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Abstract—Logging is a development practice that plays an
important role in the operations and monitoring of complex
systems. Developers place log statements in the source code and
use log data to understand how the system behaves in production.
Unfortunately, anticipating where to log during development is
challenging. Previous studies show the feasibility of leveraging
machine learning to recommend log placement despite the data
imbalance since logging is a fraction of the overall code base.
However, it remains unknown how those techniques apply to an
industry setting, and little is known about the effect of imbalanced
data and sampling techniques. In this paper, we study the log
placement problem in the code base of Adyen, a large-scale
payment company. We analyze 34,526 Java files and 309,527
methods that sum up +2M SLOC. We systematically measure the
effectiveness of five models based on code metrics, explore the
effect of sampling techniques, understand which features models
consider to be relevant for the prediction, and evaluate whether
we can exploit 388,086 methods from 29 Apache projects to
learn where to log in an industry setting. Our best performing
model achieves 79% of balanced accuracy, 81% of precision,
60% of recall. While sampling techniques improve recall, they
penalize precision at a prohibitive cost. Experiments with open-
source data yield under-performing models over Adyen’s test
set; nevertheless, they are useful due to their low rate of false
positives. Our supporting scripts and tools are available to the
community.

Index Terms—Log Placement, Log Recommendation, Logging
Practices, Supervised Learning

I. INTRODUCTION

Logging is a popular development practice that plays an
important role in the operations and monitoring of complex
systems. Developers place log statements in the source code to
expose the internal state of the system as it runs in production.
Usually, companies rely on a logging infrastructure (e.g.,
Elastic Stack [1]) to collect and process that data either in-
house or as a cloud service. Operations and monitoring rely
on metrics and data collected at different layers of the stack,
from hardware, operating system, and web server logs to the
application logs themselves. That data is necessary for several
log analysis tasks, e.g., anomaly detection [2]–[4], root cause
analysis [5], [6], and performance monitoring [7].

In practice, developers still rely on their intuition to deter-
mine which parts of the system require log statements [8]. This
problem is known as the “where to log” (or “log placement”)
problem [9]–[12]. Empirical studies show that developers

continuously spend time fixing and adjusting log statements
in a trial-and-error manner [13], [14]. In addition, improper
logging also leads to several issues in production software and
logging infrastructure [15]. Deliberately placing log statements
everywhere in the source code might increase data throughput,
resulting in more demand for storage and processing time for
data indexing. Conversely, missing log statements undermine
the ability to diagnose failures and abnormal behavior. In an
enterprise context, the issues associated with improper logging
might not only reflect in costs with commodity or on-premise
resources but also in the company’s reputation since failing to
provide timely response to failures and abnormalities can be
harmful to the business.

The research community has been proposing techniques to
support developers in deciding what parts of the system to log.
For instance, Jia et al. [16] proposed an approach based on
association rule mining to place error logs on if statements;
Li et al. [12] studied the use of topic modeling for log
placement at method-level, and; Li et al. [11] proposed a deep
learning-based approach to indicate the need for logging at
block-level. Those techniques rely mostly on code vocabulary
to learn placement patterns in the source code, and experiments
with open-source data show their relevance on the placement
problem. Unfortunately, it remains unknown how existing
approaches apply in an enterprise setting. Zhu et al. [10]
proposed a technique and evaluated it on two large-scale sys-
tems; however, it operates on specific contexts: catch clauses
(exception handling) and if statements with return values.
In practice, there are many different types of logging (e.g.,
exceptional and unexceptional cases) [9] and, in a business-
critical application, every log is under scrutiny for monitoring
and postmortem analysis. Furthermore, existing techniques
employ over-sampling techniques (e.g., [10], [11]) to avoid
bias towards the majority class; however, it remains unknown
the effect of imbalanced data and sampling techniques (i.e.,
over-sampling of the minority class or under-sampling of the
majority class) on log placement.

In this paper, we study the log placement problem in the
code base of Adyen, a large-scale payment company. We
analyze 34,526 Java files and 309,527 methods that sum up to
over two million lines of code. We address log placement as a
supervised binary classification problem at method-level. We
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focus at method-level given the low prevalence of log state-
ments on logged methods (up to 75% of logged methods con-
tain no more than two log statements) and the diverse contexts
of log placement (more details in Section II). Our intuition
is that we can trade the specificity of block-level prediction
without losing awareness. We leverage object-oriented metrics
and structural metrics as predictors to placement patterns since
they are easy to compute via static analysis. In addition,
they have been widely used in other domains (e.g., defect
prediction [17]–[21]) but are under explored for log placement.
We systematically measure the effectiveness of five machine
learning models, explore the effect of sampling techniques,
understand which features models consider to be relevant for
the prediction, and evaluate whether we can leverage code
metrics and open-source data to learn log placement in an
industry setting.

Our results show that (i) our best performing model (Ran-
dom Forest) achieves 79% of balanced accuracy, 81% of preci-
sion, 60% of recall, and 1% of false positive rate, (ii) sampling
techniques improve recall (+26% up to +52%), but at a
prohibitive cost in precision (−18% up to −40%), (iii) the
depth of a method, i.e., maximum number of nested blocks,
is a key indicator of log placement, and (iv) models based
on open-source data yield lower performance on Adyen’s test
set; nevertheless, they can be used to overcome the cold-start
problem due to their low rate of false positives. This paper
provides the following contributions:
• A feature engineering process for machine learning based

on code metrics for log placement at method-level;
• An empirical evaluation of five machine learning models

and their performance on a large-scale enterprise system;
• An analysis of the effectiveness of transfer learning from

open-source data to overcome the cold-start problem in
an industry setting;

• A fully functional toolkit for auditing and extension [22].

II. CONTEXT AND MOTIVATION

Adyen offers payment processing as a service and connects
shoppers to more than 4.5k merchants at global scale. At the
core of the business, there is a platform with more than 10
years of development that is maintained and evolved by hun-
dreds of developers around the globe. Technology plays a key
role to scale hundreds of transactions per second in different
currencies and different payment channels (e.g., points of sale
terminals and e-commerce). Only in 2019, Adyen processed
240 billion euros in transaction volume1.

