
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Tackling Data
Non-IIDness in
Multi-server
Asynchronous FL
Master's Thesis

Gefei Zhu

Tackling Data
Non-IIDness in

Multi-server
Asynchronous FL

Master's Thesis

by

Gefei Zhu

Student Name Student Number

Gefei Zhu 5651727

Thesis Advisor: Jérémie Decouchant
Daily co-supervisor: Bart Cox
Project Duration: Nov, 2023 - Aug, 2024
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science
Program: Embedded Systems

Preface

Federated Learning (FL) has revolutionized machine learning by decentralizing the training process
across multiple devices or servers, thereby addressing privacy concerns by ensuring that raw data
remains localized. This decentralized framework, however, presents unique challenges when applied
to real-world scenarios, particularly in environments characterized by heterogeneous data distributions
(non-IID data) and varying computational resources.

This thesis is grounded in the study of an existing multi-server asynchronous FL architecture for geo-
distributed clients, with a focus on understanding and mitigating the impacts of heterogeneous environ-
ments on system performance. Recognizing the complexity of real-world conditions, a key contribution
of this work is the development of a reproducible multi-server FL model with heterogeneous resources.
This model is designed to simulate various real-world scenarios, allowing for controlled experimenta-
tion and a deeper understanding of how different factors, such as network latency in geo-distributed
settings and data distribution, affect FL systems.

Building on this robust experimental framework, we propose three innovative methods to mitigate the
adverse effects of non-IID data distributions and asynchronous communication in FL systems: (1) dy-
namically reallocating clients between servers to enhance data balance and improve global model
accuracy while reducing training time; (2) allowing clients to alternatively train two separate models
from different servers, ensuring that each server receives tailored updates, which is particularly effec-
tive in large-scale client scenarios; and (3) having clients alternate between servers and average the
models received before local updates, combining the strengths of both models, which is a method that
has been outlined in related works and that we find to be less effective in certain conditions.

The research presented in this thesis demonstrates through extensive experimentation on datasets
such as MNIST and CIFAR-10 that our methods significantly improve the efficiency and accuracy of
FL systems under non-IID settings. These contributions pave the way for more scalable and efficient
FL systems, capable of handling the complexities of real-world data distributions and communication
constraints.

I would like to express my heartfelt thanks to my thesis advisor, Dr. Jérémie Decouchant, and my
daily co-supervisor, Bart Cox. Their support throughout this project has been invaluable, offering both
insightful theoretical guidance and much-needed encouragement. I am deeply grateful for their help,
especially during challenging times, when their advice and understanding made a significant difference.
Their assistance and mentorship have been greatly appreciated, and I feel fortunate to have had their
guidance during this journey.

Gefei Zhu
Delft, August 2024

i

Contents

Nomenclature iii

1 Research Paper 1

2 Extended Related Work 18
2.1 Common Methods to Construct Non-IIDness . 18

2.1.1 Label skew . 18
2.1.2 Quantity skew . 19
2.1.3 Imaging acquisition skew . 19

2.2 Algorithms for Mitigating Challenges in FL with Heterogeneous Data 19
2.2.1 Single-Server Synchronous FL . 19
2.2.2 Single-Server Asynchronous FL . 20
2.2.3 Multi-Server Synchronous FL . 21

2.3 Client selection in FL . 22

3 Additional Experiments 24
3.1 Computation time to select clients . 24
3.2 Bandwidth consumption for our three strategies . 26
3.3 Combining the Move-Clients and Share-Clients strategies 27

4 Conclusion 29

References 30

ii

Nomenclature

Abbreviations
Abbreviation Definition

FL Federated Learning
Non-IID Non-Independent and Identically Distributed
IID Independent and Identically Distributed
AWS Amazon Web Services
FedSGD Federated Stochastic Gradient Descent
FedAvg Federated Averaging
Hier-FL Hierarchical Federated Learning
Spyker Asynchronous Multi-Server Federated Learning for

Geo-Distributed Clients

Symbols
Symbol Definition

Ns Total number of servers
Nc Total number of clients
S A list to store all servers
C A list to store all clients
Nsic The number of required clients for server i
Avgsi Average speed of all clients associated with server i
Asi The area (location) of server i in the map
Aci The area (location) of client i in the map
Distsi,cj The communication delay between server si and

client cj
Ssi,cj Speed of client j of server i (training delay)
Dsi,cj Communication delay (latency) between server si

and client cj
L The set of labels of dataset

iii

1
Research Paper

1

Tackling Data Non-IIDness in Multi-server
Asynchronous FL

Gefei Zhu
Delft University of Technology

Abstract—Federated Learning (FL) is a distributed machine
learning approach that enhances data privacy by training models
across multiple devices or servers without centralizing raw
data. Traditional FL frameworks, which rely on synchronous
updates and homogeneous resources, face significant performance
challenges in real-world deployments. These challenges include
handling heterogeneous data distributions (non-IID) and varying
computational resources across clients, leading to performance
degradation. To address these issues, asynchronous FL frame-
works have been proposed, but they introduce new complexities
such as communication latency and workload management across
geo-distributed servers.

This paper focuses on the impact of network latency and non-
IID data distributions on asynchronous multi-server FL systems.
We propose and evaluate three methods to mitigate the adverse
effects of data heterogeneity on model accuracy: (1) transferring
clients between servers; (2) sharing clients among servers so
that they alternatively train their models; and (3) sharing clients
among servers with model averaging. Our contributions include
a reproducible experimental framework for multi-server FL,
strategies for optimizing client-server interactions, and an analy-
sis of the effectiveness of these strategies in reducing the impact
of non-IID data distributions. Experimental results demonstrate
that our methods can reduce training time by up to 85.67%,
decrease the number of updates required by 85.82%, and improve
accuracy by 4.815% in heterogeneous environments, compared
to Spyker, a state-of-the-art multi-server FL algorithm.

Index Terms—Federated Learning, Non-IID, Heterogeneous
Clients, Geo-Distributed Systems

I. INTRODUCTION

Federated Learning (FL) [1] is a distributed machine learn-
ing approach where a global model is collaboratively trained
across multiple devices or servers holding local data sam-
ples. This technique enhances data privacy and security over
centralized machine learning by ensuring that the raw data
remains local and that only model updates are shared with
a central server. FL frameworks initially assumed a single
server, a synchronous training process, and homogeneous
client resources. This early framework relied on the FedAvg
algorithm [2].

However, in practical deployments, clients often have het-
erogeneous computational resources and possess data that dif-
fer in both quantity and class distribution. Heterogeneous envi-
ronments with varying computational resources and data distri-
butions among clients can negatively impact performance [3].
In recent years, extensive research has been addressing the
non-independent and identically distributed (non-IID) data
problem in FL along three directions. First, data optimiza-

tion, [4] focuses on preprocessing and restructuring data to
make it more balanced across different devices or sharing
portions of data. Second, model update optimization, [5]–
[8] improves the aggregation process of model parameters,
reducing biases. Finally, model training optimization, [9]–[11]
adjusts strategies during the training process to improve the
generalization and stability of models.

In addition to non-IID datasets, heterogeneous clients, such
as slow clients, can significantly impact the training process
by extending the overall training time, causing the ”strag-
gler effect”, and leading to imbalanced contributions to the
global model. Slow clients, due to lower processing power
or poor network connectivity, take longer to compute their
local updates [12]. Since the server often waits for all clients
to finish their updates before proceeding, these slow clients
delay the entire training process. This effect is exacerbated in
heterogeneous environments where there is a wide disparity in
client capabilities, leading to inefficient use of resources and
prolonged training times. Asynchronous FL training schemes
have been developed to mitigate these negative effects [13]–
[15]. Asynchronous FL allows clients to send updates inde-
pendently, reducing dependency on slow clients and improving
resource utilization. This approach decreases overall training
time by aggregating updates as they arrive. However, asyn-
chronous FL still faces performance-related challenges, such
as the impact of long-distance communication on performance
and potential queuing delays due to limited computational
power on a single server. These factors can affect timely
update aggregation and system performance, necessitating
robust strategies to manage communication latency and server
workload.

To address the challenges introduced by asynchronous FL,
several FL algorithms have been developed. Hierarchical Fed-
erated Learning (Hier-FL) [16]–[18] introduces intermediate
aggregation layers (e.g., edge servers) to reduce the load on the
central server and manage long-distance communication more
efficiently. Moreover, decentralized federated learning [19],
[20] eliminates the central server, with clients communicat-
ing and aggregating updates in a peer-to-peer manner. This
reduces the central server’s computational load and network
congestion, enhancing overall system efficiency.

In this paper, we aim to analyze how network latency,
influenced by the geographical distribution of servers and
clients, affects the performance of multi-server asynchronous
FL. Additionally, we aim to simulate non-IID data distribution

1

conditions to conduct a comprehensive study of real-world
data diversity. Moreover, we aim to ensure the ability to
control variables during experiments, enabling us to conduct
reproducible experiments. Last, we aim to decrease the impact
of heterogeneous resources to ensure a robust and efficient
Asynchronous Multi-server FL.

In summary, this paper makes the following contributions:
• We provide a methodology for reproducible experiments

for multi-server Federated Learning systems. Our meth-
ods support heterogeneous datasets and resources.

• We propose three methods to reduce the impact of non-
IID data on training accuracy in those systems. First, we
select suitable clients from servers and move them to
other servers (Move-Clients approach). Second, we share
clients among servers with two different methods (Share-
Clients approach).

• We provide an algorithm for selecting the appropriate
clients for our Move-Client and Share-Clients methods.

• We evaluate the Move-Client and Share-Clients methods
with non-IID scenarios.

This paper is organized as follows. In section II, we provide
an overview of Federated Learning (FL) systems, discuss their
advantages, limitations, and the challenges associated with
their deployment in real-world scenarios. In section III, we
introduce a reproducible multi-server FL model that allows
for controlled experimentation with non-IID scenarios at the
server and client levels. In section IV, we propose three
novel methods to address the challenges of Non-IID data
distributions and multi-server asynchronous FL. In section V,
we conduct a comprehensive performance evaluation of the
proposed methods. In section VI, we review related work
in the field of Federated Learning, highlighting how our
contributions build upon and differ from existing studies.
Section VII concludes this paper by summarizing the findings
of our study, discussing the implications of our results.

II. BACKGROUND

In this section, we first introduce the most conventional
and widely recognized federated system frameworks. Then,
we review three different but typical multi-server FL models.
Finally, we present a multi-server asynchronous FL system
model, which forms the basis for our study.

A. Federated Learning

McMahan et al. [1] proposed the first single-server syn-
chronous federated learning framework, introducing two key
algorithms, FedSGD and FedAvg, and validating their effec-
tiveness through experiments.

The experimental environment used in [1] is a controlled
environment, and assumes a perfectly IID data distribution:

• Experiments use K clients, and the client datasets are IID;
• At the beginning of each round, C × K clients (0 ≤

C ≤ 1) are selected (experiments have shown that the
effectiveness declines when the number of clients exceeds
a certain value, so only a subset of clients is chosen).
The server sends the global model to the selected clients,

who then perform federated learning (including training
and federated aggregation).

Selecting C = 1 and using SGD for federated learning [1]
defines this baseline as Federated SGD (FedSDG) in this
paper. The local update for client k is:

wk
t+1 = wt − η∇Fk(wt)

where η is the learning rate and ∇Fk is the gradient of the
local objective function at wt. The server collects the local
updates and aggregates them to form the new global model:

wt+1 = wt − η
K∑

k=1

nk

n
∇Fk(wt)

where nk is the number of data samples at client k, and n is
the total number of data samples across all clients. To enhance
the computation of each client, the authors propose Federated
Averaging (FedAvg). Each client k performs multiple steps of
gradient descent using their local data. Let Wt be the global
model parameters at round t, The local update after E epochs
for client k is:

wk
t+1 = wt − η

E∑
i=1

∇Fk(w
i
t)

where wi
t represents the model parameters after the ith local

epoch. The server collects the local models and averages them
to form the new global model:

wt+1 =
K∑

k=1

nk

n
wk

t+1

where nk is the number of data samples at client k, and n is
the total number of data samples across all clients.

