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Silicon/silicon-germanium heterostructures have many important advantages for hosting spin qubits. How-
ever, controlling the valley splitting (the energy splitting between the two low-lying conduction-band valleys)
remains a critical challenge for ensuring qubit reliability. Broad distributions of valley splittings are common-
place, even among quantum dots formed on the same chip. In this work, we theoretically explore the interplay
between quantum-well imperfections that suppress the valley splitting and cause variability, such as broadened
interfaces and atomic steps at the interface, while self-consistently accounting for germanium concentration
fluctuations. We consider both conventional and unconventional approaches for controlling the valley splitting
and present concrete strategies for implementing them. Our results provide a clear path for achieving qubit
uniformity in a scalable silicon quantum computer.

DOI: 10.1103/PhysRevB.108.125405

I. INTRODUCTION

Qubits formed from quantum dots in Si/SiGe heterostruc-
tures are promising candidates for large-scale quantum com-
puting [1–3]. Naturally abundant spin-zero nuclear isotopes
and the highly developed infrastructure of the semiconductor
industry lend a particular advantage to silicon-based qubits.
Recently, one and two-qubit gates in spin qubits in Si/SiGe
quantum dots have yielded fidelities above 99% [4–6], attest-
ing to the viability of this materials platform.

However, qubits in Si suffer from the degeneracy of low-
energy features in the conduction band, known as valleys.
Although the sixfold valley degeneracy of bulk silicon is lifted
by tensile strain in the quantum well, a nearly degenerate
excited valley state remains accessible to electrons in quantum
dots [2]. The energy splitting between these low-lying valley
states, Ev , can range widely from 20 to 300 μeV [7–17], even
for devices fabricated on the same chip [18,19]. When the
valley splitting is too low, the excited state provides a leakage
path outside the logical space of the spins, posing a significant
threat for qubit operations [2]. To date, it has not been possible
to engineer devices with reliably high valley splittings.

In conventional SiGe/Si/SiGe heterostructures, the val-
ley splitting is determined by the quantum well confinement
potential. Accordingly, the variability of Ev is attributed to
the variability of the interfaces. Such behavior has been
well studied theoretically, using tight-binding [20–28] and
effective-mass methods [29–35]. Studies have focused on het-
erostructure parameters such as the width of the interface [18]
or quantum well [20,29]. Additional variability is caused by
imperfections and disorder. Tilted interfaces and single-atom
steps, in particular, have been studied extensively [21,28,32–
41]. Experimental work has validated some of these pre-
dictions. For example in Si metal-oxide-semiconductor (Si-
MOS) stacks, where the semiconductor-dielectric interface is

characteristically sharp, interface roughness has been shown
to correlate with the valley splitting [33].

An additional type of disorder is present in heterostructures
containing SiGe alloy. In this case, the crystal lattice sites are
filled randomly with Si or Ge atoms, as determined by the
average concentration profile. For Si/SiGe heterostructures,
it has recently been shown that such uncorrelated, random
alloy disorder can have a dominant effect on the intervalley
coupling � [19]. Specifically, � can be decomposed into two
components: (1) an average, “deterministic” component �0,
which is largely uniform across a sample, and (2) a random
component δ�, which varies significantly by location. Here,
�0 is determined by the smooth quantum well confinement
potential, while δ� arises from local Ge fluctuations caused
by alloy disorder. Since Ev = 2|�|, large variations in δ� lead
to large variations in Ev , as verified experimentally in quantum
dots [19,42].

In this paper, we show that sharp features in the het-
erostructure profile, like a sharp interface, can enhance the
valley splitting, while random alloy disorder strongly sup-
presses this effect. The crossover between these two types of
behavior occurs in a regime where heterostructure features
are abrupt and difficult to achieve in the laboratory. Deter-
ministically enhanced valley splittings are therefore difficult
to achieve by sharp interfaces alone.

To better understand this crossover, we consider several
‘conventional’ heterostructures, where we characterize com-
peting effects like sharp interfaces vs interface steps. We find
that steps can be detrimental to valley splitting; however they
have essentially no effect for interface widths of three or more
atomic monolayers. In the randomly dominated regime, we
show that when the electron is exposed to more Ge, it experi-
ences a larger average valley splitting and a larger variability.

We also characterize unconventional geometries like the
Wiggle well, which yields the greatest improvements to the

2469-9950/2023/108(12)/125405(31) 125405-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8001-0326
https://orcid.org/0000-0002-3130-9735
https://orcid.org/0000-0003-2229-2190
https://orcid.org/0000-0003-1649-823X
https://orcid.org/0000-0003-2512-0079
https://orcid.org/0000-0002-5630-4893
https://orcid.org/0000-0003-2878-2844
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.125405&domain=pdf&date_stamp=2023-09-05
https://doi.org/10.1103/PhysRevB.108.125405


MERRITT P. LOSERT et al. PHYSICAL REVIEW B 108, 125405 (2023)

valley splitting, but is challenging to grow in the laboratory.
We compare this to an alternative geometry, with uniform Ge
in the quantum well, where the mean and standard deviation
of the valley splitting are both enhanced. We argue that such
structures provide a more reliable approach for improving
qubits, if they can be electrostatically tuned to locations with
desirable valley splittings. We finally argue that both of these
approaches are superior to sharp interfaces, and show they are
optimal in certain operating regimes.

The paper is organized as follows. In Sec. II, we study
the dominant sources of Ev variation and how they interact,
and we explain these behaviors in the context of a universal
theory of valley splitting. Expanding on ideas first presented
in Refs. [19,42], we show that valley splitting depends fun-
damentally on the strength of the quantum well confinement
potential at the special reciprocal-space wave vector 2k0 (we
refer to this as “2k0 theory”), which is the distance between the
two z valleys in the first Brillouin zone. We go on to show that
deterministic and random-alloy effects can both contribute to
this 2k0 wave vector. Interface width, atomic steps, alloy disor-
der, and other features can therefore be studied and compared
within a single analytic framework, providing intuition as well
as quantitative predictions.

In Sec. III, we outline the theoretical methods employed
here, including tight-binding models and effective-mass the-
ory. We investigate the effects of alloy disorder on the valley
splitting in dots formed in SiGe/Si/SiGe quantum wells. This
disorder leads to large Ev variations, which we show depend
on the amount of Ge the wave function is exposed to. Such
variations also increase the mean value of the valley splitting,
and they significantly reduce the fraction of dots with low
valley splittings. Here, we make a crucial distinction between
quantum wells in which all quantum dots (except a vanish-
ingly small subset) have valley splittings that are large enough
for qubit applications, and dots with a wide distribution of
valley splittings, extending all the way to zero energy. We
refer to the former category as “deterministically enhanced”
and the latter as “randomly dominated.” By simulating many
random instances of alloy disorder, we show that there is a
sharp transition between these two types of behavior. We also
obtain an analytical expression for the crossover, using the sta-
tistical properties of random alloys. We then show that nearly
all recent experiments are of the randomly dominated type,
with important implications for scaling up to large numbers
of qubits. We further show that when physical limitations,
such as growth constraints, do not permit the formation of
heterostructures with very sharp features (on the order of 1–2
atomic layers), the resulting devices fall into the randomly
dominated category. For such structures, it is generally more
effective to increase the average valley splitting by increasing
the wave function exposure to Ge.