To ensure quality in a rapid growing business, developers
follow DevOps practices and are responsible for testing and
monitoring their changes on every release. Moreover, there are
dedicated infrastructure and monitoring teams responsible for,
among other activities, building and maintaining data pipelines
to support system monitoring. In a monthly basis, the in-
house clusters process billions of log events generated by

1https://www.adyen.com/investor-relations/H2-2019 (Accessed on Septem-
ber 2020).

TABLE I
PLACEMENT OF LOG STATEMENTS GROUPED BY DIRECT ENCLOSING

CONTEXT.

Enclosing context Log statements %

if-else statements 27,257 53
catch clauses 14,935 29
method declarations 5,823 11
try statements 1,464 3
loop statements 935 2
others 567 1

Total 50,981 100

20 21 22 23 24 25 26

Number of Log Statements [log2]

N=23,723  min=0.00  max=6.39
Q1=0.00    Q2=0.00    Q3=1.00

Fig. 1. Distribution of log statements per logged method (in log2 scale). Each
data point represents the number of log statements in a method. 75% of the
logged methods contain up to two log statements.

the platform. The use of this volume of data goes beyond
monitoring the stability of release changes. For instance,
teams leverage that data to trace fraudulent activity, diagnose
abnormal behavior, and perform root cause analysis. Good
logging practices and efficient monitoring are vital to the
business operation and scale of Adyen.

In the following, we describe the pervasiveness of log
statements in the code base (Section II-A), how developers
conduct log engineering (Section II-B), and the motivation for
an automated approach (Section II-C).

A. Pervasiveness of Log Statements

To analyze the presence of log statements, we focused on
production-related code due to the importance of log data
in the field (we elaborate more details about measurements
in Section III-A). Our dataset contains 34,526 Java files and
309,527 methods that sum up to more than two million lines
of source code. Only 7.7% of the methods (23,723 out of
309,527) contain at least one log statement. Figure 1 shows the
distribution of log statements among those methods; we used
log scale to highlight the distribution modes. In most cases,
the number of log statements per logged method is relatively
low: in 75% of the cases, there are up to two log statements
and 50% of the methods contain only one log statement. To
further understand the placement context of log statements, we
also analyzed the abstract syntax tree from those methods. The
most common placements are if-else statements, followed
by catch clauses, and method declarations (Table I).

Overall, the percentage of production-related methods that
contain log statements is relatively low (7.7%). While the
frequency of log statements in methods is low (up to two



in 75% of the cases), log statements occur in many different
contexts in a method body (Table I).

B. Log Engineering in the Field

Adyen has internal guidelines to educate developers about
logging practices (e.g., log levels and message formats) and
how to use the in-house logging framework. These guidelines
help to align the perception about logs for developers working
on different teams and with different backgrounds. A major
challenge in this context is to add log statements with enough
contextual information without overloading the data infrastruc-
ture.

To better understand the maintenance effort on log state-
ments, we conducted an exploratory analysis of log-related
changes in the repository from November 1st, 2019 to April
30th, 2020. We used a keyword-based approach to identify
log-related commits and leveraged the structured titles from
commits to identify associated tasks from the issue tracker for
additional context. Commit titles are in the format “<Task-
id> <Title>”, where “<Task-id>” is a mandatory field. We
report relative values to protect confidential company data. In
the following we summarize our observations:
• Log-related commits are recurrent: We grouped the

log-related commits per month and computed their rel-
ative frequency to Java-related commits. On average,
there were 7.0 ± 1.6% of commits focused exclusively
on log-related changes (min=5.7% and max=9.7%). This
suggests that there is a recurrent demand to improve log-
related code.

• Most log-related commits are isolated small fixes: We
analyzed the commits identified previously to understand
what was the context of the change. We used the “<Task-
id>” field to identify whether the change was associated
to an open task or an isolated fix (tagged as “FIX”). The
percentage of isolated fixes was almost twice (×1.94) as
high compared to task-related commits. Previous studies
have also observed the same phenomenon in open-source
projects [13], [14]. In an ideal setting, the developer
should be able to anticipate the need of those small and
isolated fixes to improve productivity.

C. The Need For an Automated Approach

Our observations about log engineering in the field suggest
that, while there is a company-wide effort to strike a balance
between high-quality data and cost-effective usage of infras-
tructure, there is a need for tooling support to make consistent
logging decisions. Unfortunately, while experts might provide
assistance during code-review, this approach does not scale.
Furthermore, it is unfeasible for a developer to have a contex-
tual baseline of comparison between an ongoing task and the
hidden patterns of log statements spread in a large code base.

As a first step towards alleviating the burden of implement-
ing and maintaining logging code at Adyen, in this work, we
explore the feasibility of exploiting machine learning on the
complex task of log placement. Our intuition is that non-trivial
methods are more likely to be logged but not necessarily all

complex methods should be logged. Ideally, if the developer
introduces a method similar in complexity to existing methods
that contain log statements, then, the developer should be
aware of this relationship. We believe this awareness might
help the developer to make informed decisions before the code
deploys to production.

We define the scope of prediction at method level since
we observed that, in our context, log statements are not
recurrent in logged methods, e.g. 50% of the logged methods
contain only one log statement (Figure 1). In addition, as
seen previously, log statements are spread in many different
contexts (Table I).

III. METHODOLOGY

Our goal is to predict whether a method should be logged or
not in an enterprise system. To this end, we frame this problem
as a supervised binary classification problem at method level.
We analyze the feasibility of using code metrics as predic-
tors, evaluate the performance of different machine learning
models, the relevance of class balancing, and whether models
built on top of open-source data generalise to our domain.
Concretely, we investigate the following research questions:

RQ1: What is the performance of machine learning models
in predicting log placement in a large-scale enterprise
system? This RQ addresses the feasibility of using code
metrics as predictors. Our initial assumption is that,
given a sufficient number of training examples, a model
can differentiate a method that should be logged or
not based on the distribution of features extracted from
methods and their enclosing class. Answering this RQ
is important to validate this assumption.