The advantage of this method is that clients can perform
multiple parameter updates before sending their parameters,
thereby increasing their computational workload. FedSGD is
a synchronous algorithm (requiring all clients to wait until
all gradients are computed), whereas FedAvg is not fully
synchronous (clients can adjust the number of computations
performed, though some synchronization is still required).

B. Multi-Server Federated Learning

Multi-server Federated Learning architectures have been in-
troduced to address inherent challenges in single-server setups.
The motivation arises from the need to mitigate communica-
tion latency between the server and clients, especially in delay-
sensitive applications. There exist three primary categories of
multi-server approaches, which comprise: Hierarchical Fed-
erated Learning (HFL) [16]–[18], [21], Clustered Federated
Learning [22]–[24] and Multi-server Overlapping Federated
Learning [25], [26].

Hierarchical FL adopts a layered structure that allows
multiple edge servers to perform partial model aggregation,
enabling hierarchical model aggregation. The advantage lies in
leveraging the proximity of intermediate edge servers to reduce
communication costs through aggregation on the edge servers.

2

However, its drawback is the challenge posed by non-IID data.
In scenarios involving non-IID data, Hierarchical FL may fail
to achieve the desired level of accuracy in certain situations,
such as when there is a significant disparity between the edge
and the cloud or when multiple edge servers are involved.

Clustered FL is an approach that divides customers into
different clusters and trains a separate machine learning model
for each cluster. Since each cluster trains its own model inde-
pendently, there is a reduction in the amount of communication
needed between clusters, potentially lowering communication
overhead. However, the frequent re-clustering of clients can
elevate overall training complexity and duration. Additionally,
certain Clustered FL implementations may neglect physical
network connectivity constraints, restricting a client’s connec-
tion to only a subset of servers. This oversight can hamper
the efficiency of communication between clients and servers.
Moreover, the requirement to handle distinct models for each
cluster adds complexity to tasks such as model coordination
and maintenance.

Multi-server Overlapping FL leverages a distributed infras-
tructure comprising multiple servers with intersecting coverage
areas, facilitating efficient client localization. The key idea
demonstrated by [25] is that clients download multiple models
from all the edge servers they can access and train their
local models based on the average of these models and send
their updated model to multiple edge servers by broadcasting.
Consequently, the suggested approach obviates the need for
expensive communication with the central cloud server to
achieve model synchronization. This results in a substantial
reduction in the overall training time when compared to tradi-
tional cloud-based federated learning systems. However, [25]
introduced a strongly-convex loss function, a highly restrictive
choice given that the majority of learning models, such as
neural networks, are non-convex. Moreover, the convergence
results fail to demonstrate the implications on overlapping
areas. Hence, [26] improves the architecture, introduces a
new algorithm with two-sided learning rates and provides
theoretical convergence analysis of the more general non-
convex loss function. It achieves a linear speedup under full/
unbiased partial client participation strategies compared to the
existing multi-server FL algorithms.

C. Multi-Server Asynchronous FL

Most multi-server Federated Learning (FL) systems are
synchronous [16]–[18], [21]–[24], [26]. In scenarios where
clients are geographically distributed, communication delays
and bandwidth consumption between clients and the central
server are significantly high. This issue is particularly pro-
nounced in synchronous FL systems, where these delays can
severely impact the convergence speed of the model.

To address these limitations, Spyker [27] introduces a novel
FL architecture that leverages multiple servers and asyn-
chronous communication. Spyker, as shown in Fig.1, allows
clients to interact with their nearest server, which minimizes
communication latency and ensures efficient integration of
updates. Unlike traditional hierarchical FL frameworks that

Fig. 1. The architecture of Spyker [27]

still rely on synchronous procedures for global model up-
dates, Spyker enables fully asynchronous interactions not only
between clients and their nearest server but also among the
servers themselves. This approach significantly reduces idle
times and accelerates model convergence, especially in geo-
distributed settings. Spyker defines new mechanisms to handle
model staleness and update aggregation, ensuring that model
updates are effectively weighted based on their relevance and
the timing of their arrival. Specifically, in Spyker, clients
receive the global model W t from their nearest server, perform
local training using the formula

W t+1
k = W t − ηk∇Fk(W

t),

where W t+1
k is the updated model at client k after local

training, W t is the global model received from the server, ηk
is the learning rate for client k, and ∇Fk(W

t) represents the
gradient of the loss function Fk with respect to the model W t

on the local dataset of client k.
Clients send back updates asynchronously. This allows

continuous operation without waiting for other clients. When
the server receives an update from a client, it incorporates this
update using the aggregation formula

W t+1
i = W t

i + ηi · weight · (W t+1
k −W t

i),

where W t+1
i is the updated server model after aggregating

the client update, W t
i is the current server model before

aggregation, ηi is the server’s learning rate, W t+1
k is the

model update received from client k, and weight is a factor
that may include considerations for model staleness or client
importance.

The server also updates the age of its model as

At+1
i = At

i + 1,

where At+1
i is the updated age of the server model after

incorporating the client’s update, and At
i is the current age of

the server model.

3

Additionally, Spyker employs a token-based strategy to
manage server-to-server communications, which helps main-
tain synchronization without introducing bottlenecks. Servers
periodically exchange their models asynchronously using a
token-based mechanism to trigger model exchanges. This pre-
vents simultaneous model broadcasts and ensures that server
models are synchronized effectively. When a server i receives
a model Wj from another server j, it updates its model using
the formula

W t+1
i = W t

i + ηa · wij · (W t
j −W t

i),

where W t+1
i is the updated server model after aggregating

the model from server j, W t
i is the current model of server

i, ηa is the aggregation rate, W t
j is the model received from

server j, and wij is a weight computed based on the relative
ages of the models from servers i and j.

The server also adjusts the age of its model according to

At+1
i = (1− ηa · wij)A

t
i + ηa · wij ·Aj ,

where At+1
i is the updated age of the server model after

aggregating the model from server j, At
i is the current age of

the server model, Aj is the age of the model received from
server j, ηa is the aggregation rate, and wij is the weight
based on the ages of the models. This process ensures that
updates are weighted based on the staleness and relevance of
the models being aggregated, maintaining the effectiveness and
efficiency of the FL system.

The primary objective of this paper is to improve over
Spyker’s accuracy. By addressing the limitations in its la-
tency calculation method and improving the precision of data
distribution to better reflect real-world scenarios, we aim
to achieve more reliable and accurate model performance
in geo-distributed settings. Our research focuses on refining
the data resource heterogeneity handling and optimizing the
asynchronous communication among the whole system to
ensure a robust and efficient FL system.

III. REPRODUCIBLE MULTI-SERVER FEDERATED
LEARNING WITH HETEROGENEOUS RESOURCES

In this section, we first examine the impact of network
latency and present a more accurate method for calculating
communication delays based on the geographical distribution
of servers and their clients. Then we provide a realistic data
distribution. Finally, we construct a reproducible multi-server
FL model to control experimental variables.

A. Impact of network latency and client distribution

1) Network latency mapping: The communication delays
between clients and servers, and the affectation of clients to
servers can significantly impact the experimental outcomes of
multi-server FL.

CloudPing monitors the latency between Amazon Web
Service (AWS) sites [28]. In theory, the proximity of servers is
anticipated to exert an influence on the communication delay
between them. Geographic distance is a pivotal factor in this

regard. The latency observed between AWS regions in close
proximity is considerably lower when compared with regions
that are geographically dispersed. However, numerous other
variables that may impact communication delay will not be
taken into consideration in these experiments.

Hence, it is necessary to construct a map based on commu-
nication delays, which involves establishing a matrix of com-
munication delays to represent distances between locations.
According to the region of the provided servers, six locations
are chosen as shown in Tab. I. The chosen locations are then
mapped to coordinates, ensuring that locations with shorter
communication delays are closer on the map.

TABLE I
COMMUNICATION DELAYS BETWEEN SERVERS ACCORDING TO

CLOUDPING

From\To Hong Kong Tokyo Sydney Canada London California

Hong Kong 3.04 50.92 130.49 200.7 196.92 153.27
Tokyo 51.82 1.61 109.53 157.2 225.27 110.4

Sydney 130.65 109.18 4.24 198.25 266.31 139.71
Canada 202.62 157.04 199.75 2.42 78.47 79.26
London 205.89 226.41 268.6 78.75 0.88 147.81

California 152.52 111.05 139.08 79.54 148.45 4.43

Nevertheless, there are minor discrepancies in communica-
tion delays between each pair of locations in both directions. In
order to accurately map these communication delays onto the
geographical map, it is imperative that the distances between
two locations remain consistent. Therefore, the communication
delays matrix must be symmetric. To achieve this symmetry,
the disparities in communication delays for the bidirectional
link between two locations need to be addressed. An effective
approach is to compute the average of the two distinct delays,
allowing for the construction of a symmetric matrix that
accurately represents the communication delays across the
network. Moreover, the distance between the same location
should be zero so that the values on the diagonal of the matrix
should be zero as shown in Tab. II .

TABLE II
COMMUNICATION DELAYS MATRIX

From\To Hong Kong Tokyo Sydney Canada London California

Hong Kong 0 51.37 130.57 201.35 201.41 152.90
Tokyo 51.37 0 109.36 157.12 225.84 110.73

Sydney 130.57 109.36 0 199 267.46 139.4
Canada 201.35 157.12 199 0 78.61 79.4
London 201.41 225.84 267.46 78.61 0 148.13

California 152.90 110.73 139.4 79.4 148.13 0

This mapping is achieved using the Multi-Dimensional Scal-
ing (MDS) method [29], which projects communication delays
onto coordinates in a two-dimensional plane. The objective
is to visually represent the spatial arrangement of locations
on the map, reflecting their connectivity and communication
efficiency.

In order to reduce latency, minimize network congestion and
optimize resource utilization, it is essential for each client to
efficiently identify and interact with the nearest server. In order
to achieve this goal, we need to partition the map obtained

4

by the MDS method based on the locations of servers. This
partitioning ensures that the distance from clients in these
regions to their respective servers is minimized. The Voronoi
diagram [30] divides a plane into multiple regions based on
the coordinates provided by the MDS method (the positions
of servers), where each region contains points that are closest
to the corresponding server.

The Voronoi diagram is shown in Fig. 2. The blue points
represent the location of each server and the polygon formed
by dashed and solid lines around the blue dot corresponds
to the region of this server. After determining the number of
servers, ranging from 1 to 6, each server can randomly choose
a unique blue point as its location.

Fig. 2. The Voronoi diagram

2) Client distribution: After the completion of the map
construction, the clients can be created. The number of total
clients is determined first, and then it needs to be decided
whether each server should be allocated an equal number
of clients or whether the allocation should follow a normal
distribution. Each client is randomly assigned a location within
the corresponding region of each server. To ensure the distance
from each clients to its associated server is minimized, a KD-
tree is established. This method guarantees that each client
is efficiently identified and associated with its nearest server.
Fig. 3 illustrates the distribution of 8 clients for each of 4
server on the Voronoi diagram.

B. Impact of non-IID server datasets

1) Dirichlet distribution for generating Non-IID scenarios:
In constructing non-IID scenarios for federated learning ex-
periments, the Dirichlet distribution offers a highly adaptable
means to mimic the diverse data distributions found across
different network nodes or clients. This adaptability is crucial
for simulating a broad spectrum of real-world situations, where
each client may possess varying quantities and types of data. Fig. 3. The distribution of clients

5

Fig. 4. The dataset distribution at the server level

Utilizing the Dirichlet distribution, the dataset for each
client is partitioned in such a way that it reflects the potential
real-life variability in data across clients.

In the Dirichlet distribution, the parameter α controls the
shape of the distribution, which directly influences the degree
of data heterogeneity among the clients. The density func-
tion [31] is given by:

f(x1, ..., xK ;α1, ..., αK) =
Γ(

∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

xαi−1
i

When all the αk are very large and approximately equal (i.e.,
αk = α for all k), and xi ∈ [0,1], we can observe that:

• each xα−1
i in the probability density function approaches

a constant because the value of xi tends towards 1
K .

