larger parallel computer cluster [18]

2.3.2. Types of Parallelism

According to [13], there are two distinct types of parallelism when using multiple cores core computer nodes:

1. Data parallelism: The computational problem involves processing a large amount of data. This data
can be split up into different parts, which are then processed by separate cores, or distributed over
multiple nodes.

2. Functional parallelism: The computational problem can be subdivided into smaller tasks which are
independent or slightly overlapping. Each core is assigned a specific task that is performed on a sep-
arate portion of the data. Due to the possible varying computational complexities of these tasks, the
challenge arises of efficiently scheduling and distributing these tasks over the available cores to opti-
mize performance.

In this thesis, only data parallelism will be used. Both of these types of parallelism can be employed using
only one node, using node-level parallelism, or using a network of multiple nodes, using distributed paral-
lelism. When using distributed parallelism, communication is needed between the different nodes, as they
typically do not share memory. This communication induces added execution time, or overhead, which is
avoided when using node-level parallelism. Communication between the different cores in a node happens
through the shared memory to which all of the cores have access. However, the restriction to one node implies
fewer computational resources in comparison to distributed parallelism. The choice between node-level and
distributed parallelism is highly dependent on the problem at hand.

The goal of node-level parallelism is to launch threads and distribute the workload over these threads as ef-
ficiently as possible. A program usually starts with a master thread, which runs immediately from the start
of a program. When the program gets to a parallel region, a team of threads is launched to perform a com-
putation, which is called forking, see 2.4. This forking process takes time per thread, making it so that using
more threads does not necessarily mean a better performance of the parallel program. The distribution of
work over the threads can either explicitly be done or is done automatically using a scheduler, depending on
the parallel framework that is used.

Figure 2.4: The fork-join model showing the creation of threads.
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2.3.3. Evaluating Parallel Performance

Using node-level parallelism can significantly reduce the execution time of a program. To evaluate parallel
performance, one must use a metric to compare it to its sequential counterpart. In this thesis, we will use
parallel efficiency, as discussed in [13]. Consider a task that takes T seconds to complete sequentially. When
executed using N threads, this same task ideally takes T /N seconds, suggesting a speedup of N . However,
this perfect speedup is often not obtained in applications due to several factors:

1. Load Imbalance: Threads might not execute their tasks simultaneously because the task is not divided
into pieces of equal complexity. This imbalance can result in threads having to wait for others to get
to the end of the parallel region. This can significantly harm performance when the load imbalance is
large.

2. Resource Contention: Some resources might be shared and can only be accessed by one thread at a
time, making parts of the task sequential.

3. Communication Overhead: Parallel tasks can require communication between threads, causing over-
head.

The scalability of a task is measured using a metric based on its serial and parallelizable parts. The overall
problem size is s +p, where s is the serial part and p is the perfectly parallelizable part of the problem. Serial
time using one worker is given by:

Ts = s +p.

Using N workers, the execution time is

Tp = s + p

N
.

This is called strong scaling. Application speedup is defined as the ratio of serial time to the parallel time for
a fixed problem size:

S(N ) = Ts

Tp
= 1

s + 1−s
N

which is known as Amdahl’s Law, first introduced by Gene Amdahl in 1967 [3]. This law implies that the
speedup is limited by 1

s as N →∞. The efficiency of a parallel performance is the ratio of the performance
using N threads to N times the performance using one thread, expressed as:

ϵ= S(N )

N
= 1

s(N −1)+1
.

This metric assesses the efficiency of using N threads for executing a parallel program. Now as s(N−1) ≥ 0, we
get that the efficiency of a parallel program should be bounded by 1. However, superlinear speedup, where
the speedup exceeds the number of cores used can occur. This can happen when the fractions of the data
distributed to each core fit better into the local caches of the cores [19]. As the data is split into smaller parts
when using more threads, it can happen that these threads can load the data into their local cache more
efficiently, resulting in superlinear speedup.



3
Methodology

As discussed in the previous chapter, the parallel Schwarz method involves simultaneously solving a differ-
ential problem on multiple subdomains. Using a finite difference discretization to approximate the solution
on these subdomains gives that, in each iteration, multiple linear systems of the form (2.3) must be solved.
This chapter is concerned with the methodology for solving these systems. To this end, the parallel Schwarz
method will be directly related to the block Jacobi iterative method.

First, we discuss the details of the block Jacobi method along with two other iterative methods in Section 3.1.
We begin with the standard Jacobi iterative method, which is a simpler method to solve (2.3) onΩwithout the
use of subdomains. Next, the block Jacobi iterative method will be discussed, which uses a disjoint partition of
the unknowns, allowing these partitioned sets to be solved for independently. This approach, as we will show,
is directly related to the parallel Schwarz method with a small overlap. Finally, we will discuss a variation
of this block Jacobi method that allows for overlap in the partitioning of unknowns. Section 3.2 hereafter
discusses the general convergence of iterative methods, providing a convergence criterion and indicating the
rate of convergence for these three methods.

3.1. Iterative Methods

This section will discuss three iterative methods: the Jacobi iterative method, the block Jacobi iterative method,
and the block Jacobi iterative method with overlap. These three methods are all variations of the first, named
after mathematician Carl Gustav Jacob Jacobi. All these iterative methods are designed to converge to a solu-
tion of Equation (2.3). To assess convergence, we define the residual vector on the k‘th iteration as

rk = b− Auk . (3.1)

To make the convergence criterion independent of the problem size, we choose that the iterative method has
converged when the l 2 norm of this vector, divided by the number of grid points n2, falls below a specified
threshold τ. This gives convergence criterion (3.2), where we r k will be referred to as the residual at iteration
k.

r k = ∥rk∥2

n2 < τ. (3.2)

8



3.1. Iterative Methods 9

3.1.1. Jacobi Iteration

The Jacobi iteration involves extracting the diagonal elements from A in equation (2.3) . For the given system,
this means that a diagonal matrix D containing the diagonal of A is extracted as follows:

(A−D +D)u = b (3.3)

⇐⇒ Du = b− (A−D)u.

This results in the Jacobi iteration for system (2.3):

Duk+1 = b− (A−D)uk = Duk + rk (3.4)

where rk is as in (3.1). This system is solved on each iteration using D−1 = diag( 1
(D)i i

). For a 4×4 2D Laplacian
matrix A (see (2.4)):

A = 1

h2


−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4

 ,

the Jacobi iteration becomes

−4

h2 ·uk+1 = b−


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

uk = −4

h2 ·uk + rk

=⇒ uk+1 = uk − h2

4
rk .

3.1.2. Block Jacobi Iteration

The block Jacobi iterative method is a variation of the standard Jacobi iterative method, wherein the set of
indices of the solution vector are partitioned into non-overlapping subsets. In Section 3.1.3, subsets with
overlap will be discussed. Consider a partitioning of a 4×4 grid of internal nodes into 4 blocks of size 2×2,
as shown in Figure 3.1. To solve for these blocks independently, each of the nodes in the domain is assigned
a pair of indices (L,G), a local index L, and a global index G .

Figure 3.1: Partitioning of a 4×4 grid of internal nodes into 4 blocks of size 2×2.

We recall from Section (2.1) that to solve for the entire domain, system (2.3) must be solved. To restrict solving
(2.3) to solving on one of the domains, say domain i , we use certain restriction matrices Ri and extension
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matrices RT
i , to restrict the problem to the individual subdomains. Consider uL,G = u2,10, which is located

in the third domain, counted row-wise. Multiplying a residual vector rk by R3, should restrict it to the third
subdomain, with its resulting second element equal to the tenth element of the initial residual vector. This
implies (R3rk )L = (rk )G , and more generally

(Ri rk )L = (rk )G

=⇒ (Ri )L,G = 1.

