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Improved Kirchhoff Stall Model Parameter Estimation Accuracy
through Optimal Data Slicing

Pieter A.R. (Patrick) Brill∗, Daan M. Pool† and Coen C. de Visser‡

Delft University of Technology, Delft, Zuid-Holland, The Netherlands

To improve the safety of commercial air transport, pilots are required to train on simulators
to recognize the characteristics of an impending stall and subsequently correctly recover from
it. To prevent negative training, it is important that the accuracy of the used simulation
models is sufficiently high. A key approach for modeling the nonlinear, unsteady aerodynamic
effects during the stall is by using Kirchhoff’s theory of flow separation. However, widespread
difficulties exist in correctly estimating the stall-related parameters of nonlinear flow separation
models from flight test data. Therefore, the research in this paper aims to increase the obtained
model accuracy by making optimal use of already existing flight data via introduction of a
slice-based modeling method. This is done by analyzing the change in the parameter estimate
values when applying the system identification procedure to sliced partitions of simulated flight
data, for both the pre-stall and post-stall phases. These partitions incrementally increase in
size with time from the stall initiation. The simulation data is generated to be representative of
the available flight test data, but with known ‘truth’ values for all estimated model parameters.
The estimated value for each partition was compared to the true parameter setting in the
simulation model used to create the data. It was also investigated whether this coincided with
points of increased Fisher information in the data. Manually, an optimal window was found for
each parameter for which the estimated value and truth value were equal and sufficient Fisher
information was present. For the stall-related parameters the optimal window is often not more
than 10 s wider than the stall. For the linear stability and control derivatives it is found that
using more data generally results in a better estimate. Finally, the optimal window sizes were
used for parameter estimation on the real flight test data. Even though this method represents
a prototype, in more than half of the validation cases a decrease in 𝑀𝑆𝐸 of 10 % to 35 % was
achieved. This shows that the new slice-based modeling method is able to improve the accuracy
of nonlinear stall models without the need to gather more flight data and may have applications
that reach beyond the realm of stall modeling.

Nomenclature

Roman symbols 𝐽 = nonlinear estimation objective function
𝑎1 = stall abruptness parameter 𝑘 = timestamp
𝐴𝑥 = longitudinal acceleration 𝑀 = Fisher information matrix
𝐴𝑧 = vertical acceleration 𝑚 = aircraft mass
𝑐 = chord length 𝑀𝑆𝐸 = mean squared error
𝐶𝐷 = drag coefficient 𝑁𝑜 = total number of outputs
𝐶𝐿 = lift coefficient 𝑁𝑝 = total number of parameters
𝐶𝑛𝑙
𝐿

= nonlinear unsteady 𝐶𝐿 at high angles of attack 𝑄 = quartile
𝐶𝑋 = longitudinal force coefficient 𝑅 = noise covariance matrix
𝐶𝑍 = vertical force coefficient 𝑅𝑅𝑀𝑆 = relative root mean squared error
𝐷 = dispersion matrix 𝑆 = wing surface area
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𝑆(𝑘) = output sensitivity matrix 𝛿𝑎 = aileron deflection
𝑡 = time 𝛿𝑒 = elevator deflection
𝑉𝑇𝐴𝑆 = true airspeed 𝛿𝑟 = rudder deflection
𝑋 = airfoil flow separation point 𝜃 = parameter
𝑥 = nonlinear regressor 𝜃 = estimated parameter
𝑦 = measurement signal 𝜌 = air density
𝑦̂ = model output 𝜎 = standard deviation

𝜎2 = variance
Greek symbols 𝜏1 = angle of attack rate effect time constant
𝛼 = angle of attack 𝜏2 = stall hysteresis time constant
𝛼∗ = angle of attack for which 𝑋 = 0.5

I. Introduction

The most significant cause of fatal accidents in commercial air transport is loss of control in-flight [1]. Loss of control
in-flight occurs when the pilots of an aircraft cannot recover the aircraft from an adverse flight condition outside

its normal operational envelope [2]. An example of this is aerodynamic stall, which is defined as "an aerodynamic
loss of lift caused by exceeding the critical angle of attack" [3]. To train pilots to handle these situations properly, the
International Civil Aviation Organisation has urged member states to implement upset prevention and recovery training
in their regulations [3]. In response to this, the European Aviation Safety Agency has updated its legislation on flight
simulation training devices [4], stating that these must accurately model the aircraft behaviour in the stall to train pilots
effectively in recognizing and handling the aircraft stall characteristics [5, 6].

Aerodynamic models valid in nominal flight phases are not immediately valid near the stall, where nonlinear and
unsteady effects are present [7]. Therefore, the model needs to be extended with nonlinear terms, but this is not trivial.
Often, the conventional stability and control derivatives are estimated separately for the nominal flight phase and near
the stall, requiring parameter scheduling, e.g. as in [8, 9].

An elegant yet powerful method to model some of the characteristic behaviour of an aircraft in the stall without
the need for scheduling is through Kirchhoff’s theory of flow separation [10]. Flow separation models can be used
to identify aircraft stall models from flight data for both the longitudinal and lateral motions of the aircraft [11–13].
However, in practice, difficulties still arise in estimating and validating some of the stall model parameters with sufficient
reliability [14, 15]. This issue is usually accounted to a lack of dynamic excitation present in the available flight data in
combination with the short duration of the stall event.

Kirchhoff’s theory is also used in stall modeling research at the Faculty of Aerospace Engineering of the Delft
University of Technology. This research is centered around the Delft University Aircraft Simulation Model and Analysis
Tool (DASMAT) [16], which models the nominal flight dynamics of TU Delft’s Cessna Citation II laboratory aircraft
(PH-LAB). Multiple research efforts have improved and extended this model from the normal flight envelope to the
stall [17–21]. It has been shown that this model, in combination with the incorporated buffet model [18, 22], provides
aircraft stall behaviour in a full flight simulator that matches the actual aircraft well [22, 23]. However, estimation
accuracy could still be improved [19, 21], especially for the flow separation model parameters describing the nonlinear
and unsteady effects.

Sufficient dynamic excitations in flight testing are crucial as this increases the amount of information that is present
in the data for the to-be-estimated parameters. This is usually achieved by applying specific control inputs throughout
flight test runs. These may be conventional inputs applied by the pilots of the aircraft [24, 25] or may be optimal inputs
that are specifically tailored to increase the amount of information for a certain model parameter [26–28]. However, this
approach is only possible if a priori information about that parameter is available. The optimal-input approach is based
on the concept of Fisher information [24, 29]. However, introducing this approach also requires additional flight testing.
Furthermore, a drawback is that simply gathering more flight test data is often not an option due to high costs, lack of
time, or both.

The research in [8, 9] makes use of a second, distinctively different method with the same goal of increasing stall
model accuracy, but without the need for additional flight tests. This is the practice of partitioning data, introduced in
[30]. This can result in an improved stall model, but requires scheduling according to the associated angle of attack of
the partition on which the estimation was applied. Apart from the model accuracy increase, this research also showed
that different partitions associated with different angles of attack can deliver different estimates for the same parameter.
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However, it is has never been demonstrated whether the slicing of data also has a similar positive effect on any model
that also involves nonlinear terms and associated parameters.

In summary, often research efforts have difficulties in reliably identifying the nonlinear parameters of stall models
from the limited data available, i.e., for models using Kirchhoff’s theory of flow separation [19, 21]. In these efforts, as
much data as is available is generally used in the estimation procedure. No attention is paid towards which parts of
the data may be valuable to the nonlinear Kirchhoff stall parameters and which parts may be valuable (only) to the
linear stability and control derivatives. This may cause nonlinear stall parameters to model parts of the linear nominal
behaviour in the data and vice versa, which is not in line with their intrinsic purpose. On the other hand, there is
proof that different parts of already available flight test data deliver different estimates, as seen in [30]. This raises
the question: can model accuracy be improved by choosing specific parts of data to which to apply the estimation
of a specific parameter, in contrary to the usual practice of simply using all data for all parameters regardless of the
circumstances under which the data were gathered?

The main contribution of this paper is to improve stall model accuracy through optimal data slicing by explicitly
analyzing Kirchhoff stall parameter estimate behaviour when different slices of data are used for model identification.
A new slice-based modeling method is introduced and new simulation data is generated from a simulation with the
model structure of [19] with known parameter values set to objectively assess estimation accuracy. The simulated
flight trajectory is designed to closely resemble available real stall flight test data. Via data slicing, partitioning and
Fisher information analysis, it is for the first time possible to directly observe which part of the simulated data causes a
change in the value of a parameter estimate. This is named ‘parameter estimate behaviour’ in the remainder of this
paper. Though not part of the modeling method, this analysis can also be performed on flight test data for more insights
that can validate the method. By comparing the parameter estimate behaviour of the simulation data to the actual
simulation model value, an optimal time window can be found for all input types given during the stall, for the pre-stall
and post-stall phases, and for every separate parameter. The optimal window sizes are subsequently applied to the
estimation of every parameter using the real flight test data. The accuracy achieved with the slice-based method is
compared to that achieved when the normal modeling method from [19] is applied where all available data is used.

This paper is structured as follows. In section II, the research methodology is explained extensively. In section III,
the results of this method are presented, after which they are analyzed and discussed in section IV. This paper concludes
with section V.

II. Methodology

A. Aerodynamic Stall Model
Before discussing the full slice-based modeling method, the assumed aerodynamic stall model must be introduced.

In order to capture the unsteady and nonlinear behaviour in the stall, Kirchhoff’s theory of flow separation is used
[10, 11]. This theory states that the nonlinear and unsteady behaviour of the lift coefficient at high angles of attack 𝐶𝑛𝑙

𝐿

is a function of angle of attack 𝛼 and flow separation point 𝑋:

𝐶𝑛𝑙
𝐿 (𝛼, 𝑋) = 𝐶𝐿𝛼

(
1 +

√
𝑋

2

)2

𝛼 (1)

The movement of the flow separation point 𝑋 along the chord of the wing is itself also a function of the angle
of attack 𝛼 and the angle of attack rate ¤𝛼, such that 𝑋 = 𝑋 (𝛼, ¤𝛼). Variations in 𝑋 can be described by an ordinary
differential equation [11]:

𝜏1
𝑑𝑋

𝑑𝑡
− 𝑋 =

1
2
{1 − tanh [𝑎1 (𝛼 − 𝜏2 ¤𝛼 − 𝛼∗)]} (2)

The value of 𝑋 is 1 when the flow is fully attached (separation point at trailing edge) and 0 when it is fully separated
(separation point at leading edge). The parameters 𝑎1, 𝛼∗, 𝜏1 and 𝜏2 are the nonlinear stall model’s parameters. The 𝑎1
parameter controls the abruptness of the stall, 𝛼∗ is the angle of attack where 𝑋 = 0.5, 𝜏1 influences the aerodynamic
lag in the flow’s separation, and 𝜏2 models the hysteresis effect. The value of these parameters depends on aircraft type
and are ultimately the parameters that need to be estimated correctly to result in highest stall model accuracy.

