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Evolved Neuromorphic Control for High Speed
Divergence-based Landings of MAVs

Jesse J. Hagenaars1, Federico Paredes-Vallés1, Sander M. Bohté2, and Guido C. H. E. de Croon1

Abstract—Flying insects are capable of vision-based navigation
in cluttered environments, reliably avoiding obstacles through fast
and agile maneuvers, while being very efficient in the processing
of visual stimuli. Meanwhile, autonomous micro air vehicles still
lag far behind their biological counterparts, displaying inferior
performance at a much higher energy consumption. In light
of this, we want to mimic flying insects in terms of their
processing capabilities, and consequently show the efficiency of
this approach in the real world. This letter does so through
evolving spiking neural networks for controlling landings of mi-
cro air vehicles using optical flow divergence from a downward-
looking camera. We demonstrate that the resulting neuromorphic
controllers transfer robustly from a highly abstracted simulation
to the real world, performing fast and safe landings while keeping
network spike rate minimal. Furthermore, we provide insight
into the resources required for successfully solving the problem
of divergence-based landing, showing that high-resolution control
can be learned with only a single spiking neuron. To the best of
our knowledge, this work is the first to integrate spiking neural
networks in the control loop of a real-world flying robot. Videos
of the experiments can be found at https://bit.ly/neuro-controller.

Index Terms—Aerial systems: perception and autonomy, au-
tonomous vehicle navigation, spiking neural networks, neuromor-
phic computing, evolutionary algorithms.

I. INTRODUCTION

FLYING insects are everything we would like micro
air vehicles (MAVs) to be: units that can navigate au-

tonomously in cluttered environments through fast and agile
maneuvers, despite being strongly limited in computational
and energy resources. Like most animals that can see, these
insects rely heavily on patterns of visual motion, or optical
flow [1], for many important behaviors. During landing, for
instance, honeybees maintain a constant rate of expansion,
or divergence, of the optical flow field to ensure a smooth
approach [2].

Insects perceive visual motion in a spike-based manner
through light-sensitive cells and networks of interconnected
neurons that react to brightness changes in the environ-
ment [3]. The sparsity and asynchronicity of such a spike-
driven approach have inspired researchers to come up with
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2S. M. Bohté is with the Machine Learning Group, Centrum Wiskunde
& Informatica, The Netherlands.

Digital Object Identifier (DOI): see top of this page.

artificial substitutes, referred to as neuromorphic, that could
potentially be used by insect-scale MAVs [4], [5] for efficient
vision-based navigation. Event cameras [6], whose pixels
register brightness changes as events, take the place of the
retina. Spiking neural networks (SNNs) [7] assume the role
of the underlying networks, subsequently transforming these
event streams into estimates of visual motion.

Although the interest for event cameras is growing rapidly
in the field of robotics [6], SNNs have not yet become
widespread in control applications. The cause of this lies
partially in the difficulty of training: the discrete spiking
nature of SNNs severely limits the use of gradient-based
optimization algorithms. Instead, most learning is based on
the relative timing of spikes, often in combination with a
surrogate gradient [8] or global reward signal [9] to allow
the specification of desired behavior or goals. As far as robot
control is concerned, these learning rules currently seem to be
limited to either simulated applications [10], [11] or simple
real-world problems resembling classification [12].

Artificial neural networks (ANNs), on the other hand, have
been employed successfully for real-world vision-based con-
trol. For instance, [13] used neuroevolution [14] to optimize
ANNs for performing divergence-based landings of MAVs.
This work aims to demonstrate that we can evolve SNNs
to solve the same control problem while keeping energy
consumption at a minimum. The generality of evolutionary
algorithms with respect to the characteristics of the evolved
individuals [15] makes this, in our opinion, the most promising
current approach to SNN learning.

This letter contains two main contributions. First, we
demonstrate learned neuromorphic control for a real-world
problem through evolving SNNs for performing divergence-
based landings of an MAV. To the best of our knowledge, this
work is the first to integrate SNNs in the control loop of a
real-world flying robot. Second, we study how to substantially
reduce the spike rate of the SNN controller, corresponding to
considerable energy savings if it were to be run on neuro-
morphic hardware. Besides investigating the effect of pruning
neurons (as also done in [16], [17]), we introduce the inclusion
of network spike rate as an objective in the multi-objective
neuroevolution. Fig. 1 presents an overview of the proposed
system.