In Sec. IV, we use our theoretical toolbox to examine con-
ventional Si/SiGe heterostructures. We study the interactions
between alloy disorder and interface steps in conventional
Si/SiGe heterostructures as a function of the interface width
[Fig. 1(a)]. For devices with sharp interfaces, steps are found
to strongly suppress the valley splitting, as is well known.
However, for devices with wider interfaces, the steps are
found to have little or no effect on the valley splitting. In
this regime, the valley splitting depends mainly on the local

FIG. 1. Confirmation of the universal 2k0 theory of valley split-
ting. [(a)–(e)] Schematic illustrations of several of the Si/SiGe
heterostructures considered in this work: (a) a quantum well with
a sharp interface and no interface steps (blue) or with one interface
step (orange), (b) a quantum well with a uniform concentration of
Ge, (c) a narrow quantum well, (d) a quantum well with a single-
monolayer spike of Ge, and (e) a Wiggle well. (f) Valley-splitting
correlation plot for the structures shown in (a)–(e), with the same
color coding used in those panels. On one axis, we plot tight-binding
(TB) results for the valley splitting, ETB

v . On the other axis, we plot
the universal 2k0 prediction, based on effective-mass (EM) theory,
EEM

v , as defined in Eqs. (8) and (9), where Ev = 2|�|. (See main
text for simulation details.) For each different heterostructure, we
generate 100 instances of alloy disorder for a given, average Ge
concentration profile, as described in the main text, using the same
disorder profiles for both the TB and EM simulations. All results fall
onto a universal curve, demonstrating the validity of the 2k0 theory.

alloy disorder, and we show that this disorder leads to large
Ev variations as a function of dot position.

In Sec. V, we consider unconventional heterostructures
proposed to boost the valley splitting [Figs. 1(b)–(e)], by
adding Ge to the interior or the boundary of the quantum well.
These include Ge-rich barrier layers [14], and other more-
complicated superlattice barrier structures [43,44], single-
atom spikes of Ge inside the quantum well [45], narrow
quantum wells [18,20,29], and oscillating Ge concentrations
with specially chosen oscillation wavelengths (e.g., the “Wig-
gle well” [42,46]). We analyze these designs and characterize
their deterministic and random-alloy contributions to valley
splitting, which allows us to compare ideal performance to
actual operation.

To close this section, we apply optimization procedures to
determine Ge concentration profiles that maximize the valley
splitting, using two different optimization strategies. First,
we maximize the deterministic valley splitting Ev0 = 2|�0|,
without including alloy disorder. This approach yields het-
erostructures with concentration oscillations very similar to
the short-period Wiggle well, confirming the optimality of that
structure. In the second approach, we maximize the standard
deviation σ�, which can be shown to maximize the average
valley splitting in the randomly dominated regime. This ap-
proach yields smooth Ge concentration profiles centered in
the middle of the quantum well.

In Sec. VI, we summarize our main results, and finally in
Sec. VII, we describe the best forward-looking strategies for
enhancing the valley splitting, which can be used to guide fu-
ture experiments in Si/SiGe heterostructures. Here we argue
that the Wiggle well is the preferred approach, in the de-
terministically enhanced regime. In the randomly dominated
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FIG. 2. Effective-mass analysis of the effects of alloy disorder for quantum wells with (a)–(c) wide interfaces, or (d)–(f) super-sharp
interfaces. [(a) and (d)] Typical Ge concentration profiles along the growth direction (ẑ). The local Ge concentration is also shown as a color
scale. Here, the average Si concentration profiles are given by sigmoid functions [Eq. (21)], with quantum well and substrate concentrations
given by Xw = 1 and Xs = 0.7, respectively, and interface widths given by λint = 10 ML for (a) or λint = 1 ML for (d), where ML stands
for atomic monolayers, corresponding to the length a0/4. Small fluctuations in Ge concentration occur from location to location due to alloy
disorder and the finite size of the quantum dot. We also show here the envelope functions ψenv(z) (solid green curves), used to calculate the
intervalley matrix element � [Eq. (8)], obtained by solving a 1D Schrödinger equation for the quantum well confinement potential Uqw(z)
[Eq. (3)]. [(b) and (e)] Individual terms in the δ� sum [Eq. (11)], plotted as a function of the vertical position zl . The corresponding complex
phases, φ = −2k0zl , are indicated as a color scale. [(c) and (f)] Discrete Fourier transform Ũqw(kz ) of the weighted confinement potential
Ũqw(zl ) = Uqw(zl )|ψenv(zl )|2 appearing in Eq. (8), for the quantum wells shown in (a) and (d). The 2k0 wave-vector component of Ũqw (gray
dashed line) couples valleys within the first Brillouin zone, causing valley splitting. (g) Such � calculations are repeated for 1000 different
disorder realizations, for the same two interfaces (wide vs sharp), obtaining the purple and gold distributions, which are plotted here on the
complex plane. The highlighted points (purple diamond, gold star) correspond to the specific results shown in (a)–(f). The central black points
correspond to the deterministic centers of the distributions, �0. For wide interfaces (purple), we observe that the � distributions are broader
and centered much closer to the origin. In these cases, the standard deviation of the distribution, σ�, is much larger than the mean value,
�0, while the opposite is true for sharp interfaces (gold). (h) Effective-mass valley splittings (EEM

v = 2|�|) are obtained from (g) and plotted
against 1D tight-binding calculations (ETB

v ), using the same disorder realizations. The collapse of the data onto a line of slope 1 indicates nearly
perfect correlations between the two methods. (i) Histogram plot of the tight-binding results shown in (h). Solid lines show the computed Rice
distributions [Eq. (14)].

regime, we argue that the best approach is to introduce uni-
form Ge into the quantum well and then electrostatically tune
the dot position, to find a location where the valley splitting is
suitable.

II. A UNIVERSAL PICTURE OF VALLEY SPLITTING

A primary result of this paper is the unified understanding
of how all key features in a heterostructure, from deterministic
to random, work together to determine the valley splitting

in Si/SiGe devices. In this section, we present an intuitive
outline of the physics, with the details left to later sections.

In Si/SiGe quantum wells, the degenerate ±z valleys are
separated in the first Brillouin zone by the wave vector 2k0,
as indicated schematically in the inset of Fig. 2(c). The de-
generacy of the valley states is lifted in a process known
as “valley splitting,” which occurs when the quantum well
confinement potential, determined by the Ge concentration
profile, has Fourier components at this special wave vector.
More precisely, effective-mass theory states that the valley
splitting energy Ev is proportional to the Fourier transform
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of the quantum well potential, weighted by the dot probability
density |ψ (r)|2, evaluated at the wave vector 2k0. We call this
the “2k0 theory.”

This simple description of valley splitting has wide-
ranging explanatory power, which is both qualitative and
quantitative. For example, it is the basis for the short-period
Wiggle well [42,46], which exploits heterostructures where
the 2k0 wave vector is intentionally engineered into the quan-
tum well. It further explains how other engineered sharp
features in the confinement potential, such as sharp interfaces
or Ge spikes, can enhance Ev . In the latter case, sharp fea-
tures in real space produce broad Fourier spectra in k space,
including components at the wave vector 2k0. The 2k0 theory
also explains the random effects of alloy disorder. Here, since
the heterostructure is composed of individual atoms, there will
be fluctuations of the Ge concentration from layer to layer
inside a finite-size dot. These random fluctuations alter the
confinement potential slightly at each layer, creating a small
random Fourier component at wave vector 2k0. Despite being
small, we show in this work that such fluctuations accurately
predict the wide range of valley splittings observed in recent
experiments.