Let Ai = {(L,G) : G in block i } denote the sets of index pairs, and p denote the size of the blocks in one direc-

tion. This leads to the following definition for the restriction matrices Ri ∈Rb2×n2
:

(Ri ) j ,k =
{

1 if ( j ,k) ∈Ai

0 otherwise
for j ∈ {1, . . . ,b2}, k ∈ {1, . . .n2}. (3.5)

To relate this to the block Jacobi iteration, we recall (3.4) and note that any M could be extracted from A in
the same way as 3.3, without M explicitly being contained in A, to get the iteration:

uk+1 = uk +M−1rk

under the assumption that this M matrix is non-singular. Our goal is to create the iteration matrix for the
block Jacobi iteration MB J from A, such that the iteration can be performed for the blocks independently.
Extracting N 2 blocks from A (provided that N |n for equal block size) using restriction matrices, we get

MB J =
N 2∑
i=1

RT
i Ai Ri =


A1

0
0

. . .
0

+


0

A2

0
. . .

0

+·· ·+


0

0
. . .

0
AN 2



=



A1

A2

. . .
. . .

AN 2

 ,

where
Ai = Ri ART

i .

For each Ai , specific columns are extracted from A by multiplying with RT
i , and the corresponding rows are

extracted by multiplying with Ri . Each Ai is placed correctly on the diagonal using multiplications by Ri and
RT

i . Taking the inverse of MB J gives:

M−1
B J =



A1

A2

. . .
. . .

AN 2



−1

=



A−1
1

A−1
2

. . .
. . .

A−1
N 2

=
N 2∑
i=1

RT
i A−1

i Ri .

This gives the block Jacobi iteration (3.6) where on each iteration, the steps 1-3 in (3.7) can be performed for
each block i independently due to the disjoint partition of indices:
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uk+1 = uk +
(

N 2∑
i=1

RT
i A−1

i Ri

)
rk (3.6)

1. r̂k
i = Ri rk ,

2. solve Ai xi = r̂k
i for xi , (3.7)

3. yi = RT
i xi ,

4. uk+1 = uk +
N 2∑
i=1

yi ,

where r̂k
i ,xi ∈Rb2

, and yi ∈Rn2
. Taking a closer look at the partition of the internal grid points and the solution

process on these subdomains, it becomes clear that there is some overlap in the subdomains. In reality,
the subdomains extend into their neighbouring domains with one node due to the use of their boundary,
as shown in 3.2 for the bottom left domain. This shows that the block Jacobi iteration is analogous to the
parallel Schwarz method when the overlap is exactly one discretization point. Moreover, it can be noted that
the standard Jacobi iteration is a special case of the parallel Schwarz method, where the block size is one one
discretization point.

Figure 3.2: Illustration of subdomain size for partitioning in Figure 3.1.

3.1.3. Block Jacobi Iteration With Overlap

In the previous section, we saw that a non-overlapping partition of the inner points in a discretized domain is
directly related to the parallel Schwarz method with an overlap of one discretization point. In this section, we
discuss how the block Jacobi iteration can be applied when there is overlap in the partitioning of inner points.
Consider a 3×3 grid of inner points partitioned into 4 overlapping blocks of size 2×2, as shown in Figure 3.3.
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Figure 3.3: Partitioning of a 3×3 grid of internal nodes into 4 overlapping blocks of size 2×2.

It should be noted that the nodes in the overlap do not have a unique local index, as they are contained in
multiple blocks. Despite these non-unique local indices, the index sets Ai = {(L,G) : G in block i } defined in
the previous section can still be used to construct the restriction matrices (3.5). The process for constructing
these restriction matrices (3.5) remains valid, the only difference being the handling of the overlap. Consider
the restriction matrices for the partitioning in 3.3:

R1 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 , R2 =


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0



R3 =


0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

 , R4 =


0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



Were we to continue with iteration (3.6), then the result vectors yi in step 3 of (3.7) would all have overlapping
non-zero entries. For example, as all restriction matrices have a non-zero entry in the fifth column (see encir-
clement), the resulting vectors yi will also (likely) have non-zero fifth entries. These would be added together
in step 4 of (3.7), potentially leading to divergence. To avoid this issue, we average the solutions in the overlap.

Define a matrix R ∈Rb2·N 2×n2
as follows:

R =

 R1
...

RN 2

 .

Each column of R corresponds to a global index of the discretization. The number of non-zero entries in a
column indicates how many blocks contain this global entry. Dividing each entry of R by the amount of non-
zero entries in its column, we obtain our averaging. The new matrix that is created in this manner is denoted
as R̃, resulting in the following block Jacobi iteration with overlap:

uk+1 = uk +
(

N 2∑
i=1

R̃T
i A−1

i Ri

)
rk = uk +M−1

OB J rk (3.8)

3.2. Convergence of Iterative Methods

To demonstrate the convergence of the iterative methods discussed in the previous section, we will first
present a general convergence condition, and relate this to the rate of convergence. For the standard Ja-
cobi method, the convergence and convergence rate will be discussed explicitly, concluding with a note on
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the convergence of the block Jacobi iteration. In [20], the convergence of iterative methods is presented as
follows. Consider a general iterative method of the form

xk+1 =Gxk + f (3.9)

in which G is a square iteration matrix with spectral radius ρ(G) = max
{|λ| :λ is an eigenvalue of G

}
. Note

that the convergence of this method to a fixed point x implies the system (I −G)x = f. Non-singularity of
I −G ensures a unique solution of this system and thus a unique convergence point. As presented in [20], the
following theorem holds for the convergence of the method with respect to an initial guess x0:

Theorem 3.2.1 Let G be a square matrix with ρ(G) < 1. Then I −G is nonsingular and the iteration (3.9)
converges for any f and x0. Conversely, if the iteration (3.9) converges for every f and x0, then ρ(G) < 1.

The general convergence factor φ, the factor with which the error of an iterative method is reduced on each
iteration, is also determined by ρ(G), as presented in [20]. More precisely, φ = ρ(G), making it sufficient to
know the spectral radius, to determine whether an iterative method converges, and how fast it converges. A
distinction should be made, however, between error and residual regarding convergence. The convergence
criterion of the iterative methods was based on the residual in Section 3.1. However, one might be more
interested in the error of the iteration compared to an exact solution u∗. We show that the error ek = u∗−uk

is related to the residual rk through matrix A of (2.3). Note that since Au∗ = b:

Aek = A(u∗−uk ) = Au∗− Auk = b− Auk = rk .

Now using the non-singularity of A (the system (2.3) has a unique solution due to the fixed boundary condi-
tions), ∥Av∥2≤ ∥A∥2∥v∥2 for any v, and ∥A−1∥2= 1

σmin
, where σmin is the smallest singular value of A; see for

example [17], we get

∥ek∥2= ∥A−1rk∥2≤ ∥A−1∥2∥rk∥2= 1

σmin
∥rk∥2. (3.10)

Now this σmin can be determined using that A is symmetric and that the singular values of a matrix are the
square root of the eigenvalues of AT A. If λ is an eigenvalue of A with eigenvector v, then AT Av = ATλv =λ2v
since AT = A. This gives that the singular values of A are equal to the absolute values of its eigenvalues and
with that σmin = |λmin|. This shows that it suffices to investigate residual (3.2) to enforce convergence to the
exact solution, as λmin is constant. This bound might, however, not be very tight when the smallest absolute
eigenvalue of A is very small. We proceed by giving the exact eigenvalues, and thus spectral radius of the
iteration matrix G for the standard Jacobi method applied to the model problem. This will prove convergence
and give the convergence rate of the method. For the eigenvalues of the iteration matrices of the block Ja-
cobi iteration, with and without overlap, no exact eigenvalues will be derived, but the calculation of these
eigenvalues will be discussed at the end of this section.

As presented above, the convergence condition and the convergence rate can be determined using the spec-
tral radius ρ of the iteration matrix G . We recall the Jacobi iteration from Section 3.1.1 and write it in the form
of (3.9):

uk+1 = uk − h2

4

(
b− Auk

)
= (I + h2

4
A)uk − h2

4
b

So, to determine convergence we, must determine the eigenvalues λ of G J = I + h2

4 A, which satisfy

det

(
I + h2

4
A−λI

)
= 0

⇐⇒
(

h2

4

)n

det

(
4

h2 I + A− 4

h2λI

)
= 0

⇐⇒ det

(
A− (

4

h2λ−
4

h2 )I

)
= 0

⇐⇒ det
(

A−µI
) = 0 (3.11)
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where A, I ∈ Rn×n , and µ = 4
h2λ− 4

h2 . The eigenvalues of A satisfy (3.11), so knowing the eigenvalues of A

is enough to determine the eigenvalues of the iteration matrix G J by the relation λ = h2

4 µ+1. We note that
the 2D Laplacian can be constructed as the Kronecker sum of 2 one-dimensional Laplacian matrices with
Dirichlet boundary conditions A = A1D ⊕ A1D ; see for example [14] for more details. Moreover, [14] gives that
A1D has eigenvalues µ̃1, . . . , µ̃n , where

µ̃k =− 4

h2 sin2
(

π ·k

2(n +1)

)
for k ∈ {1, . . . ,n}.