The remainder of this letter is structured as follows. Sec-
tion II provides related work concerning robot learning. The
control problem, SNN configuration, and learning procedure
are discussed in Section III. Next, Section IV covers the
performed experiments and lists their findings. Conclusions
drawn from these findings are then stated in Section V.

https://bit.ly/neuro-controller
mailto:j.j.hagenaars@tudelft.nl
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Fig. 1. Overview of the proposed system. An MAV with downward-facing camera is controlled to perform vertical landings based on the divergence D of
the optical flow field. As the MAV moves towards the surface, its field-of-view covers a smaller portion of the original pattern, and distances between any
two tracked points on the camera’s pixel array increase. This increase is proportional to D. Two subsequent video frames It−∆t and It can thus provide
estimates of divergence D̂ and its temporal derivative ∆D̂, which can subsequently be used by an evolved SNN controller to regulate the thrust setpoint Tsp.
Our controller compares favorably against a state-of-the-art ANN controllers [13] and a proportional controller during real-world tests.

II. RELATED WORK

Not all approaches are equally well suited to the problem of
learning real-world robot control, which can be characterized
as the optimization of some behavioral function in a complex,
uncertain environment. One of the more popular paradigms
for solving these kinds of problems has been reinforcement
learning (RL) in combination with deep ANNs [18]. In
pursuit of more efficient methods, we investigate SNNs as an
alternative to these deep ANNs, knowing that the respective
energy savings can be as large as an order of magnitude for
comparable networks [19]. Through the related work, we aim
to show the immaturity of current RL-inspired approaches to
SNN learning, called reward-modulated, as well as the promise
of neuroevolution.

A. Reinforcement Learning in SNNs

SNNs trained through reward-modulated learning have so
far only been successfully applied to problems that are either
relatively simple or simulated. For instance, [12] succeeds in
training an SNN for a real-world MAV obstacle avoidance
task using a reward-modulated rule, but only after the problem
has been preprocessed to a much simpler (almost one-to-one)
mapping between discrete inputs and outputs.

In simulation, [11] demonstrates vision-based neuromorphic
lane-keeping control of a two-wheeled robot. Although a
reward-modulated rule is used for learning, the task is set up
in such a way that its complexity remains limited: rewards
are tailored to each individual neuron, so that increased firing
inevitably results in a self-centering policy. In [10], the authors
employ the same learning rule for training an SNN to control
a simulated robotic insect. Reward is based on the deviation
from an externally generated trajectory, however, making it
essentially a lane-keeping task.

B. Neuroevolution for Robot Control

Reviews of the field of neuroevolution show its promise
for learning in ANNs [20] and SNNs [14]. Furthermore, neu-
roevolution exhibits qualities relevant to real-world learning:
it scales well in terms of parameter space and compute, and
can even be more sample efficient than RL [20]. So far,
evolved SNN controllers have only been successfully applied
to simulated MAVs [21], [22], or rudimentary real-world
ground robots [23]. ANN neuroevolution, on the other hand,
has been applied to more complex real-world problems. For
example, the authors of [13] evolve ANNs to learn event-
based optical flow control of a real-world, landing MAV. It is
shown that a small, three-layer network is sufficient to perform
high-resolution control, with only the weights being evolved.
Following their success, we directly extend this approach to
SNNs, in order to obtain a more energy-efficient solution.

III. METHODOLOGY

A. Divergence of the Optical Flow Field

In this work, we use the optical flow formulation from
[24], which assumes a downward-looking camera over a static
planar surface, as depicted in Fig. 1. With this configuration,
moving the camera along the Z-axis (as for a vertical MAV
landing) causes an optical flow, in this case divergence, to
be perceived. Physically, this divergence corresponds to the
ratio of vertical velocity and height above the surface, or
D = V/h. To estimate divergence from a camera, we can use
the relative, temporal variation in the distance between tracked
image points (corners) [25]. Referred to as size divergence,
this method results in a computationally efficient and reliable
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estimate of divergence D̂, when averaged over a set of ND
pairs of points:

D̂(t) =
1

ND

ND∑
i=1

1

∆t

li(t−∆t)− li(t)
li(t−∆t)

(1)

with ∆t the time step, and li(t) the distance between a pair of
tracked points at time t. The proposed SNN controller receives
as input an estimate of divergence D̂, as well as its temporal
derivative ∆D̂.