Finally, the 2k0 theory also explains the reduction of valley
splitting due to interface steps. When steps are present, the z
confinement potential naturally varies in different portions of
the dot. Averaging over the plane of the quantum well, the step
effectively causes the dot to experience a wider interface. The
Fourier component of this broadened confinement potential at
wave vector 2k0 is correspondingly reduced.

To demonstrate the universal nature of the 2k0 theory,
in Fig. 1(f), we show simulation results for several types
of engineered heterostructures, including conventional het-
erostructures with sharp interfaces, heterostructures with Ge
spikes, narrow quantum wells, and heterostructures with ad-
ditional, uniform Ge concentration added to the well. We also
include the effects of disorder in the form of interface steps
and random alloys. (Details of the specific geometries and
simulations are presented in later sections.) For each geome-
try, we perform 100 simulations with different realizations of
random alloy, using disorder models that are consistent with
atomic-scale characterization based on atom probe tomog-
raphy [19,47]. For each simulation, we compute the valley
splitting using the 2k0 theory (the effective-mass approxima-
tion, EEM

v ). Then, using the same disorder profiles, we also
compute the valley splitting using a two-band tight-binding
model, ETB

v , described below. The results show nearly perfect
correlations, with all data points falling onto a universal curve.
This demonstrates that the same physics governs valley split-
ting in deterministic vs random structures, and it validates the
2k0 theory.

III. MODELING THE QUANTUM DOT

In this section, we describe the various theoretical ap-
proaches used in this work. Our main tools are effective-mass
theory [29,39,48] and tight-binding theory, including the two-
band model of Boykin et al. [49] and the NEMO-3D 20-band
sp3d5s∗ model [22,23]. Effective-mass theory provides an
intuitive understanding of valley splitting behavior in many
problems of interest. Although the approach can be applied

to more complicated problems [33], analytical applications
are most effective for systems than can be reduced, approx-
imately, to one dimension (1D). As we shall see, this includes
many problems involving alloy disorder. In this work, we use
effective-mass theory to clarify and characterize the distinct
types of behavior associated with deterministic vs randomly
dominated valley splitting. For geometries that are intrin-
sically higher-dimensional, such as those involving atomic
steps, tight-binding approaches are more effective. NEMO-3D
is a sophisticated tool that provides quantitatively accurate
results, over a wide energy range, and makes it possible to
include atomistic details and strain. However, NEMO-3D is
computationally expensive compared to effective-mass and
two-band tight-binding theories. We show here that most
valley-splitting physics is well described by simplified mod-
els, and that many problems of interest can be reduced to
lower-dimensional systems that are more amenable to simple
approaches. We now outline the details of these different
methods.

A. NEMO-3D

The most rigorous model we use to simulate Si/SiGe
heterostructures is the 20-band spin-resolved sp3d5s∗ nearest-
neighbour tight-binding model, known as NEMO-3D [22,23].
Although these simulations are computationally expensive,
they are truly atomistic and, therefore, the most physically
accurate.

To specify a model geometry, we first define the het-
erostructure concentration profile, SiX̄l

Ge1−X̄l
, in the (nomi-

nal) growth direction [001], where X̄l ∈ [0, 1] represents the
Si concentration averaged over the entire atomic layer, with
layer index l . We also use the notation Xl to refer to the Si
concentration averaged over just the lateral extent of the dot
in layer l , as explained in Appendix A. Due to the finite size of
the dot, Xl is therefore a Gaussian random variable fluctuating
about its mean value, X̄l . (Note that we use the notations
Yl = 1 − Xl and Ȳl = 1 − X̄l interchangeably, as convenient.)
In NEMO-3D, each atom in the lattice must be assigned as
Si or Ge. In systems without interface steps, we therefore
assign Si atoms in layer l with probability X̄l . In systems with
interface steps, this probability also depends on the lateral
position of the step (xstep) as

X̄l (x, y) = X̄l�(x � xstep) + X̄l+1�(x > xstep), (1)

where � is the Heaviside step function, and we take the
concentration profiles to be identical on either side of the
step, except for the single-atom shift, l → l + 1. Here, and
throughout this work, we use lower-case (x, y) notation to
refer to spatial positions and upper-case (X,Y ) notation to
refer to (Si,Ge) concentrations. Note that atoms in our NEMO-
3D simulations are actually located on diamond lattice sites,
although we often specify their positions in continuum nota-
tion r = (x, y, z), for brevity. Also note that we assume the
step position in Eq. (1) is independent of y, as consistent with
a linear step oriented along [010]. This choice is made for
convenience, although more nontrivial geometries may also
be considered. In this way, we generate realistic 3D lattice
geometries consistent with the desired, average heterostruc-
ture concentration profile. Repeating this procedure over and

125405-4



PRACTICAL STRATEGIES FOR ENHANCING THE VALLEY … PHYSICAL REVIEW B 108, 125405 (2023)

over yields disorder realizations that correctly reproduce the
statistics of a random alloy.

Several other contributions to on-site energy terms are
included in the simulation model. Local bond lengths are
incorporated using a strain optimization procedure in a
valence-force-field Keating model. A simple, separable lateral
confinement potential is used to describe the dot, taking the
parabolic form

Uconf(x, y) = 1
2 mtω

2
orb[(x − xc)2 + (y − yc)2], (2)

where mt ≈ 0.19me is the transverse effective mass, me is the
bare mass of the electron, h̄ωorb is the orbital excitation en-
ergy, and (xc, yc) is the center of the dot. This simple model is
chosen for convenience, but is unlikely to affect the qualitative
features of our results. We also include a uniform vertical
electric field, with the corresponding potential energy eEzz.

Simulations proceed by computing the energy eigenstates
and eigenvalues for a given simulation geometry. The valley
splitting is obtained as the energy difference between the two
lowest valley states. The simulation procedure is then repeated
many times, with different realizations of alloy disorder, to
build up a distribution of results.

B. Modeling the quantum well potential

While NEMO-3D allows us to perform accurate, atomistic
simulations of quantum dots, it is computationally expensive,
making it challenging to accumulate large statistical distri-
butions for characterizing random-alloy disorder. Numerical
methods also do not provide the same theoretical guidance
as analytical theories. To overcome these problems, we also
make use of minimal tight-binding and effective-mass mod-
els. In Appendix B, we show that all three approaches yield
consistent results. However to facilitate comparisons, we need
to define a mapping between the atomistic model used in
NEMO-3D, and the other model schemes. This can be done
for one, two, or three-dimensional models, although we will
focus on 1D and 2D geometries here, taking advantage of their
computational efficiency.