The stall model investigated in this paper is the model as proposed and derived in [19]. The equation for the lift
coefficient 𝐶𝐿 of this model is given in Eq. (3). This model structure was identified from flight test data by use of
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orthogonal function modeling [31]. Only the 𝐶𝐿 model is considered in this paper as it was found in preliminary
research that this contains most information on the stall’s flow separation parameters [19, 21].

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼

(
1 +

√
𝑋

2

)2

𝛼 + 𝐶𝐿
𝛼2 (𝛼 − 6◦)2

+ (3)

In Eq. (3), (𝛼 − 6◦)2
+ is a spline function that activates only when 𝛼 ≥ 6◦. The stability and control derivatives 𝐶𝐿0 ,

𝐶𝐿𝛼
and 𝐶𝐿

𝛼2 are the linear parameters of the model. The parameter values estimated by [19] and the absolute lower
and upper bounds of the search space applied during estimation for these parameters are given in Table 1. These settings
are used as the main reference in this paper.

Table 1 Estimated parameter values and used search space bounds for estimation of the parameters, as in [19].

Bounds
𝜃𝑖 Value Lower Upper
𝑎1, − 27.6711 15 40
𝛼∗, rad 0.2084 0.1 0.35
𝜏1, s 0.2547 0.001 0.8
𝜏2, s 0.0176 0 0.5
𝐶𝐿0 , − 0.1758 0.1 0.4
𝐶𝐿𝛼 , − 4.6605 2 6
𝐶𝐿

𝛼2 , − 10.7753 0 20

B. Overview of the Slice-based Modeling Method
The sliced-based modeling method introduced in this paper is a further development of the method introduced

in [19]. The modeling method used there, in the remainder of this paper called the ‘normal modeling method’, is
depicted in Figure 1. In the normal method, the gathered flight data is directly and completely passed to the flight path
reconstruction. From the reconstructed states, the lift coefficient 𝐶𝐿 is calculated. This 𝐶𝐿 is passed to the model
structure selection containing the orthogonal function modeling, together with any other reconstructed state that may be
needed as a potential regressor 𝑥. In this current paper, the model structure selection is not performed, but the final
model structure of Eq. (3) is always used. This makes it possible to perform an analysis on a distinct set of known
parameters, including calculation of the Fisher information. A nonlinear and linear estimation are performed, resulting
in the final parameter estimate vector ®̂𝜃. This completes the stall model.

Fig. 1 Overview of the normal modeling method, as in [19]. The model structure selection that takes place in
[19] has not been incorporated in the research described in this paper.

Flight
test data

Flight
path recon-
struction

Model
structure
selection

Parameter
estimation

Nonlinear
estimation

Linear
estimation

Stall model

states 𝐶𝐿 , 𝑥 model

𝜃𝑛𝑜𝑛𝑙𝑖𝑛 𝜃𝑙𝑖𝑛

®̂𝜃

The slice-based modeling method is an extended version of the normal method described above. It is depicted in
Figure 2. The slice-based method contains all but one of the steps of the normal estimation procedure, represented by
the boxes ‘Flight test data’, ‘Flight path reconstruction’, a slightly different parameter estimation called ‘Slice-based
parameter estimation’, and finally the estimated ‘Stall model’. As mentioned, the model structure selection is not
included, as the model structure is set a priori. The main addition of the new slice-based method is that the parameter
estimation now uses an optimal time window for each separate parameter, indicated by the optimal slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

.
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Finding this optimal window starts with generating a simulation data set. The parameter estimate behaviour that results
from this simulation data is used as a substitute for the expected, but unknown, parameter estimate behaviour that may
result from flight test data. The simulated data is also passed through the same flight path reconstruction step also applied
to flight test data [19]. This data is then sliced and partitioned in three different manners. The nonlinear parameters
𝜃𝑛𝑜𝑛𝑙𝑖𝑛 and the linear parameters 𝜃𝑙𝑖𝑛 in the model are estimated for all three slicing types and every candidate data
partition within these types. This makes it possible to analyze the behaviour of the parameter estimates in time by use of
the median of the parameter estimates ˜̂𝜃, the quartiles 𝑄 of their distribution and the associated Fisher information
content 𝑀. From this behaviour, the sought-after optimal slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

can be selected for each separate
parameter for each type of stall present in the flight test data, both for pre-stall and post-stall phases. In the following
subsections, all of the above steps are discussed in more detail.

Generate
simulation

data

Flight
path recon-
struction

Slicing and
partitioning

data

Pre-stall

Post-stall

Pre-stall and
post-stall

Parameter estimate
behaviour analysis

Nonlinear
estimation

Linear
estimation

Parameter
estimate

behaviour

Slice-based
parameter
estimation

Nonlinear
estimation

Linear
estimation

Flight
path recon-
struction

Flight
test data

Stall model

states 𝐶𝐿 , 𝑥

slices

𝜃𝑛𝑜𝑛𝑙𝑖𝑛

˜̂𝜃, 𝑄, 𝑀

𝜃𝑙𝑖𝑛

𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

states 𝐶𝐿 , 𝑥

𝜃𝑛𝑜𝑛𝑙𝑖𝑛 𝜃𝑙𝑖𝑛

®̂𝜃

Fig. 2 Overview of the slice-based modeling method, as introduced in this paper.

C. Data Sets
In the research described in this paper two types of data are used: simulated flight data and real test flight data.

This is different from existing stall modeling research [18, 19, 21], in which only real flight data is used. The use of
simulated flight data creates the possibility to directly compare the estimated parameters with their true known values,
rather than only model output validation. This can deliver more direct insight into the performance of the parameter
estimation procedure. Especially, because the simulation data is generated to mimic the available real flight test data.
After the analysis of the simulated data, the real flight data is then used for final parameter estimation and validation.
The two types of data sets in this paper are discussed below.

1. Flight Test Data
Real flight data was gathered in two stall test flights by the TU Delft Cessna Citation II research aircraft in 2018 [19]

and 2019 (not connected to a specific research paper). Three different types of stalls are chosen that differ from each
other by the control input given within the stall:

• No inputs. To provide a baseline for this research, the most straightforward type of stall was chosen: the symmetric
stall with no inputs. There are three such stalls in the 2018 dataset.

• Inputs −𝛿𝑎 3-2-1-1 and −𝛿𝑒 3-2-1-1. The 3-2-1-1 stalls were chosen to investigate the usability of this widely-
applied inputs in stall modeling. The combination of the two surfaces was chosen as there are no stalls in the data
with solely a 𝛿𝑒 input. There are thirteen such stalls in the 2019 dataset.
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• Inputs −𝛿𝑎 wiggle and −𝛿𝑒 wiggle. The wiggle input was specifically developed in [25] and used in [19] as a
pilot-applied input for use in stall flight modeling, to apply large deflections without leaving the desired stall
state of the aircraft. This type with two control surfaces is chosen to be able to compare the parameter estimate
behaviour in this stall type to the behaviour of the 3-2-1-1 stall type. There are six such stalls in the 2018 dataset.

To make the terminology for the real flight data consistent with the simulated flight data, for a certain stall run of a
certain input type the term ‘realization’ is used. Thus, there are three, thirteen and six realizations for the different input
types in the flight test data. The aim of the simulation data is to mimic the data gathered in the real flight tests, with the
three input types present therein.

2. Simulation Data
The simulated flight data was created by use of the aerodynamic model of the PH-LAB Cessna Citation II research

aircraft as developed by [19], which also contains the stall buffet model as developed by [18]. Simulated stall maneuvers
are performed using the ‘stall autopilot’ developed in [22, 23] for piloted flight simulator experiments.

The simulated flight data starts with the aircraft trimmed in steady, straight, symmetric flight. To improve the
unscented Kalman filter’s convergence in the flight path reconstruction, successive excitations are introduced during this
initial nominal flight phase. A 3-2-1-1 input followed by return to symmetric flight is given successively for the aileron,
elevator and rudder. This introduces excitations in all six degrees of freedom.

After this a simulated ‘stall run’ is included, which is used in the parameter estimation procedure. First, steady
straight symmetric flight is maintained for 120 s. A wings-level hold controller is active during this time to prevent
the aircraft from entering its slightly unstable spiral eigenmode. Hereafter, the stall autopilot is engaged to perform a
symmetric stall. The stall entry and recovery procedure are discussed in detail in [22]. The stall autopilot is turned off
when the original altitude is almost reacquired. Then, the aircraft is steered back to steady straight symmetric flight,
which is retained for 120 s by use of an altitude hold and a roll attitude hold controller.

An overview of the simulated flight and the definition of the different phases contained therein is given in Table 2
and visualized in Figure 3. The importance of Phase 7-12 to the current research is discussed further in subsection II.E.

Table 2 Phases in the simulated flight data.

Phase 𝑡𝑏𝑒𝑔𝑖𝑛 , s 𝑡𝑒𝑛𝑑 , s Description
0 0 30 steady straight symmetric flight
1 30 50 −𝛿𝑎 3-2-1-1 (𝑡𝑖𝑛𝑝𝑢𝑡 = 40 s)
2 50 90 −𝛿𝑎 3-2-1-1 recovery
3 90 110 −𝛿𝑒 3-2-1-1 (𝑡𝑖𝑛𝑝𝑢𝑡 = 100 s)
4 110 150 −𝛿𝑒 3-2-1-1 recovery
5 150 170 +𝛿𝑟 3-2-1-1 (𝑡𝑖𝑛𝑝𝑢𝑡 = 160 s)
6 170 210 +𝛿𝑟 3-2-1-1 recovery
7 210 330 steady straight symmetric flight
8 330 369 stall entry
9 369 382 stall (buffet activated)
10 382 440 stall recovery
11 440 500 return to trimmed flight
12 500 560 steady straight symmetric flight

Three different stall types were simulated to mimic the real flight data. These three input types in the simulation
data are shown in Figure 4. The first stall type includes no additional inputs and is the standard stall as flown by the
stall autopilot. This is the baseline to which the other types can be compared. The second type has a 3-2-1-1 input on
both the elevator and the aileron. To achieve the desired high angles of attack, a constant 𝛿𝑒 input of −0.11 rad was set
at the start of the stall, and on top of this a 0.02 rad 3-2-1-1 input was applied. For the 𝛿𝑎, a 0.04 rad 3-2-1-1 input
was applied to the trim deflection. The last type is the wiggle input, also on the elevator and aileron. A MATLAB
sawtooth()-signal was used to manually tweak the inputs to imitate the inputs from the test flight data as closely as
possible. Important to note is the different ‘frequency’ for the 𝛿𝑎 and 𝛿𝑒 inputs.