B. Spiking Neural Network Architecture

In SNNs, neurons are connected through synapses, which
have a certain weight. Incoming spikes contribute to the mem-
brane potential ui(t) of a neuron in an additive or subtractive
manner. In case no inputs are received, ui(t) decays to a
resting potential urest . On the other hand, if the quantity of
inputs is large enough to push the potential above a threshold
θi, the neuron itself emits a spike si, after which the potential
is reset to urest .

The neuron model employed in this work is the often-used
leaky integrate-and-fire (LIF) [26]. Discretizing this model
using forward Euler leaves us with the following equation for
the membrane potential:

ui(t) = ui(t−∆t) · τui + αuiii(t) (2)

where we assumed urest = 0, and take the membrane decay as
a factor τui . ii(t) is the forcing function working on neuron
i, which corresponds to the incoming spikes multiplied by
their respective synaptic weights, i.e., ii(t) =

∑
j wijsj(t),

or to incoming currents cj(t), i.e., ii(t) =
∑
j wijcj(t). The

influence of the forcing function on the membrane potential
is scaled with a constant αui

.
To prevent excessive firing while ensuring responsiveness

to small/low-frequency inputs, θi can be made dependent on
the neuron’s firing rate, resulting in an adaptive LIF [27]:

θi(t) = θi(t−∆t) · τθi + αθisi(t) (3)

with τθi being the corresponding decay factor, and αθi the
constant scaling the emitted spike.

The binary nature of SNNs requires functions that trans-
form real-valued signals to binary spikes and vice-versa, i.e.,
encodings and decodings. This work makes use of a pair of
non-spiking neurons per input observation, one for positive and
one for negative values, with at most one of the two neurons
active at any given time. The proportional currents c+i (t) and
c−i (t) coming out of the respective neurons can be expressed
as:

c+i (t) = |max(0, oi(t))|
c−i (t) = |min(0, oi(t))|

(4)

with oi(t) the observation variable belonging to neuron i.
For decoding binary spikes to real-valued scalars ai(t)

(actions) in a range [r1, r2], the spike trace Xi(t), which is
essentially a low-pass filter over a neuron’s emitted spikes, can
be combined with a simple scaling:

ai(t) = r1 + (r2 − r1) ·Xi(t)

Xi(t) = Xi(t−∆t) · τxi
+ αxi

si(t)
(5)

TABLE I
SAMPLING DISTRIBUTIONS OF MUTATED PARAMETERS

Parameter Distribution
wij U(−wij − 0.05, 2wij + 0.05)

αui , αθi , αxi U(α∗ − 2/3, α∗ + 2/3), clamped to [0, 2]

τui , τθi , τxi U(τ∗ − 1/3, τ∗ + 1/3), clamped to [0, 1]

θi U(θi − 1/3, θi + 1/3), clamped to [0, 1]

The SNN used for the control task in this work is kept
relatively simple, with only a single hidden layer of not more
than 20 adaptive LIF neurons, and a single output LIF neuron.
We consider vertical control to be one-dimensional, with the
SNN controller setting the thrust. Two pairs of non-spiking
neurons encode the inputs D̂ and ∆D̂, as in Eq. (4). See
Fig. 1 for an illustration.

C. Evolving Energy-efficient Neuromorphic Controllers

Each evolution starts off with a randomly initialized pop-
ulation of µ SNN individuals. We opt for a mutation-only
approach, given that crossover tends to work best when natural
building blocks are available, and could lead to difficulties like
the permutation problem when applied to neural networks [28].
Weights and hyperparameters are mutated with Pmut = 0.3
according to the distributions in Table I. Offspring λ is
combined with the previous population and evaluated in a
highly stochastic simulation environment (see Section III-D),
where the repeated evaluation (along with resampling of the
environment) of the previous generation decreases the chance
individuals live on only because they received ‘easy’ environ-
mental conditions (little noise, small delay, fast-responding
motors, etc.). The fitness of an individual consists of four
objectives: time to land (f1), final height (f2), final vertical
velocity (f3), and total spike rate of the network (f4). Selection
is carried out using the multi-objective genetic algorithm
NSGA-II [29].