This allows us to compute the eigenvalues of A, as [16] shows that the eigenvalues of a Kronecker sum are
the sum of the eigenvalues of its arguments. Therefore we get the eigenvalues of A, and subsequently the
eigenvalues of G J :

µi , j =− 4

h2 sin2
(

π · i

2(n +1)

)
− 4

h2 sin2
(

π · j

2(n +1)

)
for i , j ∈ {1, . . . ,n},

=⇒ λi , j = 1− sin2
(

π · i

2(n +1)

)
− sin2

(
π · j

2(n +1)

)
for i , j ∈ {1, . . . ,n}. (3.12)

A short analysis of these eigenvalues shows that −1 < λi , j < 1 as the sine function is between 0 and 1. From
this we can conclude that ρ(G J ) = max{|λi , j | : i , j = 1, . . . ,n} < 1 and by Theorem 3.2.1, the Jacobi method is
convergent for every f and x0. Noting that the sine function is a strictly increasing positive function for the
arguments in (3.12) (as 0 < π·i

2(n+1) < 1
2 for i ∈ {1, . . . ,n}), we obtain the smallest and largest possible eigenvalues:

λ1,1 = 1−2sin2
(

π

2(n +1)

)
= cos

( π

n +1

)
or, equivalently

λn,n = cos
(
π− π

n +1

)
= cos

( π

n +1

)
,

giving that ρ(G J ) = cos( π
n+1 ), which is the convergence factor for fixed n. As mentioned in [8], there is little

known about the general convergence properties of the block Jacobi method. This paper does, however,
provide a convergence proof for the block Jacobi iteration without the overlap. For the convergence of our
specific case including overlap and the rate of convergence, we rely on computation of the eigenvalues of the
iteration matrices

GB J = I −M−1
B J A, and

GOB J = I −M−1
OB J A

of the block Jacobi method and block Jacobi method with overlap, respectively, where M−1
B J and M−1

B J are as
in 3.1. These eigenvalues are computed using the scipy.linalg.eigvals function from the Scipy linear
algebra library [24] in Python. The approximate spectral radius of these matrices will be presented, along
with some experimental convergence results in Section 5.1.

From literature, it is known that the size of the subdomains, and the size of the overlap positively influence
the convergence rate; see [7], [22]. Specifically, the convergence becomes faster when the ratio of the size of
the overlap over the size of the subdomains gets bigger.



4
Implementation and Software

In this chapter, we discuss the parallel implementation of the iterative methods presented in Chapter 3. First,
a description of the functions and data types used for this implementation will be given in Section 4.1. For
each of the iterative methods, an overview of the parallelized parts will then be given of the algorithm using
pseudocode in Section 4.2. The parallelization is done using Kokkos, a ‘Performance Portability Ecosystem’
in C++. Section 4.1 gives a small introduction to Kokkos. For the full documentation, we refer to the Kokkos
repository [23].

In this chapter, we discuss the parallel implementation of the iterative methods presented in Chapter 3. First,
a description of the functions and data types used for this implementation will be given in Section 4.1. For
each of the iterative methods, an overview of the parallelized parts will then be given of the algorithm using
pseudocode in Section 4.2. The parallelization is done using Kokkos, a ‘Performance Portability Ecosystem’
in C++. Section 4.1 gives a small introduction to Kokkos. For the full documentation, we refer to the Kokkos
repository [23]. The complete source code for this project is accessible on Github under the username ‘kgim-
bergh’ [10].

4.1. Functions and Data Types

There are several functions and data types which are crucial to understanding the implementation of the
iterative methods. These are functions provided by the Kokkos ecosystem and are also common in other
parallel frameworks. These functions are designed to make a code portable, making it efficient regardless of
the computer architecture used, including CPU clusters and GPUs. Kokkos makes an abstraction of thread
employment and memory access patterns, which removes the need for explicitly tailoring these to the hard-
ware. This means that when a program originally written to be executed on a CPU cluster is run using a GPU
accelerator, the programmer does not need to revise the parallel execution strategy, or memory layout and
management, all of which would typically require significant changes without the use of Kokkos.

4.1.1. Functions

• Parallel for loop:
Distributes the elements of ‘range’ over the available threads, and executes the instructions within the
brackets in parallel on these threads. Each thread must get a unique segment of the data to work on in
the instruction. If not, race conditions may occur where multiple threads are simultaneously altering
part of the data, yielding incorrect results.

1 parallel_for(i in <range >) {
2 <instruction >

15



16 4. Implementation and Software

3 }

• LU factorization functor:
A functor contained in the Kokkos Kernels library that performs an A = LU factorization using a parallel
for loop. The factorization is performed on the subblocks of the matrix A in parallel, where the num-
ber of blocks must be specified in the range of the for loop. The factorization is performed in-place,
meaning that the result is stored in A, removing the need for extra memory usage.

1 parallel_for(i in <range >) {
2 BatchedSerialLU(A)
3 }

• LU solve functor:
A functor contained in the Kokkos Kernels library that solves the system Ax = b for x in batches. For
each block i , the system Ai xi = bi is solved in parallel, where the number of blocks must be specified in
the range of the for loop. Each of these systems is solved densely using forward-backward substitution.
The result of this functor is stored in A.

1 parallel_for(i in <range >) {
2 BatchedSerialSolveLU(A, b)
3 }

• BLAS l 2 norm:
A function contained in the Kokkos Kernels library that used a BLAS routine, a simple but optimized
linear algebra operation [5], to calculate the l 2 norm of a vector v.

1 l2_norm = nrm2(v);

4.1.2. Data Types

The following are two ways in which sparse matrices are stored in the implementation of the iterative meth-
ods, to reduce memory usage. A small, and not sparse matrix is used as an illustration. As this matrix gets
bigger, it becomes more sparse, making these data types much more efficient than a standard one or two-
dimensional array in which all elements are stored.

• Crs matrix:
A way to store sparse matrices where only the non-zero entries are stored. The entries are stored using
three one-dimensional arrays: the Values array containing the non-zero values, the Entries array
containing the column indices of the values in Values, and the Row_map array specifying at which
index of Values, a new row starts. All of these values are in row-major format. For example, a 6×6 B
matrix as in (2.4) with blocks of size 2×2 is stored as follows:



−4 1 1 0 0 0
1 −4 0 1 0 0
1 0 −4 1 1 0
0 1 1 −4 0 1
0 0 1 0 −4 1
0 0 0 1 1 −4


Values: [−4,1,1,1,−4,1,1−4,1,1,1,1,−4,1,1,−4,1,1,1,−4]
Entries: [1,2,3,1,2,4,1,3,4,5,2,3,4,6,3,5,6,4,5,6]
Row_map: [1,4,7,11,15,18,21]

• Bsr matrix:
A way to store sparse matrices where only blocks that contain non-zero entries are stored. The entries
of these blocks, as well as their location, are stored densely in row-major format. The Values array
contains the values of the blocks in row-major format, the Entries array contains the column indices
of the blocks, and the Row_map array contains the start of each block row. For the above matrix, where
each block is 2×2, this is:

Values: [−4,1,1,−4,1,0,0,1,1,0,0,1,−4,1,1,−4,1,0,0,1,1,0,0,1,−4,1,1,−4]
Entries: [1,2,2,3,4,3,4]
Row_map: [1,3,6,8]
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4.2. Parallel Implementation of Iterative Methods

4.2.1. Jacobi Iteration

It is not immediately clear from the formulation of the Jacobi iteration how it should be parallelized. Before
going into the parallelization, we look at the different sequential parts of the algorithm within each iteration.
Recalling the description in Section 3.1.1, we note that the method consists of 4 computational steps with the
following complexities:

1. Sparse matrix-vector product Auk :
From 2.4, one can deduce that A has 2 ·2 ·3+ (n −2) ·2 ·4+2 · (n −2) ·4+ (n −2) · (n −2) ·5 = 5n2 −4n
non-zero entries1. Therefore, the matrix-vector product involves 5n2 −4n computations.