Finally, a random noise signal with the same standard deviation as in the unscented Kalman filter noise and
measurements covariance matrices in the flight path reconstruction is added to all states and measurements. Also,
a known bias is added to the input signals (linear accelerations and angular velocities). In reality, the 𝛼 and 𝛽 are
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Fig. 3 Overview of the phases from Table 2 in the simulated data.

Fig. 4 Overview of the three simulated input types within the stall (phase 9), showing the angle of attack 𝛼

and flow separation 𝑋 , as well as the inputs 𝛿𝑎, 𝛿𝑒 and 𝛿𝑟 . Note the non-zero aileron and rudder deflections in
trimmed flight, caused by the non-zero 𝐶ℓ0 and 𝐶𝑛0 coefficients as found by [19] present in the simulation model.

measured by the air data boom installed on the nose of the aircraft. Therefore, the 𝛼 and 𝛽 signals are passed through
the formula for the air data boom corrections [32], such that the final signals behave as if they were measured by the
vanes on the air data boom. The simulations are run 30 times to acquire 30 differently seeded realizations in order to
obtain a statistically relevant sample size, i.e., reach the central limit theorem’s minimum sample size.

D. Flight Path Reconstruction
The flight path reconstruction is performed to filter out noise and bias from the measured aircraft states and

measurements prior to parameter estimation. It is needed for both the simulation data as well as the flight test data.
Flight path reconstruction is performed using an Unscented Kalman filter (UKF) [33, 34]. It has been shown that the
UKF achieves higher reliability in estimation of the states of nonlinear systems when compared to the Extended Kalman
filter, although at higher computational cost [35–37]. As the Kalman filter procedure only has to be performed once per
dataset of a flight, the higher reliability is more important than the added computational cost, as in earlier TU Delft stall
modeling research [17–19]. It is shown in [37] that the UKF is also effective for sensor fusion, which is also required in
this research. The kinematic and measurement model applied in the UKF are taken directly from [19].
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Then, using the reconstructed states, the longitudinal force coefficient 𝐶𝑋 and vertical force coefficient 𝐶𝑍 in the
aircraft reference frame are calculated via:

𝐶𝑋 =
𝑚𝐴𝑥

1
2 𝜌𝑉

2
𝑇𝐴𝑆

𝑆
(4)

𝐶𝑍 =
𝑚𝐴𝑧

1
2 𝜌𝑉

2
𝑇𝐴𝑆

𝑆
(5)

In these equations, 𝑚 is the aircraft mass calculated from the available mass model and 𝐴𝑥 and 𝐴𝑧 are the
reconstructed accelerations of the aircraft center of gravity in longitudinal and vertical direction, respectively. The
calculated air density at the reconstructed altitude is denoted by 𝜌 and the reconstructed true airspeed by 𝑉𝑇𝐴𝑆 . 𝑆 is the
aircraft wing surface. Thereafter, the lift coefficient 𝐶𝐿 is calculated via:

𝐶𝐿 = 𝐶𝑋 sin𝛼 − 𝐶𝑍 cos𝛼 (6)

This 𝐶𝐿 is then the reference model data for the nonlinear and linear parameter estimation, in combination with the
reconstructed states for the angle-of-attack 𝛼 and its derivative in time ¤𝛼, i.e., the regressors 𝑥.

E. Slicing and Partitioning Data
With data slicing, the simulation data is partitioned in time into slices of different widths. For this, Phase 7 to 12

from Table 2 are of importance as they are the basis of the different slicing types considered in this paper. Phase 7 is the
start of the steady straight symmetric flight foregoing the stall. Phase 8 is the start of the deceleration into the stall.
Phase 9 is the stall, whose entry is defined by the beginning of the stall buffet. The start of phase 10, the stall recovery,
is when the angle of attack has reached its maximum value and airspeed begins to increase again. The stall buffet may
still be active at that point. The recovery ends and phase 11 starts when the original altitude is reacquired. Phase 11 and
12 together contain 120 s of (quasi) steady straight symmetric flight. Phases 7 to 12 together add up to 350 s of data.

These 350 s of data are divided into 350 ‘slices’, each containing 1 s of data. Combinations of multiple slices are
called a ‘partition’, which in this paper are constructed from the slices in three different manners. These three manners
are called the ‘slicing types’. In a later step, the parameters can be estimated for every partition, which is the core of the
parameter estimate behaviour analysis. Whenever from this analysis an optimal pre-stall and post-stall partition are
chosen with a starting time and end time expressed in a corresponding slice number 𝑛𝑠𝑙𝑖𝑐𝑒, they comprise a ‘window’.

The three different slicing types considered in this research are shown graphically in Figure 5. This figure indicates
the direction and numbering of the slices 𝑛𝑠𝑙𝑖𝑐𝑒 and the respective times 𝑡 they are located at. The vertical lines in the
figure indicated by "Window Ref. [18, 19]" correspond approximately to the data window used in [18, 19] to perform
the estimation procedure of each stall. In these research efforts, the cutoff points were usually arbitrarily chosen to be
around the beginning of the stall entry and somewhere during stall recovery. It is worthwhile to investigate if this may
have influenced the estimated stall parameters, which is discussed in section III.

Slicing type 1 contains partitions that start with the last second of data in the stall and that increase in size towards
the pre-stall phase. Slicing type 2 contains partitions that start with the first second of data in the stall and that increase
in size towards the post-stall phase. For slice types 1 and 2, the first partition contains 1 s of data and the last 172 s
and 191 s, respectively. The first partition of slicing type 3 contains all slices that make up the stall and the partitions
increase in size towards both sides of the stall (each increment adds 2 slices of 1 s). For slice type 3, the first partition
contains 13 s of data and the last 331 s.

In the slice-based modeling method, the parameter estimate behaviour analysis is not performed for the real flight
test data. This has no added value as there is no actual parameter value that the estimates can be compared with, in
contrast to the simulation data where the values in the model are set to a known true value. However, as part of the
proof of concept, the parameter estimate behaviour of the real flight data is discussed in the results of section III. It is
discussed to what extent the simulation data is representative of the real flight test data. In the case of the flight test data,
the phases as in Table 2 can also be identified by closely examining the behaviour of the aircraft in time and assigning
parts around the stall to a certain stall phase. Note that some phases before stall entry and after stall recovery may be of
variable length or may not be present at all.
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(a) Slicing type 1, pre-stall.
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(b) Slicing type 2, post-stall.
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(c) Slicing type 3, pre-stall and post-stall.

Fig. 5 Overview of the three slicing types.

F. Parameter Estimate Behaviour Analysis
The parameter estimate behaviour analysis of the simulation data consists of two main parts. The first part is the

parameter estimation for all partitions of the three slicing types. The second part is visualizing the parameter estimate
behaviour by use of metrics ˜̂𝜃 and 𝑄 describing the median and distribution of the parameter estimates across the 30
data realizations and by calculating the Fisher information 𝑀 .

1. Nonlinear and Linear Parameter Estimation
The parameter estimation procedure is based on the methodology presented in [19] and consists of a nonlinear

estimation of the stall parameters, followed by a linear estimation of the stability and control derivatives.
The nonlinear estimation is performed by use of the fmincon optimizer in MATLAB. The parameter estimates are

found by minimizing the objective function 𝐽 ( ®𝜃, 𝑥), which is the mean squared error (𝑀𝑆𝐸) of the lift coefficient:

®̂𝜃 = arg min
®𝜃
𝐽 ( ®𝜃, 𝑥) with 𝐽 ( ®𝜃, 𝑥) = 1

𝑛

(
𝐶̂𝐿 ( ®𝜃, 𝑥) − 𝐶𝐿

)𝑇 (
𝐶̂𝐿 ( ®𝜃, 𝑥) − 𝐶𝐿

)
(7)

In this equation, 𝑥 are the nonlinear regressors (𝛼 and ¤𝛼) and 𝐶𝐿 is the lift coefficient, all calculated from the flight
path reconstruction. The total number of data points is denoted by 𝑛. The parameter vector ®𝜃 is defined as:

®𝜃 =

[
𝑎1 𝛼∗ 𝜏1 𝜏2 𝐶𝐿0 𝐶𝐿𝛼

𝐶𝐿
𝛼2

]𝑇
(8)

Lastly, 𝐶̂𝐿 ( ®𝜃, 𝑥) is the model output for the lift coefficient, calculated with the parameter estimates currently obtained
from the optimization routine. It is calculated by numerically solving Eq. (2) with the current parameter estimates,
resulting in 𝑋 . This is then used in Eq. (3) to calculate 𝐶̂𝐿 .
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The nonlinear optimization routine of fmincon makes use of the gradient 𝜕𝐽 ( ®𝜃,𝑥 )
𝜕 ®𝜃

of the cost function surface
𝐽 ( ®𝜃, 𝑥). Calculating this is not trivial, as discussed in [19]. This calculation is related to that of the Fisher information
matrix, as discussed in subsubsection II.F.3, and here performed numerically.

The parameter estimation is performed for 500 different initial conditions, with each initial condition consisting of
seven parameter values randomly generated from a uniform distribution with upper and lower bounds as given in Table 1.
The global optimum is regarded as the median of all optima found that come within 5 % of the lowest found final cost
function value. The stall parameters following from the nonlinear optimization are set constant for the following linear

estimation. The linear estimation is a straightforward ordinary least squares estimation with
[(

1+
√
𝑋

2

)2
𝛼

]
regarded as an

extra regressor. It is calculated by numerically solving Eq. (2) with the found nonlinear parameter estimates. From the
linear estimation the final estimates of 𝐶𝐿0 , 𝐶𝐿𝛼

and 𝐶𝐿
𝛼2 are obtained.