RQ2: What is the impact of different class balancing strate-
gies on prediction? This RQ addresses the problem of
imbalanced data in classification problems [23], [24].
Imbalanced data occurs when the frequency of one
class is significantly smaller than the other(s). In our
context, only 7.7% of methods in the code base have
log statements (see Section II-A). This might introduce
a bias towards the majority class and result in an under-
performing model. Answering this RQ is important to
assess the impact of imbalanced data in our domain and
the trade-offs of different sampling techniques.

RQ3: What are the most recurring relevant features across
models? This RQ addresses the relevance of features
in the task of differentiating methods that have log
statements from methods without log statements. In
our experiments, we use machine learning algorithms
that learn from data on different ways. Our goal is
to understand if those differences cause the models to
capture different characteristics from data. Answering
this research question is important to provide insights
about what models learn after training.

RQ4: How well can a model trained with open-source data
generalize to the context of a large-scale enterprise
system? This RQ addresses the feasibility of learning



from open-source data. Transfer learning has been ap-
plied in other domains (e.g., defect prediction [18], [25]–
[27] and performance modeling [28]–[30]) to overcome
the “cold-start problem”, i.e., when it is not possible to
train a model due to insufficient (or nonexistent) training
data. In our context, this relates to a project being in an
early stage of development, for instance. Answering this
RQ is important to understand transfer learning for log
placement.

Tooling Support: All supporting scripts and tools are
available in our online appendix [22]. The README.md file
located in the root directory describes the components and the
minimum requirements.

In the following, we describe the data collection, labelling,
feature extraction, learning algorithms, machine learning pro-
cess, and how we address each research question.

A. Data Collection

The focus of our study is the code base of our industry
partner. In addition, we create a dataset based on 29 projects
from the Apache ecosystem to address the feasibility of
learning where to log from them. We focused on Apache
projects because they are often present in industry-level
projects at different domains (e.g., cloud managing, databases,
web servers, and big data solutions). Our assumption is that
they might contain good or influential logging practices since
their users rely on log data for troubleshooting and monitoring
the execution of complex systems. Table II summarizes the
datasets and provides an overview of the pervasiveness of log
statements. In the following we describe how we analyze the
subjects and the selection criteria to compose our dataset.

Source code filtering: For all projects, including Adyen’s
code base, we selected Java files that are related to production
code. The rationale for excluding non-production sources is
that those files contain methods that may not reflect the
developer’s perception of production level logging decisions.
We searched for files with the suffix .java using the find

UNIX utility [31] and grouped the entries into the following
categories: (i) test-related files, (ii) documentation-related files,
e.g., “how to” recipes and API examples, and (iii) build-related

TABLE II
SUMMARY OF DATA COLLECTION.

Dataset Filesa Log
statements

Methods
(M)

Logged
methods

(LM)

LM
M (%)

Adyen 34,526 50,981 309,527 23,723 7.7
Apache (N=29) 38,980 55,849 388,086 27,247 –

Apache summary:
Min 117 120 1,176 54 4.2
Q1 586 727 4,839 417 4.9

Median 821 1,514 6,933 762 7.1
Average 1,344 1,926 13,383 940 8.1

Q3 1,577 2,345 14,915 1,154 9.9
Max 5,881 12,147 65,184 4,955 15.8

aProduction-related Java code.

files. We classify each Java file by checking whether its
corresponding path contains a keyword related to one of the
categories. For test-related files, the keywords are “fixture”,
“memtest”, “/mock/”, and “test/”. For documentation-related
files, the keywords are “docs/”, “/examples/”. For build-related
files, the keyword is “buildSrc/” which corresponds to the path
of custom Gradle tasks. We classify the remaining files as
production-related file (Table II, column “Files”).

Log statements: In the subset of production-related files,
we measure the pervasiveness of log statements with static
analysis. For each method in the source code, we visit all
method invocations in the enclosing method body and check
whether it represents an expression statement. This allows us
to identify multi-line log statements and log statements that
use fluent API patterns (a.k.a., method chaining) which are
supported by popular logging frameworks (e.g., Slf4j [32]
and Log4j 2 [33]). We use the lowercase string represen-
tation of the expression to check if the expression matches
the patterns of popular log APIs (i.e., “.*log(ger)?.*”
or “.*(error|warn|info|debug).*”). In case it matches,
we increment the counter of log statements and mark the
current method as a logged method. Columns “Log statements”,
“Methods (M)”, “Logged methods (LM)”, and “ LM

M (%)” summarize the
counting of log statements, visited methods, logged methods,
and percentage of logged methods, respectively.

Apache selection: We selected Java projects listed in the
official website from Apache foundation2. We initially down-
loaded 64 projects that we were able to clone automatically
based on the scrapped data from their website. We excluded
projects with less than or equals to 4% of logged methods
and projects with less than or equals to 100 production-related
files. The rationale for the log percentage criterion is to define
a lower bound cutoff for projects with less than half of the
average percentage of logged methods from Adyen dataset
(7.7%× 1

2 ≈ 4%); the rationale for the number of production-
related files criterion is to exclude small library projects. After
the selection criteria, we reduced the original list of 64 to 29
projects in the final set3.

The selected Apache projects sum up to 38,980 Java files
with an average of 8% of logged methods (see “Apache
summary” in Table II for the detailed distribution). The project
with the highest percentage of logged methods is Apache
Sqoop, a system designed for data transmission which has
a percentage of 15.8% of logged methods (488 out of 3,080)
and 351 production-related files. The project with the lowest
percentage of logged method is Apache Ignite, an in-memory
database and caching platform which has a percentage of 4.2%
of logged methods (2,765 out of 65,184) and 5,881 Java files.