2. Vector sum rk = b− Auk :
This step consists of adding two vectors of size n2 ×1, resulting in n2 computations.

3. Scaling D−1rk :
Given that D is a diagonal matrix, this operation consists of n2 computations, one for each element of
the rk vector.

4. Vector sum rk+1 = uk +D−1rk :
Similarly to the second step, this operation requires n2 computations.

From this, it is clear that the most computationally intensive part is the matrix-vector product. It is therefore
this part which becomes the focus of our parallelization. By parallelizing over the rows of the matrix A, the
rest of the computations, scaling and summing vectors, can be included in the parallelization. This does
require us to use an additional vector to store the result, as the vector uk must remain unchanged during
these computations. Therefore, a distinction is made between a u_old and u_new vector.

It should be noted that the parallelization over the rows of A potentially causes improper load-balancing. The
number of non-zero entries varies across different nodes from 3 to 5 entries, meaning that some rows require
more computations than others. As discussed in 2.3, this can negatively impact the efficiency.

A flowchart of this implementation is shown in Figure 4.1. Before the iterative process, several vectors and
the matrix A must be initialized. The matrix A, used in the computation of the residual, is initiated as a Crs
matrix. As discussed above, the entire process of calculating the residual vector, and updating u_new is done
entirely in one parallel_for loop. After this, u_old is updated with the values of u_new, and the l 2 norm of
the residual is calculated using the nrm2 function. The pseudocode of this implementation is shown in Listing
4.1. For the full implementation, including the initialization of all objects, we refer to the Github repository
of this thesis [10].

Figure 4.1: Flowchart of Jaocbi implementation

1The parts of this sum are: (first and last block row, first and last row) + (first and last block row, inner rows), (inner block rows, first and
last row) + (inner block rows, inner rows)
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1 // Initialize objects
2 tolerance = 0.0001
3 residual = 1
4 initiate b, u_old , u_new , and r vectors
5 initiate A matrix
6

7 while (residual > tolerance)
8 {
9 // Update r and u_new

10 parallel_for (i in [0,n*n]){
11 r[i] = b[i] + (row [i] of A) * u_old
12 u_new[i] = u_old[i] + (1/D) * r[i]
13 }
14

15 // Update u_old
16 u_old = u_new
17

18 // Compute residual
19 residual = (l2 norm of r) / (n*n)
20 }
21

22 // Return the result
23 return u_new vector

Listing 4.1: Parallel implementation of the standard Jacobi iteration.

4.2.2. Block Jacobi Iteration (with Overlap)

The implementation of the block Jacobi iteration is almost identical to that of its variation with overlap. The
difference lies in the construction of the matrices R and R̃. We again look at the sequential steps that must be
performed on each iteration, and their complexities. The steps to consider are the calculation of the residual,
which we take as one step due to the observations in the previous section, and steps 3.7. Step 2 is done with
forward-backward substitution using the BatchedSerialSolveLU functor. This requires an LU factorization
of the M matrix before the iterative process starts, using the BatchedSerialLU functor.

1. Residual calculation rk = b− Auk :
Combining the first two steps in the previous section, this consists of 6n2 −4n computaitons.

2. Sparse matrix-vector product r̂k = rk R:
Matrix R contains b2 ·N 2 non-zero entries, as can be deduced from 3.5, resulting in b2 ·N 2 computa-
tions. This step will be called the extension of r.

3. LU solve for subsystems Ai xi = r̂k
i for xi :

Before the iterations start, an LU factorization is performed on the M matrix, allowing for forward-
backward substitution, where one should recall that the Ai are sub-matrices on the diagonal of M. A
total of N 2 systems must be solved of size b2 ×b2. Both forward and backward substitution requires
(b2)2 computations; see [12], resulting in 2 ·b4 ·N 2 computations. As these systems are independent,
the result can be stored in r̂k .

4. Sparse matrix-vector product y = RT r̂k :
Similar to step 2, this consists of b2 ·N 2 computations. For the implementation with overlap, RT should
be R̃T . This step will be called the reduction of r̂.

5. Vector sum uk+1 = uk +y:
This step is an addition of 2 vectors of size n2, resulting in 2n2 computations.

There are several comments to be made about these steps. The first is that the BatchedSerialSolveLU
functor does not allow for any other computations to be merged into its parallel_for loop. Noting that
step 2 is dependent on step 1, make it so that the first three steps cannot be merged for parallel execution.
The last two steps, however, can be merged when we parallelize over the n2 rows of the RT (or R̃T ) matrix,
similar to the implementation of the Jacobi iteration.
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Figure 4.2 shows a flowchart of the implementation. The matrices A,R and R̃T are initiated as Crs matrices,
while the M matrix is initiated as a Bsr matrix. This allows for the subsequent batched LU factorization of
M using the BatchedSerialLU functor. The first parallel_for loop updates the residual vector, where
the parallelization happens over the rows of A. This is followed by the calculation of the norm of the residual
vector using the nrm2 function. The extension of the residual vector r to r̂, as well as the solving of the systems,
is parallelized over the number of blocks N . This improves memory efficiency, as the relevant parts of both
R and M for each block are stored contiguously. The final parallel loop which reduces r̂ and updates u is
parallelized over the rows of RT (or R̃T ). The pseudocode of this implementation is shown in Listing 4.2. For
the full implementation, including the initialization of all the objects, we refer to the Github repository of this
thesis [10].

Figure 4.2: Flowchart of Jaocbi implementation

1 // Initialize pbjects
2 tolerance = 0.0001
3 residual = 1
4 initiate b, u, r, and r_hat vectors
5 initiate A, M, R, and R_T_Tilde matrices
6

7 // Perform LU factorization on M
8 parallel for (i in [0, nb*nb]){
9 BatchedSerialLU(M)

10 }
11

12 while (residual > tolerance)
13 {
14 // Update residual vector
15 parallel for (i in [0,n*n]){
16 r[i] = b[i] + (row i of A) * u
17 }
18

19 // Compute norm of residual vector
20 residual = nrm2(r) / (n*n)
21

22 // Extend residual vector
23 parallel for (i in [0, nb*nb]){
24 r_hat[i*b:(i+1)*b] = R_i * r
25 }
26

27 // Solve the sub -systems
28 parallel for (i in [0, nb*nb]) {
29 BatchedSerialSolveLU(M, r_hat)
30 }
31

32 // Reduce residual vector , and update u
33 parallel for (i in [0, n*n]) {
34 u[i] = u[i] + (row i of R_T_Tilde) * r_hat
35 }
36 }
37

38 // Return the result
39 return u

Listing 4.2: Parallel implementation of the block Jacobi iteration (with overlap)
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It is important to note that the block Jacobi iteration is implemented using a dense solver for each block,
which is expected to determine the overall computation time significantly. To investigate the use of this
dense solve for the iteration, a comparison was made with a sparse solver using Python’s SciPy library [24].
Specifically, the dense scipy.linalg.lu_solve function was compared to the sparse solve method of the
scipy.sparse.linalg.splu object.

Both solvers were tested on block sizes ranging from 2 up to 64. The average solving time was measured over
10 iterations with randomly initialized right-hand sides. The results, shown in Figure 4.3 reveal that the dense
solver performs the same as the sparse solver for block sizes of up to 16. However, as the block sizes become
larger, the computation time for the dense solver grows much faster than that of the sparse solver. When
using larger blocks, it should thus be considered to use a sparse solver instead of a dense one. Moreover, the
steep increase in computation times will likely be reflected in the results of the block Jacobi iteration.