2. Parameter Estimate Behaviour: Optima Distribution Metrics
The optima distribution metrics can be calculated for any individual parameter, or they can be compared by their

normalized metrics. The individual parameter behaviour of any set of realizations can be visualized in boxplots. This
shows the median ˜̂𝜃, the inter-quartile range 𝑄2,3 (consisting of quartiles 2 and 3) and the full range of optima excluding
outliers 𝑄1−4 (consisting of all quartiles 1 to 4). Outliers are defined as being more than 1.5 times the inter-quartile
range away from the inter-quartile range. These three metrics are calculated for every partition of the three slicing types,
such that a boxplot can be drawn at every slice number 𝑛𝑠𝑙𝑖𝑐𝑒. This individual behaviour can be analyzed for both the
simulation data and the test flight data.

In order to compare the behaviour of the parameter estimates to each other, these metrics can also be normalized
with respect to the actual parameter value. This can only be done for the simulated flight data where the actual value is
known. The normalised bias of the parameter estimates can be calculated as:

˜̂𝜃𝑖 − 𝜃𝑖

𝜃𝑖
× 100% (9)

In this equation, ˜̂𝜃𝑖 is the median of the sample of all estimated parameters of the 30 realizations and 𝜃𝑖 is the actual
value setting in the simulation from Table 1. Also the behaviour of the mean squared error 𝑀𝑆𝐸 can be plotted, in the
same manner as for the parameters. The median of the 𝑀𝑆𝐸 of all realizations is denoted by ˜𝑀𝑆𝐸 . The same quartile
ranges 𝑄2,3 and 𝑄1−4 exist for the 𝑀𝑆𝐸 .

3. Parameter Estimate Behaviour: Fisher Information
Information content in a signal can be quantified via a description of the sensitivity of a model’s output 𝑦𝑖 to

changes in a parameter 𝜃 𝑗 . This is given by the (partial) derivative 𝜕𝑦𝑖
𝜕𝜃 𝑗

. For multiple-input-multiple-output models

with 𝑗 ∈ {1, 2, . . . , 𝑁𝑝} number of parameters gathered in a parameter vector ®𝜃, and 𝑖 ∈ {1, 2, . . . , 𝑁𝑜} the number of
system outputs, the information content is given by the 𝑁𝑝 × 𝑁𝑝 Fisher information matrix 𝑀 , defined as [24]:

𝑀 =

𝑁∑︁
𝑘=1

𝑆(𝑘)𝑇𝑅−1𝑆(𝑘) (10)

In Eq. (10), 𝑘 = 1, 2, . . . , 𝑁 indicates the discrete sample number of the data signal. 𝑅 is a 𝑁𝑜 × 𝑁𝑜 diagonal matrix
of which the elements introduce a scaling to the output sensitivities according to the measurement noise related to that
output, i.e. the noise covariance. The output sensitivities themselves are captured in the 𝑁𝑜 × 𝑁𝑝 output sensitivity
matrix 𝑆(𝑘), which is given by [24] as:

𝑆(𝑘) =



𝜕𝑦1 (𝑘 )
𝜕𝜃1

𝜕𝑦1 (𝑘 )
𝜕𝜃2

· · · 𝜕𝑦1 (𝑘 )
𝜕𝜃𝑁𝑝

𝜕𝑦2 (𝑘 )
𝜕𝜃1

𝜕𝑦2 (𝑘 )
𝜕𝜃2

· · · 𝜕𝑦2 (𝑘 )
𝜕𝜃𝑁𝑝

...
...

. . .
...

𝜕𝑦𝑁𝑜 (𝑘 )
𝜕𝜃1

𝜕𝑦𝑁𝑜 (𝑘 )
𝜕𝜃2

· · · 𝜕𝑦𝑁𝑜 (𝑘 )
𝜕𝜃𝑁𝑝


(11)
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The sensitivity matrix 𝑆(𝑘) can usually be calculated analytically, derived from the dynamic equations of the
to-be-estimated model [24]. For linear systems with only a single output, the matrix 𝑆(𝑘) is equal to the 𝑘th row
of the regression matrix of this system. The inverse of the Fisher information 𝑀 is the dispersion matrix 𝐷. The
diagonal entries of the matrix 𝐷 are the theoretical lower limit for the estimated covariances of the parameters, i.e., the
Cramér-Rao Lower Bound:

𝐷 = 𝑀−1 ≤ Cov[ ®𝜃] (12)

Hence, the Cramér-Rao Lower Bound for the parameter standard deviations 𝜎𝜃 𝑗
is obtained as the square-root of the

diagonal elements of 𝐷, i.e.:

𝜎𝜃 𝑗
=

√︁
𝐷 𝑗 , 𝑗 with 𝑗 = 1, 2, . . . , 𝑁𝑝 (13)

An advantage of the use of the Fisher Information when analyzing signals is that it is related to the theoretical lower
limit of the parameter covariances. Therefore, it is unrelated to the optimizer used for estimating the parameters. It
purely describes the added value of the signal to estimate a certain parameter.

More interesting than the total Fisher information in a signal is the derivative of the Fisher information in time. This
can say something about the value of a certain part of a data signal for estimation of a certain parameter. For example,
for a data slice 𝑛𝑠𝑙𝑖𝑐𝑒 between data point indices 𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑏𝑒𝑔𝑖𝑛 and 𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑒𝑛𝑑

, the Fisher information in one specific output
𝑦𝑖 can be calculated for one specific parameter 𝜃 𝑗 via:

Δ𝑀𝑦𝑖 𝜃 𝑗

Δ𝑛𝑠𝑙𝑖𝑐𝑒
=

𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑒𝑛𝑑∑︁
𝑘=𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑏𝑒𝑔𝑖𝑛

𝑆𝑖𝑦𝑖 , 𝑗𝜃 𝑗 (𝑘)
1

𝑅𝑖𝑦𝑖 ,𝑖𝑦𝑖

𝑆𝑖𝑦𝑖 , 𝑗𝜃 𝑗 (𝑘) with 𝑖𝑦𝑖 ∈ {1, 2, . . . , 𝑁𝑜} and 𝑗𝜃 𝑗
∈ {1, 2, . . . , 𝑁𝑝} (14)

In the usual case 𝑅 is a diagonal matrix [24], making this a scalar problem. As the total Fisher information is a sum
via Eq. (10), the Fisher information of one slice

Δ𝑀𝑦𝑖 𝜃 𝑗

Δ𝑛𝑠𝑙𝑖𝑐𝑒
is in fact the derivative per slice. In this equation, 𝑖𝑦𝑖 and 𝑗𝜃 𝑗

are
the row and column number, respectively, for output 𝑦𝑖 and parameter 𝜃 𝑗 in the matrix 𝑆(𝑘).

The Fisher information is parametric as it is dependent on the partial derivatives 𝜕𝑦𝑖
𝜕𝜃 𝑗

of the model. This means that
it differs for different given model structures. The derivation of the analytical definition of the Fisher information for the
model given by Eq. (3) is described below. This definition is used to calculate the information content of the 𝐶𝐿 signal
from flight path reconstruction.

Recall the 𝐶𝐿 model as given by Eq. (3) and the corresponding parameter vector as given by Eq. (8):

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼

(
1 +

√
𝑋

2

)2

𝛼 + 𝐶𝐿
𝛼2 (𝛼 − 6◦)2

+ and ®𝜃 =

[
𝑎1 𝛼∗ 𝜏1 𝜏2 𝐶𝐿0 𝐶𝐿𝛼

𝐶𝐿
𝛼2

]𝑇
In the considered parameter estimation problem, there is only a single output, the measurement 𝑦𝐶𝐿

. The sensitivity
matrix 𝑆(𝑘) then contains all derivatives of 𝑦𝐶𝐿

relative to the parameters in ®𝜃. The resulting matrix 𝑆(𝑘) is the result
of applying the chain rule via:

𝑆(𝑘) =
[
𝜕𝑦𝐶𝐿

(𝑘 )
𝜕𝑎1

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝛼∗
𝜕𝑦𝐶𝐿

(𝑘 )
𝜕𝜏1

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝜏2

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿0

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿𝛼

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿
𝛼2

]
=

=

[
𝜕𝑦𝐶𝐿

(𝑘 )
𝜕𝑋

𝜕𝑋 (𝑘 )
𝜕𝑎1

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝑋

𝜕𝑋 (𝑘 )
𝜕𝛼∗

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝑋

𝜕𝑋 (𝑘 )
𝜕𝜏1

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝑋

𝜕𝑋 (𝑘 )
𝜕𝜏2

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿0

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿𝛼

𝜕𝑦𝐶𝐿
(𝑘 )

𝜕𝐶𝐿
𝛼2

]
(15)

Finding the derivatives when 𝜃 𝑗 ∈ {𝐶𝐿0 , 𝐶𝐿𝛼
, 𝐶𝐿

𝛼2 } is straightforward. These are:

𝜕𝑦𝐶𝐿
(𝑘)

𝜕𝜃𝑖
=


1 when 𝜃 𝑗 = 𝐶𝐿0(

1+
√
𝑋 (𝑘 )
2

)2
𝛼(𝑘) when 𝜃 𝑗 = 𝐶𝐿𝛼

max(0, 𝛼(𝑘) − 6◦)2 when 𝜃 𝑗 = 𝐶𝐿
𝛼2

(16)
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The value of 𝑋 (𝑘) over the entire interval 𝑘 = 1, 2, . . . , 𝑁 can be found by numerically integrating Eq. (2). The
derivatives when 𝜃 𝑗 ∈ {𝑎1, 𝛼

∗, 𝜏1, 𝜏2} are more difficult to find, but can be obtained via the procedure as explained for
the nonlinear cost function derivatives associated with 𝑋 in [19]. These are:

𝜕𝑦𝐶𝐿
(𝑘)

𝜕𝑋
=

1
4
𝐶𝐿𝛼

𝛼(𝑘)
(
1 + 1√︁

𝑋 (𝑘)

)
(17)

𝜕𝐺 (𝑘)
𝜕𝑋

= − 1
𝜏1

(18)

𝜕𝐺 (𝑘)
𝜕𝜃 𝑗

=



−
1
2 {1−tanh2 [𝑎1 (𝛼(𝑘 )−𝜏2 ¤𝛼(𝑘 )−𝛼∗ ) ] } {𝛼(𝑘 )−𝜏2 ¤𝛼(𝑘 )−𝛼∗ }

𝜏1
when 𝜃 𝑗 = 𝑎1

−
1
2 {1−tanh2 [𝑎1 (𝛼(𝑘 )−𝜏2 ¤𝛼(𝑘 )−𝛼∗ ) ] } {−𝑎1 }

𝜏1
when 𝜃 𝑗 = 𝛼∗

−
1
2 {1−tanh [𝑎1 (𝛼(𝑘 )−𝜏2 ¤𝛼(𝑘 )−𝛼∗ ) ] }−𝑋 (𝑘 )

𝜏2
1

when 𝜃 𝑗 = 𝜏1

−
1
2 {1−tanh2 [𝑎1 (𝛼(𝑘 )−𝜏2 ¤𝛼(𝑘 )−𝛼∗ ) ] } {−𝑎1 ¤𝛼(𝑘 ) }

𝜏1
when 𝜃 𝑗 = 𝜏2

(19)

The result for 𝜕𝑋 (𝑘 )
𝜕𝜃 𝑗

= 𝑆 (do not confuse 𝑆 with 𝑆(𝑘)!) can be found by numerically integrating the ordinary

differential equation 𝑑𝑆
𝑑𝑡

=
𝜕𝐺 (𝑘 )
𝜕𝑋

𝑆 + 𝜕𝐺 (𝑘 )
𝜕𝜃 𝑗

over the interval 𝑘 = 1, 2, . . . , 𝑁 . Note that in this case it is thus not only

important that the model structure is known, but also that an a priori estimate of the parameters in ®𝜃 is needed as these
are explicitly present in the derivative equations.