• the formula for variance indicates that the dispersion of
each Xk decreases.

• therefore, this distribution approaches a uniform distribu-
tion over the hypercube [0, 1]K .

As all αk tend towards infinity, the Dirichlet distribution
approaches a uniform distribution. To evaluate the influence
of different alpha values on the models’ performance, we
would systematically vary the alpha parameter of the Dirichlet
distribution that governs the data distribution across clients and
servers. This examination would reveal how the concentration
parameter alpha, which controls the degree of similarity among
the distributed data subsets, affects the convergence speed,
accuracy, and overall learning efficiency of the models. By
comparing the models’ performance across a range of alpha
settings, we can determine the robustness of the models to
varying degrees of data heterogeneity.

As an example, let us consider a scenario where both the
server-level and client-level datasets exhibit non-IIDness. In
this setup, there are 4 servers, each managing eight clients,
and the dataset used is MNIST. The distribution of datasets at
both the server and client levels follows a Dirichlet distribution
with an alpha value of 1.0. Fig. 4 shows the dataset distribution
at the server level for each server, while Fig. 5(a) represents
the dataset distribution at the client level for each server.

C. Experimental algorithms and models

To conduct more experiments to investigate the impact of
non-IID server sets, controlling variables is necessary. We
implement an experimental algorithm, Alg. 1, to build up the

(a) Dataset distribution for server 0’s clients

(b) Dataset distribution for server 1’s clients

(c) Dataset distribution for server 2’s clients

(d) Dataset distribution for server 3’s clients

Fig. 5. The dataset distribution at the client level

reproducible multi-server FL model. Tab. III summarizes our
notations.

In this model, all controllable parameters are stored in a
Config.json file which can be read and written. Before starting
the experiment, the user should determine the configuration
parameters. These parameters set the various behaviors of the
federated learning system, including communication policies,
optimizer settings, number and behavior of clients and servers,
selection and distribution of datasets, etc.

The BUILDINGMODEL procedure (Alg. 1, ll. 1–11) shows
the model building process, determining whether to instantiate
servers with their clients, and initiate experiments based on the
parameters specified in the Config.json file. The Ns, Avgs,
Nc, SIID, CIID, Dataset, Flag, α s, α c can all be read in
Config.json file.

This procedure serves as the entry point for setting up the
federated learning environment. It first reads the configuration

6

TABLE III
NOTATIONS AND PARAMETER VALUES FOR ALG. 1

Symbol Description
S A list to store all servers
C A list to store all clients
Ns Total number of servers
Nsic The number of required clients for server i
Avgsi Avg speed of all clients associated to the

server i
Speeds Si A list to store all training delay of server i’s

clients
Nc Total number of clients.
SIID (True/False) Indicates whether the dataset distribution

among servers’s clientsets is IID or Non-
IID.

CIID (True/False) Determines whether the data distribution for
each client within a clientset is IID or Non-
IID.

Pctsi The Percentage of clients owned by server
i relative to total number of clients

Asi The area (location) of server i in the map
Aci The area (location) of client i in the map
Distsi,cj The communication delay between server si

and client cj
Ssi, cj Speed of client j of server i (training delay).
Dsi,cj Communication delay (latency) between

server si and client cj .
Lci The set of labels associated with client ci
Lsi Represents the collective set of labels for

server si’s clientset
α s Represents the parameter of Dirichlet distri-

bution for server level
α c Represents the parameter of Dirichlet distri-

bution for client level

file to retrieve necessary inputs. The boolean flag (Alg. 1, ll. 3)
retrieved from the configuration file represents whether the
experiment is being conducted for the first time. When this flag
is set to true, it means that the experiment is being conducted
for the first time. In this case, the procedure proceeds to
create servers and clients using the CREATESERVER function
(Alg. 1, ll. 12–25) and initializes the experiment. After creating
servers and determining their properties, the training delay
of each server’s clients will be calculated using the CAL-
CULATESPEED (Alg. 1, ll. 39–50)) function and be written
into the configuration file. Then, the flag is updated to false
to indicate that the servers and clients are already configured
for subsequent iterations of the experiment. Conversely, if the
flag is equal to false, it implies that the experiment has already
been set up previously. In this scenario, the procedure skips
the server creation step and directly executes the experiment
with the existing configurations.

The CREATESERVER function (Alg. 1, ll. 12–25) is used to
create servers and obtained each server’s clients’ parameters.
First, it will create a Voronoi diagram and determine the
locations that servers can be located, as the blue points shown
in the Fig. 2 based on the required number of servers (ll. 14).

If the data distribution method between servers is chosen
to be the same (SIID is true), the data is equally distributed
to each server; otherwise, it is distributed according to the
Dirichlet distribution based on the input α s (ll. 15–38). The
number of clients is determined by the percentage of clients

owned by server relative to total number of clients Pcts(ll. 19).
For each server, an area number As in the Voronoi diagram

(ranging from 0 to the total number of servers), the number of
clients Nsic each server should have, the dataset Si Data for
each server’s client set, and the average update frequency Lsi

of each server’s client set are assigned. Clients are created
using the CREATECLIENT function, and a server instance
is spawned, recording the relevant parameters. Then, the
information of each server’s location, the number of required
clients are written into the configuration file. Moreover, the
dataset of each server is recorded by writing its data labels
and indexes into the file (ll. 20–24).

Algorithm 1 Reproducible Multi-Server FL Model

Input: Config.json
Output: S (servers with clients and dataset), C (clients)
1: procedure BUILDINGMODEL
2: Read Config.json file to get inputs
3: if Flag then ▷ If true write config, otherwise return
4: CREATESERVER(Ns, Ls, Nc, SIID, CIID, Pctsi ,

α s, α c)
5: for i = 0 to Ns do
6: Speeds Si ←CALCULATESPEED(Nc, C, Si,

Avgs)
7: Write Speeds Si to Config.json
8: Write Flag ← false to Config.json
9: Run the experiment

10: else
11: Run the experiment
12: function CREATESERVER(Ns, Ls, Nc, SIID, CIID,

Pctsi , α s, α c)
13: S ← {}
14: Region← CreateMap(Ns)
15: if SIID then
16: SData(i)← EqualSplit(Dataset,Ns)
17: else
18: SData ← DirichletSplit(Dataset,Ns, α s)

19: Nsc [i]← Nc ∗ Pctsi
20: for i = 1 to Ns do
21: Si ← Nsc [i], random area Asi , SData[i], Ls[i]
22: Si C ← CreateClient(Si, Nsi,c, Si Data,

Region[i], α c)
23: S[i]← Si

24: Write Nsi,c, Lsi dataset distribution to Config.json
25: return S
26: function CREATECLIENT(Si, Nsic, Si Data, Region[i], α c)

▷ For Si

27: C ← {}
28: if CIID then
29: CData ← EqualSplit(Si Data, Nc)
30: else
31: CData ← DirichletSplit(Si Data, Nc, α c)

32: for j = 1 to Nc do
33: location = Random location(Region[i])
34: Acj ← KDTreeCheck(location)

7

35: Cj Data ← CData(j)
36: C[j]← Client(Cj Data, Acj)
37: Write Acj , Cj Dataset to Config.json
38: return C
39: function CALCULATESPEED[FOR Si](Nc, C, Si, Avgs)
40: Speed All← {}
41: A←Matrix size(Nc, # of dataset classes)
42: B ←Matrix size(# of dataset classe)
43: for j = 1 to Nc do
44: Distsi, cj ← CalculateDist(Si, C[j])
45: LCcj ← Cj dataset labels
46: for label, count in Count(LCcj) do
47: A[label][j]← count ∗ (1 + 2 ∗Distsicj)

48: B ← Avgsi ∗ LSi

49: Ssi, cj ← lstsq(A,B)
50: return Ssi, cj

The CREATECLIENT function (Alg. 1, ll. 26–38) is used
to create clients for each server. A specified number of client
instances are generated for each server based on the provided
dataset and map location information. Based on the chosen
data distribution method among clients, the dataset is either
equally partitioned or distributed to each client according to
a Dirichlet distribution(ll. 28–31). For each client, a position
is randomly selected, and the location will be checked by the
building KD tree to ensure the client is in the server’s region.
Then, a client instance is generated and the locations and the
dataset distribution information will be recorded into the file
(ll. 32–37).

The CALCULATESPEED function (Alg. 1, ll. 39–50) is used
to calculate the training delay of each server’s clients. The
training delay is defined below:
N∑
j=1

(
(Ssicj + 2×Distsi,cj + 2)× LCsi,cj

)
= (Avgsi × LSi)

(1)
The rationale behind this equation lies in ensuring a bal-

anced allocation of computational resources in a federated
learning setting. Ssicj means the training delay (speed) of
client j associate with server i. The total consumption time
(speed) for one client is the sum of communication delay
between server and clients and the its training delay. The com-
munication delay from the server to the client is marginally
greater than that from the client to the server, consistently
measured at 2 ms. The total updates of each clients per unit of
time is determined by its labels after dataset distribution. The
sum of all client updates ((Ssicj+2×Distsicj +2)×LCsicj)
is equal to the total updates server should receive on each
label (server’s average speed multiply total labels). From this
equation, we can get the training delay of each clients.

In order to solve this linear equation, we utilize the Least
Squares Method to solve the matrix equation AX = B for
the unknown vector X . First, iterating over each client, this
method constructs the matrix A by calculating the weights and
constant terms obtained from the number of labels in each
client’s training data and the communication latency which is

obtained by transforming Distsicj into communication delays.
Next, it computes the target vector B by tallying the number
of labels in the entire server-level training data and utilizing
the server-level speed. Then, it invokes the numpy.linalg.lstsq
function to solve the matrix equation AX = B, obtaining the
solution vector X , which represents the training time for each
client.

IV. IMPROVED CLIENT-SERVER PAIRING

Due to the negative impact of heterogeneous resources
on the performance of Multi-Server Asynchronous FL, we
propose three solutions in this section to mitigate these effects
and improve accuracy.

A. Overall ideas

The overall idea is to achieve a better data distribution
balance. To achieve this, we developed two methods: Move-
clients, where selected clients are relocated to communicate
with different servers, and Share-clients, where clients alter-
nate communication between their original server and another
server.

In addition, to further enhance the effectiveness of our
approach, we propose a client selection method specifically
designed to identify and select clients that can most effectively
balance the data distribution across servers. This method
strategically chooses clients whose data characteristics, when
shared or moved, will contribute the most to reducing the
impact of non-IIDness on the overall model accuracy.

B. Clients-selection

Before starting to select clients, we first need to evaluate
the non-IIDness of each server. We will select servers with
more balanced data distribution and choose appropriate clients
from these servers to perform operations. The servers with
more severe non-IIDness, referred to as ’target servers’, suffer
from greater data distribution bias, leading to models that may
overfit to local data and perform poorly on the global model.
By introducing clients from other servers, these target servers
can access a more diverse data distribution, reducing data bias
and balancing model training.

Algorithm 2 illustrates a process for selecting clients. Ta-
ble IV detais our notations. The whole selection process
consists of the following main steps:

Initialization (ll. 1-17): In this stage, the system explores
all possible client and server configurations to find an initial
configuration that performs the best in the current performance
evaluation. Specifically, the system starts by initializing vari-
ables such as the step counter and the current best performance
value. Then, it iterates through all servers (excluding the target
server S target) and examines the client sets of each server
to find suitable clients. For each client, the system generates
a tmp config and evaluates its tmp perf . If a valid initial
configuration is found (tmp perf ̸= −∞), the system sets
it as the cur config and stores its performance value as the
cur perf . If no valid initial configuration is found, the system
raises an error.

8

Iterative Optimization (ll. 18-32): After identifying the ini-
tial configuration, the system enters the iterative optimization
stage. During this stage, the system continuously attempts to
generate new configurations based on the previously identi-
fied best configuration by randomly selects a source server
S source and then randomly selects a client C from that
server. It then generates a new config and evaluates its
performance (new perf). If the new perf is better than
the current best performance (new perf ≥ cur perf), the
system updates the current configuration and the current best
performance value. This process continues until the maximum
number of iterations max step is reached.