Figure 4.3: Computation times comparing a sparse solver to a dense solver,
both using forward-backward substitution.
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Numerical Results

There are two results of the implementation that will be discussed in this Chapter. First, the convergence of
the block Jacobi iteration will be discussed in Section 5.1, including an analysis of the influence of the block
size and the size of the overlap, after which a comparison will be made with the standard Jacobi iteration. In
Section 5.2, the parallel performance of both the standard and block Jacobi iteration will be compared. Both
of these methods will be assessed on parallel performance and speedup, concluding with some remarks on
the scalability of both methods. The numerical experiments were conducted on the DelftBlue supercomputer
of the Delft High-Performance Computing Centre [1]. The nodes used are Intel Xeon compute nodes with 64
CPU cores and 256GB RAM.

5.1. Convergence Results

As discussed in Section 3.2, the convergence of the iterative methods is governed by the spectral radius of
their iteration matrices. In this section, we first show that the theoretical convergence and experimental
convergence of our implementation agree. Furthermore, we show the influence of the block size and the
overlap on the convergence rate.

5.1.1. Theoretical vs Experimental Convergence

First, we show that the numerical convergence rate is equal to the theoretical convergence rate as discussed
in Section 3.2. There is a limitation to the usefulness of this theory which is the computationally intensive
calculation of the spectral radius of a matrix. For large matrices, this becomes a numerical challenge in itself,
which is why we demonstrate the convergence of the methods using a small example of n = 32. To show that
the numerical convergence rate agrees with the theoretical convergence rate, the results of a representative
for each of the iterative methods are shown in Figure 5.1. In each figure, the numerical convergence is plot-
ted alongside the theoretical convergence, more specifically, the residual (3.2) is plotted against the iteration
number. The theoretical convergence is an exponential decay function with growth factor ρ(G) through the
convergence threshold τ = 10−4. The results show a strong correlation between the theoretical and numeri-
cal convergence rate, validating the theory discussed in Section 3.2. It can also be observed that the residual
decays more quickly than the rate indicated by the spectral radius of the iteration matrix for the first few ma-
trices. As noted in [20], this can be explained by the initial error vector being more aligned with eigenvectors
of smaller eigenvalues. This results in these errors decaying quickly first, after which the largest eigenvalue
becomes dominant and the convergence becomes linear.

21
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5.1.2. Influence of Block Size and Overlap

The convergence results presented in Figure 5.2 show a strong negative correlation between the block size
and the number of iterations needed. The number of iterations needed seems to scale inverse linearly with
the size of the blocks and the size of the overlap, except for the sizes of overlap which are (close to) half the
block size. Close to the diagonal line (where the overlap is equal to the block size), a spike in the number of
iterations can be observed. Figure 5.3 shows an example of this, for a block size of 16. Configurations with
moderate overlap have significantly better convergence rates compared to those with no overlap. When the
overlap gets close to half the block size, however, the convergence rate drops, possibly due to points in the
domain being used in the calculation of many subdomains.

Figure 5.1: Numeric convergence and theoretical convergence of the three iterative methods

Figure 5.2: Convergence of the block Jacobi iteration against block size.

Figure 5.3: Convergence for block size 16 and different sizes of overlap
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5.2. Parallel Performance

The main points of interest in this section are the parallel performance and the efficiency of the block Jacobi
iteration compared to the standard Jacobi iteration, and the strong scalability of these methods. First, we
make a remark on the type of solver that is used for the individual blocks of the block Jacobi method, which
will later be reflected in the results of the total computation times of the method.

To investigate the performance of the block Jacobi iteration, all possible configurations with integer overlap
were tested for n = 256 with a block size smaller or equal to 64. These block sizes were chosen due to empirical
results, in which larger blocks did not seem feasible due to computation times over 1 hour. This may be
explained by the results of Figure 4.3, which show a steep increase in the computation time of the dense LU
solve for larger blocks. The size n = 256 was chosen so that there was a substantial amount of configurations
possible, without excessive computation times. Figure 5.4 shows the logarithm of the computation times of
all the possible configurations with integer overlap and even block sizes between 2 and 64. The horizontal
black line in each figure represents the computation time of the standard Jacobi iteration. The results using 1
thread and 8 threads are shown here. For the results using other amounts of threads, we refer to Appendix A

The computation time of the dense solver in Figure 4.3 is reflected in these computation times, since it is
clear that the smaller block sizes perform the best, and the computation times quickly increase for larger
block sizes, regardless of the size of the overlap. The configurations with block sizes between 4 and 32 outper-
form the standard Jacobi iteration, where the configurations with an overlap larger than 0 and smaller than
half the block size perform optimally. This clearly reflects the convergence results of Figure 5.2. The results
for an overlap equal to half the block size are marked with an x, clearly showing the effect of the drop in con-
vergence. The increase in computation times for larger blocks can be explained by the steep increase of the
computation times for the dense LU solve, shown in Figure 4.3. The decrease of iterations required appears
to be insufficient compared to these increasing computation times.

Figure 5.4: Computation times of the block Jacobi implementation for n = 256 using 1, and 8 threads

To compare the parallel speedup of these different configurations with the standard Jacobi iteration, we shift
the attention to figure 5.5, in which the efficiency, as discussed in Section 2.3, is plotted against the number
of threads employed. We are interested in the general speedup of the method since we do not know which
configuration will work best for a specific amount of threads. Therefore the full range of speedups is shown
for the block Jacobi iteration, as well as the middle 80% and 60% range, and the average speedup for each
number of threads. The results are shown for 2, 4, 8, 16, 32, and 64 threads, where 64 is the maximum number
of available threads on one node. Since we saw quite a significant difference in the performance of the con-
figurations with a block size between 4 and 32, the results of these configurations are independently shown
in the adjacent plot.

From the first plot, it can already be seen that on average the efficiency of the block Jacobi iteration stays
better for a larger number of threads. This becomes even more apparent when only the block sizes between
4 and 32 are considered. There, the efficiency of the block Jacobi iterations stays quite stable between 0.7 and
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1.3, while the efficiency of the standard Jacobi iteration drops quite rapidly for a larger number of threads,
nearly falling below 0.4 for 64 threads. Figure 5.6 shows the efficiency of all configurations with a block size
of 16. There does not seem to be a correlation between the size of the overlap, and with that the number of
blocks, and the efficiency of the configuration. One aspect that could have an effect is how close the number
of blocks to being divisible by the number of threads, since this makes for a more balanced load, as discussed
in Section 2.3. Table 5.1 shows the remainder for each configuration when dividing the number of blocks
N 2, divided by the number of threads. This does not explain the trend of the speedup. For example, the
configuration with an overlap of 8 and 31 blocks has a constant remainder of 1, while there is a clear drop in
efficiency when employing 32 threads.

↓ N (over l ap) \ Threads → 2 4 8 16 32 64
16 (0) 0 0 0 0 0 0
17 (1) 1 1 1 1 1 33
21 (4) 1 1 1 9 25 57
25 (6) 1 1 1 1 17 49
31 (8) 1 1 1 1 1 1

Table 5.1: Remainder of dividing N 2 by the number of threads
for each configuration with block size 16.

One additional comment must be made about these figures. At several points, we observe a speedup for some
of the configurations larger than 1. As discussed in Section 2.3, this is likely due to better cache utilization
when using more threads.

Figure 5.5: Efficiency range of all configurations for n = 256 with varying block sizes, and between 2 and 64 threads

Figure 5.6: Efficiencies of all configurations for n = 256 with block size 16, and between 2 and 64 threads



6
Discussion

The results of this thesis give insight into the practical application of the parallel Schwarz domain decom-
position in high-performance computing environments. While the findings are promising, there are several
limitations that must be addressed and call for further research.

The numerical results of this thesis are based on relatively small problems. With 256 discretization points in
each direction, there are 65.536 unknowns to be solved for, which is relatively small compared to other re-
search done in high-performance computing. Larger scale problems often give rise to additional challenges
such as memory usage. Further research could apply this implementation to larger-scale problems to inves-
tigate its scalability.

Addressing these larger-scale problems will likely require more computation power than available when using
node-level parallelism as used in this thesis. Altering the implementation to use distributed memory, possibly
using Message Passing Interface (MPI) for cross-node communication could significantly improve the parallel
performance.