B. Label Identification and Feature Extraction

We annotate the labels based on the presence of log state-
ments in the methods identified during data collection, and
we use code metrics as features to characterize methods in the

2https://projects.apache.org/projects.html?language
3Selected projects available at “./apache-projects-paper.

csv” [22]



1,      3,       4,      11,    …, True

@Override
public void load(final String domain) {
  boolean existingData;
  try {
    existingData = !confParamOps.list(domain).isEmpty();
  } catch (Exception e) {
    LOG.error("[{}] Could not access Keymaster", domain, e);
    existingData = true;
  }
  if (existingData)
    LOG.info("[{}] Data found in Keymaster, leaving untouched",
      domain);
}

@Override
public void load(final String domain) {
  boolean existingData;
  try {
    existingData = !confParamOps.list(domain).isEmpty();
  } catch (Exception e) {
    existingData = true;
  }
}

Original Modified

CBO, WMC, RFC, SLOC, …, Label

Extracted feature vector

1,      2,       2,       9,    …, False
CBO, WMC, RFC, SLOC, …, Label

1,      2,       2,       9,    …, True
CBO, WMC, RFC, SLOC, …, Label

Fig. 2. Label identification and feature extraction process. The “Extracted feature vector” for the corresponding method consists of the label identified in the
original code snippet and the features calculated after removing log statements (i.e., “Modified” code snippet). Class features omitted for brevity.

dataset. Code metrics have been widely used in other domains
(e.g., defect prediction [17]–[21]) and are simple to compute
using static analysis. Furthermore, the use of code metrics
allows us to start with a simple feature extraction pipeline as
it is unnecessary to employ tokenization, word embedding, and
other techniques from Natural Language Processing (NLP).

Features: Table III highlights the 45 code metrics we use
as features: 40 structural metrics (38 quantitative and two
qualitative) and five object-oriented metrics [34], [35]. The 38
quantitative structural metrics indicate the frequency of AST
nodes (e.g., number of parameter declarations in a method),
except lines of source code (“SLOC”), and the two qualitative
metrics indicate the type of a compilation unit (“classType”)
and whether a method is a constructor (“isConstructor”).
Compilation units are classified either as “enum type”, “class”,
“inner class”, “interface”, or “anonymous”. We reuse an open-
source tool available on GitHub based on Eclipse JDT [36] to
calculate the metrics.

Feature extraction: We combine method-level metrics with
metrics from their enclosing class. Our intuition is that this
might help to differentiate data points and provide further
context to learning algorithms. There are 63 features in total
after extracting the 45 metrics at method and class-level.
Note that some metrics are specific to classes (e.g., type of a

TABLE III
SUMMARY OF CODE METRICS USED AS FEATURES.

Code metricsa

Object-oriented metrics (N = 5):
CBO, DIT, WMC, RFC, LCOM

Qualitative (N = 2):
isConstructor, classType

Quantitative (N = 38):
abstractMethodsQty, anonymousClassesQty, assignmentsQty, comparison-
sQty, defaultFieldsQty, defaultMethodsQty, finalFieldsQty, finalMeth-
odsQty, innerClassesQty, lambdasQty, SLOC, loopQty, mathOpera-
tionsQty, maxNestedBlocksQty, methodsInvokedIndirectLocalQty, meth-
odsInvokedLocalQty, methodsInvokedQty, NOSI (number of static invo-
cation), numbersQty, parametersQty, parenthesizedExpsQty, privateField-
sQty, privateMethodsQty, protectedFieldsQty, protectedMethodsQty, pub-
licFieldsQty, publicMethodsQty, returnsQty, staticFieldsQty, staticMethod-
sQty, stringLiteralsQty, synchronizedFieldsQty, synchronizedMethodsQty,
totalFieldsQty, totalMethodsQty, uniqueWordsQty, variablesQty, visible-
FieldsQty

aCheck the tool’s GitHub page for further details [36].

compilation unit), some metrics are specific to methods (e.g.,
whether a method is a constructor), and others apply to both
levels (e.g., SLOC from a given method and SLOC from
the enclosing class). The final dimensionality is 68 features
after the encoding of the categorical variables: 61 numerical
features, two features that indicate whether a method is a
constructor, and five features that indicate the compilation
type.

It is worthy mentioning that feature extraction requires code
transformation to avoid data leakage caused by the existing
log statements. Log statements might impact the distribution
of the collected metrics due to their implicit dependency with
some features, e.g., lines of source code (“SLOC”) and number
of method invocations (“methodsInvokeQty”). Therefore, we
remove log statements and guards that might exist whenever
possible4.

In addition, the presence of try-catch blocks is another
potential source of data leakage. Recall from Table I that 32%
of log statements at Adyen’s dataset are direct children of
try-catch statements. Data leakage caused by try-catch

statements occurs when the developer handles an unchecked
exception to add a log statement in the catch clause and re-
throws the exception. While our intuition is that those are
rare cases, we make the conservative decision of not using
the presence (or frequency) of try-catch as a feature. The
output of feature extraction is a matrix: each row corresponds
to a feature vector that represents a given method and each
column corresponds to a feature.

We summarize this step using a simplified version of the
method “load” from Apache Syncope, an identity manager
for enterprise systems (Figure 2). The highlighted lines in the
original code snippet indicate the presence of log statements,
therefore, “Label” is “True”. Next, we remove log statements
(“Modified” code snippet) and extract the code metrics (class
metrics are omitted for brevity). The resulting feature vector
for “load” is the combination of code metrics without log
statements and the identified label. We index labels and fea-
tures by file path, the fully-qualified class name, and method
signature to avoid misplacing labels. Figure 2 also highlights
the difference of feature vectors caused by the presence of the
log statements in the original code snippet.

4Details available at “./log-remover” [22]
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…
 

Optimized models
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…
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Logistic 
Regression

ExtraTrees

…
 

(training split)

Fig. 3. Machine learning process: for a given learning algorithm, we use 10 random selections of hyper-parameters (“Hyper-params”) and five-fold cross-
validation for model optimization; we compute the performance metrics (“Scores”) using an independent test set to compare the optimized models.

C. Learning Algorithms and Machine Learning Process
In our experiments, we use five classifiers: (i) Logistic

regression [37] is a simple classifier based on linear regression
and the sigmoid function; (ii) Decision Tree [38] derives a
criteria that best split the data among the output classes;
(iii) Random Forest [39], (iv) AdaBoost [40], and (v) Ex-
tremely Randomized Trees (Extra Trees) [41] are tree-based
ensemble approaches that combine a set of Decision Trees to
make predictions. It is worthy mentioning that the tree-based
models are insensitive to feature scaling and implicitly per-
forms feature selection. For logistic regression, we handle scal-
ing as a hyper-parameter with five options5: (i) MinMaxScaler,
(ii) Normalizer, (iii) RobustScaler, and (iv) StandardScaler. In
addition, we use logistic regression with ridge regularization
(L2) by default. We refer the reader to the papers cited above
for a better understanding of each algorithm. All algorithms
are available in the scikit-learn library [43].