Performance Evaluation (ll. 33-38): In each configuration
optimization, the system evaluates the overall performance of
the client move or share operation based on the non-IIDness
of the data and the global system speed. The global speed is
calculated through the function CALCULATE GLOBAL SPEED
(ll. 49-67). The CALCULATE GLOBAL SPEED function uses
the move flag to determine whether the client is being moved
to a different server or sharing its data with another server.
If move = True, the client is temporarily moved to the
target server, and the speed is calculated based on this new
configuration before the client is returned to its original
server. If move = False, the client shares its data with
the target server while remaining with its original server, and
the speed is calculated with the client contributing to both
servers. If the global speed is greater than 0, the system
returns a combined performance value, which is a weighted
sum of the non-IIDness and the global speed (ll.38). The
non iidness + coefficient ∗ speed plays a crucial role in
balancing the impact of non-IIDness and global speed in the
performance evaluation. If the global speed is less than or
equal to 0, the system returns an invalid performance value
(−∞) to ensure that this configuration is ignored in subsequent
optimizations

TABLE IV
NOTATIONS AND PARAMETER VALUES FOR ALG.2

Symbol Description
S target Target server
S source A list to store all the servers who has more

balanced data distribution than S target
move A flag. If true, the algorithm is for Moving-

clients strategy. If false, for Share-clients
strategy

cur(tmp) config Current (temporary) configuration, which
includes the target server ID and the se-
lected client ID along with its associated
server’s id

cur(tmp) perf Current (temporary) performance represents
the calculated evaluation value for the cor-
responding configuration.

Algorithm 2 Client selection

Input: S target move max step
Output: cur config
1: procedure INITIALIZE(S target)

2: step← 0
3: move← True
4: cur config ← None
5: cur perf ← −∞
6: for all(S in servers ∧ ≠ S target) do
7: for all(C in S′s clientset) do
8: tmp config = Config(S, S target, C)
9: tmp perf =

Evaluate perf(tmp config,move)
10: if tmp perf ̸= −∞ then
11: cur config ← tmp config
12: cur perf ← tmp perf
13: break
14: if cur perf ̸= −∞ then
15: break
16: if cur config = None then
17: raise ValueError(”No valid initial

configuration found”)
return cur config, cur perf

18: procedure
OPTIMIZEITERATIVELY(S target,max step,move)

19: step← 0
20: cur config, cur perf = INITIALIZE(S target)
21: for step ≤ max step do
22: randomly choose one S as S source
23: randomly choose one C from S source as C
24: new config = Config(S, S target, C)
25: new perf = EVALUATE PERF(

new config,move)
26: if new perf == −∞ then
27: step = step+ 1
28: continue
29: if new perf ≥ cur perf then
30: cur config = new config
31: cur perf = new perf

32: step = step+ 1
return cur config, cur perf

33: function EVALUATE PERF(config,move)
34: non iidness←

Evaluate iidness(config,move)
35: speed←

Calculate global speed(config,move)
36: if speed ≤ 0 then return −∞
37: else
38: return non iidness+ coefficient ∗ speed
39: function Evaluate iidness(config,move)
40: global distirbution← bincount(

total labels of full dataset)
41: if moving then: ▷ true: Move-clients strategy; false:

Share-clients strategy
42: target subsets add C dataset
43: source subsets remove C dataset
44: non iidness =

(calculate kl divergence(target subsets) +
calculate kl divergence(source subsets))/2

9

45: else
46: target subsets add C dataset
47: non iidness =

(calculate kl divergence(target subsets) +
calculate kl divergence(source subsets))/2

48: return 1− non iidness

49: function CALCULATE GLOBAL SPEED(config,move)
50: config.S target.dataset add C.dataset
51: global delay ← 0
52: global speed← 0
53: total updates← 0
54: C.new delay =

config.S target.CALCULATESPEED(
True)[C.id]

55: if C.new delay ≤ 0 then
56: return −∞
57: else
58: S target total delay = sum(

config.S target.CALCULATESPEED(TRUE))
59: if move then:
60: config.S source remove config.C

61: S source total delay = sum(

config.S source.CALCULATESPEED(FALSE))
62: global delay = S source total delay

+ S target total delay
63: total updates =

count(S source.clients.labels)
+count(S target.clients.labels)

64: if move then:
65: move config.C back to config.S source

66: global speed = total updates/global delay
67: return global speed

C. Move-clients Strategy

Based on the number of servers and clients in the model,
one or more target servers can be selected, and one or more
clients can be moved accordingly. In this method, a client is
first selected from a server (usually a server with more evenly
distributed data). The selected client is then ”moved” to the
target server, where it exclusively exchanges data and model
updates with this server. This means that the client’s local
update results will not be sent back to the original server, but
only to the target server. If multiple clients are selected to be
moved, this process is repeated until the top n clients (where
n is the chosen number) are selected for each target server.

After the clients is moved, the system’s Client-Server inter-
actions, including the client’s local training and the server’s
aggregation of models received from clients, as well as the
Server-Server aggregation and Token-Based Model Exchange,
all follow the processes described in Spyker [27] and Sec-
tion II-C.

D. Share-clients Strategy
We also propose two alternative approaches. In the previous

method, the selected client communicated exclusively with
one other server. Now, in the improved method, we allow
the client to communicate with both the original server and
another target server. Those approaches effectively ”shares”
the client between the original server and the target server,
enabling both servers to benefit from the client’s data and
updates. The client-server interactions are different from the
algorithms proposed in Spyker [27], which will be introduced
below.

1) Share-clients with Model Combination: Alg. 3 takes the
average of the models received from both servers, and trains
it locally on the client. After training, the updated model is
alternately sent back to either the original or target server
based on a flag.

Algorithm 3 Client-Server Interactions with Alternating
Servers with Model Combination
Input: Client learning rate ηk, server learning rates ηi, ηj

for servers i and j respectively.
Output: Updated models W t+1

i and W t+1
j for servers i

and j.
1: procedure

ALTERNATE LOCAL TRAINING(W t
i , Ai,W

t
j , Aj)

2: client k receives model W t
i with age Ai from server i

3: client k receives model W t
j with age Aj from server

j
4: W t

k ← Average(W t
i ,W

t
j) ▷ Combine models from

servers i and j
5: η′k ← Decay(ηk)
6: for epoch ∈ Tk do
7: update W t

k with learning rate η′k
8: W t+1

k ←W t
k

9: if Flag trained = True then
10: send (W t+1

k , Ai) to server i
11: Flag trained = False
12: else
13: send (W t+1

k , Aj) to server j
14: Flag trained = True

2) Share-clients with Dual Models: Alg. 4 takes a different
approach by maintaining separate models for each server on
the client. The client alternates between training these models,
ensuring that each server receives updates tailored specifically
to its data distribution.
Algorithm 4 Dual Models Training on Client with
Alternating Flag

Input: Initialized models model 0 and model 1 from
Server i and Server j, initialized ages age 0 and age 1,
learning rate ηk, flag train on server i

Output: Updated model sent to the corresponding server
1: client receives model and age (model 0 ← W t

i age 0 ←
age i) from server i

2: client receives model and age (model 1 ← W t
j age 0 ←

age i) from server j

10

3: if train on server i is True then ▷ Train on Server i’s
model

▷ Local Training on model 0
4: η′k ← Decay(ηk)
5: for each epoch ∈ Tk do
6: model 0← LocalTraining(model 0, η′k)
7: SendModel(Server i, model i, age 0)
8: train on server0← False
9: else ▷ Train on Server 1’s model ▷ Local Training on

model 1
10: η′k ← Decay(ηk)
11: for each epoch ∈ Tk do
12: model 1← LocalTraining(model 1, η′k)
13: SendModel(Server 1, model 1, age 1)
14: train on server0← True

V. PERFORMANCE EVALUATION

In this section, we first describe our experimental settings.
Then, we analyze the impact of non-IID resources across
servers as well as clients and study the impact of different non-
IID datasets on the accuracy of Multi-Server Asynchronous
FL. Moreover, we compare our three proposed solutions
with the algorithms from Spyker. The comparison focuses on
accuracy.

A. Settings

Baseline and Experimental Models. We compare our three
solutions with Spyker [27] which is described in Section II-C.
All of our experiments are conducted on the reproducible FL
model described in Section III. This model allows experiments
to be carried out with controlled variables by specifying the
experimental parameters in a configuration file. This approach
not only ensures consistency and reproducibility across exper-
iments but also provides flexibility in adjusting parameters to
explore different scenarios systematically.

Datasets. We conduct experiments on the MNIST and
CIFAR-10 image collections. The MNIST dataset is a collec-
tion of 70,000 grayscale images of handwritten digits (0-9).
The CIFAR-10 dataset is a collection of 60,000 color images,
categorized into 10 classes.

Time Consumption and Network Delays. Our experiments
account for both time consumption and network delays. The
average server’s local training time is approximately 200 ms,
which was determined by benchmarking all algorithms using
the Python TIME package. Additionally, the communication
delays between servers are based on their geographic distri-
bution on the Voronoi diagram, as detailed in Section III-A1.
The training delays for the clients are calculated according
to the data distribution, using Equation 1 as described in
Section III-C. Furthermore, the network delay between a server
and a client within its region is calculated by combining the
client’s training delay, the round-trip communication delay,
and an additional 2 ms to account for timing discrepancies
between the round-trip delays. This is expressed by the fol-
lowing equation:

Network delay = C training delay+2∗comm delay+2
(2)

This comprehensive approach ensures that our model ac-
curately reflects real-world conditions by incorporating both
computational and communication factors.

Heterogeneous Data Distribution. In federated learning
frameworks, the dataset distribution follows a hierarchical
approach. Initially, it is partitioned among the server’s client
sets, adhering to either IID or non-IID principles. This primary
allocation is then refined by distributing the data within each
client set to its respective clients, maintaining the designated
IID or non-IID scheme. This structured methodology allows
for nuanced control over data distribution across both server
and client levels, facilitating a comprehensive exploration of
various non-IID scenarios. Tab. V encapsulates the possible
scenarios.

The non-IID distribution is predicated on the Dirichlet
distribution as described in Section III-B1, offering a versatile
method to mirror the varied data distributions across different
clients, thus simulating real-world data diversity. Conversely,
the IID distribution is achieved through an equitable split of
the dataset into shards of equal size. This method ensures that
each client receives an identical amount of data, irrespective
of the total data volume or the specified number of clients,
thus fostering uniformity across all clients.

TABLE V
SUMMARY OF DATA DISTRIBUTION SCENARIOS

Scenario Server Level Distribution Client Level Distribution
1 IID IID
2 IID Non-IID
3 Non-IID IID
4 Non-IID Non-IID

B. Comparison among IID and Non-IID scenarios

We compare the 4 scenarios shown in Tab. V for Spyker,
a novel multi-server and fully asynchronous FL framework
that relies on a flat of architecture of geo-distributed servers,
on Fmnist dataset. We employ a distributed computing setup
involving 4 servers and 32 clients, with the clients evenly
divided among the servers, meaning each server is allocated 8
clients. To simulate non-IID data scenarios, at the server-level,
client-level, and both server-client-level, we use the Dirichlet
distribution with an alpha value of 0.1.

The results are shown in the Fig. 6. In the figure, the ’IID’
scenario shows a rapid increase in accuracy with the initial
few updates, suggesting that models converge faster with IID
data. The accuracy of both Server noniid and Client noniid
remains consistently lower than that of the IID scenario. This
demonstrates the negative impact of non-IID data on model
accuracy, especially when such skewed data distribution is
present both at the client and server levels. However, compar-
ing non-IID data at the server and client levels, Server noniid
performs worse than Client noniid and almost as bad as

11

all noniidscenario, suggesting that server-level non-IID data
have a greater impact on model accuracy compared to client-
level in this instance.