The mapping between simulation models uses coarse
graining. We first define the notion of “cells,” which may
include one or more atoms. Cells may be defined in one, two,
or three dimensions. Cells may also have different sizes; how-
ever to correctly describe valley splitting in the tight-binding
theory, we require a vertical cell height of one atom [49],
�z = a0/4, where a0 = 0.543 nm is the width of the con-
ventional cubic unit cell. Within a given cell, we employ the
virtual-crystal approximation, for which the cell as a whole
takes the average properties of the atoms contained within.
For a cell located at rcell, the potential energy describing the
heterostructure is given by

Uqw(rcell ) = �Ec
Xcell − Xw

Xs − Xw

, (3)

where Xcell = X (rcell ) is the average Si concentration within
the cell, Xs is the average Si concentration deep in the SiGe
substrate or barrier region, and Xw is the average Si concen-
tration in the center of the quantum well. The conduction-band
offset �Ec describes the potential energy difference between
the barrier region and the quantum well region. For simplicity,

we assume the barrier is fully strain-relaxed, and that the strain
state of the quantum well is reflected in �Ec [50]. Following
Ref. [19], we model the band offset as

�Ec = (Xw − Xs)

[
Xw

1 − Xs
�ESi

�2
(Xs) − 1 − Xw

Xs
�EGe

�2
(Xs)

]
,

(4)

where the functions �ESi(Ge)
�2

(X ) correspond to the �2 con-
duction band offsets for strained Si (Ge) grown on an
unstrained SiX Ge1−X substrate, making use of the following
linear approximations, which are approximately valid over the
concentration range of interest [50]:

�ESi
�2

(X ) ≈ −0.502(1 − X ) (eV),

�EGe
�2

(X ) ≈ 0.743 − 0.625(1 − X ) (eV). (5)

For certain quantum well geometries, where the verti-
cal confinement along z is much stronger than the lateral
confinement, it is a good approximation to treat the total
confinement potential as separable [51], such that Utotal(r) ≈
Uqw(z) + Uconf(x, y), with the wave function given by ψ (r) ≈
ψxy(x, y)ψz(z). When 3D alloy disorder is present, this separa-
ble approach requires performing a 2D average over the lateral
extent of the dot, in each plane l . The vertical confinement
potential is then given by Uqw(Xl ), where the physics of the
valleys is contained in the vertical wave function ψz(zl ). For
1D calculations, the lateral confinement potential and ground-
state wave function |ψxy(x, y)|2 still play a role in computing
the average Si concentrations Xl , as described in Appendix A.

In systems with interface steps, the lateral and vertical
wave functions are no longer separable. However, if the
step is straight and oriented along ŷ, we can write ψ (r) ≈
ψxz(x, z)ψy(y). Assuming a confinement potential of form
Uconf(y) = 1

2 mtω
2
orb(y − yc)2, the wave function ψy(y) is a

Gaussian, which we use to perform the averaging procedure
along ŷ. Defining the lateral cell index along x̂ as j, we then
have Xcell = Xj,l . Here we adopt the lateral cell dimension
�x = a0/2. Although this particular choice is not required
for �x, we have found that it gives results consistent with
other computational schemes, as described in Appendix B. We
also note that the averaging procedure described here converts
the Si diamond crystal lattice to an effective, rectangular cell
structure.

The full averaging procedure is illustrated in Fig. 3. A typi-
cal Si/SiGe heterostructure is shown in Fig. 3(a). Averaging is
first performed within individual cells, as shown in Fig. 3(b).
Here, blue shading indicates dominantly Ge cells, red shading
indicates dominantly Si cells, intermediate shading indicates
cells with mixed Si-Ge content, and the color intensity in-
dicates the wave function probability density, which is used
in later steps to obtain weighted averages of the Si-Ge con-
centrations. Cells with higher Ge concentrations have higher
potential energies, as per Eq. (3). The wave function prob-
ability distribution is used to reduce the 3D cell geometry
successively to 2D [Fig. 3(c)] or 1D [Fig. 3(d)] geometries,
following the procedure described in Appendix A. Figure 3
clarifies how the random nature of the original SiGe lattice
is transferred to the different cell geometries—through the
fractional Ge content. Although these local Ge concentration
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FIG. 3. Cellular models of alloy disorder in one, two, and three dimensions. High-Ge concentration regions (∼30%) are indicated by blue,
while low-Ge concentration regions are indicated by red. (a) Schematic illustration of a Si/SiGe quantum well with diffused top and bottom
interfaces. The quantum dot is located in the Si quantum well below the dark-shaded region on the top of the illustration. (b) The heterostructure
is divided into rectangular 3D cells containing one or more atoms. The illustration shows two layers of cells in the high-Ge (upper) and low-Ge
(lower) regions, with color intensities proportional to the wave function probability. (c) Effective 2D cell geometry obtained by taking a
weighted average of the Ge concentration of the 3D cell geometry along the y axis, as explained in Appendix A. The 2D cell dimensions �x
and �z are indicated, and the corresponding concentration fluctuations are evident. For the minimal tight-binding models used in this work,
we choose �z = a0/4 and �x = a0/2, where a0 is the width of the conventional cubic unit cell. (d) We further obtain an effective 1D cell
geometry by taking weighted averages along x̂.

fluctuations are small, they can ultimately have a strong effect
on the valley splitting.

Finally we note that, while it is possible to generate a new
atomic lattice for every disorder realization (in fact, this is
necessary in NEMO-3D), such 3D procedures are inefficient
and unnecessary, since reduced-dimensional cell geometries
may also be generated using the statistical properties of alloy
disorder [19]. To do this, we assume the Si concentration
in each cell follows a binomial probability distribution with
a known mean and variance, as supported by an atomistic
analysis of actual Si/SiGe heterostructures using atom probe
tomography [19]. For a given cell, with a given dimensional-
ity, the mean of the distribution is given by the expected Si
concentration in the cell X̄cell (for example, based on experi-
mental characterization), and the variance is derived from X̄cell

and the probability density of the quantum dot in the x-y plane.
Unless otherwise specified, we use this statistical approach
to generate the 1D and 2D cell geometries for the minimal
tight-binding and effective-mass calculations described below.
Full details of the method are described in Appendix A.

C. Minimal tight-binding model

In this work, we consider a two-band tight-binding model
that accounts for physics at the very bottom of the conduc-
tion band, including the location of the valley minima (±k0ẑ)
and the band curvature (i.e., the longitudinal effective mass).
For a 1D model geometry oriented along [001], these pa-
rameters are given by k0 = 0.82 (2π/a0) and ml = 0.916me.
This minimal band structure can be mapped onto a minimal
1D tight-binding model, containing only nearest and next-
nearest-neighbor hopping terms [49], given by t1 = 0.68 eV
and t2 = 0.61 eV, respectively. For a 2D model geometry in
the x-z plane, the valley minima are located at k0± = (0,±k0).

In this case, we use the same two hopping parameters along
ẑ, and we include a nearest-neighbor hopping term along x̂,
t3 = −2.72 eV, which gives the correct transverse effective
mass for a cell of width �x = a0/2. We note that this minimal
model assumes a rectangular lattice geometry [52], with cells
of size (�x,�z).

In addition to the off-diagonal hopping terms, our mini-
mal model Hamiltonian also includes on-site potential terms
Utotal(Xj,l ), where ( j, l ) are the 1D-2D cell indices. For 2D
geometries, we are particularly interested in comparing the
effects of interface steps, defined in Eq. (1) and included in
the Hamiltonian via Eq. (3), to alloy disorder, defined in the
coarse-grained cell potentials Uqw(Xj,l ). As for NEMO-3D,
the simulations are typically repeated for many realizations of
alloy disorder to obtain statistical distributions of results, as
described in Appendix A. When alloy disorder is not included
in the simulations, we simply replace the locally fluctuating
Si concentration Xj,l by its average value X̄l .

D. Effective-mass theory

The effective-mass theory is similar to the minimal tight-
binding theory in that it incorporates the physics of the bottom
of the conduction band. The most important difference be-
tween the two approaches is that valley couplings do not arise
naturally in the effective-mass theory, and must be included
perturbatively. The perturbation theory is straightforward
however [29], and we summarize it here for completeness.