During evolution, a hall of fame is maintained, which
holds the pan-generational Pareto front (all non-dominated
individuals that have ever lived). This prevents the discard
of well-performing individuals across generations. After Ngen

generations, the individuals in the hall of fame are evaluated
by letting them perform 250 landings in a randomized envi-
ronment and quantifying the median and inter-quartile range
for each evolutionary objective, giving us an idea of their
robustness. The best-performing individuals are then selected
for further real-world tests.

D. Randomized Vertical Simulation Environment

The vertical simulation environment in which individuals
are evaluated makes use of domain randomization and artificial
noise to improve transferability to the real world. The available
observations are the divergence D̂ and its temporal derivative
∆D̂. Similar to [13], the simulated MAV is considered as a
unit mass under the influence of gravity, and control happens



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

TABLE II
SAMPLING DISTRIBUTIONS OF ENVIRONMENT PARAMETERS

Parameter Distribution
δD U(1, 4) steps
σD U(0.05, 0.15) s−1

σDprop U(0.0, 0.25) s−1

τT U(0.005, 0.04) s
∆t U(0.02, 0.0333) s

Pjitter U(0.0, 0.2)

in one dimension with the SNN controller selecting a thrust
setpoint Tsp. This leads to the following dynamics model:

h(t) = h(t−∆t) + ∆t · v(t−∆)

v(t) = v(t−∆t) + ∆t · T (t−∆t) +W (t)

T (t) = T (t−∆t) + ∆t · Tsp · g − T (t−∆t)

∆t+ τT

(6)

where the altitude h, vertical velocity v, and thrust T are
updated using the forward Euler method, and τT represents the
spin-up and spin-down time of the rotors. The thrust setpoint
Tsp selected by the SNN is clamped to a realistic range of
acceleration for the MAV, namely [−0.8, 0.5] g. Lastly, W
denotes vertical wind, and is given by:

W (t) = W (t−∆t) + ∆t · N (0, σ2
W )−W (t−∆t)

∆t+ σW
(7)

with σW = 0.1 ms−1 being the standard deviation of the
normally distributed wind.

Noise is added to the divergence estimation according to
the model in [30]. The observed divergence D̂ is the result of
adding a delay δD to the ground-truth divergence, along with
white noise and proportional white noise:

D̂(t) = D(t− δD ·∆t) +N (0, σ2
D)

+D(t− δD ·∆t) · N (0, σ2
Dprop

)
(8)

where σD and σDprop are the standard deviations for the
added noise and proportional noise, respectively. Additionally,
computational jitter is introduced in order to simulate the case
in which the estimated divergence is not updated due to, for
instance, insufficient corner points. Each time step, there is
the probability Pjitter that the estimated divergence from the
previous step is used (for a maximum of one step).

The evaluation of an individual consists of four landings,
from initial altitudes h0 = 2, 4, 6, 8 m. The environment is
bounded in altitude and time: [0.05, h0 + 5] m and 30 s.
Individuals start out without initial velocity and acceleration,
and are left to settle for 0.5 s. Each landing has its own, dif-
ferently randomized environment, with parameters (Table II)
being redrawn at the start of each generation, such that all
individuals experience the same four environments. Fitness is
averaged across the four landings, with extra punishment for
individuals that do not manage to land.