Figure 3 illustrates our machine learning process.
Train-test split: For a given dataset, we shuffle and split it

into training (80%) and test (20%) sets. The split is stratified,
i.e., it preserves the original class balance. The rationale for
this step is twofold: first, it allows us to find the best hyper-
parameters and evaluate the optimized model on independent
sets from the same data distribution; second, it allows us to
reuse a test set to compare the performance of models trained
on different datasets.

Model optimization: For each learning algorithm, we try
different hyper-parameters and select the values that yield the
best performance on five-fold cross-validation. We optimize
for balanced accuracy (BA) as the data is imbalanced (more
details in “Model Evaluation”). The hyper-parameter values
are randomly selected according to set of possible values
defined apriori.6 For instance, if using AdaBoost, the possible
values for learning rate are 10{0,−1,−2,−3,−4}. The rationale
for random selection is that exhaustively trying all possible
values for all possible hyper-parameters is costly due to cross-
validation; hence, we limit the trials to 10 runs.

Model evaluation: For each optimized model, we compute
the scores of the following performance metrics:

• Balanced Accuracy (BA) = 1
2 (

TP
TP+FN + TN

TN+FP )

5The details about the scalers and their effect are available in the
scikit-learn documentation [42]

6Detailed settings available at “./log-prediction/logpred_
method/models.py” [22]

• Precision (Pr) = TP
TP+FP

• Recall (Rec) = TP
TP+FN

Balanced accuracy (BA) indicates whether the model identi-
fies the positive and negative classes correctly and penalizes
the score in the presence of false positives and negatives.
Precision (Pr) indicates the model sensitiveness to false
positives. Finally, recall (Rec) indicates whether the model
identifies all data points from the positive class.

D. Evaluation

RQ1 (model performance in a large-scale system): We use
the Adyen dataset (see Table II) and apply the process and
learning algorithms described in Section III-C. Unfortunately,
the related work either lacks publicly available implementa-
tion [11], [12] or requires a full re-implementation compatible
with our Java code base [10], [16]. For this reason, we use
two probabilistic baselines: random guess with p = 50.0% and
biased guess with p = 7.7% for the positive class. The later
baseline illustrates a developer that is aware that only 7.7%
of the methods are logged in the code base (see Table II) and
would follow this reasoning for logging decisions. In addition
to balanced accuracy (BA), precision (Pr), and recall (Rec),
we also report the confusion matrix for further context.

RQ2 (the effect of sampling on imbalanced data): We add
class balancing as a pre-processing step for each learning
algorithm on model optimiziation (see Figure 3). For under-
sampling, we use Random Under sampling (RUS). In this
setting, class balancing occurs by randomly dropping data
points from the majority class, i.e., method should not be
logged. For over-sampling, we use Synthetic Minority Over-
sampling TEchnique (SMOTE) [44]. In this setting, class
balancing occurs by generating synthetic data points similar to
the points from the minority class. We compare under/over-
sampling with no-sampling (RQ1) over the same test split,
and report the gain (or loss) on the performance metrics.

RQ3 (feature importance): We inspect the optimized mod-
els and rank the most relevant features across models. The
rationale for ranking (rather than reporting the actual values)
is that it is unfeasible to directly compare coefficients (for
logistic regression) and feature importance (for tree-based
models). For logistic regression, we use the absolute values
from the coefficients as a baseline of feature importance. For
the tree-based models, we rank the features with the best
mean decreased impurity, i.e., the features that best split the



TABLE IV
MODEL PERFORMANCE ORDERED BY BALANCED ACCURACY (BA).

Model BA Pr Rec
confusion matrix (N = 61, 906)
TN FP FN TP

Random Forest 0.79 0.81 0.60 56,471 690 1,892 2,853
Extra Trees 0.77 0.74 0.55 56,229 932 2,145 2,600
Decision Tree 0.74 0.57 0.50 55,388 1,773 2,354 2,391
AdaBoost 0.70 0.64 0.42 56,036 1,125 2,756 1,989
Logistic Reg. 0.67 0.65 0.36 56,251 910 3,050 1,695

Biased Guess 0.50 0.08 0.08 52,764 4,397 4,363 382
Random Guess 0.50 0.08 0.50 28,595 28,566 2,386 2,359

data into the predicted classes. In addition, since we rely on
after-training statistics, we also inspect models that used class
balancing (RQ2). We report the distribution of the top five
most relevant features across models during training.

RQ4 (to which extent a model trained with open-source
data can generalize to an industry setting): We use the Apache
dataset to train a model and evaluate it against the same test set
from the Adyen dataset. We evaluate the performance of the
model in two scenarios. First, we build a training set composed
by the dataset of all Apache projects together. The train set
contains 388,086 data points from the 29 projects combined.
Second, we train a model using the dataset of an Apache
project individually; therefore, we run the experiment 29 times
for each project. We report the performance metrics similarly
to RQ1 for both scenarios.

IV. RESULTS

A. What is the performance of machine learning models in
predicting log placement in a large-scale enterprise system?

Table IV shows the performance of all evaluated models. We
trained all models using the same training set (N = 247, 621)
and evaluate against the same test set (N = 61, 906) from
Adyen’s dataset. Both splits preserve the class balancing of the
original dataset, i.e., 7.7% (see Table II). On average, the mod-
els achieved 73.3 ± 5.0% of balanced accuracy, 68.1 ± 9.0%
of precision, and 48.6± 9.8% of recall. The best performing
model was Random Forest in all scores.

The confusion matrix provides further context to the results.
For instance, while logistic regression is a simple linear
classifier with 65% of precision, it has the second best rate of
FP (the lower, the better). Note that random guess achieves
better scores than guessing based on the label distribution
(biased guess); however, the results show that random guess
has nearly ×6.5 more false positives compared to biased
guess. In practice, that means ×6.5 more false alarms to
a developer. Furthermore, while biased guess was useful to
optimize TN and FP compared to random guess, it was
insufficient to detect true positives. Nevertheless, all machine
learning models achieved better balance of TNs and TP s.