0 250 500 750 1000 1250 1500 1750 2000
Updates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

FMNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

All_noniid
Client_noniid
Server_noniid
iid

Fig. 6. Data distribution results (MNIST: 32 clients, 4 servers. α = 1)

C. Comparing the impact of different α values

We set up an experiment to compare the results obtained
for different α values, which control the degree of server-level
non-iidness in Alg. 1, from 0.1 to 1 in the case of server-level
non-IID for Spyker algorithm. 4 server and 32 clients are used
and each serve has 8 clients. The result is shown in Fig.7:

0 1000 2000 3000 4000 5000
Updates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

FMNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Alpha=0.1
Alpha=0.2
Alpha=0.4
Alpha=0.8
Alpha=1

Fig. 7. Impact of different alpha on accuracy (MNIST: 100 clients, 4 servers)

The Fig. 7 demonstrate that lower α values, which repre-
sent more skewed non-IID data distributions, result in lower
overall accuracy and slower convergence, demonstrating the
challenges posed by non-IID data in FL.

D. Comparing the Move-Clients and Share-Clients strategies

As illustrated in Section V-B, it is clear that the server-
side non-IID data distribution has significantly reduced the
accuracy of the MultiAsync FL model. The impact is partic-
ularly pronounced, with server-level non-IIDness leading to a
noticeable decline in performance compared to other scenarios.
Additionally, as discussed in Section V-C, the system exhibits
lower accuracy when the Dirichlet distribution parameter α
is 0.1. Given these observations, we have chosen to focus on

the server non-IIDness scenario with α set to 0.1 in order
to better evaluate the effects of the Move-Clients and Share-
Clients strategies on accuracy. This focus allows us to more
clearly isolate and understand how these strategies influence
the system’s performance under conditions of heterogeneous
data distribution.

We conduct our experiments using 16 clients and 2 servers
with the MNIST and CIFAR10 dataset. The clients are evenly
distributed between the two servers, with each server managing
8 clients. A single client is selected for both the Move-
Clients and Share-Clients strategies. To ensure consistency
and accurate comparisons, we maintain strict control over
variables. Notably, the locations of the servers, the distribution
of clients, and the training delays of all clients, except for the
chosen client, remain identical across all experiments. This
approach ensures that any observed differences in performance
are solely due to the applied strategies. The results shown in
Fig. 8 and Fig. 9

Fig. 8 shows that the Move-Clients strategy (red line) has
the fastest accuracy improvement and reaches the highest
final accuracy around 4.815%. Tab. VI supports this, showing
that this strategy reduces time and updates by 82.39% and
82.64% at 90% accuracy, and by 85.67% and 85.82% at 95%
accuracy. Moreover, Fig. 9 indicates the the experiments run
on CIFAR10 have the same results as the experiments on
MNIST. However, CIFAR-10(Fig. 9) results are ultimately less
accurate due to the complexity of the data and the complexity
of the model.

The Share-Clients strategy with dual models (represented by
the purple line) also shows a noticeable increase in accuracy,
though at a slower rate and with a slightly lower final accuracy
compared to the Move-Clients strategy. Table VI indicates that
this strategy reduces time and updates by 26.79% and 30.76%
at 90% accuracy, and by 34.09% and 37.73% at 95% accuracy.

In contrast, the Share-Clients strategy with the model com-
bination, called Avg Model(blue line), shows the slowest
improvement and the lowest final accuracy. Table VI shows
that this strategy increases time by 10.43% and updates by
6.88% at 90% accuracy, indicating it is less effective in
handling non-IID data distributions.

TABLE VI
MNIST: COMPARISON OF METHODS WITH IMPROVEMENT

Method 90% Accuracy 95% Accuracy
Time Updates Time Updates

Baseline 17264.77s 3165 33669.64s 6178
(0%) (0%) (0%) (0%)

Avg Model 19064.03s 3556 26826.92s 6603
(-10.43%) (-6.88%) (20.01%) (-6.88%)

Move 3038.99s 549 4826.16s 876
(82.39%) (82.64%) (85.67%) (85.82%)

Share 12638.63s 2204 22188.43s 3847
(26.79%) (30.76%) (34.09%) (37.73%)

12

0 1000 2000 3000 4000 5000 6000 7000
Updates

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Avg Model
Baseline
Move
Share

0 5000 10000 15000 20000 25000 30000 35000 40000
time

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Avg_model
Move
Share

Fig. 8. Comparison of strategies(MNIST: 16 clients, 2 servers, α = 0.1)

E. Impact of Number of Clients on the Move-Clients and
Share-Clients Strategies

We evaluate the impact of the number of clients from
two perspectives: the number of clients per server and the
number of chosen clients. Since the results of the Share-
Clients strategy with model combination show that it does not
effectively mitigate the impact of non-IID data distribution,
we will exclude this method from our analysis.

1) Modifying the number of clients per server: Our ex-
periments involve 32 clients and 2 servers using the MNIST
dataset. The clients are evenly distributed between the two
servers, with each server managing 16 clients.

For both the Move-Clients and Share-Clients strategies,
a single client is selected. Fig. 10 shows that the Share-
Clients strategy (represented by the purple line) achieves the
highest accuracy, surpassing both the Move-Clients strategy
(represented by the red line) and the baseline (represented by
the yellow ine). Compare with the Fig. 8, which indicates
that as the number of clients increases, the Share-Clients
strategy becomes more effective, leading to better accuracy.
Additionally, the accuracy growth is more pronounced and
stable in the Share-Clients strategy, suggesting that sharing
client updates between servers can significantly reduce the
negative impact of non-IID data distribution when more clients
are involved. Through alternate communication, each server’s

0 500 1000 1500 2000 2500 3000
Updates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIFAR10: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Avg Model
Baseline
Move
Share

0 500 1000 1500 2000 2500 3000
Updates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIFAR10: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Avg Model
Baseline
Move
Share

Fig. 9. Comparison of strategies(CIFAR10: 16 clients, 2 servers, α = 0.1)

model receives regular updates from different data distribu-
tions, reducing overfitting on specific data and improving the
generalisation of the model.

2) Modifying the number of chosen clients: Our experi-
ments involve 4 servers and 32 clients, with each server man-
aging 8 clients, using the MNIST dataset. We will compare
two scenarios: in the first, a single client from a server with a
more severely skewed non-IID data distribution is selected and
moved to another server; in the second scenario, two clients
from two different servers are selected and moved to two
other servers that also have more severely skewed non-IID
data distributions.

Fig. 11 and Fig. 12 indicate that both the Move 1 client and
Move 2 clients strategies show a improvement in accuracy
over the baseline and Share-Clients strategies. In the Move
1 client scenario, the accuracy curve for the Move-Clients
strategy (orange line) is slightly higher than the Share-Clients
strategy (green line) and the baseline (blue line). This indicates
that moving a single client to a different server when the
total server number is increasing, cannot significantly improve
model performance under non-IID conditions. The Move 2
clients strategy further amplifies this effect, with the accuracy
curve for the Move-Clients strategy showing even greater
accuracy improvements compared to Move 1 client. This
suggests that increasing the number of moved clients enhances

13

0 2000 4000 6000 8000
Updates

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

0 5000 10000 15000 20000
time

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

Fig. 10. Comparison of # clients (MNIST: 32 clients, 2 servers, α = 0.1)

the system’s ability to mitigate the effects of non-IID data
distributions. In the Move 1 client scenario, the accuracy
curves for the Move-Clients strategy and the Share-Clients
strategy are quite close, in contrast, in the Move 2 clients
scenario, the Move-Clients strategy shows a more pronounced
improvement over the Share-Clients strategy. This highlights
the scalability of the Move-Clients approach and suggests that
its effectiveness increases with the number of clients moved,
making it a more powerful tool for addressing non-IID data
distributions in federated learning when applied to a larger set
of clients.

VI. RELATED WORK

A. Dirichlet distribution’s utilization in FL

The Dirichlet distribution was described in [32]. It is a
multivariate generalization of the Beta distribution and an
important multivariate continuous distribution in probability
and statistics [33].

The probability density function (PDF) of the Dirichlet
distribution is given by:

f(x;α) =
1

B(α)

K∏
i=1

xαi−1
i

where x = (x1, x2, ..., xK) is the vector of K elements,
and α = (α1, α2, ..., αK) represents the parameters of the

0 2000 4000 6000 8000 10000
Updates

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

0 5000 10000 15000 20000
time

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

Fig. 11. Move 1 client (MNIST: 32 clients, 4 servers, α = 0.1)

distribution. The multivariate Beta function B(α) is defined
as:

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
Here, Γ(·) denotes the gamma function.
The primary applications of the Dirichlet distribution re-

volve around modeling heterogeneity among clients to enhance
the efficiency of both model aggregation and task allocation
in various contexts. Unlike methods that impose equal sample
sizes among clients or enforce uniform Earth Mover’s Distance
(EMD) values across clients, the Dirichlet distribution method
stands out for its ability to accommodate varying sample sizes
and non-uniform EMD values. This characteristic contributes
to the realism of the Dirichlet distribution method, align-
ing well with the complexities often observed in real-world
datasets [34].

There are many FL methods utilize the Dirichlet distribu-
tions for generating the non-iid dataset [35]–[37]. In order to
simulate the label distribution skew which is one of non-IID
data setting, [35] introduces distribution-based label imbalance
settings that each party is allocated a proportion of the samples
of each label according to Dirichlet distribution.

14

0 2000 4000 6000 8000 10000
Updates

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

0 5000 10000 15000 20000 25000
time

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move
Share

Fig. 12. Move 2 clients (MNIST: 32 clients, 4 servers, α = 0.1)

B. FL with control variates

SCAFFOLD [6] is a method designed to address the con-
vergence issues in federated learning caused by Non-IID data
distributions. Traditional federated learning methods, such as
FedAvg, often struggle with Non-IID data, leading to local
model updates that deviate from the optimal direction of the
global model, ultimately slowing down the convergence and
potentially harming the overall performance. SCAFFOLD in-
troduces control variates to correct the ‘client-drift’ introduced
during local training, thereby enhancing the convergence of
the global model. Specifically, SCAFFOLD maintains both
local and global control variates for each client, which are
used to adjust the local updates and correct the drift caused
by Non-IID data. During each training round, clients adjust
their model updates based on these control variates, ensuring
that the updates are more aligned with the optimal direction
for the global model. When aggregating the models, the server
does not simply average the updates but also adjusts the global
control variate based on the corrected updates, ensuring faster
convergence and improved final accuracy. This approach al-
lows SCAFFOLD to effectively mitigate the challenges posed
by Non-IID data in federated learning systems, resulting in
faster convergence and higher accuracy, making it particularly
suitable for scenarios with heterogeneous data distributions.

C. FL with overlapping area clients update models via re-
gional model averaging

The paper ”On the Convergence of Multi-Server Federated
Learning With Overlapping Area” [26] explores the dynamics
of federated learning within a multi-server environment, partic-
ularly focusing on clients situated in overlapping regions that
are influenced by multiple servers. The primary contribution
of this work is its use of a model averaging technique, where
clients in overlapping areas update their local models based
on an averaged model derived from the accessible regional
models. This method is designed to improve the convergence
of the global model by mitigating biases caused by data
heterogeneity across different regions.

Importantly, the approach taken in this paper is syn-
chronous, meaning that model updates are synchronized across
clients at regular intervals, with all clients typically waiting
to complete their updates before aggregation occurs. This
synchronization helps manage the integration of updates from
overlapping areas, ensuring consistency in the global model.

VII. CONCLUSION

In this paper, we addressed the challenges of implementing
Federated Learning (FL) in environments characterized by
heterogeneous data distributions and asynchronous communi-
cation across multiple servers. Traditional FL systems, which
rely on synchronous updates and homogeneously distributed
data, often struggle in real-world scenarios where data is non-
IID and resources vary widely.

To better study the impact of non-IID data distributions
on FL systems, we provided a reproducible Multi-Server FL
model with heterogeneous resources. This framework allows
for controlled and consistent testing of various FL strategies
under different conditions, offering a robust model for analyz-
ing the effects of data heterogeneity on system performance.