IV. EXPERIMENTS

A. Experimental Setup

1) Simulation: Per configuration, four randomly initialized
populations of 100 individuals are evolved for 400 gener-

ations, after which their final halls of fame are combined.
Initial synaptic weights are drawn from U(0, 1), and other
hyperparameters are initialized as constants: (αui

, αθi , αxi
) =

(0.2, 0.2, 1.0), (τui
, τθi , τxi

) = (0.8, 0.8, 0.8), and θi = 0.2.
For simulating SNNs, we used Python and the open-source

PySNN1 library recently developed in our lab; for performing
the evolutions, we used the DEAP [31] framework. The code
for running the experiments2 and the simulation environment3

is also publicly available.
2) Real World: The MAV used in this work is a Parrot

Bebop 2 running the open-source Paparazzi4 autopilot on its
780 MHz dual-core ARM Cortex A9 processor. To also run
the SNN on board, we developed TinySNN5: a framework
for building small spiking networks in the C programming
language. Its similarities with PySNN allow an almost seam-
less transfer of networks from simulation to the real-world
hardware.

Landings start from an initial altitude of roughly 4 m and
are ended at 0.1 m above ground (to prevent infinite D
and compensate for the offset created by the MAV’s landing
legs at initialization). Horizontal guidance is provided by a
motion capture system. Similar to [13], [32], divergence is esti-
mated as size divergence using the Bebop’s downward-looking
CMOS camera, and a FAST corner detector [33] in combina-
tion with a pyramidal Lucas-Kanade feature tracker [34]. To
limit computational expense, ND is capped at 100 points. Di-
vergence measurements are updated at a rate of approximately
45 Hz, while the control loop implementing the divergence-
based landing runs at roughly 512 Hz.

Linearly transforming the thrust setpoint Tsp to rotor com-
mands leads to poor tracking performance due to unmodeled
drag and nonlinear aerodynamic effects that result from a
descent through the propeller downwash. To close this reality

Fig. 2. Pareto front (based on median performance over 250 evaluations) of
individuals in the final hall of fame. The dot’s color shade is proportional to
the spike rate median: lighter means a higher rate. Selected individuals are
indicated in bold.

1Available at https://github.com/BasBuller/PySNN
2Available at https://github.com/Huizerd/evolutionary
3Available at https://github.com/Huizerd/gym-quad
4Available at https://github.com/paparazzi/paparazzi
5Available at https://github.com/Huizerd/tinysnn

https://github.com/BasBuller/PySNN
https://github.com/Huizerd/evolutionary
https://github.com/Huizerd/gym-quad
https://github.com/paparazzi/paparazzi
https://github.com/Huizerd/tinysnn
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(a) Five simulated runs in a randomized environment. (b) Ten real-world flight tests.

Fig. 3. Height, velocity, thrust setpoint (raw and 20-step moving average) and estimated divergence for simulated and real-world landings of selected
individuals. Dots in the h and v plot mark the end of runs.

gap, a PI controller (with gains P = 0.7 and I = 0.3) was
used to convert the thrust setpoint to motor commands [13].

B. 20 Hidden Neurons

The first SNN configuration considered here is 20-base,
which has 20 adaptive LIF neurons as hidden layer. The spike-
minimizing neuroevolution allows us to start off with more
neurons than necessary ([13] used eight), as redundant ones
will ultimately be silenced. Fig. 2 displays the Pareto front
of evolved individuals for this configuration in red. From this
front, a single individual, indicated by a bold circle, is selected
for further testing. Note that objective f2 (final altitude) is not
shown in Fig. 2, as it was almost consistently minimized for
all individuals.

Looking at the simulated landings performed by this in-
dividual in Fig. 3a, we see that most landings are quite
smooth (low touchdown velocity). Plots of the low-passed
thrust setpoint Tsp likewise display a small bump that suggests
braking before touchdown. The raw Tsp data, however, shows
large-magnitude, high-frequency oscillations. This behavior
is caused by the values of αxi

and τxi
of the decoding,

which cause instantaneous jumps and decays to maximum and
(almost) minimum acceleration, respectively. Controllers that
show this kind of bang-bang behavior are unlikely to transfer
well from simulation to the real world due to their dependency
on motor dynamics [13].

When taking the selected controller to the real world, we
can conclude from Fig. 3b that this is indeed so, with higher
touchdown velocities and quicker landings (2-3 s in reality

versus 5-6 s in simulation). The quick oscillations in Tsp
cannot be followed by the motors, leading to lower values of
acceleration than actually desired. Currently, the evolutionary
process has little way of accounting for this discrepancy,
because the bang-bang control leads to good landings in
simulation. To account for this, we constrain the mutation of
α’s (mutation magnitude halved, clamped to [0, 1]) and τ ’s
(clamped to [0.3, 1]) in the next section.