RQ1: The Random Forest model outperforms all other
models and probabilistic baselines with 79% of balanced
accuracy, 81% of precision, and 60% of recall.

TABLE V
DIFFERENCE OF CLASS BALANCING FOR MODEL TRAINING COMPARED TO

TRAINING ON IMBALANCED DATA (TABLE IV).

Model Balancinga BA Pr Rec FP FN

Random Forest SMOTE +0.10 -0.31 +0.26 +3,538 -1,227
RUS +0.12 -0.40 +0.35 +6,062 -1,677

Extra Trees SMOTE +0.13 -0.29 +0.34 +4,313 -1,624
RUS +0.15 -0.36 +0.41 +6,723 -1,942

Decision Tree SMOTE +0.12 -0.18 +0.32 +4,214 -1,514
RUS +0.15 -0.22 +0.40 +6,046 -1,912

AdaBoost SMOTE +0.18 -0.33 +0.50 +8,721 -2,387
RUS +0.19 -0.28 +0.49 +6,722 -2,343

Logistic Reg. SMOTE +0.20 -0.28 +0.52 +6,028 -2,444
RUS +0.21 -0.28 +0.52 +6,274 -2,474

aRUS = Random under sampling, SMOTE = Synthetic minority over-
sampling technique [44]

B. What is the impact of different class balancing strategies
on prediction?

The rationale for class balancing is to better perceive the
minority class, i.e., reduction of false negatives in our context,
for a better performing model after training. Table V shows the
gains and losses of using Synthetic Minority Over-sampling
TEchnique (SMOTE) and Random Under Sampling (RUS)
compared to training on imbalanced data (as in RQ1).

Overall, SMOTE and RUS significantly reduced false neg-
atives which reflect on better balanced accuracy and recall.
However, precision was severely reduced due to the high rate
of false positives. For SMOTE, balanced accuracy and recall
increased by 14.7 ± 4.3% and 38.8 ± 11.5%, respectively
while precision reduced by −27.8±5.9%. For RUS, balanced
accuracy and recall increased by 16.2±3.4% and 43.6±6.9%,
respectively while precision reduced by −31.1 ± 7.3%. The
difference between SMOTE and RUS was negligible for
logistic regression (less than 1% in all metrics; hence, the
same loss and gain in Table V).

Finally, the results show that while sampling strategies
improve the perception of the minority class (i.e., increase
of recall), the resulting models mislabel data points from the
majority class (i.e., decrease of precision).

RQ2: While SMOTE and Random Under Sampling increase
balanced accuracy and recall, they penalize precision at a
prohibitive increase of false positives.

C. What are the most recurring relevant features across mod-
els?

Table VI shows the top five most recurrent features across
models. For all 15 models (five from RQ1 and 10 from RQ2),
we selected the top five features and ranked their frequency
across models. We analyze all models since factors associated
to the training process (e.g., scaling, hyper-parameters, and
sampling) impact how a model perceives the features. Col-
umn “Feature” indicates the feature name, column “Scope”
indicates whether the metric was computed at method or class
level, column “ranking” indicates the ranking from the given
feature, e.g., “RFC” was the third most important features



TABLE VI
TOP FIVE MOST RECURRENT FEATURES ACROSS MODELS ORDERED BY

RANKING AND FREQUENCY (COLUMN “TOTAL”).

Feature Scope ranking Total
1st 2nd 3rd 4th 5th

maxNestedBlocks method 11 1 2 14
SLOC method 1 2 1 3 2 9
methodsInvokedQty method 2 1 1 4 8
CBO method 1 2 2 1 6
uniqueWordsQty method 1 3 2 6
WMC method 3 1 1 5
variablesQty method 1 1 2 4
type_interface class 1 2 3
RFC method 3 3
constructor_True method 1 1 2
type_enum class 1 1 2
returnQty method 1 1 2
CBO class 1 1 2
constructor_False method 2 2

three times (ranking 3rd = 3), and column “Total” sums up the
ranking column. Features are ordered by the column “Total”.

The feature “maxNestedBlocks” was the most recurrent
feature (×14), followed by “SLOC” (×9) and “methodsIn-
vokedQty” (×8). In the context of object-oriented metrics,
“CBO” was the most recurring feature (×6), followed by
“WMC” (×5) and “RFC” (×3). Furthermore, most of the
reported metrics relates to some extent to method complexity
beyond method length, e.g., depth of method (“maxNest-
edBlocks”), number of method calls, and coupling between
objects (“CBO”). Finally, it is worth mentioning that feature
importance provides a basic framework to debug/analyze what
characteristics from the dataset the models learn after training.
It is not meant to be interpreted as a causality analysis.

RQ3: The depth of method, i.e., the maximum number
of nested blocks (“maxNestedBlocks”), ranks as the most
relevant feature in 11 out 15 models.

D. How well can a model trained with open-source data
generalize to the context of a large-scale enterprise system?

Table VII shows the performance of models trained using
open-source data and tested on Adyen’s test set. We train the
models using Random Forest due to its best performance in
previous experiments. In addition, we explore two scenarios:
learning from all Apache projects (upper part) and learning
from each Apache project individually (lower part).

Overall, no open-source data yield better (or similar) scores
compared to the original experiment (see Random Forest, Ta-
ble IV). In the first scenario, balanced accuracy, precision, and
recall reduced by 18% (= 0.79− 0.61), 18% (= 0.81− 0.63),
and 36% (= 0.60−0.24), respectively. In the second scenario,
“cloudstack” achieved better performance; however, balanced
accuracy, precision, and recall reduced by 7% (= 0.79−0.72),
19% (= 0.81− 0.62), and 14% (= 0.60− 0.46), respectively.
Note that “cloudstack” yields comparable precision and out-
performs the first scenario in terms of recall and balanced

TABLE VII
PERFORMANCE OF OPEN-SOURCE DATA AS TRAINING SET ON ADYEN’S

TEST SET ORDERED BY BALANCED ACCURACY (BA).