The study in this thesis was limited to a relatively simple partial differential equation (PDE) with a smooth
solution. Whether the implementation proposed here gives similar results for more complex PDEs involving
non-linearities, higher dimensions, or more complex boundaries, is unknown. Although it is uncertain for
this specific implementation, there is abundant research on the use of the parallel Schwarz method on more
complex problems, suggesting wide ranging applicability. Further research could investigate the versatility
and robustness of this specific implementation.

The use of the specific dense solver in this implementation for the individual subdomains appears to heavily
impact the total computation time. There are numerous other solvers, including sparse ones like UMFPACK
[6] or MUMPS [4], that could potentially increase performance, especially for larger-scale sparse problems.
In addition, this dense solver made it infeasible to investigate large blocks, which limited the possible config-
urations with integer overlaps smaller than half the block size. A sparse solver would allow for larger blocks,
allowing for more detailed results on the influence of the overlap size on the convergence rate.

It should also be noted that although the parallel Schwarz method outperformed the standard Jacobi itera-
tion, there are more sophisticated Schwarz methods which have been proven to yield better results. These
include, but are not limited to two-level Schwarz methods, Schwarz preconditioners combined with Kyrlov
methods, and optimized Schwarz methods with modified transmission conditions [9]. These approaches are
very abundant in research and show promising results.
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7
Conclusion

In this thesis, we investigated the performance of the parallel Schwarz domain decomposition method in
comparison to the standard Jacobi iterative method, which is a special case of the parallel Schwarz method
where the subdomain size is one discretization point. The research shows the effectiveness of the parallel
Schwarz method in leveraging node-level parallelism to solve partial differential equations.

The parallel Schwarz method, implemented as the block Jacobi iterative method, demonstrated superior con-
vergence rates compared to the standard Jacobi iterative method. This was especially apparent for larger
subdomains and overlaps (up to half the subdomain size), which significantly improved convergence speed.
Theoretical convergence rates were validated by the numerical results, showing that the number of iterations
decreased as the size of the overlap increased, up to the limit of half the block size.

In terms of parallel performance, the parallel Schwarz method performed best for small block sizes between 4
and 32. This performance was attributed to the combination of the decrease in the number of iterations and
the steep increase of the dense LU solver used in the implementation when solving for larger blocks. These
smaller block sizes outperformed the Jacobi iteration, with a larger number of configurations falling below
this computation time when employing a larger number of threads.

This was also shown in the higher efficiency of the parallel Schwarz method, averaging at just below 0.7 for
the maximum number of threads considered, compared to an efficiency of 0.4 for the Jacobi iteration. The
superiority of this method when using parallel computing became even more apparent when only the best-
performing configurations, with block sizes between 4 and 32 were considered. The average efficiency in-
creased to just over 0.8. with a less wide spread.

The use of the Kokkos library made it possible to write portable and efficient parallel code. This makes it pos-
sible to efficiently run the source code of this project using GPUs without the need for large-scale alterations
to its parallel execution strategy or memory layout and management. Overall, this research gives a valuable
overview of some of the intricacies that go into the implementation of Schwarz domain decomposition meth-
ods.

26



Bibliography

[1] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https://
www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Ninth printing. Table 25.3.30. Dover, 1970.

[3] Gene M. Amdahl. “Validity of the single processor approach to achieving large scale computing capabil-
ities”. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Conference. AFIPS ’67 (Spring). At-
lantic City, New Jersey: Association for Computing Machinery, 1967, pp. 483–485. ISBN: 9781450378956.
DOI: 10.1145/1465482.1465560. URL: https://doi-org.tudelft.idm.oclc.org/10.1145/
1465482.1465560.

[4] P.R. Amestoy et al. “A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling”.
In: SIAM Journal on Matrix Analysis and Applications 23.1 (2001), pp. 15–41.

[5] L Susan Blackford et al. “An updated set of basic linear algebra subprograms (BLAS)”. In: ACM Transac-
tions on Mathematical Software 28.2 (2002), pp. 135–151.

[6] Timothy A. Davis. “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method”.
In: ACM Trans. Math. Softw. 30.2 (June 2004), pp. 196–199. ISSN: 0098-3500. DOI: 10.1145/992200.
992206. URL: https://doi.org/10.1145/992200.992206.

[7] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. “An Introduction to Domain Decomposition Meth-
ods: algorithms, theory and parallel implementation”. Master. Lecture. France, Jan. 2015. URL: https:
//hal.science/cel-01100932.

[8] Ludwig Elsner and Volker Mehrmann. “Convergence of block iterative methods for linear systems aris-
ing in the numerical solution of Euler equations”. In: Numerische Mathematik 59.1 (1991), pp. 541–559.
DOI: 10.1007/bf01385795.

[9] Martin J. Gander. “Schwarz methods over the course of time.” eng. In: ETNA. Electronic Transactions
on Numerical Analysis [electronic only] 31 (2008), pp. 228–255. URL: http://eudml.org/doc/130616.

[10] Karel Gimbergh. BEP. 2024. URL: https://github.com/kgimbergh/BEP.

[11] R Glowinski, Groupe pour l’avancement des méthodes numériques dans les sciences de l’ingénieur,
and Société de mathématiques appliquées et industrielles. “First International Symposium on Domain
Decomposition Methods for Partial Differential Equations: proceedings of the First International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations, Ecole Nationale des
Ponts et Chaussees, Paris, France, January 7-9, 1987”. In: Society for Industrial and Applied Mathemat-
ics. Paris, France, 1988, pp. 1–42. URL: http://catalog.hathitrust.org/api/volumes/oclc/
18250385.html.

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations - 4th Edition. Philadelphia, PA: Johns
Hopkins University Press, 2013. DOI: 10.1137/1.9781421407944. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9781421407944. URL: https://epubs.siam.org/doi/abs/10.1137/
1.9781421407944.

[13] Georg Hager and Gerhard Wellein. Introduction to high performance computing for scientists and engi-
neers Georg Hager; Gerhard Wellein. CRC Press, 2011.

[14] Gennadij Heidel et al. “Tensor product method for fast solution of optimal control problems with frac-
tional multidimensional Laplacian in constraints”. In: Journal of Computational Physics 424 (2021),
p. 109865. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2020.109865. URL: https:
//www.sciencedirect.com/science/article/pii/S0021999120306392.

[15] Pierre Jolivet. “Domain decomposition methods. Application to high-performance computing”. In:
2014. URL: https://api.semanticscholar.org/CorpusID:125443560.

27

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.1145/1465482.1465560
https://doi-org.tudelft.idm.oclc.org/10.1145/1465482.1465560
https://doi-org.tudelft.idm.oclc.org/10.1145/1465482.1465560
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://hal.science/cel-01100932
https://hal.science/cel-01100932
https://doi.org/10.1007/bf01385795
http://eudml.org/doc/130616
https://github.com/kgimbergh/BEP
http://catalog.hathitrust.org/api/volumes/oclc/18250385.html
http://catalog.hathitrust.org/api/volumes/oclc/18250385.html
https://doi.org/10.1137/1.9781421407944
https://epubs.siam.org/doi/pdf/10.1137/1.9781421407944
https://epubs.siam.org/doi/pdf/10.1137/1.9781421407944
https://epubs.siam.org/doi/abs/10.1137/1.9781421407944
https://epubs.siam.org/doi/abs/10.1137/1.9781421407944
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109865
https://www.sciencedirect.com/science/article/pii/S0021999120306392
https://www.sciencedirect.com/science/article/pii/S0021999120306392
https://api.semanticscholar.org/CorpusID:125443560


28 Bibliography

[16] Alan J. Laub. Matrix Analysis for Scientists and Engineers. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 2004. DOI: 10.1137/1.9780898717907. eprint: https://epubs.siam.org/
doi/pdf/10.1137/1.9780898717907. URL: https://epubs.siam.org/doi/abs/10.1137/1.
9780898717907.

[17] Tom Lyche. Numerical Linear Algebra and Matrix Factorizations. Springer International Publishing,
2020. DOI: 10.1007/978-3-030-36468-7.

[18] Network connections. https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-
tutorial. Accessed: 05-08-2024.

[19] Thomas Rauber and Gudula Rünger. Parallel Programming. Cham: Springer International Publishing,
2023. DOI: 10.1007/978-3-031-28924-8.