During the simulated landings of Fig. 3a, the spiking activity
of each neuron was recorded. Fig. 4 gives the average spike
rate per neuron, as well as the sign and magnitude of the con-
nections. Looking at 20-base, the number of inactive hidden
neurons and weak connections suggests it can be made much
smaller. In fact, the single yellow path from input to output
layer, together with the single effectively active neuron in the
hidden layer, leads us to believe divergence-based landings
can be performed with only a single spiking hidden neuron
(1-lim), or possibly none at all (0-lim).

C. One or No Hidden Neuron

Fig. 2 lets us compare the Pareto fronts for 20-base, 1-lim
and 0-lim, with the latter two limited in the mutation of α’s
and τ ’s. The front of 1-lim outperforms both 20-base and 0-
lim, suggesting there is a benefit to a significantly reduced
parameter space as well as a hidden layer.

The comparison of simulated landings in Fig. 3a shows
that, even though all selected controllers perform roughly the
same in terms of time to land, 1-lim often touches down
with the least vertical velocity. The plots of Tsp show the
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Fig. 4. Average firing rates and synaptic weights of selected individuals for
the five simulated runs displayed in Fig. 3a. Vertex color is proportional to
neuron firing rate, while synaptic weight is proportional to edge thickness.
Edge colors indicate positive (yellow) or negative (purple) synapses.

control policy responsible for this: the slow decay and few
output spikes of 1-lim result in small ‘hops’ that decrease
in magnitude as the ground nears. Nevertheless, the landings
performed by the single-spiking-neuron controller 0-lim also
look promising. Like 1-lim, decoding decay is slower, which
allows a larger number of acceleration setpoints to be se-
lected. Still, the high frequency and large magnitude of the
oscillations will most likely prevent a good transfer to the
real world. Looking at Fig. 3b, we see that this is indeed
the case. The touchdown velocity of both 20-base and 0-lim
is often higher than that of 1-lim, whose slower decoding
dynamics helped with a successful transfer from simulation to
the real world. Some unsteady behavior is still present during
the final landing phase, however, as can be observed from
the supplementary video. These ‘self-induced oscillations’ are
the result of the scale ambiguity in optical flow control [35].
Although SNN and ANN controllers are able to postpone
these oscillations [13], getting rid of them completely requires
additional measures [25].

The network activity during simulated landings in Fig. 4
indicates that, in the case of 0-lim, further evolutionary opti-
mization might decrease spike rate even more, as is shown to
be feasible by the network of 1-lim. The same goes for 20-
base, where the spiking of some hidden neurons is not used
at all. This reflects in the large differences between the total
network spike rates, which are 71.2 Hz, 7.5 Hz and 16.8 Hz
for 20-base, 1-lim and 0-lim, respectively. Without spike mini-
mization as an evolutionary objective, 20-base has a total spike
rate of 201.2 Hz, meaning spike minimization is responsible
for a 65% drop. A further decrease is possible given more
generations or a smaller network (an additional 31% for 1-
lim). Based on energy measurements for the neuromorphic
Loihi chip [36], the corresponding energy savings would be
11.4 nJ (59%) and 18.5 nJ (96%) for spike minimization and
smaller networks, respectively.

Fig. 5 compares the transient and steady-state response of
the selected individuals. Due to its slow decoding dynamics,
the transient response of 1-lim shows a much larger number
of possible thrust setpoints than any other individual. Fur-
thermore, it limits itself to a smaller Tsp range, preventing
large-magnitude oscillations. Both 20-base and 0-lim, on the
other hand, only have a distinct number of plateaus in their

Fig. 5. Transient and steady-state response of selected individuals. Steady-
state responses are obtained by subjecting the SNNs to 100 time steps of
the same observation and subsequently averaging the last 50 steps. The
transient response is made up of 100 simulated landings during which D̂ and
Tsp are recorded (blue dots), and then sorted by increasing divergence and
passed through a 40-step moving average (red lines). Comparable proportional
controllers are indicated by a dotted black line.