Finally, it is needed to find the Fisher information present in every 1 s slice of simulation data. In the current
research, matrix 𝑅 is set to 1 as there is only a single output. Also, there is only one output 𝑦𝐶𝐿

, thus 𝑖𝑦𝑖 = 1. For the
seven remaining parameters, for every slice, Eq. (14) simplifies to:

Δ𝑀𝜃 𝑗

Δ𝑛𝑠𝑙𝑖𝑐𝑒
=

𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑒𝑛𝑑∑︁
𝑘=𝑘𝑛𝑠𝑙𝑖𝑐𝑒𝑏𝑒𝑔𝑖𝑛

𝑆1, 𝑗𝜃 𝑗 (𝑘)
2 with 𝑗𝜃 𝑗

∈ {1, 2, . . . , 7} (20)

This can then be compared directly to the parameter estimates’ median ˜̂𝜃 and distribution shape 𝑄2,3 and 𝑄1−4, in
order to find the optimal window for each parameter to use in the slice-based parameter estimation.

G. Slice-based Parameter Estimation
The final goal of this paper is to prove that using different time windows of stall flight test data for estimation of a

certain parameter can increase model accuracy. This concept is applied in the slice-based parameter estimation step.
The input to the slice-based parameter estimation is an optimal time window, found by analyzing the parameter

estimate behaviour in the simulation data as explained above. The start and end of this time window are identified by the
optimal pre-stall and post-stall slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

, for every individual parameter, for every of the three stall input
types. This 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

is found heuristically and is the point in time where the median of the parameter optima of the
30 realizations is equal to the actual parameter value used in the simulation. It is checked if this time window also
coincides with increased Fisher information in the data. How this works in practice is explained in section III.

The time window found is used in the actual parameter estimation with the real flight data. The realizations of the
flight test data are randomly divided into fifteen training realizations and seven validation realizations. This is from a
ratio of roughly 2-to-1 within each stall input type (i.e. 2-to-1 for no input, 9-to-4 for 3-2-1-1, 4-to-2 for wiggle). First,
the nonlinear estimation is performed on the optimal window for the first parameter, 𝑎1. This value is then saved. Then,
the optimal window for 𝛼∗ is chosen and the estimation is performed again. During this, the parameter 𝑎1 can be varied
again to give full freedom to the nonlinear optimization algorithm. This is then also performed for 𝜏1, 𝜏2 and the stability
and control derivatives. At this point, 𝑋 is calculated for the full data such that it can be used as a regressor in the linear
estimation, in which the final values for 𝐶𝐿0 , 𝐶𝐿𝛼

and 𝐶𝐿
𝛼2 are calculated. Aside from using the optimal windows, the

optimization routine is the same as explained for the parameter estimate behaviour analysis in subsubsection II.F.1.
To compare the increase in accuracy of the slice-based modeling method to the normal modeling method, both

procedures as depicted in Figure 1 and Figure 2 are applied to the flight test training data. This results in two different
final parameter estimate vectors ®̂𝜃. For both, the model outputs 𝑦̂𝐶𝐿

are calculated based on the reconstructed states from
the validation flight test data and these are compared to the measured 𝑦𝐶𝐿

by means of the 𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆 metrics.
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III. Results

A. Parameter Estimate Behaviour Analysis
The parameter estimate behaviour analysis is performed using the three introduced metrics. The first are the medians

˜̂𝜃 and ˜𝑀𝑆𝐸 of the parameter optima and 𝑀𝑆𝐸 , respectively. Second is the associated distribution of these optima and
the 𝑀𝑆𝐸 , which can be described by visualizing the inter-quartile range 𝑄2,3 (quartiles 2 and 3) and the full range of
optima excluding outliers 𝑄1−4 (all quartiles 1 to 4). Last is the derivative of the Fisher information per slice Δ𝑀

Δ𝑛𝑠𝑙𝑖𝑐𝑒
.

These metrics are visualized both in a comparative and an individual manner. These types of graphs were constructed
for all stall input types, slicing types and different parameters, resulting in a total of 138 figures. For conciseness,
only a selected number of these graphs are discussed in this paper. They represent parameter estimate behavioural
characteristics that are consistent across all different obtained results.

Important to note is that figures showing 𝛼, 𝑋 and Δ𝑀
Δ𝑛𝑠𝑙𝑖𝑐𝑒

for the simulated data are those of realization 1. However,
after the flight path reconstruction step, the time traces of the different simulation realizations only show very minor
differences. For the real flight test data, 𝛼 for all different realizations is shown and for 𝑋 and Δ𝑀

Δ𝑛𝑠𝑙𝑖𝑐𝑒
the average of all

realizations is depicted. Note that for flight test data this is purely indicative as the actual 𝑋 and Δ𝑀
Δ𝑛𝑠𝑙𝑖𝑐𝑒

are not known,
due to the actual parameter values being unknown; they are calculated with the a priori values listed in Table 1.

For slicing type 1, the steady, straight, symmetric flight part before and after the stall was up to 120 s long. No
significant differences were observed when this first and last 60 s was included or not. To decrease computational time
for slicing type 2 and 3, the first and last 60 s of data were omitted from the analysis. This means that for these slicing
types the graphs are shorter than for slicing type 1.

1. Behaviour of the Mean Squared Error and Interaction between Parameter Estimates
In Figure 6 the behaviour of the 𝑀𝑆𝐸 is shown for flight test data with a wiggle input. Throughout the stall, the

𝑀𝑆𝐸 increases and thereafter it decreases. This behaviour exists in all stall types, both in simulation data and in
flight test data. The only difference between the simulated data and the flight test data is that in the simulated data the
distribution of 𝑀𝑆𝐸s is very narrow, i.e., hardly any spread.

0
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1
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Fig. 6 Behaviour of the 𝑀𝑆𝐸 . Flight test data, wiggle input, post-stall. The upper plot shows the angle of attack
𝛼 and average flow separation point 𝑋 . In the lower plot, ˜𝑀𝑆𝐸 is the median of all six realizations, 𝑄2,3 is the
inter-quartile range, 𝑄1−4 is the full range excluding outliers. As the plots show the post-stall, the time runs same
to the slicing numbers, i.e. from left to right.

The normalized biases of the parameter estimates in Figure 7 are a clear example of the suspected cause of the
increase and then decrease in 𝑀𝑆𝐸 with increasing 𝑛𝑠𝑙𝑖𝑐𝑒. The interaction between the 𝑋-parameter estimates (i.e.,
𝑎1, 𝛼∗, 𝜏1, and 𝜏2) and the normal stability and control derivatives can be observed. This interaction is present in all
different stall types. Changes in the 𝑋-parameter estimates are present only immediately before and after the stall. All
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𝑋-parameters have converged to their final estimate before 𝑛𝑠𝑙𝑖𝑐𝑒 = 10. This is different for the stability and control
derivatives. They differ significantly from their actual values right before and after the stall, with the estimates of
𝐶𝐿0 and 𝐶𝐿

𝛼2 even being more than 100% lower than their actual values. Erratic changes in all stability and control
derivative estimates can be observed as changes occur in the 𝑋-parameters close to the stall. Only after 𝑛𝑠𝑙𝑖𝑐𝑒 = 10 do
the stability and control derivatives start to move steadily to their final values, which are all within 50% of the actual
values.

The described behaviour of the parameter estimates can explain the changes in 𝑀𝑆𝐸 in Figure 6. In the stall,
unsteady flight conditions exist and the 𝑋 parameter estimates are adjusted by the optimization routine to keep the rise
in 𝑀𝑆𝐸 as small as possible. The changes in 𝑋 parameter estimates are accommodated by changes in the stability
and control derivatives, evident by the large differences 𝐶𝐿0 and 𝐶𝐿

𝛼2 attain from their actual value before 𝑛𝑠𝑙𝑖𝑐𝑒 = 10.
After the stall this effect occurs too, but with the parameters switched. Here, changes in the 𝑋-parameters accommodate
variations in the stability and control parameter estimates. As the stability and control derivatives get close to their
actual values, the model becomes better at describing the steady flight conditions that become a larger part of each
partition. This causes the decrease in 𝑀𝑆𝐸 after the stall. An adverse effect of this is that the model becomes worse at
modeling the aircraft in the stall. This is evident by the large differences of the estimates of 𝜏1 and 𝜏2 to their actual
value in Figure 7 after 𝑛𝑠𝑙𝑖𝑐𝑒 = 5. These differences become more than 200%.

It is for this reason that many of the 𝑋 parameter optimal slice numbers in Table 3 contain no more than 5 s of data
before or after the stall. On the contrary, for the stability and control derivatives it is observed that the more data is used
the better their estimates become.
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Fig. 7 Compared behaviour of all parameters. Simulation data, wiggle input, both pre-stall and post-stall
(slicing type 3). The upper plot shows the angle of attack 𝛼 and the flow separation point 𝑋 . In the two lower
plots, each line is the normalized bias

˜̂𝜃𝑖−𝜃𝑖
𝜃𝑖

for each parameter. The left triangle ⊳ indicates the pre-stall data,
where times runs from right to left and the right triangle ⊲ indicates the post-stall data where times runs from
left to right. Each slice 𝑛𝑠𝑙𝑖𝑐𝑒 contains 1 s of the pre-stall and 1 s of the post-stall data.
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2. Behaviour of 𝛼∗ in Different Stall Input Types
The behaviour of a parameter estimate is strongly influenced by the type of input given during the stall. In Figure 8

an example of this is shown, in this case for the parameter 𝛼∗. The subfigures show the parameter estimate behaviour for
simulation data with a no-input stall and a stall with 3-2-1-1 inputs.