[20] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathemat-
ics, 2003. DOI: 10.1137/1.9780898718003.

[21] H. A. Schwarz. On passing to the limit by the alternating process. German. Wolf J. XV. 272-286. 1870
(1870). 1870.

[22] Andrea Toselli and Olof Widlund. Domain Decomposition Methods – Algorithms and Theory. Vol. 34.
Jan. 2005. ISBN: 978-3-540-20696-5. DOI: 10.1007/b137868.

[23] Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era”. In: IEEE Trans-
actions on Parallel and Distributed Systems 33.4 (2022), pp. 805–817. DOI: 10.1109/TPDS.2021.
3097283.

[24] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Na-
ture Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

https://doi.org/10.1137/1.9780898717907
https://epubs.siam.org/doi/pdf/10.1137/1.9780898717907
https://epubs.siam.org/doi/pdf/10.1137/1.9780898717907
https://epubs.siam.org/doi/abs/10.1137/1.9780898717907
https://epubs.siam.org/doi/abs/10.1137/1.9780898717907
https://doi.org/10.1007/978-3-030-36468-7
https://doi.org/10.1007/978-3-031-28924-8
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/b137868
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1038/s41592-019-0686-2


A
Additional Numeric Results

A.1. Convergence results

This section contains additional convergence results for the block Jacobi iteration. These results are con-
tained in Figure 5.2. The contents of Table A.1 are as follows:

• b: Block size in one direction,

• nb: Number of blocks in one direction,

• o: Size of the overlap.

b nb o # iterations
2 128 0 36689

255 1 36688
4 64 0 19024

85 1 13003
127 2 15181

6 51 1 8074
8 32 0 9942

63 4 5910
10 42 4 3212
14 23 3 2117
16 16 0 5223

17 1 2914
21 4 1637
25 6 1513
31 8 2070

18 15 1 2595
18 4 1413

22 14 4 1112
19 9 891

26 11 3 1057
28 13 9 608

b nb o # iterations
32 8 0 2756

9 4 733
15 16 657

36 11 14 382
12 16 385

40 7 4 580
9 13 328

10 16 318
46 6 4 503

7 11 289
8 16 253

48 9 22 233
52 5 1 947

7 18 204
56 5 6 323

6 16 190
58 7 25 164
60 5 11 209
64 4 0 1471

5 16 159
7 32 202

Table A.1: Convergence results for n = 256 against block sizes
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A.2. Parallel performance results

This section contains the parallel performance results for all numbers of threads employed. The plots in
Figure A.1 are an addition to Figure 5.4. The tables that follow contain the exact values that are presented in
these figures, as well as the values used to produce Figure 5.5.

Figure A.1: Efficiency range of all configurations for n = 256 with varying block sizes, and between 2 and 64 threads
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Table A.2: Numeric results using 1 thread

n_t b o t_in n_it t_tot e
1 6 1 0.065 8074 194.898 -
1 16 4 3.530 1637 246.310 -
1 8 0 0.130 9942 250.807 -
1 4 1 0.020 13003 252.785 -
1 14 3 1.946 2117 258.942 -
1 4 0 0.011 19024 271.557 -
1 10 4 0.885 3212 272.684 -
1 16 1 2.299 2914 292.445 -
1 16 6 4.539 1513 313.078 -
1 18 4 5.206 1413 331.853 -
1 22 4 10.494 1112 376.692 -
1 28 9 38.162 608 381.664 -
1 18 1 3.583 2595 428.351 -
1 32 4 41.833 733 429.533 -
1 8 4 0.548 5910 446.033 -
1 26 3 17.395 1057 446.613 -
1 16 0 2.084 5223 459.672 -
1 4 2 0.046 15181 508.104 -
1 2 0 0.003 36689 511.536 -
1 22 9 19.321 891 543.644 -
1 40 4 97.326 580 598.916 -
1 16 8 7.672 2070 647.419 -
1 32 0 32.758 2756 1169.035 -
1 2 1 0.010 36688 1179.857 -

Table A.3: Numeric results using 2 threads

n_t b o t_in n_it t_tot e
2 6 1 0.037 8074 101.612 0.959
2 16 4 1.823 1637 125.492 0.981
2 14 3 1.036 2117 129.873 0.997
2 4 1 0.012 13003 131.974 0.958
2 10 4 0.469 3212 139.514 0.977
2 8 0 0.079 9942 142.316 0.881
2 4 0 0.007 19024 147.416 0.921
2 16 1 1.126 2914 153.408 0.953
2 18 4 3.141 1413 167.302 0.992
2 16 6 2.963 1513 169.480 0.924
2 22 4 5.453 1112 192.953 0.976
2 28 9 20.192 608 199.398 0.957
2 32 4 21.734 733 218.704 0.982
2 18 1 1.878 2595 220.355 0.972
2 8 4 0.295 5910 239.568 0.931
2 26 3 8.927 1057 251.683 0.887
2 4 2 0.023 15181 258.060 0.984
2 16 0 1.179 5223 261.517 0.879
2 2 0 0.001 36689 267.248 0.957
2 22 9 11.084 891 277.047 0.981
2 40 4 51.045 580 295.857 1.012
2 40 13 88.159 328 327.816 -
2 36 14 65.890 382 340.461 -
2 16 8 4.132 2070 341.451 0.948
2 40 16 103.363 318 373.451 -
2 46 11 119.062 289 391.233 -
2 56 6 182.072 323 395.537 -
2 36 16 83.943 385 449.186 -
2 46 4 86.078 503 454.557 -
2 32 16 60.298 657 537.151 -
2 32 0 14.455 2756 551.157 1.061
2 2 1 0.006 36688 614.335 0.960
2 52 1 128.158 947 656.491 -
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Table A.4: Numeric results using 4 threads

n_t b o t_in n_it t_tot e
4 6 1 0.017 8074 47.870 1.018
4 4 1 0.006 13003 60.550 1.044
4 16 4 0.861 1637 61.143 1.007
4 8 0 0.035 9942 62.985 0.996
4 14 3 0.533 2117 66.160 0.978
4 4 0 0.003 19024 67.381 1.008
4 10 4 0.239 3212 70.324 0.969
4 16 1 0.629 2914 76.135 0.960
4 18 4 1.429 1413 82.073 1.011
4 16 6 1.355 1513 83.181 0.941
4 22 4 2.634 1112 89.443 1.053
4 18 1 0.931 2595 100.290 1.068
4 28 9 11.624 608 106.371 0.897
4 32 4 10.488 733 106.398 1.009
4 16 0 0.505 5223 108.804 1.056
4 8 4 0.143 5910 113.259 0.985
4 26 3 4.843 1057 114.331 0.977
4 4 2 0.013 15181 124.731 1.018
4 2 0 0.001 36689 126.419 1.012
4 22 9 4.980 891 127.486 1.066
4 40 13 37.550 328 150.794 -
4 16 8 2.028 2070 158.272 1.023
4 36 14 32.632 382 160.332 -
4 40 4 29.701 580 165.772 0.903
4 40 16 48.765 318 183.832 -
4 46 4 39.887 503 211.923 -
4 46 11 61.740 289 212.111 -
4 36 16 43.637 385 217.263 -
4 56 6 102.229 323 222.047 -
4 46 16 73.219 253 236.801 -
4 60 11 147.372 209 243.280 -
4 52 18 121.440 204 245.531 -
4 56 16 154.656 190 253.760 -
4 32 16 29.126 657 265.401 -
4 2 1 0.004 36688 294.113 1.003
4 32 0 9.490 2756 313.878 0.931
4 48 22 143.938 233 384.059 -
4 52 1 77.959 947 408.056 -
4 64 16 236.124 159 470.221 -
4 64 0 135.073 1471 1341.286 -