transient response, and these have to cover the entire range
[−0.8, 0.5] g. Looking at the steady-state response, we see that
20-base and 1-lim mainly have a gradient in the D̂-dimension,
which makes sense given the connections in those networks to
the respective encoding neuron. The fact that this gradient is
mostly on the +D̂-side suggests that an indication of positive
divergence alone might suffice (absence of +D̂ activity relates
to −D̂). The response of 0-lim, however, also has a significant
gradient in the ∆D̂-dimension, as this individual additionally
has a positive connection to the ∆D̂+ input neuron.

The transient responses of the proposed controllers in Fig. 5
all seem to approximate a sigmoid shape. In comparison, the
response given by a proportional divergence controller, whose
output thrust is directly related to the divergence error, would
be a straight line, with its slope dependent on the controller’s
gain. Analogously, the accompanying steady-state plot would
show an even gradient along D̂. The dotted black lines in
Fig. 5 show P-controllers comparable to 1-lim and 0-lim.

D. Comparison with Existing Controllers

To compare the performance of the proposed SNN con-
trollers with existing control methods for divergence-based
landing, we evaluate the transient responses and landing
characteristics obtained from real-world flight tests. The right
column of Fig. 6 consists of current state-of-the-art control
methods for optical flow landings. At the top, there is the
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Fig. 6. Comparison of transient responses from real-world tests. Responses
are made up of ten real-world landings during which D̂ and Tsp are recorded
(blue dots), and then sorted by increasing divergence and passed through a
40-step moving average (red lines).

NN2 controller from [13], an ANN evolved for divergence-
based landing control with eight hidden neurons. The middle
response is obtained from a pure P-controller, named p-slow.
Mathematically, the thrust output of a P-controller can be
represented as Tsp =

Kp

g · (D̂ − Dsp). p-slow has a gain
Kp = 0.98 and a divergence setpoint Dsp = 2.5 s−1, and its
output Tsp is clamped to a range [−0.2, 0.25] g. Another P-
controller, p-fast, is included at the bottom, which instead has
a gain Kp = 1.96 and a thrust clamping to [−0.7, 0.3] g. Both
p-slow and p-fast were derived from the transient responses
of SNN controllers in terms of gain (slope) and divergence
setpoint (offset), with the former being based on 1-lim, and
the latter on 0-lim (see Fig. 5).

Comparing the evolved SNN controllers with NN2, we see
that the latter is characterized by a lower gain and a limited
but high-resolution range of thrust setpoints, leading to slower
but smooth landings. Looking at the P-controllers, the lack of
stochasticity in their response is immediately obvious, making
their landings smooth as well. Nonetheless, both 1-lim and
0-lim outperform their derived P-controllers p-slow and p-
fast in terms of touchdown velocity while landing almost as
quickly: 2.9 s / 0.4 ms−1 versus 2.4 s / 1.0 ms−1 and 2.2 s
/ 1.0 ms−1 versus 1.9 s / 1.2 ms−1, respectively. Also, 1-lim
performed better than NN2, whose landings averaged 4.4 s /
0.5 ms−1. Real-world landing profiles of 1-lim, NN2 and p-
slow are shown in Fig. 1.

V. CONCLUSION

In this letter, we demonstrated, for the first time, that
neuromorphic controllers evolved in a highly abstracted simu-
lation environment are capable of controlling landings of real-
world MAVs using only the divergence of the optical flow
field. Further, by minimizing the amount of spikes during
evolution, we provided insight into the resources required for
successfully solving the problem at hand, and the potential
energy savings of an implementation on neuromorphic hard-
ware. A real-world comparison with state-of-the-art controllers
showed that the proposed SNNs often land faster and touch
down softer. Also, we found that SNNs consisting of only a
single spiking neuron are equally capable of smooth landings
as larger networks, all the while using only a fraction of
their spikes. This is in line with [37], which implies that
single biological neurons are capable of solving linearly non-
separable problems. Future research should focus on achieving
an end-to-end spiking solution to vision-based control, making
use of an SNN capable of estimating global motion from an
event camera [38].
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