Dataseta Training
BA Pr Rec FP FNsize

All Apache data 388,086 0.61 0.63 0.24 656 3,606

cloudstack 52,390 0.72 0.62 0.46 1,348 2,570
zeppelin 10,953 0.72 0.56 0.47 1,754 2,530
oodt 6,933 0.71 0.52 0.45 1,915 2,631
archiva 5,995 0.69 0.51 0.41 1,831 2,822
helix 6,787 0.68 0.46 0.40 2,233 2,870
thrift 1,797 0.67 0.29 0.43 4,979 2,682
sqoop 3,080 0.67 0.51 0.38 1,716 2,961
bookkeeper 12,711 0.67 0.55 0.36 1,408 3,035
nutch 3,321 0.67 0.59 0.35 1,158 3,065
openmeetings 4,839 0.66 0.47 0.34 1,815 3,111
zookeeper 5,279 0.64 0.62 0.30 890 3,319
jmeter 8,597 0.64 0.61 0.29 875 3,357
reef 6,150 0.63 0.48 0.29 1,454 3,388
accumulo 25,458 0.63 0.56 0.28 1,020 3,437
syncope 14,915 0.63 0.52 0.27 1,174 3,455
giraph 8,039 0.63 0.50 0.27 1,300 3,450
storm 24,208 0.62 0.51 0.27 1,247 3,457
tez 8,947 0.62 0.54 0.27 1,095 3,470
knox 6,821 0.59 0.46 0.20 1,108 3,817
myfaces-tobago 3,866 0.58 0.70 0.17 344 3,950
commons-beanutils 1,176 0.58 0.66 0.16 397 3,981
lens 6,231 0.57 0.60 0.16 494 3,994
ambari 21,997 0.56 0.51 0.13 615 4,105
aOmitted six projects with Rec < 0.10 for brevity.

accuracy using 86.5% less data. In contrast to Adyen’s training
set, “cloudstack” has 78.8% less data.

Interestingly, Table VII also shows five experiments with
comparable (and even lower) FP s in contrast to Adyen’s
training set, despite scoring worse. For instance, all Apache
projects together yields 656 of FP s. The project “myfaces-
tobago”, a user interface library based on JavaServer Faces
(JSF), yields 344 FP s and 70% of precision with only 3.8k
data points. The remaining three experiments are “common-
beanutils”, a library to dynamically access Java object prop-
erties; “lens”, a data analytics platform; and “ambari”, a
Hadoop management system. We see that those models were
penalized by their low recall due to high FNs. Nevertheless,
all models achieved better balance of TNs and TP s as seen in
balanced accuracy compared to random and biased guessing
(see Table IV).

RQ4: The best performing model (based on Apache Cloud-
stack) yields 72% of balanced accuracy, 62% of precision,
and 46% of recall over Adyen’s test set. While all Apache
data combined yields an underperforming model, it has a
low rate of false positives.

V. DISCUSSIONS

A. The Precision-Recall Trade-off

Our results from RQ1 show that it is feasible to leverage
code metrics to train a model on the task of log placement at



method level. The best performing model (based on Random
Forest) achieved 79% of balanced accuracy with only 1.1%
of false positives in the test set. Even the worst performing
model (based on Decision Tree) still achieved 2.8% in false
positives. We observed empirically that all models mislabeled
data points from the positive class (i.e., it was expected to
be predicted as “should be logged”); therefore, those models
could improve performance by lowering the false negatives
rate. One way to address this issue would be the use of class
balancing. However, as seen in RQ2, our experience on using
sampling techniques was negative in the sense that recall and
balanced accuracy improved at the cost of significant reduction
in precision. We argue that sacrificing precision over recall (or
balanced accuracy) is prohibitive in practice: a model with a
high rate of false positives could compromise the usefulness
of a recommendation tool since it could be a burden for
developers to deal with the noisy output.

B. Learning from Code Metrics and Open Source

We achieved promising results in the context of our industry
partner; however, code metrics might not be a good fit for
every context since they are closely related to programming
style and design patterns. For instance, in one extreme case, a
developer could breakdown a method into several single-line
methods. Conversely, several methods could be merged into a
larger and complex method. Those variances in programming
styles might undermine the usefulness of code metrics as pre-
dictors. Complementary features might be helpful to capture
further nuances and characteristics of logged methods, e.g.,
the use of a NLP pipeline to learn from the code vocabulary.
This could be also useful in the challenge of reducing false
negatives without undermining precision.

Leveraging open-source data can be useful to overcome
the “cold-start” problem given that the models outperforms
random guessing and guessing based on label distribution.
Furthermore, we observed five scenarios where the resulting
model achieved a low rate of false positives. For instance,
the model trained with all Apache data had 647 of false
positives (1.2% of the true negative class). However, deciding
which model to choose or how to combine datasets remains
a problem. More research is necessary to understand what
factors projects share to help developers to choose an optimal
model similarly to past work in transfer-learning for defect
prediction [18].

VI. THREATS TO VALIDITY

External Validity. The main threat to the generalization of
our results relates to the scope of our study. Our exploratory
study focused on the code base of our industry partner. We
used open-source data (29 Apache projects) to investigate
whether we could leverage training data from public repos-
itories to overcome the “cold-start” problem. It was out of
scope to explore the feasibility of our approach on the each
open-source project. In addition, we consider that developers
use logging frameworks in the form of method invocations
(imperative style). However, another form of instrumenting

source code for logging is through aspect-oriented program-
ming (declarative style). While declarative logging is not part
of development practices in our industry partner, our approach
could be extended to support Java annotations for the labeling
process (see Section III-B).