Table A.5: Numeric results using 8 threads

n_t b o t_in n_it t_tot e
8 6 1 0.011 8074 25.880 0.941
8 8 0 0.017 9942 26.963 1.163
8 14 3 0.237 2117 30.571 1.059
8 4 1 0.003 13003 30.610 1.032
8 16 4 0.500 1637 32.688 0.942
8 4 0 0.002 19024 37.180 0.913
8 16 6 0.629 1513 40.009 0.978
8 18 4 0.752 1413 41.473 1.000
8 10 4 0.154 3212 42.874 0.795
8 16 1 0.412 2914 43.381 0.843
8 22 4 1.288 1112 44.487 1.058
8 18 1 0.542 2595 50.958 1.051
8 28 9 5.801 608 52.177 0.914
8 32 4 5.660 733 56.554 0.949
8 26 3 2.673 1057 62.377 0.895
8 8 4 0.082 5910 62.724 0.889
8 16 0 0.300 5223 64.104 0.896
8 2 0 0.000 36689 65.074 0.983
8 40 13 17.864 328 68.552 -
8 4 2 0.008 15181 70.985 0.895
8 22 9 3.170 891 78.274 0.868
8 16 8 0.958 2070 82.384 0.982
8 36 14 19.337 382 90.462 -
8 40 16 25.525 318 96.151 -
8 40 4 17.967 580 101.037 0.741
8 46 11 30.900 289 112.445 -
8 36 16 21.196 385 113.394 -
8 56 16 73.813 190 125.144 -
8 46 4 26.367 503 125.468 -
8 56 6 59.272 323 127.479 -
8 52 18 64.917 204 131.461 -
8 32 16 14.661 657 134.202 -
8 60 11 87.713 209 142.019 -
8 46 16 48.088 253 146.098 -
8 32 0 4.636 2756 152.915 0.956
8 2 1 0.002 36688 153.225 0.963
8 48 22 72.410 233 196.830 -
8 58 25 125.010 164 212.034 -
8 52 1 42.183 947 237.534 -
8 64 16 120.977 159 252.822 -
8 64 32 236.559 202 524.890 -
8 64 0 85.710 1471 795.921 -
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Table A.6: Numeric results using 16 threads

n_t b o t_in n_it t_tot e
16 8 0 0.010 9942 15.847 0.989
16 14 3 0.143 2117 16.071 1.007
16 4 1 0.002 13003 17.853 0.885
16 10 4 0.065 3212 18.135 0.940
16 16 1 0.174 2914 19.336 0.945
16 6 1 0.005 8074 19.947 0.611
16 18 4 0.386 1413 20.477 1.013
16 16 4 0.261 1637 20.764 0.741
16 16 6 0.363 1513 21.135 0.926
16 22 4 0.786 1112 23.849 0.987
16 28 9 2.916 608 26.506 0.900
16 16 0 0.148 5223 29.551 0.972
16 4 0 0.001 19024 31.492 0.539
16 22 9 1.417 891 33.166 1.024
16 4 2 0.005 15181 35.656 0.891
16 2 0 0.000 36689 40.690 0.786
16 32 4 3.685 733 42.604 0.630
16 18 1 0.280 2595 43.399 0.617
16 16 8 0.572 2070 43.564 0.929
16 8 4 0.050 5910 44.243 0.630
16 36 14 9.683 382 47.137 -
16 26 3 1.492 1057 49.036 0.569
16 40 13 13.682 328 54.313 -
16 40 16 15.559 318 57.125 -
16 36 16 11.279 385 62.171 -
16 46 16 20.945 253 64.642 -
16 32 16 8.931 657 73.421 -
16 56 6 34.942 323 75.498 -
16 46 4 15.698 503 76.624 -
16 32 0 2.366 2756 79.353 0.921
16 46 11 21.345 289 79.420 -
16 60 11 50.503 209 82.568 -
16 56 16 51.035 190 84.179 -
16 52 18 43.583 204 84.539 -
16 40 4 11.090 580 85.997 0.435
16 52 1 21.465 947 114.032 -
16 48 22 41.469 233 117.819 -
16 64 16 79.142 159 154.029 -
16 58 25 90.280 164 171.350 -
16 2 1 0.003 36688 213.416 0.346
16 64 32 152.002 202 319.671 -
16 64 0 38.361 1471 337.883 -

Table A.7: Numeric results using 32 threads

n_t b o t_in n_it t_tot e
32 8 0 0.005 9942 8.455 0.927
32 14 3 0.072 2117 8.525 0.949
32 16 4 0.239 1637 9.276 0.830
32 10 4 0.033 3212 9.854 0.865
32 16 6 0.185 1513 10.709 0.914
32 6 1 0.006 8074 11.330 0.538
32 18 4 0.225 1413 12.376 0.838
32 18 1 0.149 2595 13.309 1.006
32 16 1 0.109 2914 13.516 0.676
32 4 0 0.002 19024 13.609 0.624
32 26 3 0.675 1057 14.130 0.988
32 22 4 0.535 1112 14.290 0.824
32 16 0 0.075 5223 14.671 0.979
32 22 9 0.741 891 17.385 0.977
32 28 9 1.598 608 17.658 0.675
32 32 4 1.816 733 18.966 0.708
32 8 4 0.032 5910 20.574 0.677
32 4 1 0.003 13003 22.045 0.358
32 2 0 0.000 36689 22.516 0.710
32 36 14 4.916 382 24.409 -
32 40 4 4.601 580 25.314 0.739
32 40 13 6.870 328 25.673 -
32 40 16 9.269 318 34.134 -
32 46 16 10.972 253 34.600 -
32 46 11 10.609 289 34.949 -
32 36 16 6.319 385 35.256 -
32 56 6 17.404 323 36.449 -
32 16 8 0.320 2070 36.801 0.550
32 32 16 4.876 657 41.815 -
32 60 11 25.914 209 42.851 -
32 52 18 22.312 204 45.706 -
32 4 2 0.005 15181 46.771 0.339
32 32 0 1.368 2756 47.925 0.762
32 52 1 10.994 947 56.371 -
32 56 16 34.107 190 56.642 -
32 2 1 0.002 36688 58.582 0.629
32 46 4 10.927 503 59.534 -
32 48 22 21.371 233 72.025 -
32 64 16 38.951 159 74.101 -
32 58 25 45.661 164 75.821 -
32 64 32 80.156 202 206.749 -
32 64 0 35.540 1471 374.332 -



34 A. Additional Numeric Results

Table A.8: Numeric results using 64 threads

n_t b o t_in n_it t_tot e
64 14 3 0.038 2117 3.785 1.069
64 16 4 0.081 1637 4.403 0.874
64 10 4 0.017 3212 4.662 0.914
64 16 1 0.092 2914 4.671 0.978
64 6 1 0.003 8074 4.830 0.630
64 18 1 0.075 2595 5.276 1.268
64 8 0 0.003 9942 5.509 0.711
64 18 4 0.112 1413 6.218 0.834
64 16 0 0.053 5223 6.436 1.116
64 4 1 0.001 13003 7.257 0.544
64 16 6 0.145 1513 7.301 0.670
64 22 4 0.249 1112 7.997 0.736
64 26 3 0.338 1057 8.434 0.827
64 28 9 0.799 608 8.451 0.706
64 4 0 0.001 19024 8.617 0.492
64 8 4 0.012 5910 10.566 0.660
64 22 9 0.741 891 11.017 0.771
64 32 4 1.202 733 12.538 0.535
64 16 8 0.149 2070 12.549 0.806
64 36 14 2.544 382 13.506 -
64 40 4 2.323 580 13.672 0.684
64 2 0 0.000 36689 14.160 0.564
64 4 2 0.003 15181 14.893 0.533
64 40 13 4.616 328 17.666 -
64 46 16 5.509 253 19.068 -
64 36 16 3.744 385 19.668 -
64 46 11 5.544 289 20.220 -
64 40 16 4.760 318 20.420 -
64 32 16 2.444 657 23.454 -
64 52 18 11.998 204 25.302 -
64 32 0 0.619 2756 26.103 0.700
64 46 4 5.316 503 27.188 -
64 56 16 17.459 190 31.763 -
64 2 1 0.002 36688 39.687 0.465
64 48 22 13.816 233 39.913 -
64 56 6 17.113 323 40.407 -
64 58 25 22.526 164 41.506 -
64 60 11 25.800 209 43.088 -
64 52 1 11.144 947 61.221 -
64 64 16 38.591 159 75.992 -
64 64 32 41.150 202 89.703 -
64 64 0 39.109 1471 363.548 -
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