Within this framework, we introduced three novel strate-
gies to enhance the robustness and efficiency of multi-server
asynchronous FL: moving clients between servers, sharing
clients among servers with dual models, and sharing clients
with model combination. To further support the effectiveness
of these strategies, we developed a client selection method
that aids in optimizing client contributions by strategically
selecting and reassigning clients in scenarios with non-IID
data distributions. This method enhances the overall approach
by ensuring that clients most suitable for balancing data
distribution and improving model accuracy are prioritized.

Our experiments demonstrated that while the Share-clients
with model combination method did not perform as well in im-
proving model accuracy, the Move-clients method showed sig-
nificant effectiveness, especially when the number of servers
remains constant and the number of clients is relatively small.
This method was able to reduce training time by up to 85.67%
and decrease the number of updates required by 85.82%. How-
ever, as the number of clients increases, the Share-clients with
dual models method proved to be more advantageous, offering
a balanced improvement in model accuracy (by 4.815%) while
maintaining efficiency in large-scale client environments.

15

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” 2016. [Online]. Available: https://arxiv.org/abs/1602.05629

[2] ——, “Communication-efficient learning of deep networks from decen-
tralized data,” 2023.

[3] B. Cox, L. Y. Chen, and J. Decouchant, “Aergia: Leveraging
heterogeneity in federated learning systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.06154

[4] T. Zhou and E. Konukoglu, “Fedfa: Federated feature augmentation,”
2023. [Online]. Available: https://arxiv.org/abs/2301.12995

[5] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” 2020. [Online].
Available: https://arxiv.org/abs/1812.06127

[6] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” 2021. [Online]. Available: https://arxiv.org/abs/1910.06378

[7] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling
the objective inconsistency problem in heterogeneous federated
optimization,” 2020. [Online]. Available: https://arxiv.org/abs/2007.
07481

[8] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,”
2021. [Online]. Available: https://arxiv.org/abs/2003.00295

[9] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.07948

[10] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated
multi-task learning,” 2018. [Online]. Available: https://arxiv.org/abs/
1705.10467

[11] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
2021. [Online]. Available: https://arxiv.org/abs/2103.16257

[12] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated
learning on heterogeneous devices: A survey,” Computer Science
Review, vol. 50, p. 100595, 11 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S157401372300062X#sec3

[13] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” 2020. [Online].
Available: https://arxiv.org/abs/1911.02134

[14] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q. S.
Quek, “Asynchronous federated learning over wireless communication
networks,” IEEE Transactions on Wireless Communications, vol. 21,
no. 9, pp. 6961–6978, 2022.

[15] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “Fedsa:
A semi-asynchronous federated learning mechanism in heterogeneous
edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3654–3672, 2021.

[16] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[17] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

[18] S. M. Azimi-Abarghouyi and V. Fodor, “Scalable hierarchical over-the-
air federated learning,” 2023.

[19] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning,” in Third workshop on bayesian deep learning
(NeurIPS), vol. 2, 2018.

[20] Y. Shi, L. Shen, K. Wei, Y. Sun, B. Yuan, X. Wang, and D. Tao,
“Improving the model consistency of decentralized federated learning,”
2023. [Online]. Available: https://arxiv.org/abs/2302.04083

[21] M. S. H. Abad, E. Ozfatura, D. Gündüz, and Ö. Erçetin, “Hierarchical
federated learning across heterogeneous cellular networks,” CoRR, vol.
abs/1909.02362, 2019. [Online]. Available: http://arxiv.org/abs/1909.
02362

[22] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning: clients clustering for better personalization,” World
Wide Web, vol. 26, no. 1, p. 481–500, Jun. 2022. [Online]. Available:
http://dx.doi.org/10.1007/s11280-022-01046-x

[23] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” 2021.

[24] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing
federated learning with global imbalanced data in mobile systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59–
71, 2021.

[25] D.-J. Han, M. Choi, J. Park, and J. Moon, “Fedmes: Speeding up
federated learning with multiple edge servers,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3870–3885, 2021.

[26] Z. Qu, X. Li, J. Xu, B. Tang, Z. Lu, and Y. Liu, “On the convergence
of multi-server federated learning with overlapping area,” 2022.

[27] J. D. L. Y. C. Yuncong Zuo, Bart Cox, “Asynchronous Multi-Server
federated learning for Geo-Distributed clients,” 6 2018. [Online].
Available: https://arxiv.org/html/2406.01439v1

[28] Matt, “Home — CloudPing - AWS Latency Monitoring.” [Online].
Available: https://www.cloudping.co/grid

[29] I. Borg and P. J. F. Groenen, “Modern Multidimensional Scaling:
theory and applications,” Journal of educational measurement,
vol. 40, no. 3, pp. 277–280, 9 2003. [Online]. Available: https:
//doi.org/10.1111/j.1745-3984.2003.tb01108.x

[30] J. Chen, C. Li, Z. Li, and C. M. Gold, “A Voronoi-based 9-intersection
model for spatial relations,” International journal of geographical
information science (Print), vol. 15, no. 3, pp. 201–220, 4 2001.
[Online]. Available: https://doi.org/10.1080/13658810151072831

[31] W. contributors, “Dirichlet distribution,” 1 2024. [Online]. Available:
https://en.wikipedia.org/wiki/Dirichlet distribution

[32] P. G. Dirichlet, “Sur la distribution des fréquences,” Bulletin de la
Société Mathématique de France, vol. 17, pp. 204–207, 1868.

[33] J. Lin, “On the dirichlet distribution,” Department of Mathematics and
Statistics, Queens University, pp. 10–11, 2016.

[34] I. Cornelis, “Federated learning from non-iid data: Improving accuracy
through data-augmentation and communication efficiency,” 2022.

[35] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2022, pp. 965–978.

[36] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE journal on selected areas in communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[37] H.-Y. Chen and W.-L. Chao, “Fedbe: Making bayesian model ensemble
applicable to federated learning,” 2021.

16

2
Extended Related Work

In Chapter 1, we introduced related work in the Background and RelatedWork sections, covering topics
such as the basic theory of FL, Multi-Server FL Models, and the Multi-Server Asynchronous FL System
Model. In this chapter, we will delve deeper into related work, specifically focusing on methods for
constructing heterogeneous data, algorithms designed to address the challenges posed by FL with
heterogeneous data, and client selection in FL.

2.1. Common Methods to Construct Non-IIDness
2.1.1. Label skew

• Shard-Based Partitioning: Mc Mahan et al. [4] presented the FedAvg algorithm, and investi-
gated a learning technique that allows users to collectively reap the benefits of shared models
trained from their collective datasets, without the need to centrally store it. They perform ex-
tensive experiments on this algorithm, demonstrating that it is robust to unbalanced and non-IID
data distributions. They create non-IID data by sorting data by label and partitioning it into shards.
Each client receives a few shards, resulting in clients having data from only a subset of classes.
However, all the shards are equal-sized.

• Label Preference Assignment: This method assigns each client a preference for certain labels
based on a predefined probability distribution or preference matrix. Canh T. Dinh et al. proposes
an algorithm for personalized FL (pFedMe) [7] using Moreau envelopes as clients’ regularized
loss functions, which help decouple personalized model optimization from the global model learn-
ing in a bi-level problem stylized for personalized FL. They simulate non-iidness by assigning a
preference for certain classes to each client. This is done by modifying the distribution of labels
each client sees, ensuring that some clients have a higher probability of receiving samples from
specific classes.

• Class-Based Partitioning: Yue Zhao et al. [10] focuses on the statistical challenge of FL when
local data is non-IID. The authors created a non-iid setting by sorting the data by class and then
partitioning it to simulate two extreme scenarios: in the 1-class non-iid case, each client received
data exclusively from a single class, resulting in highly skewed distributions; in the 2-class non-
iid case, the sorted data was divided into 20 partitions, and each client was randomly assigned
two partitions, leading to each client having data from exactly two classes, which introduced a
moderate level of non-iidness.

• Random Sampling with Constraints: Hongyi Wang et al. proposes Federated matched av-
eraging (FedMA) algorithm [8] designed for FL of modern neural network architectures e.g. con-
volutional neural networks (CNNs) and LSTMs. To simulate non-iid data distributions, they used
random sampling with constraints to ensure that each client receives data from a limited subset of
the classes for the Shakespeare dataset. They preprocess the Shakespeare dataset by filtering
out the clients with less than 10k datapoints and sampling a random subset of clients. This con-
straint on the random sampling process creates a realistic scenario where different clients have

18

2.2. Algorithms for Mitigating Challenges in FL with Heterogeneous Data 19

access to different types of data, reflecting the heterogeneity in real-world applications.

The method we used to construct non-iid data distribution is a form of label skew based on the Dirichlet
distribution. This approach assigns different label distributions to each client, resulting in imbalanced
data with significantly varying label proportions across clients. The details can be found in the Section
III.B of the research paper.

2.1.2. Quantity skew
Quantity Skew happens when different clients have very different amounts of data. The paper [6] written
by Qu et al. explores how various types of data heterogeneity can negatively affect FL methods.

In this approach, Qu et al. create Quantity Skew by generating four sets of data partitions where the
number of samples varies across simulated institutions. Each partition represents a different institution,
with all institutions sharing the same feature and label distributions. However, the key difference lies in
the quantity of data each institution possesses. The variability in sample sizes across these institutions
introduces the Quantity Skew, which allows the authors to study its impact on FL methods.

To quantify the degree of Quantity Skew, they use the sample standard deviation (STD) of the sample
sizes across the institutions. A higher standard deviation indicates a greater difference in the amount
of data between institutions, thereby reflecting a higher degree of Quantity Skew. This setup simulates
scenarios where some institutions have significantly more data than others, enabling the authors to
analyze how FL methods perform under these imbalanced conditions.

2.1.3. Imaging acquisition skew
Imaging Acquisition Skew arises when the images in a dataset are collected under different acquisition
settings, resulting in variations in the image characteristics (e.g., color, contrast, noise). These varia-
tions can be due to different cameras, environments, times of day, or even different protocols for image
capture.

Liangqiong Qu et al. employs three different splits to explore the impact of Imaging Acquisition Skew
on FL in the medical domain [6]. They generated a real data partition on the ADNI dataset that pro-
vides a longitudinal multi-institutional observation study on Alzheimer’s disease patients. In the first
method, they introduced resolution skew by progressively decreasing the image resolution across four
institutions, with Institution 1 having the lowest resolution and Institution 4 the highest. In the second
method, involved signal-to-noise ratio (SNR) skew, where different types of noise and blurring (such as
Gaussian noise, motion blur, and combinations thereof) were applied to the images at each institution,
leading to varying image quality across institutions. Finally, In the third method, the ADNI dataset was
resplit based on the scanner vendors, dividing the data into four institutions according to the imaging
devices from manufacturers like GE Healthcare, Philips Healthcare, and Siemens Healthcare, while
ensuring minimal quantity and label distribution skew.

These variations mimic the real-world scenario where medical images, such as X-rays, MRIs, or PET
scans, may differ significantly depending on the equipment or protocols used at different healthcare
facilities.

2.2. Algorithms for Mitigating Challenges in FL with Heterogeneous
Data

In this section, we review the key algorithms designed to mitigate the impact of heterogeneous data
across different FL setups. We explore and categorize these algorithms based on the following FL
setups: Single Server Synchronous, Single Server Asynchronous, and Multi-Server Synchronous al-
gorithms. For each category, we will introduce one key algorithm.

2.2.1. Single-Server Synchronous FL
FedAvg is one of the foundational algorithms in FL, explained in the background section of research
paper in Chapter 1. It is a heuristic method that updates the global model by averaging local stochastic
gradient descent (SGD) updates from the participating clients. While effective in practice, FedAvg is
not well-suited for heterogeneous environments due to its reliance on local updates, the limited number

2.2. Algorithms for Mitigating Challenges in FL with Heterogeneous Data 20

of devices participating in each round, and the frequent heterogeneity in data distribution. FedAvg
largely overlooks system heterogeneity. In real-world applications, if some local models fail to complete
training within the allotted time, those models are discarded, which can reduce the accuracy of the
global model. Inspired by FedAvg, the broader FedProx [5] framework was proposed by Li Tian et al.
to address the challenges of heterogeneous federated environments while maintaining similar privacy
and computational cost advantages.