Two main observations can be made from Figure 8. First, the 3-2-1-1 inputs induce a constant error in the estimate
of the 𝛼∗ parameter, where this error is near zero for the no-input stall. Second, the Fisher information related to 𝛼∗ is
higher for the no-input stall. These observations are related: the 3-2-1-1 input causes a very sudden stall entry and
subsequent periodic motion in the angle of attack, resulting in four separate peaks in the Fisher information. The
no-input stall is more gradual. Because of this, the total Fisher information is higher for the gradual stall, i.e., the area
under the shown Fisher derivative is larger. This means that a no-input stall generates more information for the 𝛼∗

parameter, which can in part explain the smaller error.
Why the Fisher information is higher for the no-input stall can physically be explained as follows. For this stall type,

the angle of attack is slowly increased through the point where 𝑋 = 0.5. This is also the point where the derivative of
the Fisher information is highest, as the parameter 𝛼∗ dictates this point and can hence be estimated more accurately.
For a stall where inputs are given resulting in a rapidly changing angle of attack, such as the 3-2-1-1 or wiggle, the angle
of attack where 𝑋 = 0.5 cannot be estimated accurately due to significant transient effects being present. Also, the
amount of time in which the separation point is in the vicinity of 0.5 is limited. For this reason, it was chosen that only
the no-input stall is used for estimation of the 𝛼∗ parameter, as indicated in Table 3.

3. Behaviour of 𝜏2 in Different Stall Input Types
Next to the 𝛼∗ parameter, the 𝜏2 parameter is also affected by the different considered input types. In Figure 9, the

parameter estimate behaviour of 𝜏2 is shown for the simulation data of both the no-input stall and the stall with wiggle
inputs.

For the no-input stall, a strong tendency of the 𝜏2 estimate exists to go to the lower bound and only move away from
the bound after 𝑛𝑠𝑙𝑖𝑐𝑒 = 80. This tendency is also observed for the stall with the wiggle input, however, the 𝜏2 estimate
does not remain at the lower bound as long as for the no-input stall and attains its final value of roughly 0.3 s between
𝑛𝑠𝑙𝑖𝑐𝑒 = 15 and 𝑛𝑠𝑙𝑖𝑐𝑒 = 25. This ‘lower-bound tendency’ is also present in the flight test data in varying severity, but in
some cases also is not present at all. This means that the parameter estimate behaviour for the simulation data shows
resemblance with the flight test data, although sometimes they can also differ.

Analogous to the case of parameter 𝛼∗, the Fisher information related to the parameter 𝜏2 can also explain the
behaviour of the estimate of 𝜏2. For the no-input case, the Fisher information is zero everywhere, except for the stall
recovery. This is also when the lower-bound tendency begins. All the information that is available for estimation of
parameter 𝜏2 is thus concentrated in only a narrow window of roughly 12 ≤ 𝑛𝑠𝑙𝑖𝑐𝑒 ≤ 14. For the wiggle inputs, the
Fisher information contains multiple peaks distributed over the duration of the entire stall, summing to a higher total
information content in the signal. The 𝜏2 parameter describes the hysteresis effect, which only occurs if large and quick
changes in the angle of attack, and thus movement of the flow separation point, are present. In the no-input stall this is
only the case during stall recovery, but the wiggle inputs induce more flow separations and re-attachments throughout
the stall.

Nevertheless, in both cases it is clear that the 𝜏2 parameter estimate benefits from data that is only very close to the
stall. Otherwise, it may be estimated to the lower bound as in the no-input case or it may be wrongly estimated as for the
wiggle inputs after 𝑛𝑠𝑙𝑖𝑐𝑒 = 15. This confirms the importance of the research in this paper: simply slicing in the manner
of [18, 19] would in both cases result in different, biased parameter estimates than the actual parameter value. This is
indicated by the vertical line in the graph, which is approximately the cutoff point for data in the research of [18, 19].

4. Behaviour of 𝜏1 in Simulation Data versus Flight Test Data
In the slice-based modeling method, parameter estimate behaviour that results from simulation data is used as a

substitute for the expected, but unknown, parameter estimate behaviour resulting from flight test data. Therefore, the
similarity of the parameter behaviour resulting from both data types must be compared. In Figure 10, the behaviour of
the estimate 𝜏1 is shown, following from a stall with 3-2-1-1 inputs in both simulation data and flight test data.

From the simulation data it becomes clear that the 𝜏1 estimate also shows the lower-bound tendency that was
observed for 𝜏2, although to a lesser extent. As soon as the Fisher information derivative shows has the first peak, the
estimate moves to the lower bound. The lower-bound tendency in this case is interesting, as the actual parameter value
of 0.2547 s is not near the lower bound. This may be the reason that the estimate of 𝜏1 moves away from this bound
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(a) Simulation data, no input, pre-stall.
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(b) Simulation data, 3-2-1-1 input, pre-stall.

Fig. 8 Individual behaviour of parameter 𝛼∗. The upper plot of each subfigure shows the angle of attack 𝛼

and flow separation point 𝑋 . In the lower plots, ˜̂𝜃𝑖 is the median of the parameter optima of all 30 realizations,
𝑄2,3 is the inter-quartile range, 𝑄1−4 is the full range excluding outliers. 𝜃𝑖 is the actual parameter value in
the simulation and Δ𝑀𝜃𝑖

Δ𝑛𝑠𝑙𝑖𝑐𝑒
is the Fisher information derivative related to the parameter. As the plots show the

pre-stall, the time runs opposite to the slicing numbers, i.e. from right to left.
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very suddenly around 𝑛𝑠𝑙𝑖𝑐𝑒 = 18, contrary to 𝜏2 in Figure 9b, where this movement is more gradual; i.e., in the range
15 ≤ 𝑛𝑠𝑙𝑖𝑐𝑒 ≤ 25.

In the flight test data, the lower-bound tendency can also be observed. Until 𝑛𝑠𝑙𝑖𝑐𝑒 = 8, the estimate for 𝜏1 moves to
the lower bound, before very suddenly moving to the upper bound after this. Thus, it seems that analyzing the parameter
estimate behaviour of simulation data is indeed representative of the parameter estimate behaviour that follows from the
flight test data. However, for the test flight data, the distribution of the optima is significantly broader. The same is
generally observed for all input and slicing types. Thus, parameter estimate behaviour is less predictable and consistent
for test flight data than for simulation data, even though significant trends in the behaviour in flight test data can generally
be predicted by use of simulation data.

From the parameter estimate behaviour in the simulation data, another observation can be made. A moment in time
where the distribution of optima is narrow, i.e. where the optima seem to be more certain, does not necessarily represent
a timespan where that estimate is correct. In Figure 10a, the reliability is highest around 𝑛𝑠𝑙𝑖𝑐𝑒 = 35, but this does not
deliver a correct estimate. However, in other cases this similarity does seem present, for example in Figure 9b in the
range 8 ≤ 𝑛𝑠𝑙𝑖𝑐𝑒 ≤ 15. The same contrary evidence can be found for multiple input and slicing types and also other
parameters than 𝜏1 and 𝜏2.

Finally, Figure 10a again shows the important finding also observed earlier for 𝜏2: making use of the full available
data, as in the research of [18, 19], may result in biased estimates for certain parameters, in this case for 𝜏1. Using the
window of [18, 19] would result in an estimate value of roughly 0.8 s, instead of the correct 0.2547 s.

B. Slice-based Estimation Procedure
The slice-based estimation procedure is based on performing the parameter estimation on an optimal time window

for each parameter. In the parameter estimate behaviour analysis, the pre-stall and post-stall slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡
for

each optimal time window is chosen manually. This is done by comparing the parameter estimates with the actual
parameter value in the simulation. The optimal slice number is chosen as the point where the parameter estimate and the
actual parameter value are equal, also taking into account any behavioural features that have been observed as discussed
in the foregoing subsection III.A. The selected optimal slice numbers 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

are presented in Table 3. An entry with
‘n/a’ means not applicable, i.e., data from that stall type is not used for estimation of that parameter. For example, the
parameter estimate of 𝛼∗ is only based on training data from the flight test data where no additional inputs were given by
the pilots. When an ‘all’ is indicated for a parameter, it means that for that stall type all available data should be used in
the estimation.

Important to note is that the values in Table 3 are the numbers 𝑛𝑠𝑙𝑖𝑐𝑒 associated with slicing types 1 and 2. However,
to select the window of the flight test data used in the slice-based parameter estimation, it is easier to convert the slice
numbers to time in seconds before stall entry and after stall recovery, respectively. For example, for the 𝑎1 parameter the
no input, pre-stall optimal slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

= 30. This means that the partition for the training flight test data
is begun at 30 − 13 = 17 s before the stall, as the stall in the simulation data is 13 s long. This time is indicated in
parentheses in Table 3.

Table 3 Optimal slicing numbers 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡
as found for the simulated stall runs. The depicted slice number for

the pre-stall is the slice number corresponding to slicing type 1 and the slice number for the post-stall is the slice
number corresponding to slicing type 2. The corresponding time before stall entry (in pre-stall columns) and
after stall recovery (in post-stall columns) used to slice the training flight test data is indicated in parentheses.

𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡 , −
No input 3-2-1-1 Wiggle

𝜃𝑖 Pre Post Pre Post Pre Post
𝑎1, − 30 (17 s) all 13 (0 s) 70 (57 s) 19 (6 s) 20 (7 s)
𝛼∗, rad all all n/a n/a n/a n/a
𝜏1, s 30 (17 s) 17 (4 s) 18 (5 s) 13 (0 s) 16 (3 s) 16 (3 s)
𝜏2, s 30 (17 s) 14 (1 s) 15 (2 s) 14 (1 s) 18 (5 s) 14 (1 s)
∈ {𝐶𝐿0 , 𝐶𝐿𝛼 , 𝐶𝐿

𝛼2 }, − all all all all all all
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(a) Simulation data, no input, post-stall.
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(b) Simulation data, wiggle input, post-stall.