We consider as basis states the quantum dot wave functions
formed of Bloch states localized near the ±k0ẑ valleys in
reciprocal space. For our purposes, it is a good approximation
to write the real-space expressions for these wave functions as

ψ±(r) ≈ e±ik0zψenv(r), (6)
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where ψenv is the effective-mass envelope of the ground-state
wave function in the total confinement potential Utotal(r). This
approximation assumes weak valley-orbit coupling, so both
valley states have the same envelope function. Such pertur-
bative treatment is appropriate for many problems of interest.
In the limit of large valley-orbit coupling, Eq. (6) should be
modified to account for the differing envelope functions in the
ground and excited valley states. However the simplicity of
Eq. (6) provides considerable intuition, as discussed below.
We note that the exponential phase term oscillates rapidly in
Eq. (6), over a length scale of 2π/k0, while the confinement
potential and envelope function vary slowly over this same
length scale.

The intervalley-coupling matrix element is given by

� = 〈ψ−|Uqw|ψ+〉 =
∫

dr3e−2ik0zUqw(r)|ψenv(r)|2, (7)

and the valley splitting is given by Ev = 2|�|. Because of
the separation of length scales in Eq. (7), we see that � and
Ev should approximately vanish in the limit of slowly vary-
ing Uqw(r). A nonvanishing valley splitting therefore requires
some type of sharp feature to be present in the confinement
potential. The conventional ‘sharp feature’ in many valley-
spitting proposals is an abrupt quantum well interface.

Although effective-mass equations are conventionally ex-
pressed in a continuum description, they may also be
discretized; here, such an approach helps to make contact with
the tight-binding theories discussed in previous sections. We
may consider 1D or 2D expressions for the intervalley matrix
element:

�1D = a0

4

∑
l

e−2ik0zlUqw(zl )|ψenv(zl )|2, (8)

�2D = a0

4

∑
l

e−2ik0zl
a0

2

∑
j

U 2D
qw (x j, zl )|ψenv(x j, zl )|2, (9)

where ( j, l ) are cell indices corresponding to Xj,l in the tight
binding theories, and we assume proper normalization, given
by

∑
l (a0/4)|ψenv(zl )|2 = ∑

j,l (a
2
0/8)|ψenv(x j, zl )|2 = 1.

A key, take-away message from Eq. (7) is that the valley
splitting can be understood, quite literally, as the 2k0 Fourier
component (along kz) of the quantity Uqw(r)|ψenv(r)|2. More
simply, it is the 2k0 Fourier component of Uqw(r), weighted by
the electron probability at the location where the oscillations
occur. This is a powerful statement that transcends effective-
mass theory. As we demonstrate in this work, such a universal
description of valley splitting is quantitatively accurate for
all quantum well geometries studied here, including interface
steps, broadened interfaces, alloy disorder, Wiggle wells, and
other phenomena.

E. Alloy-disorder analysis

In this section, we use effective-mass methods to charac-
terize the deterministic vs random components of the valley
splitting using an approach similar to Ref. [19], for effectively
1D geometries. Figures 2(a) and 2(d) show typical concen-
tration fluctuations in quantum wells with wide or narrow
interfaces, respectively. Below, we show that, even when Si
concentrations vary only slightly from their average values, as

in these examples, such small fluctuations can have an outsize
effect on the valley splitting.

The intervalley coupling matrix element in Eq. (8) can
be decomposed into its deterministic (�0) and fluctuating
(δ�) components: �1D = �0 + δ�. This assignment is un-
ambiguous when the Si concentration in layer l , defined as
Xl = X̄l + δl , can be decomposed into its average (X̄l ) and
fluctuating (δl ) contributions. The deterministic part of the
valley splitting, Ev0 = 2|�0|, is determined by the average
heterostructure profile, including geometrical features like in-
terface steps. It is computed by setting δl = 0 in all layers.
Substituting Eq. (3) into Eq. (8), we obtain

�0 = a0

4

�Ec

Xw − Xs

∑
l

e−2ik0zl (X̄l − Xs)|ψenv(zl )|2. (10)

The random component of the intervalley matrix element,
δ�, arises from the alloy disorder, and is given by

δ� = a0

4

�Ec

Xw − Xs

∑
l

e−2ik0zl δl |ψenv(zl )|2. (11)

Here, the fluctuations are contained within δl = Xl − X̄l ,
which describes the concentration variations in layer l
weighted by the dot probability. Since SiGe is a completely
random alloy, δl has a binomial probability distribution, given
by

δl ∼ 1

Neff
Binom(Neff, X̄l ) (12)

where Neff = 4πa2
dot/a2

0 is the approximate number of atoms
in a dot, in a given layer, and we have assumed a circular
quantum dot as defined in Eq. (2), with orbital excitation
energy h̄ωorb and characteristic size adot = √

h̄/mtωorb. See
Appendix A for further details on the derivation of Eq. (12)

The individual amplitudes δl |ψenv(zl )|2 contributing to the
sum in Eq. (11) are plotted in Figs. 2(b) and 2(e), for the
same disorder realizations shown in Figs. 2(a) and 2(d). Here,
the complex phase, −2k0zl , is also indicated by the color
scale. In both figures, we see that amplitudes are maximized
when the wave function strongly overlaps with Ge. For the
wide-interface geometry in Fig. 2(b), we find that many lay-
ers contribute significantly to the sum, while for the narrow
interface shown in Fig. 2(e), only a few layers contribute.
The total intervalley coupling � is therefore complex, with a
large random component determined by the details of the Ge
distribution. Figure 2(g) shows the resulting distribution of �

values in the complex plane, for many different realizations
of the alloy disorder, corresponding to the wide (purple) or
narrow (gold) interfaces. The black dots indicate the deter-
ministic components �0, which are generally located at the
center of the distributions. For wide interfaces, we see that
|�0| can be much smaller than the standard deviation of |�|.
For narrow interfaces, on the other hand, |�0| can be large
enough for all � results to be well separated from the origin.
However, we note that the interface is extremely sharp in this
example, with an average width of just 1 atomic monolayer
(ML).

This effective-mass description of alloy disorder agrees
very well with tight-binding simulations. Figure 2(h) shows a
correlation plot of effective-mass results EEM

v , obtained from
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Eq. (8), versus tight-binding results ETB
v , obtained for the

same disorder realizations. The correlations between these
independent methods is nearly perfect for both the purple and
gold data sets in Fig. 2(h), emphasizing the accuracy of this
analytic interpretation.

F. Statistical properties of Ev

To characterize the statistical properties of � in the pres-
ence of alloy disorder, we first consider the case with no
interface steps. From Eq. (11) we see that, since δ̄l = E[δl ] =
0, we must have E[�] = �0. Following Ref. [19] to compute
the variance of Eq. (11), we then obtain

σ 2
� = Var[�] = Var[δ�]

= 1

π

[
a2

0�Ec

8adot (Xw − Xs)

]2 ∑
l

|ψenv(zl )|4X̄l (1 − X̄l ), (13)

where σ� is the standard deviation of the � distribution,
and we have used the fact that concentrations fluctuations in
different layers are statistically independent.

If many atomic layers contribute to the sum in Eq. (8), then
according to the central limit theorem, we can approximate the
intervalley coupling � as a circular Gaussian random variable
centered at �0, for which the variances of the real and imag-
inary parts of � are both (1/2)Var[�]. This approximation
should be accurate for quantum wells with wide interfaces.
For structures with very sharp interfaces, the sum in Eq. (8)
may be dominated by just a few layers, as in Fig. 2(e). In this
case, the central limit theorem is less accurate, and � may
have a noncircular distribution. Nonetheless, the approxima-
tion provides reasonable estimates, even in cases where it is
not well justified, and we adopt it in all cases below.