FedProx builds upon FedAvg by introducing a regularization term that penalizes the deviation of the
model parameters from the global model parameters. Specifically, FedProx aims to minimize the fol-
lowing objective function:

L(w) =

K∑
k=1

nk

n

(
Fk(w) +

µ

2
∥w − wt∥2

)
(2.1)

where w represents the model parameters, K is the number of clients, nk is the number of data points
in the kth client, n is the total number of data points across all clients, Fk(w) is the loss function on the
kth client, µ is the regularization parameter controlling the strength of consistency between the local
updates and the global model, and wt represents the current global model parameters.

∑K
k=1

nk

n Fk(w)
represents the weighted average loss across all clients, ensuring that the model optimization is effec-
tive not just on a specific client but across all participating clients. µ

2 ∥w−wt∥2 ensures that during each
training round, the local updates do not deviate too much from the initial global model parameters,
which is particularly important in scenarios with communication constraints or heterogeneous data dis-
tribution among clients. Through this approach, the FedProx algorithm aims to improve the efficiency
and effectiveness of standard FL methods (such as FedAvg) when dealing with non-iid data or clients
with varying computational capabilities and data volumes.

The core of FedProx is the introduction of a regularization term that penalizes the extent to which
the model parameters deviate from the initial global model parameters, thereby controlling the local
updates. The specific steps are as follows:

1. The central server initializes the global model parameters w0

2. A subset of clients is selected, and the current global model parameters wt are sent to these
clients.

3. Each client trains the model on its local dataset. Unlike FedAvg, a regularization term µ
2 ∥w−wt∥2

is added during training, with the aim of constraining the direction of the local model updates so
that they do not deviate too far from the global model.

4. After training is completed, the clients send the updated local model parameters or the differences
from the global model parameters back to the central server.

5. The server aggregates these updates, potentially weighted by the contribution of each client
(which may be based on data volume or other metrics), and updates the global model accord-
ingly.

6. Steps 2 to 5 are repeated until convergence is achieved or sufficient training rounds are com-
pleted.

Through this method, FedProx not only addresses the issue of data distribution but also reduces the
fluctuation of the model during training via the regularization term, making the model more robust,
particularly in scenarios where client environments are highly heterogeneous. This gives FedProx an
advantage over traditional FL methods in practical applications.

2.2.2. Single-Server Asynchronous FL
To improve the flexibility and scalability of FL, a new asynchronous federated optimization algorithm,
FedAsync [9], has been proposed by Cong Xie et al. FedAsync also helps to alleviate heterogeneity
and accelerate model convergence.

Fig. 2.1 provides an overview of the FedAsync system, illustrating how asynchronous FL is managed
between devices and servers.

2.2. Algorithms for Mitigating Challenges in FL with Heterogeneous Data 21

Figure 2.1: Overview of FedAsync’s training process [9]

Figure 2.2: Overview of HierFAVG’s training process [3]

• Step 0: The scheduler triggers training through the coordinator.
• Steps 1 and 2: The server sends the model xt−τ to the worker via the coordinator.
• Step 3: The worker computes local updates. The worker can switch between the ”Working” and
”Idle” states.

• Steps 4, 5, and 6: The worker sends the locally updated model back to the server via the coordi-
nator. In Step 5, the coordinator queues the received local models; in Step 6, the updated local
models are sequentially submitted to the Updater.

• Steps 7 and 8: The server updates the global model and transmits the updated model to the
coordinator.

In the FedAVG algorithm, the server waits until the number of responding clients reaches C ×n before
performing the weighted averaging to obtain the global model parameters. However, in FedAsync, the
server does not wait. As soon as a worker sends its parameters (model parameters and staleness),
the server performs weighted averaging immediately. The global model update is influenced by the
staleness, with a mixing parameter α used to control the weight. This asynchronous approach allows
FedAsync to adapt more quickly to the diverse and often imbalanced contributions from clients, which
is a common scenario in non-iid settings.

2.2.3. Multi-Server Synchronous FL
Most FL models always assumed a central server, either in the cloud or at the edge. Cloud servers
have access to more data but incur excessive communication overhead and longer latency, while edge
servers can communicate more efficiently with clients. To combine the advantages of both, Paper [3]
propose a client-edge-cloud hierarchical FL system, which supports the HierFAVG algorithm that allows
multiple edge servers to perform partial model aggregation. HierFAVG has three main steps shown in
Fig. 2.2: client local training, edge server aggregation and global aggregation. HierFAVG operates by
having each edge server aggregate the models from its clients after every k1 local updates. Subse-
quently, after every k2 edge model aggregations, the cloud server aggregates the models from all edge

2.3. Client selection in FL 22

Figure 2.3: The structure of Oort [1]

servers. This means that communication with the cloud occurs after every k1k2 local updates.

HierFAVG reduces the impact of non-iidness by performing localized model aggregation at the edge
server level before global aggregation. This approach allows for smoothing out extreme variations in
model updates from clients with heterogeneous data, ensuring that more similar data distributions are
aggregated first. By reducing the divergence in model updates at the edge level, the global model
becomes more stable and consistent, effectively mitigating the challenges posed by non-iid data.

2.3. Client selection in FL
The primary reason for client selection in FL is to enhance the time-to-accuracy performance and im-
prove the final model accuracy. In traditional FL approaches, clients are often randomly selected,
which can lead to inefficient training because of the large heterogeneity in data characteristics and sys-
tem performance across clients. Random selection might include clients with poor connectivity, slow
processing power, or less relevant data, which can elongate training rounds and degrade model per-
formance. Therefore, selecting clients that are both statistically useful (i.e., they can provide significant
improvements in model accuracy) and system-efficient (i.e., they can process and transmit data quickly)
is essential for achieving better and faster convergence in FL.

Fan Lai et al. introduces Oort [1], an approach designed to enhance FL and testing performance
through guided participant selection, which is shown in Fig. 2.3. To optimize time-to-accuracy during
model training, Oort prioritizes clients who possess data with the highest potential to improve model
accuracy and who can execute training efficiently.

Oort selects clients by assessing both their statistical utility and system efficiency to optimize FL per-
formance. It evaluates the potential impact of each client’s data on the overall model, prioritizing those
whose data is most valuable for reducing model error. Simultaneously, it considers the system capabil-
ities of each client, favoring those who can process and transmit data quickly. To maintain a balance,
Oort dynamically manages the trade-off between selecting high-utility clients and those with better
system performance. Additionally, it employs an exploration-exploitation strategy, probabilistically se-
lecting clients to ensure robustness and adaptability over time.

In Oort, clients are designed to upload their complete model updates to the central server during each
round. However, this approach fails to account for the fact that not all updates contribute equally to
model training. Due to the diversity in client data sizes and the varying importance of their samples,
uploading less significant updates can substantially reduce system efficiency.

Chenning Li et al. studies the under-exploited system efficiency in Oort, and proposes an algorithm
called PyramidFL [2]. The overview of PyramidFL is shown in Fig. 2.4. It begins by calculating a
utility score for each client, taking into account the relevance of their data and their system capabilities.
Clients are then ranked based on these utility scores, which determines their selection for training and
the configuration of their local training processes, such as the number of iterations and the amount of
data to be used. This ranking-based approach ensures that the most beneficial clients are prioritized,

2.3. Client selection in FL 23

Figure 2.4: Overview of PyramidFL [2]

while others can adjust their training to optimize their contributions. Additionally, PyramidFL allows
clients to adapt their local training based on their ranking, utilizing idle timemore effectively and reducing
communication overhead by dropping less significant updates. An exploration-exploitation mechanism
is also integrated, balancing the selection of consistently high-utility clients with the need to explore
and involve new clients. This process enables PyramidFL to achieve faster convergence and higher
model accuracy by fully exploiting the heterogeneity in data and system capabilities among clients.

3
Additional Experiments

In this chapter, to complement our experiments described in the research paper, we conduct additional
experiments to further evaluate and validate our proposed solutions. These additional experiments aim
to provide a more comprehensive assessment of our methods and their effectiveness in addressing the
challenges posed by our research paper.

3.1. Computation time to select clients
In solution section of research paper, we proposes a Clients-selection method. As what describe in
that section, we first evaluate the data distribution on each server to identify those with significant
non-IIDness, known as target servers. We then select clients from servers with more balanced data
distributions and introduce them to the target servers. In addition, we also need to consider the global
speed of the system to comprehensively evaluate the performance. This approach increases data
diversity on the target servers, reduces data bias, and balances model training, ultimately improving
the performance of the global model. In this section, we further investigated the computation time
involved in client selection.

First, we considered a scenario with 16 clients distributed across 2 servers, with each server hosting
8 clients. The dataset used for this experiment is MNIST. At the server level, the data distribution is
non-IID, generated using a Dirichlet distribution with alpha = 0.1. However, within each server, the data
is evenly distributed among its clients to create IID datasets. Upon evaluating the non-IIDness of both
servers, we determined that Server 1 exhibited a higher degree of non-IIDness. To address this, we
iterated through each client on Server 0, simulating scenarios where a client could either be moved to
or shared with Server 1. The decision to select a specific client was based on a thorough evaluation
of the impact on Server 1’s non-IIDness after the client’s relocation or sharing, as well as the effect on
the system’s global computation speed.

We utilized Python’s time module to measure the duration of each individual round as well as the overall
process. In addition to this, We separately recorded the time taken to evaluate the non-IIDness of the
servers and to compute the global speed. The results are presented in the Tab. 3.1 and Fig. 3.1.

Tab. 3.1 shows that the time consumption of calculating global speed is 10 times evaluation server’s
non-IIDness. By analysing the two calculations, we can obtain the reasons.

The global speed represents the total update speed of the system with all communication delays and
training delays, which is following the equation below:

Global_speed = total_updates/total_delay (3.1)

where the total updates is the amount of data processed by all clients during training, and the total
delay is the sum of all delays. To further assess the impact of the movement, the system simulates the
process of transferring the client from the original server to the target server, during which the client is
added to the target server and its training delay in the new environment is calculated. When deciding

24

3.1. Computation time to select clients 25

Figure 3.1: The computation time of each clients

whether to move or share the client, the system calculates the impact on global speed according to
different strategies: if the client is moved, the system recalculates the total delay and total updates
for both servers; if the client is only shared, the system calculates the relevant data post-sharing. Af-
ter the simulation, the system removes the newly added client and restores the original state of the
servers to ensure that the actual operation of the system is not affected. Finally, the system returns
a new global speed value based on these calculations, helping to evaluate the effectiveness of the
client movement or sharing strategy, and ensuring that the global model training is completed in the
shortest possible time. In this process, it is necessary to repeatedly calculate the training delay for each
client on both servers before and after the client movement. This calculation applies the least squares
method, a computationally intensive process that requires a significant amount of time. Additionally,
since the client’s training delay is calculated based on the relationship between the client’s dataset and
the server’s dataset as the Equation(1) shown in the Section III.B of the research paper, this approach
involves applying the least squares method to a relatively large matrix, further contributing to the com-
putational intensity. Due to the varying locations of each client, the computation required for calculating
the training delay with the corresponding server differs, leading to significant variations in computation
time as shown in Fig. 3.1.

In contract, we evaluates the data distribution of the target server and the source server by calculating
the KL divergence (Kullback-Leibler Divergence). While calculating KL divergence requires statistical
analysis of data distributions, we were able to significantly reduce the computation time by focusing
the calculations on the dataset’s targets rather than on the raw image data itself. Moreover, evaluating
data distribution does not require double-counting.