Fig. 9 Individual behaviour of parameter 𝜏2. The upper plot of each subfigure shows the angle of attack 𝛼

and flow separation point 𝑋 . In the lower plots, ˜̂𝜃𝑖 is the median of the parameter optima of all 30 realizations,
𝑄2,3 is the inter-quartile range, 𝑄1−4 is the full range excluding outliers. 𝜃𝑖 is the actual parameter value in
the simulation and Δ𝑀𝜃𝑖

Δ𝑛𝑠𝑙𝑖𝑐𝑒
is the Fisher information derivative related to the parameter. As the plots show the

post-stall, the time runs same to the slicing numbers, i.e. from left to right.
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(a) Simulation data, 3-2-1-1 input, pre-stall.
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(b) Flight test data, 3-2-1-1 input, pre-stall.

Fig. 10 Individual behaviour of parameter 𝜏1. The upper plot of each subfigure shows the angle of attack 𝛼 and
flow separation point 𝑋 (𝑋 is the average of all realizations for flight test data). In the lower plots, ˜̂𝜃𝑖 is the median
of the parameter optima of all realizations, 𝑄2,3 is the inter-quartile range, 𝑄1−4 is the full range excluding
outliers. 𝜃𝑖 is the actual parameter value in the simulation and Δ𝑀𝜃𝑖

Δ𝑛𝑠𝑙𝑖𝑐𝑒
is the Fisher information derivative related

to the parameter ( Δ𝑀𝜃𝑖

Δ𝑛𝑠𝑙𝑖𝑐𝑒
is the average of all realizations for flight test data). As the plots shows the pre-stall, the

time runs opposite to the slicing numbers, i.e. from right to left.
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C. Accuracy of the Slice-based Modeling Method
To evaluate the increase in accuracy of the slice-based modeling method as depicted in Figure 2 it is compared to

the normal modeling method as depicted in Figure 1 (excluding model structure selection). Both methods were applied
to the same flight test data set for direct comparison. The normal modeling method is applied to the training flight
test data by simply performing the full estimation on the entire realization. The slice-based modeling method uses the
selected optimal time window from Table 3 for each parameter. The resulting parameter estimates for both methods are
given in Table 4.

Table 4 Parameter estimate comparison of the normal modeling method and slice-based modeling method
applied to flight test data.

Normal Slice-based
𝜃𝑖 modeling method modeling method
𝑎1, − 31.8630 34.1856
𝛼∗, rad 0.2289 0.2202
𝜏1, s 0.3541 0.4595
𝜏2, s 0.1297 0.2182
𝐶𝐿0 , − 0.1944 0.2065
𝐶𝐿𝛼 , − 4.5172 4.4192
𝐶𝐿

𝛼2 , − 5.3935 5.1026

All parameters except 𝜏1 and 𝜏2 are roughly equal to each other, which are both significantly higher with the
slice-based modeling method than with the normal modeling method. This is expected, as for the parameter estimate
behaviour of 𝜏1 and 𝜏2 in subsection III.A it was found that specifically these are most inclined to change when using
data outside of the stall region. This incline was also found for 𝑎1, however, less severely, also resulting is a slightly
different estimate in Table 4. For the other parameters, the parameters only differ slightly: 𝛼∗ can in both cases be
estimated accurately and for 𝐶𝐿0 , 𝐶𝐿𝛼

and 𝐶𝐿
𝛼2 the same amount of data is used.

To investigate the effect that these differences in parameter estimates have on model accuracy, the parameter estimates
from both methods are applied in Eq. (3) to calculate output 𝑦𝐶𝐿

for seven validation data sets. Table 5 shows the 𝑀𝑆𝐸

and 𝑅𝑅𝑀𝑆 values for both methods for the seven validation data sets. The 𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆 are in the same order of
magnitude for both methods, but differences are present nonetheless. In four of the seven validation cases, the new
method achieves better accuracy in the range of roughly Δ𝑀𝑆𝐸 = −10% to Δ𝑀𝑆𝐸 = −35%. However, in three cases a
worse accuracy is achieved. On average the new method shows an increase in performance with Δ𝑀𝑆𝐸 = −6.24%.

Table 5 MSE and RRMS values for the validation datasets.

Normal modeling method Slice-based modeling method
Input Realization 𝑀𝑆𝐸, − 𝑅𝑅𝑀𝑆, % 𝑀𝑆𝐸, − 𝑅𝑅𝑀𝑆, % Δ𝑀𝑆𝐸, %
No input 3 9.4366 · 10−4 3.8914 6.0021 · 10−4 3.1035 −36.4
3-2-1-1 1 1.4391 · 10−4 1.9242 1.9270 · 10−4 2.2266 +33.9
3-2-1-1 2 1.4938 · 10−4 1.9654 3.2383 · 10−4 2.8937 +116
3-2-1-1 7 3.1524 · 10−4 3.1063 2.8571 · 10−4 2.9572 −9.37
3-2-1-1 10 7.0719 · 10−4 3.6531 6.0736 · 10−4 3.3854 −14.1
Wiggle 1 8.2055 · 10−4 4.1256 5.2208 · 10−4 2.4903 −36.4
Wiggle 6 2.2765 · 10−3 5.3092 2.4903 · 10−3 5.5528 +9.39
Mean 7.6522 · 10−4 3.4250 7.1746 · 10−4 3.2299 −6.24

The outputs of the models estimated with the normal modeling method and the slice-based modeling method can
also be compared visually. In Figure 11a, for each stall input type the validation case with the largest improvement for
the slice-based method relative to the normal method is shown. Figure 11a shows both the model outputs 𝑦̂𝐶𝐿

and the
validation measurement 𝑦𝐶𝐿

. In the figure, two main improvements with the slice-based modeling method relative to
the normal modeling method can be observed. One is visible before the stall and one is visible within the stall. Before
the stall, the normal modeling method shows a constant error in 𝐶𝐿 of roughly +0.04. In the new modeling method this
error is significantly smaller, between 0 and +0.025. The second improvement exists in the stall, where the slice-based
method is better at modeling the nonlinear effects. The normal method shows less sudden changes in 𝐶𝐿 during the stall,
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which are more pronounced with the slice-based method. This is visible in Figure 11b, showing both model outputs
𝑦̂𝐶𝐿𝑛𝑜𝑟𝑚𝑎𝑙

and 𝑦̂𝐶𝐿𝑠𝑙𝑖𝑐𝑒−𝑏𝑎𝑠𝑒𝑑
and the validation measurement 𝑦𝐶𝐿

from Figure 11a, but focused on the stall. The above
two findings show that the slice-based modeling method can improve model fit not only in the stall, but also outside of
the stall.

0.5

1

1.5
Normal modeling method

0.5

1

1.5

0 10 20 30 40 50 60

0.5

1

1.5

Slice-based modeling method

0 10 20 30 40 50 60

(a) Overview of all three best-improvement validation cases.

25 35

0.7

0.8

0.9

1

1.1

1.2

No input

25 35

3-2-1-1

25 35

Wiggle

(b) Comparison within the stall.

Fig. 11 Comparison of the normal modeling method and the slice-based modeling method, showing the
validation stall runs where the best improvement is achieved (no input realization 3, 3-2-1-1 realization 10, wiggle
realization 1). The model outputs are denoted 𝑦̂𝐶𝐿

and the validation data measurement is denoted 𝑦𝐶𝐿
.

IV. Discussion

A. Interpretation of the Results
This paper has introduced a new slice-based modeling method. It is shown that this new method can improve stall

model accuracy through optimal data slicing by analyzing Kirchhoff stall parameter estimate behaviour. A simulation
data set representative of available flight test data was created and then sliced and partitioned. By applying a nonlinear
and linear estimation to each partition, the parameter estimate behaviour of the Kirchhoff stall model parameters and
stability and control derivatives could be analyzed quantitatively. This enabled the selection of an optimal slice number
and corresponding optimal window size of data on which to perform the final slice-based parameter estimation. The
obtained results have a number of important implications, which are discussed below.

First, applying the new slice-based modeling method results in a stall model that has superior accuracy compared to
a model obtained using a ‘normal’ estimation method. A decrease in 𝑀𝑆𝐸 of around 10% to 35% can be achieved for
the largest share of the validation datasets, as summarized in Table 5. This is significant, as the slice-based estimation
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method uses the exact same data as the normal estimation method. This answers the primary question of the research
discussed by this paper: model accuracy can indeed be improved by choosing specific parts of data to which to apply the
estimation of a specific parameter.

The application of this new modeling method is made possible by the novel analysis introduced in this paper, i.e.,
by explicitly considering parameter estimate behaviour through data slicing and partitioning. Through this method it
is for the first time possible to identify directly the effect of certain windows of data on the estimate of a parameter.
Formerly, only the Fisher information could be used for this purpose. From the results it becomes clear that the Fisher
information is especially useful to quickly identify which type of input given during the stall may result in more useful
data for estimation of a specific parameter. An example of this was discussed for the 𝛼∗ parameter, based on findings in
Figure 8. Here, this parameter was estimated with no error relative to the actual parameter value for the simulation that
contained the no-input stall. This type of stall contained a higher Fisher information than the stall with the 3-2-1-1
inputs. The latter resulted in an erroneous estimate for 𝛼∗. However, the results show that there is not always a direct
quantitative link between the Fisher information and the correctness of a certain parameter. The Fisher information can
thus not be used as a sole indicator to find the optimal slice number 𝑛𝑠𝑙𝑖𝑐𝑒𝑜𝑝𝑡

. A high Fisher information derivative often
coincides with large changes in the parameter estimate, as for the movement toward the lower bound before 𝑛𝑠𝑙𝑖𝑐𝑒 = 13
in Figure 9. However, it does not explain all movements, as for example in Figure 10a for the sudden movement at
𝑛𝑠𝑙𝑖𝑐𝑒 = 18. Therefore, it is suggested to always use the Fisher information in combination with the introduced method
of parameter estimate behaviour analysis.

Using these two concepts in conjunction provides a reliable basis to manually select optimal time windows for each
parameter, as summarized in Table 3. Mainly, it becomes clear that better model accuracy is achieved when only data
close to the stall is used for estimation of the stall parameters, and as much data as is available is used for the stability
and control derivatives. Here, ‘close to the stall’ generally means a window that roughly starts no more than 5 s before
stall entry and ends no more than 5 s after stall recovery.