The valley splitting Ev = 2|�| is real. For a circular Gaus-
sian distribution of � values, the corresponding Ev probability
distribution is Rician [53], defined as

fRice(z|ν, σ ) = z

σ 2
exp

(
− z2 + ν2

2σ 2

)
I0

( zν

σ 2

)
, (14)

where I0(y) is a modified Bessel function of the first kind.
Here, the “center” parameter is given by ν = Ev0 = 2|�0|,
and the “width” parameter is given by σ = √

2σ�. To illus-
trate valley splitting distributions in different limiting regimes,
the tight-binding results from Fig. 2(h) are replotted in his-
togram form in Fig. 2(i). Here we also plot the corresponding
Rician distributions, using the parameters Ev0 = 2|�0| and
σ� computed in Eqs. (10) and (13). For quantum wells with
wide interfaces (purple data), the predicted distributions show
excellent agreement with the simulations. For wells with nar-
row interfaces (gold data), the Rician distribution is somewhat
skewed, since the distribution of � is no longer perfectly
circular, and the central limit theorem is less-well-satisfied.
However, the Rician model still provides a reasonable esti-
mate of the results.

We may therefore use the known properties of the Rician
distribution to characterize the statistical properties of the
valley splitting in the presence of disorder. The mean valley
splitting is thus given by

Ēv = σ
√

π/2L1/2(−ν2/2σ 2), (15)

FIG. 4. Universal crossover between deterministically and ran-
domly dominated valley splittings, in the presence of alloy disorder.
1D effective-mass simulations are performed, using sigmoidal Ge
profiles, as a function of interface width λint (top axis). 500 sim-
ulations are performed at each λint value, with 25–75 percentiles
shown as vertical bars. The mean valley splittings Ēv are shown as
crossbars and corresponding standard deviations σ� (bottom axis)
are obtained from Eq. (13). The two energy axes are normalized by
the deterministic valley splitting Ev0, resulting in an asymptote of
Ev/Ev0 = 1 in the low-σ� limit, a slope of 1 in the high-σ� limit, and
a well-defined crossover between the two regimes at

√
πσ� = Ev0

(vertical dotted line). The red curve shows the theoretical estimate
for Ēv , obtained from the Rician distribution in Eq. (15), taking
Ev0 and σ� as inputs from the effective-mass simulations. The pink
shaded region shows the corresponding 25–75 percentile range for
the Rician distribution, which closely matches the simulation results.
For all results, we assume dots with orbital splittings of h̄ωorb =
2 meV, vertical electric fields of Ez = 5 mV/nm, and well widths of
W = 80 ML.

where L1/2(x) is a Laguerre polynomial [53]. In the randomly
dominated regime, corresponding to ν 
 σ (or |�0| 
 σ�),
the Rice distribution reduces to a Rayleigh distribution with
� ≈ δ� and Ēv ≈ √

πσ�(1 + E2
v0/8σ 2

�). Since Var[�] = σ 2
�

is approximately proportional to the average Ge in the quan-
tum well, given by Yl in layer l , we see that the mean valley
splitting can be increased by simply exposing the wave func-
tion to more Ge. This is an important result. In contrast, the
deterministic correction to Ēv (the second term in the Rayleigh
expression) is proportional to (Ev0/σ�)2, which has almost
no effect on the valley splitting. In the opposite limit, ν � σ

(or |�0| � σ�), the mean valley splitting is simply given by
Ēv ≈ Ev0. This is the expected result in the deterministically
enhanced regime.

We now examine the crossover between deterministic and
randomly dominated behaviors. In Fig. 4, we plot the total
valley splitting Ev , including both deterministic and random
contributions (normalized by the deterministic value, Ev0)
as a function of the standard deviation,

√
πσ� (also nor-

malized by Ev0). Results are obtained from effective-mass
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calculations, including 500 realizations of alloy disorder.
Here, the blue bars represent the 25–75 percentile range, and
the crossbars indicate the mean value. The solid red line
shows the Rician estimate, and the pink shading represents
the corresponding 25–75 percentiles of the Rice distribution.
The asymptotic behaviors derived above are then shown as the
dashed gray line (randomly dominated regime) and the con-
stant value Ev/Ev0 = 1 (deterministically enhanced regime).
We can identify the crossover between these two regimes as

Ev0 ≈ √
πσ�. (16)

In practice, the crossover appears abrupt, with the deter-
ministic valley splitting quickly becoming overwhelmed by
disorder as the wave function is exposed to more Ge.

G. Device failure analysis

For qubit applications, a key outcome of our analysis is
that valley splitting distributions exhibit qualitatively different
behaviors, depending on whether they fall into the determin-
istically enhanced vs disorder-dominated regimes. In general,
robust qubit operations require valley splittings that are reli-
ably large, so that excited valley states do not compete with
spins as qubits, and do not interfere with spin-qubit dynam-
ics. To form large and uniform arrays of qubits, we must
therefore ensure that all quantum dots have valley splittings
above a specified threshold energy value Emin

v . Throughout
this work, we adopt the threshold value of Emin

v = 100 μeV,
which corresponds to 1.2 K, or about 10× the typical electron
temperature in a dilution refrigerator.

We may then ask the question, what fraction of dots fail
according to this criterion? For the Rice distribution, this
fraction is given by

Pfail =
∫ Emin

v

0
dE fRice(E | Ev0,

√
2σ�). (17)

In the disorder-dominated regime (σ� � Ev0), we find that

Pfail ≈ 1 − exp
( − Emin

v

2
/4σ 2

�

)
(disordered). (18)

If we further assume that Emin
v > σ�, as is often true for wide-

interface heterostructures, we find Pfail ∼ O(1). On the other
hand, if we assume that Emin

v � σ�, as found in some high-
disorder heterostructures, we obtain the power law behavior

Pfail ≈ (
Emin

v /2σ�

)2
(disordered). (19)

In either case, the failure rate is found to be unacceptably high.
In the deterministically enhanced regime (σ� 
 Ev0), on the
other hand, the failure rate is exponentially suppressed:

Pfail ∝ exp
( − E2

v0/4σ 2
�

)
(deterministic). (20)

In this case, it is possible that no qubits have unacceptably
low valley splittings, even in large arrays. Taking an example:
for a dot with the same parameters as Fig. 2, and a 1 ML in-
terface width, we obtain Ev0 ≈ 386 μeV, σ� ≈ 12 μeV, and
Pfail ≈ 10−61, which is extremely small. However, Pfail also
increases extremely quickly with interface width. For exam-
ple, for a 2 ML interface with all other parameters unchanged,
we obtain Ev0 ≈ 79 μeV, σ� ≈ 14 μeV, and Pfail ≈ 0.82. So
even though 2 ML interfaces fall into the deterministically

enhanced regime (Ev0 � σ�), since Ev0 < Emin
v , Pfail can still

be large. In recent experiments where quantum wells were
found to have sigmoidal interfaces of width λint = 0.8 nm
[19], the measured 100 μeV failure rate was found to be
∼50%. For the Ez and h̄ωorb values reported in that work, we
predict a similar value of 62%, while for the Ez = 5 mV/nm,
h̄ωorb = 2 meV parameters used elsewhere in this work, we
predict Pfail = 99%. Finally we note that valley splitting dis-
tributions are not perfectly Rician when interfaces are very
narrow, so the estimates given above are rough. However,
these results highlight the fact that Ev can be consistently
large in the deterministically enhanced regime, although this
requires extremely sharp heterostructure features.