Internal Validity. Our study focuses on logging practices in
production-related code, and we classify source files accord-
ing to their respective paths (see Section III-A). While this
approach might wrongly classify paths under project-specific
settings, we observed that all Apache projects follow standard
directory hierarchy of Maven/Gradle projects [45], [46]. We
also use regular expressions to identify log statements. We
encoded patterns based on the in-house logging framework
of our industry partner. To generalize to other the open-source
projects, we added patterns similarly to other studies [9], [14],
[47], [48]. We did not inspect each project individually to
fine-tune our identification process. Another threat to internal
validity is the deletion of log-related code on feature extraction
to mitigate data leakage (see Section III-B). We implemented
a validation step to compare the presence of log statements
before and after the removal of log statements to measure the
accuracy of our implementation. In 23 out of 30 projects, we
removed 100% of the log statements identified. On the other
seven projects, the remaining log ratio was lower than 0.5%.
Based on the numbers, we believe that our log removal process
(including guards) meets our expectations without compro-
mising the results. Finally, our model optimization process
consists of 10 trial runs for each model (see Section III-C).
In practice, it would be necessary more trials to cover a
representative sample of the search space (e.g., Random Forest
has 2,000 possible settings). However, we observed marginal
gains on balanced accuracy for 100 runs in comparison to
10. For this reason, we keep the number of trials to “10”
since it achieves an acceptable trade-off of time-cost and
improvements over the default hyper-parameters.

VII. RELATED WORK

A. The “Log Placement” Problem

Papers addressing the “log placement” problem are closely
related in purpose to our goal: providing tooling support to
help developers to make informed decisions about where to
place log statements. However, they differ in scope, technique,
and assumptions.

SMARTLOG [16] provides placement recommendations for
error log statements by mining patterns of “log intention”
in source-code using frequent item set mining [49]. The
underlying assumption is that error log statements are often
associated with check conditions involving the return value and
arguments of an error-prone function. However, in the scope
of Adyen, the root cause of an invalid state is not limited to
an improper parameter or return value of a method. It also in-
cludes unexpected interactions between different components
from the application stack that might be nontrivial to capture
through dependency analysis. Our process relies only on code
metrics extracted from source code. In a different work,
LOGADVISOR [10] provides placement recommendations for



two types of code blocks: catch clauses and if statements
with return value. However, our analysis in the code base of
Adyen shows that log statements are placed in many different
places rather than only the blocks supported by LOGADVISOR
(see Section II-A).

Later work by Li et al. [11] proposes a deep learning
architecture based on Long Short-Term Memory (LSTM)
units to predict log placement at block level. In summary,
blocks are represented as feature vectors and, based on the
sequence of n blocks, the architecture indicates whether the
n + 1 block should be logged or not in a sequence-to-vector
fashion. Similarly to our work, they also extract syntactic
features based on the occurrence of AST nodes (e.g., num-
ber of method calls); however, they also leverage the code
vocabulary (referred as semantic features) from variables and
method invocations. Our work mainly differs on the types of
models (deep learning architecture versus traditional machine
learning) and granularity (block-level versus method-level).
We choose a simpler approach given the low prevalence of log
statements on logged methods (see Section II-A) and the lack
of existing tools (or replication packages) publicly available
for comparison.

Another study investigates the relationship of the code
vocabulary and the presence of log statements [12]. The
underlying idea is that some system functionalities are more
likely to require log statements (e.g., network communication)
than others (e.g., getter and setter methods). The authors use a
probabilistic model (latent Dirichlet allocation [50]) to extract
topics at method level and analyze the correlation between
topics and the presence of log statements. The similarities in
context compared to our work encourages further investigation
on benefits and costs of using topic modeling in our domain.

LOG4PERF [7] provides placement recommendations for
log statements to the specific purpose of improving application
performance monitoring in web systems. It relies on log
analysis and source-code instrumentation to build statistical
models and to identify code blocks related to “performance-
influencing web requests”, i.e., requests with unstable perfor-
mance. Our work differs in context since we do not differen-
tiate the purpose of log statements.

B. Empirical studies in logging engineering

Several studies leverage repository mining and issue tracker
data to understand how developers conduct logging. Yuan
et al. [13] conducted a quantitative study on four C/C++
open-source projects (later replicated by Chen and Jiang [14]
with 21 java projects) showing that developers struggle on
implementing and maintaining log-related code. Li et al. [8]
show qualitatively that logging is challenging and developers
rely on their own intuition to balance the trade-offs of logging.
Hassani et al. [15] suggest that there is a lack of ownership
when dealing with log-related fixes and that maintenance
requires the guidance of experts in the code base. They also
show that improper logging has harmful consequences, e.g.,
excessive volume of log data, missing log statement, and
improper log messages. Similarly to our analysis of logging

engineering in the field, we also observe that developers in a
industry setting face challenges.

VIII. FUTURE WORK

Our results highlight the feasibility of implementing a
machine learning-based tool to support Adyen developers
based on code metrics. However, there are several operational
and usability concerns that must be addressed before making
such a tool part of the development workflow. For instance,
usability concerns include what is the most effective way
to provide recommendations (e.g., through a plugin in the
integrated development environment or through a bot during
code review), and how developers react to false positives (e.g.,
“What is the acceptable rate of false positives?” and “Would
developers notice the difference between models trained with
in-house data and models trained with open-source data?”);
operational concerns include understanding what is the best
strategy to update models in a fast-paced evolving code base.

All operational and usability concerns are beyond the scope
of this work and require long-term use of a mature tool for
validation. However, the positive results encouraged us to
engage with our industry partner to design an infrastructure
for machine learning-based analysis. As a first step, we are
currently developing a working prototype at Adyen (using our
use case of log placement) to collect feedback and conduct
controlled experiments with developers. We want to study
developers’ engagement, what are the best operational and
management practices for a recommendation tool, and evaluate
different machine learning architectures in an industry setting.

IX. CONCLUSION

In this work, we demonstrate that simple metrics extracted
from source code (e.g., depth of a method, coupling be-
tween objects, and SLOC) combined with traditional machine
learning models are useful to address the important problem
of placing log statements in source code. We measured the
performance of different classifiers using different training sets
and sampling techniques in a large code base from a global
service provider. In addition, we showed that models based on
data from the Apache ecosystem are relevant in the absence
of training data in an industry setting given the low prevalence
of false positives in different cases. Our promising results
encourage the next steps on studying how developers deal with
a machine learning-based recommendation tool integrated into
their development workflow on the log placement problem. All
supporting scripts and tools of our study are publicly available
to the community. We believe that this will foster independent
auditing, extension, and future collaborations in the area of
automated log placement research.
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