Table 3.1: The computation time of each rounds

step move_client_id round_time evaluation_time calculate_global_speed
1 0 0.268330 0.047814 0.220404
2 1 0.170863 0.035609 0.135147
3 2 0.736860 0.045640 0.691047
4 3 0.440941 0.039048 0.401790
5 4 0.253282 0.042213 0.210578
6 5 0.900968 0.088800 0.811131
7 6 0.454293 0.043656 0.410503
8 7 0.434003 0.038512 0.395385

Total NaN 3.66 NaN NaN
Average NaN NaN 0.047661483 0.409498155

3.2. Bandwidth consumption for our three strategies 26

4000 5000 6000 7000 8000 9000 10000
Timestamp

0.525

0.530

0.535

0.540

Sm
oo

th
ed

 B
an

dw
id

th
 (M

B/
s)

Smoothed Bandwidth vs. Time

Strategy

alternate
avg_model
baseline
move

Figure 3.2: Bandwidth consumption of each strategies

3.2. Bandwidth consumption for our three strategies
In this section, we analyze the bandwidth consumption of each strategies. The bandwidth is calculated
following this equation:

Bandwidth = Total_Transfer_Data/T ime (3.2)

In our Multi-async FL framework as described in the research paper, data transactions occur in three
interconnected phases. First, the server distributes the global model to each client, providing a con-
sistent starting point for local training. After training on their local datasets, clients send their updated
models back to the server, which reflects the learning achieved during this phase. Additionally, the
exchange of server models and aggregation is token-triggered. Servers exchange and aggregate their
models by comparing the received token and their own token. Hence, we need to calculate the model
size in each phase and count the time consumption during each transaction. We calculate the model
size by first iterating through all the parameters of the model to calculate their total size. Then, it pro-
ceeds to iterate through all the buffers of the model and calculates their total size. Finally, it adds up
the sizes of the parameters and buffers, converts the total to MB, and outputs this value.

In our experiments, we used the MNIST dataset with CNN model, which includes two convolutional
layers, two pooling layers, two fully connected layers, two Dropout layers. We set up 2 servers with 8
clients for each and the data distribution is non-IID. We run 3000 rounds for Move-clients, Share-client
with dual models(called alternate), Share-client with model combination strategies (called avg_model)
and baseline and count the bandwidth consumption in each rounds with timestamps. To reduce the
instability in the timer’s timing, we selected the time range of 2000-10000 seconds for plotting.

Fig. 3.2 shows the change in bandwidth over time. It indicates that, Share-client with dual models
strategy consumes more bandwidth compare to the other three methods and the Move-clients strategy
consumes less bandwidth. Fig. 3.3 shows the cumulative bandwidth consumption over time. It shows
the similar results as what Fig. 3.2 shown.

The Share-client with dual models strategy consumes more bandwidth primarily due to the way this
strategy operates. In this strategy, the client needs to maintain and update two models simultaneously.
As a result, during each communication round, the client must send updates for both models to the
server, rather than just one. This significantly increases the amount of data being transmitted, thereby
consuming more bandwidth compared to strategies that only use a single model.

For the Move-clients strategy, the client is transferred to another server where the server’s data is more
aligned with the overall data distribution. This alignment allows the model updates to converge faster,
potentially leading to fewer communication rounds. Consequently, this reduces bandwidth consump-
tion.

3.3. Combining the Move-Clients and Share-Clients strategies 27

2000 3000 4000 5000 6000 7000 8000 9000 10000
Timestamp

0

200

400

600

800

1000

Sm
oo

th
ed

 C
um

ul
at

iv
e

Ba
nd

wi
dt

h
(M

B/
s)

Smoothed Cumulative Bandwidth vs. Time
Strategy

alternate
avg_model
baseline
move

Figure 3.3: Cumulative bandwidth consumption of each strategies

3.3. Combining the Move-Clients and Share-Clients strategies
TheMove-clients and Share-clients strategies were initially developed to tackle the challenges posed by
non-IID data distribution in FL environments. The Move-Clients strategy involves relocating a selected
client to a different server, with the goal of mitigating the negative impacts of non-IID data. Conversely,
the Share-Clients strategy allows a client to alternate communication between two servers, enabling
both servers to benefit from the client’s data and model updates, thereby increasing data diversity
across the network.

While each strategy offers distinct advantages, they also come with inherent limitations. The Move-
clients strategy, despite its effectiveness in boosting data diversity on the target server, completely
disconnects the client from its original server, potentially diminishing data diversity there. The Share-
Clients strategy, although beneficial in environments with a higher number of clients, may struggle to
achieve optimal performance when client numbers are low.

To overcome these challenges, we introduced the Move-Share strategy. This hybrid approach starts
by moving the client to a new server to quickly enhance data diversity and model performance. As the
training progresses, the strategy shifts to a sharing mode, where the client alternates communication
between the original and new servers. Ideally, this dual approach combines the strengths of both
strategies: it improves the target server’s performance by increasing data diversity while also ensuring
that the original server continues to benefit from the client’s data. However, we will design experiments
to verify its effectiveness.

In our experiments, we used the MNIST dataset and conducted two sets of experiments. In the first
set, we used 16 clients, evenly distributed across two servers, with each server managing 8 clients. At
the server level, the data distribution is non-IID, generated using a Dirichlet distribution with alpha =
0.1. The total round of each experiment We selected one client from one of the servers and applied
three strategies: Move-Clients, Share-Clients, and Move-Share, to compare their effectiveness. In the
second set, we increased the number of clients to 32, again evenly distributed across two servers,
with each server managing 16 clients. We selected one client from one of the servers and applied the
same three strategies. In the Move-Clients strategy, the selected client was moved to another server
and communicated exclusively with the new server. In the Share-Clients strategy, the selected client
alternated communication between the two servers. In the Move-Share strategy, the client was first
moved to another server and then alternated communication between the two servers at the 2500th
round. These experimental settings allowed us to evaluate the effectiveness of different strategies in
handling non-IID data distribution.

The experimental results indicate that the Move-Share strategy exhibits a nuanced relationship with
the Move-Clients and Share-Clients strategies across different client configurations. In the experiment
with 16 clients, shown in Fig. 3.4, the Move-Share strategy’s accuracy was slightly lower than that

3.3. Combining the Move-Clients and Share-Clients strategies 28

of the Move-Clients strategy, despite its attempt to combine the benefits of both moving and alternat-
ing communication. However, in the experiment with 32 clients, shown in Fig. 3.5, the Move-Share
strategy performed similarly to the Move-Clients strategy, but it did not show a significant advantage.
This suggests that while the Move-Share strategy aims to enhance model generalization by alternating
communication, it does not provide a clear additional benefit over the Move-Clients strategy when deal-
ing with non-IID data. Therefore, in both experimental setups, although the Move-Share strategy can
achieve similar results to the Move-Clients strategy, it does not demonstrate a marked improvement or
advantage.

0 1000 2000 3000 4000 5000 6000 7000
Updates

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move Share
Move
Share

((a)) Accuracy wrt. updates

0 5000 10000 15000 20000 25000 30000 35000 40000
time

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move_share
Move
Share

((b)) Accuracy wrt. time

Figure 3.4: Comparison of accuracy(MNIST:16 client, 2 server, alpha = 0.1)

0 2000 4000 6000 8000
Updates

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. Updates (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move Share
Move
Share

((a)) Accuracy wrt. updates

0 5000 10000 15000 20000 25000
time

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST: Accuracy wrt. time(ks) (Polynomial Fitting with Anchoring at 0,0)

Baseline
Move_share
Move
Share

((b)) Accuracy wrt. time

Figure 3.5: Comparison of accuracy(MNIST:32 client, 2 server, alpha = 0.1)

4
Conclusion

In this thesis, we have explored the significant challenges posed by data non-IIDness in multi-server
asynchronous federated learning (FL) environments. Traditional FL approaches, which rely on syn-
chronous updates and assume homogeneous data distributions, often fall short when applied to real-
world scenarios characterized by data heterogeneity. To better understand the impact of non-IID data
distributions and geo-distribution on FL systems, we developed a reproducible multi-server FL model
with heterogeneous resources. This framework enables controlled and consistent testing of various
FL strategies under different conditions, providing a robust tool for analyzing the effects of data hetero-
geneity on system performance. Furthermore, we introduced and evaluated three innovative strategies
to mitigate the adverse effects of non-IID data distributions: moving clients between servers, sharing
clients among servers with dual models, and sharing clients with model combination.

The results demonstrate that the Moving clients strategy is particularly effective in reducing training
time and improving model accuracy with less bandwidth consumption when the number of clients is
relatively small. However, as the scale increases, the Sharing clients with dual models strategy proves
more advantageous, offering balanced improvements in both efficiency and accuracy. On the other
hand, while the model combination strategy shows potential, it does not perform as well as the other
two methods under certain conditions.

These findings suggest that the proposed strategies can significantly enhance the robustness and
efficiency of asynchronous FL systems, especially in environments characterized by high levels of
data heterogeneity. By providing a reproducible experimental framework and systematically evaluating
different approaches, this thesis contributes to the ongoing development of scalable and effective FL
systems that can better handle the complexities of real-world data distributions and communication
constraints.

Future research could further refine these strategies, particularly in exploring hybrid methods or adap-
tive approaches that can dynamically switch between strategies based on the characteristics of the
data and the network environment. Additionally, applying these methods to more diverse datasets and
FL models could provide deeper insights into their universality and potential limitations.

29

References

[1] Fan Lai et al. Oort: Efficient Federated Learning via Guided Participant Selection. 2021. arXiv:
2010.06081 [cs.LG]. url: https://arxiv.org/abs/2010.06081.

[2] Chenning Li et al. “PyramidFL: A fine-grained client selection framework for efficient federated
learning”. In: Proceedings of the 28th Annual International Conference on Mobile Computing And
Networking. 2022, pp. 158–171.

[3] Lumin Liu et al. Client-Edge-Cloud Hierarchical Federated Learning. 2019. arXiv: 1905.06641
[cs.NI]. url: https://arxiv.org/abs/1905.06641.

[4] H. Brendan McMahan et al. Communication-Efficient Learning of Deep Networks from Decentral-
ized Data. 2023. arXiv: 1602.05629 [cs.LG]. url: https://arxiv.org/abs/1602.05629.

[5] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and Federated Random
Reshuffling. 2021. arXiv: 2102.06704 [cs.LG]. url: https://arxiv.org/abs/2102.06704.

[6] Liangqiong Qu, Niranjan Balachandar, and Daniel L Rubin. An Experimental Study of Data Het-
erogeneity in Federated LearningMethods forMedical Imaging. 2021. arXiv: 2107.08371 [cs.LG].
url: https://arxiv.org/abs/2107.08371.

[7] Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized Federated Learning with Moreau
Envelopes. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 21394–21405.
url: https://proceedings.neurips.cc/paper_files/paper/2020/file/f4f1f13c8289ac1b1e
e0ff176b56fc60-Paper.pdf.

[8] HongyiWang et al. Federated Learning withMatched Averaging. 2020. arXiv: 2002.06440 [cs.LG].
url: https://arxiv.org/abs/2002.06440.

[9] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous Federated Optimization. 2020. arXiv:
1903.03934 [cs.DC]. url: https://arxiv.org/abs/1903.03934.

[10] Yue Zhao et al. Federated Learning with Non-IID Data. 2018. doi: 10.48550/ARXIV.1806.00582.
url: https://arxiv.org/abs/1806.00582.

30

https://arxiv.org/abs/2010.06081
https://arxiv.org/abs/2010.06081
https://arxiv.org/abs/1905.06641
https://arxiv.org/abs/1905.06641
https://arxiv.org/abs/1905.06641
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2102.06704
https://arxiv.org/abs/2102.06704
https://arxiv.org/abs/2107.08371
https://arxiv.org/abs/2107.08371
https://proceedings.neurips.cc/paper_files/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://arxiv.org/abs/2002.06440
https://arxiv.org/abs/2002.06440
https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/1903.03934
https://doi.org/10.48550/ARXIV.1806.00582
https://arxiv.org/abs/1806.00582

	Nomenclature
	Research Paper
	Extended Related Work
	Common Methods to Construct Non-IIDness
	Label skew
	Quantity skew
	Imaging acquisition skew

	Algorithms for Mitigating Challenges in FL with Heterogeneous Data
	Single-Server Synchronous FL
	Single-Server Asynchronous FL
	Multi-Server Synchronous FL

	Client selection in FL

	Additional Experiments
	Computation time to select clients
	Bandwidth consumption for our three strategies
	Combining the Move-Clients and Share-Clients strategies

	Conclusion
	References