H. Interface steps

Si/SiGe heterostructures are grown on surfaces that may
be intentionally miscut away from the [001] crystallographic
axis, resulting in single-atom steps at all device interfaces.
Steps may also arise as a consequence of strain or other
natural fluctuations, which are very difficult to control at the
single-atom level. Such steps are known to significantly ef-
fect the valley splitting, and are therefore very well-studied
[21,27,28,34–36,41,54]. Reductions in Ev of up to 75% for a
single step have been reported theoretically, depending on the
particular step geometry, location, and other dot parameters.

The effective-mass description of valley splitting, devel-
oped in preceding sections, also applies to devices with steps.
In this case, we use the 2D intervalley matrix element, Eq. (9).
This requires first calculating the 2D envelope function
ψ (x, z), which we do by solving a discretized Schrödinger
equation on a grid of cells, in the absence of valleys, while
including alloy disorder. Figure 5(a) shows a typical envelope
solution for the case where a step is located at the center
of the quantum dot confinement potential. In Fig. 5(b), we
show the complex � distributions obtained for cases with
(orange) and without (blue) single-atom steps, again located
at the center of the quantum dot confinement potential. In
each case, the effective-mass results are obtained for 500
different disorder realizations. As we might expect, the step
significantly reduces the central value of the distribution, |�0|,
in this case, by a factor of 3–4. This particular geometry,
with the step centered on the dot, is found to be a worst-case
scenario for suppressing the valley splitting, although we do
not consider other step geometries here. It is interesting to
note however that the variances of the two distributions in
Fig. 5(a) are nearly identical. This can be understood from the
fact that the variance in Eq. (13) depends on quantities that
vary slowly in space, such as ψenv(r) and X̄l . In other words,
the statistical properties of the valley splitting depend on the
local Ge concentration, and are not particularly sensitive to the
presence of steps. It is also interesting to note that the valley
splitting remains in the deterministically enhanced regime,
|�0| � σ�, even in the presence of a step, when the interface
is very sharp. Below, we will show that this is no longer true
for wider interfaces.

Figure 5(c) shows a correlation plot comparing effective-
mass and tight-binding results for cell geometries and
confinement parameters identical to those used in Fig. 5(b).
Similar to Fig. 2(h), we observe nearly perfect correlations,
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FIG. 5. Effects of interface steps on the valley splitting for a supersharp interface. (a) A typical 2D cell geometry and corresponding
2D envelope function, obtained in a quantum well with a single-atom step located at the center of the quantum dot confinement potential
along x̂. (b) � distributions obtained from Eq. (9), plotted on the complex plane, for 500 random-alloy realizations of the geometry shown in
(a) (orange). We adopt the sigmoidal model of Eq. (21) for the quantum well Ge profile, with Xs = 0.7 and Xw = 1, and an interface width
of λint = 4τ = 1 ML. The 2D envelope function is recomputed for each simulation, taking into account the concentration fluctuations, and
we assume a vertical electric field of Ez = 5 mV/nm and an isotropic harmonic confinement potential of strength h̄ωorb = 2 meV. Blue points
show results for the same geometry, but in the absence of steps. The central black points correspond to �0 for each distribution. For such sharp
interfaces, the presence of a step suppresses the average valley splitting by a factor of 3–4, although it has little effect on the standard deviation
of the distribution. It is interesting to note that, despite being strongly suppressed, the valley splitting remains in the deterministically enhanced
regime, even in the presence of a step, for the case of a super-sharp interface. (c) Correlation plot of the effective-mass valley splitting results,
EEM

v = 2|�|, taken from (b), vs 2D tight-binding results obtained for the same 2D cell geometries and disorder realizations, demonstrating
nearly perfect agreement. The results show that the 2k0 theory of valley splitting also holds for step disorder.

including cases with and without a step. This demonstrates
that the universal 2k0 theory of valley splitting also captures
the effects of interface steps. In the following section, we
explore the interplay between steps and alloy disorder more
thoroughly.

IV. CONVENTIONAL SI/SIGE HETEROSTRUCTURES

In this section, we use the theoretical tools developed above
to analyze conventional Si/SiGe heterostructures. First, we
more thoroughly explore the interplay between alloy disorder,
interface width, and interface steps. In particular, we show
that for devices with realistically broadened interfaces, step
disorder is less important than alloy disorder. We then show
how alloy disorder and step disorder impact the variability of
valley splitting across a device. Finally, we use theoretical and
numerical approaches to study how the specific profile of an
interface affects its valley splitting.

A. Interplay between interface steps and interface width

Here we use the 2D minimal tight-binding model to ex-
plore the interplay between interface steps and interface
widths on the valley splitting. We choose a smooth quantum
well confinement potential defined in terms of sigmoid func-
tions, as

X̄ (z) = Xw + Xs − Xw

1 + exp[(z − zt )/τ ]
+ Xs − Xw

1 + exp[(zb − z)/τ ]
,

(21)

where we adopt the convention that z = 0 at the top surface
of the sample, and z > 0 inside the sample, including in the
quantum well. Here, zt and zb are the positions of the top
and bottom interfaces of the quantum well, with zb − zt =
W , and the interface width is given by λint = 4τ . In cases
with narrow interfaces, we choose zt and zb to lie halfway
between atom sites. Steps may be included by inserting

Eq. (21) into Eq. (1), with X̄l (x, y) = X̄ (x, y, zl ). Some typical
narrow and wide-interface geometries are illustrated schemat-
ically in Figs. 6(a) and 6(b). The quantum dots are confined
laterally using Eq. (2). Here and throughout this section, we
choose the orbital excitation energy to be h̄ωorb = 2 meV.
To reduce the 3D cell geometry to 2D, we assume the step
is oriented along ŷ. As described in Sec. III B, we are then
able consider a separable wave function, with ψy(y) being the
ground state of a harmonic oscillator along ŷ, also adopting a
confinement potential with h̄ωorb = 2 meV. We finally take a
weighted average of the Si concentration fluctuations along ŷ
for each element of the 2D cell, oriented in the x-z plane. Note
that the wave function ψy(y) is used only in the averaging
procedure; the remainder of the 2D simulation is performed
using the tight-binding model.

1. Narrow interfaces

Although it is extremely difficult to grow ultra-sharp inter-
faces of width 1 ML, or λint = 0.14 nm, this limit is often
considered in theoretical calculations. For example, in this
limit, the valley coupling can be treated as a δ function in
effective-mass theory [29,34,35,41]. We therefore also begin
by considering the ultra-sharp limit here, as illustrated in
Fig. 6(a). We further consider a 100×100 nm2 section of het-
erostructure in the x-y plane, with a linear step running down
the middle of the geometry. Si and Ge atoms are assigned to
a 3D cell geometry after determining the average concentra-
tion for each cell. We then raster the center position of the
dot across the x-y plane, apply the 3D-to-2D cell reduction
procedure described above at each location (eliminating the y
coordinate), and compute the valley splitting in the x-z plane
using the tight-binding theory.