Depending on the type of stall, differences to this general rule can exist. For example, for 𝑎1 the optimal time before
and after the stall may vary from 0 s of data before the stall to using all available data after stall recovery. For estimation
of 𝛼∗, it is recommended to only use data that contains very gradual stall entries without any control inputs and use all
data available within these data sets. This is substantiated by analysis of the Fisher information related to 𝛼∗ in these
stall types. The estimates of parameters 𝜏1 and 𝜏2 are the most sensitive to the used data window. Sudden changes
in parameter estimates occur for slice numbers marginally before or after the stall, which may decrease their power
in modeling the behaviour of the aircraft in the stall. The optimization algorithm primarily changes the estimates to
lower the 𝑀𝑆𝐸 in the regions before and after the stall. This is expected, as 𝜏1 and 𝜏2 describe nonlinear effects that
only take place when dynamic excitations exist around the stall angle of attack. Therefore, the recommended time to
include before or after the stall for estimation of these parameters is never more than 17 s and usually even less than 5 s.
Next to this, it is found that no-input stalls are not effective for estimating 𝜏1 and 𝜏2. These stall types were used in the
slice-based parameter estimation in this paper, but it may be an option to not use these stall types at all. Lastly, this
paper recommends to use as much data as available for the estimation of the stability and control derivatives 𝐶𝐿0 , 𝐶𝐿𝛼

and 𝐶𝐿
𝛼2 .

An important feature of the slice-based modeling method is that simulation data is used as a substitute for real
flight data. It is assumed that the parameter estimate behaviour for the simulation data is predictive of the parameter
estimate behaviour for flight test data. As a means of validation, the parameter estimate behaviour for both types of data
were compared. From this, it becomes evident that simulation data does in part represent flight test data, although not
fully. This is because for flight test data large differences exist between different realizations of the same stall type.
The realizations of the simulation data differ only through an artificially added white noise signal to the simulation
output before applying flight path reconstruction and hence provide a much more consistent dataset. Some inputs or
conditions that are present in the flight test data are simply too complex to recreate in a simulation. However, some
distinct features in parameter estimate behaviour are consistent between both data types. These are, for example, the
lower-bound tendencies of the 𝜏1 and 𝜏2 parameters, but also the very predictable behaviour of 𝛼∗. Both also contain the
behaviour of the 𝑀𝑆𝐸 to increase during the stall and decrease outside of it. Related to this, the general parameter
estimate behaviour where in the stall the stability and control derivatives are changed by the optimization routine to
accommodate for changes in the stall parameters and vice-versa outside of the stall is present in both simulation data
as well as flight test data. Thus, despite some differences between simulation data and flight test data, the roughly
comparable behaviour does provide a solid basis for the slice-based modeling method.

Examining the parameter estimate behaviour that results from test flight data can also shed new light on related
research, as it may explain the reason why certain previous results were obtained. An example of this is the conclusion
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drawn in [19] regarding the 𝜏2 parameter. In [19] it is suggested that the estimate of 𝜏2 could simply be set to 0, because
its estimate of 0.0176 s is very close to 0. Also, only a small difference in 𝑀𝑆𝐸 compared to the validation data was
found when the estimate of 𝜏2 was actually set to 0. However, the parameter estimate behaviour analysis in this paper
may give an explanation for this. First, in this paper it was found that there is a significant interaction between the
estimates of the stall parameters and the estimates of the stability and control derivatives. The small change in 𝑀𝑆𝐸

reported in [19] may be explained by the fact that the stability and control derivatives estimates reduce part of the
𝑀𝑆𝐸 by compensating for the lack of 𝜏2. A second explanation is that for the research in [19], only flight test data
containing wiggle inputs was used. It was found in this paper that the 𝜏2 parameter often has a lower-bound tendency
when wiggle inputs are applied. This was not found for the 3-2-1-1 inputs in the parameter estimate behaviour analysis.
Also including the data with 3-2-1-1 inputs may explain why a significantly higher estimates for 𝜏2 than that in [19]
of 0.0176 s are found, namely 0.1297 s for the normal estimation method and 0.2182 s for the slice-based estimation
method. Because also a higher model accuracy is achieved, it is argued that setting 𝜏2 to 0 should not be done and
for every new data set a parameter estimation behaviour analysis is warranted to make a decision on whether such an
assumption is valid.

The parameter estimate behaviour analysis is the main contribution of the slice-based modeling method. However,
this addition does add significant computational load relative to the normal estimation method. For the full analysis of
data, for every slice, in every slicetype, for every realization of every stall input type from both simulation data and
flight test data, a full nonlinear estimation of 500 initial conditions had to be performed. This results in a total of over
14.5 million optimizations and an accompanying calculation time of three weeks, for 24 hours per day∗. Here, it should
be noted that the optimizations are independent, and therefore the problem can be readily partitioned and solved in
parallel on large scale parallel computing hardware. For example, in this paper use was made of MATLAB’s parallel
programming toolbox. In future analyses computational load may also be decreased by varying the resolution of 𝑛𝑠𝑙𝑖𝑐𝑒
to larger than 1 s at moments in time where less activity in parameter estimate behaviour is expected.

It is demonstrated in this paper that performing a parameter estimate behaviour analysis can deliver new fundamental
insights into how parameter estimates change in reaction to specific parts of data that are available for estimation. It is
shown that it is possible to increase the accuracy of nonlinear stall models without the need for gathering more flight
data by introducing the slice-based modeling method. Additionally, the possibilities of the method extend beyond the
realm of stall modeling for fixed wing aircraft. In fact, any system identification procedure that contains a parameter
estimation based on measurement data can benefit from the slice-based modeling method. In every parameter estimation
problem, certain parts of data are more valuable to some parameters than to other parameters. Tailoring the optimal
time window used in the parameter estimation to each individual parameter may increase the accuracy of any model
found through system identification.

B. Recommendations
Even though the results show the applicability of the parameter estimate behaviour analysis method and its usefulness

to improve model performance with the slice-based modeling method, it leaves room for improvement. Several
recommendations can be made.

The current slicing method only makes use of three types of slicing in time, i.e., the pre-stall phase, post-stall phase
and both the pre-stall and post-stall phases. These types were defined such that every additional slice adds to the size
of a partition. A problem with this is that the resulting parameter estimate behaviour from adding that slice is less
pronounced because the partitions contain increasingly more foregoing data. A solution to this could be to create a
moving window of some sort, that analyzes each part more specifically. This window size can then also be varied.
Another recommendation comparable to this is that the slicing and partitioning can be based not only on time, but on
independent variables such as 𝛼 and ¤𝛼. However, this would introduce problems with the estimation of the 𝑋 parameter,
as well as all partitions having variable sizes. This would make comparison between the partitions more difficult, unless
a solution is found to retain the same amount of data points in each partition.

Also, the current method only adds a white noise signal to the simulation output, causing very similar realizations
after the flight path reconstruction. Hence, the simulated data shows less variability than the measured flight test datasets.
This applies to the trimmed initial condition, the size and timing of the inputs given, but also to more integral features,
such as the actual stall parameter setting in the simulation. For future research a method is recommended that may
evaluate the sensitivity of the parameter behaviours to these settings. Also, this creates more differences between the
realizations, which can resemble better the differences that exist between the realizations of the real flight data.

∗1x PC with 6x Intel Core i7-8700 @3.20GHz (16GB RAM) and 2x PC with 4x Intel Xeon E5-1620 v3 @3.50GHz (16GB RAM)
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Related to this is the inclusion of orthogonal function modeling (OFM). As a starting point for this research, the
model as found in [19] was used. However, this eliminated the effect of OFM in the estimation procedure. For a full
evaluation of the slicing selection method as introduced in this paper, it is recommended that an analysis is performed as
to what changes occur in the chosen regressors of the OFM as the slicing type progresses in time. This may add certain
knowledge on ‘regressor behaviour analysis’ to the parameter estimate behaviour analysis performed in this research.

The last recommendation applies to the new modeling method itself. The current method represents a prototype, as
the optimal time windows were chosen manually by investigation of the parameter estimate behaviour plots. While this
provides a strong argument for using data slicing and selection for stall parameter analysis in the first place, a more
thorough optimization method, for example by changing the time windows of each parameter separately and assessing
the model performance increase, is needed for large-scale practical application.

V. Conclusion
In this paper it is proven that the accuracy of aerodynamic stall models based on Kirchhoff’s theory of flow separation

can be improved by use of a novel slice-based modeling method. When applied to validation flight test data the new
method can decrease the 𝑀𝑆𝐸 for a fitted lift coefficient model in more than half of the validation cases by 10% to 35%.
On average, a 6% improvement was achieved.

The slice-based modeling method is based on a ‘parameter estimate behaviour’ analysis. In this analysis, simulation
data is generated that represents real flight test data that is available. This simulation data is sliced and combined into
different partitions that include different time windows of this data. Applying a parameter estimation procedure to these
partitions, shows which parts of the data cause a change in the estimate of a specific parameter. By identifying where
the parameter estimates attain the same value as the actual parameter value in the simulation an optimal time window
can be identified for every parameter, for every type of stall. This window is then applied in a final parameter estimation
on flight test data, resulting in a model with increased accuracy relative to the normally used method. Clear similarities
were found between the parameter estimate behaviour in simulation data and the estimate behaviour in flight test data
that the simulation data is aimed to represent.

For every parameter in the Kirchhoff based stall model an individual optimal time window was found. For the stall
parameters 𝑎1, 𝛼∗, 𝜏1 and 𝜏2 this window generally starts no more than roughly 5 s before the stall and no more than 5 s
after the stall, even though differences exist between the parameters depending on which control inputs are given during
the stall. For the stability and control derivatives 𝐶𝐿0 , 𝐶𝐿𝛼

and 𝐶𝐿
𝛼2 in the model applies that all available data should

be used in the estimation for better model accuracy.
Next to the parameter estimate behaviour analysis, the Fisher information was found to be a strong indicator of

which region of data is beneficial to use in the estimation of a certain parameter. A connection exists between the Fisher
information and the parameter estimate behaviour: in parts of the data where the Fisher information is high also changes
of the parameter estimate can be observed. However, the Fisher information is not a direct indicator for finding optimal
window size, it is very valuable in aiding to make a quick decision on whether a certain stall type or type of input in a
flight test is beneficial to a certain parameter or not.

In conclusion, this paper shows that the slice-based modeling method can be used for improving stall models without
the need for additional flight tests, but by making smarter use of data that is readily available. This not only makes
it possible to improve existing models, but also creates the possibility to make future research flight test data even
more efficient and valuable. Furthermore, the slice-based modeling method can be applied to any system identification
problem that includes a parameter estimation. This means that the new method can also have a large impact outside the
field of stall modeling. Overall, it is clear that the slice-based modeling method can enable researchers to create more
representative flight simulation models, resulting in better pilot training, contributing to safer commercial air transport.
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