Figure 6(d) shows the resulting valley splitting as a func-
tion of dot position. Away from the step, because of the
sharpness of the interface, we find that Ev can be quite high,
typically on the order of 350 μeV or more. Near the step
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FIG. 6. Interplay between interface step disorder and random alloy disorder. (a), (b) Schematic illustrations of 2D tight-binding models
for quantum wells with (a) sharp interfaces, or (b) wider interfaces, in the presence of a single-atom step through the center of the device.
Here interfaces are modelled as sigmoid functions [Eq. (21)] with a characteristic width of λint, as indicated by dotted lines in the insets.
Quantum dots are modelled as in Eq. (3), with orbital energy splittings of h̄ωorb = 2 meV, and a vertical electric field of Ez = 5 mV/nm.
(c) Valley-splitting results are shown for the case of no steps at the interface (blue), or a single-atom step going through the center of the
quantum dot (orange), as a function of the interface width. Circular markers show the mean values for 1000 different alloy-disorder realizations,
while error bars show the 25–75 percentile range. (Inset) Filled circles shown the same mean values plotted in the main panel. Open circles
show the results of similar simulations, performed without alloy disorder. [(d)–(f)] Valley splittings as a function of dot position, in quantum
wells with alloy disorder and a single-atom step at the quantum well interface, located at x = 0. The only difference between the three maps is
the interface thickness, as indicated at the top of each panel. [(g)–(i)] Valley splitting results as a function of dot position, as the dot is moved
across a step located at x = 0. Here, interface widths are the same as in (d)–(f), but the simulations are repeated for 200 realizations of alloy
disorder, with circular markers showing the mean values, and error bars showing the 25–75 percentiles. Blue data: the same interface/step
geometries as (d)–(f), with no additional Ge in the quantum well. Orange data: the same interface/step geometries as (d)–(f), with an average
uniform concentration of 5% Ge added to the quantum well. For the orange data, we use Ge barrier concentrations of 35%, to maintain a
30% concentration offset between the barriers and the quantum well. (All other simulations, without Ge in the quantum well, use Ge barrier
concentrations of 30%.)

however, Ev is reduced by about 71%. Although there is
some variability due to alloy disorder, the step is, without
question, the dominant feature in the data. This is consistent
with the fact that the ultrasharp interface falls within the

deterministically enhanced valley-splitting regime. Indeed,
using effective-mass theory to solve the same geometry, we
find that Ev0 ≈ 386 μeV (away from the step), while σ� ≈
12 μeV, confirming that Ev0 � σ�.
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2. Wide interfaces

Theoretically, it is well known that Ev depends sensitively
on the width of the interface and decays quickly for wider
interfaces [18]. Figures 6(e) and 6(f) show results for calcula-
tions similar to the previous section, but with interface widths
of λint = 1.36 nm or 10 ML in panel (e), and 2.72 nm or
20 ML in panel (f). In contrast to Fig. 6(d), the step feature is
no longer visible in either of these maps, and the valley split-
ting variability is fully consistent with alloy disorder. Indeed,
for the 10 ML interface, we find that Ev0 ≈ 5 × 10−5 μeV
while

√
πσ� ≈ 64 μeV, indicating that this quantum well lies

deep within the disordered regime: Ev0 
 √
πσ�.

We study the crossover between deterministic and disor-
dered behavior in more detail in Fig. 6(c). Here in the main
panel, we plot the valley splitting as a function of interface
width for the case of no step (blue), and when the dot is
centered at a step (orange). The markers indicate the mean
values obtained from 1000 minimal-model tight-binding sim-
ulations, with different disorder realizations, and the error bars
show the 25–75 percentile ranges. For comparison, NEMO-
3D simulation results (× markers) are also shown for several
interface widths, averaged over 10 disorder realizations. The
data show a distinctive minimum in the valley splitting, which
occurs at the interface width of 3 ML. The crossover between
deterministic and disordered behavior is abrupt, occurring at
interface widths of 2–3 ML. The crossover is observed more
clearly in the inset, where the filled circles show the same
mean values as the main panel, while the open circles show
Ev0 computed in the virtual crystal approximation, where the
Ge concentration in a given layer is given by Ȳl . The abrupt
divergence of the two data sets between 2–3 ML confirms the
crossover location, and clearly demonstrates that alloy disor-
der has essentially no effect in the deterministically enhanced
regime.

The valley splitting behavior on either side of the crossover
is also distinctive. For narrow interfaces, Ev is initially large,
dropping precipitously with interface width. As in Fig. 5,
the step is seen to significantly reduce the valley splitting in
both the two-band and NEMO-3D simulations. In the wide-
interface regime, the valley splitting is seen to increase with
interface width, while the error bars also grow. These effects
can both be attributed to the increasing exposure to Ge. In this
regime, we further note that the difference in Ev for stepped
versus nonstepped heterostructures essentially disappears.

Finally we note that the magnitude and details of the valley
splitting depend on the precise shape of the interface. We also
explore the relationship between interface widths and shapes
in more detail in Sec. IV C.

3. Effect of steps for very strong alloy disorder

In Fig. 6(c), the effects of alloy disorder were found to
overwhelm step disorder for increasing levels of Ge in the
quantum well. It is possible to explore the effects of even
larger Ge concentrations by introducing Ge directly into the
quantum well. In Figs. 6(g), 6(h), and 6(i), we show results
for geometries similar to Figs. 6(d), 6(e), and 6(f). Here the
blue data correspond to the same geometries as panels (d)–(f),
with the same interface widths. The orange data correspond
to the same geometries, but with an (average) uniform 5%

concentration of Ge added to the quantum wells. In both cases,
the markers show the mean valley-splitting values, averaged
over 200 disorder realizations, and the error bars show the
corresponding 25–75 percentile ranges, as the dot is moved
across a step located at x = 0. For quantum wells with 5%
Ge, the random component of the valley splitting is greatly
enhanced, as revealed by the size of the error bars. For the
narrow interfaces of Fig. 6(g), the effect of the step is still
(barely) visible for the quantum well with 5% Ge, although it
is much less prominent than in the quantum well without Ge.
In Figs. 6(h) and 6(i), the interface seems to have no effect on
the valley splitting, while the random fluctuations dominate.
Importantly, we see that adding 5% Ge to the quantum well
significantly increases the average valley splitting in all cases.
This enhancement represents one of the main results of the
present work, and we explore it in further detail in Sec. V A.

B. Valley splitting variability

One of the key feature of the valley splitting, apparent in
the color maps of Figs. 6(d)–6(f), is the variability of the val-
ley splitting across a device. In the narrow-interface regime,
these variations are dominated by the presence of a step,
while for wider interfaces, they are mainly caused by alloy
disorder. In both cases, the variations have a characteristic
length scale arising from the self-averaging of the concen-
tration fluctuations by the lateral extent of the quantum dot.
The characteristic length scale of the variations is therefore
proportional to the dot size, adot = √

h̄/mtωorb, which is of
order 10–20 nm for typical excitation energies h̄ωorb∼2 meV
assumed here. We therefore expect to observe significant
changes in the valley splitting as the dot is moved over these
length scales. Such tunability is of great practical interest,
and we study it in further detail in Sec. V A. The ranges of
tunability and variability of the valley splitting observed in
recent experiments can be quantitatively explained by taking
into account the alloy disorder, as we show below.

C. Effect of interface shape

In Sec. IV A, we compared 1 ML interfaces to wider in-
terfaces, finding that the interface shape significantly affects
the valley splitting. Although it is not possible to study all
possible interface profiles, we consider three representative
cases here, to gain intuition.

The first geometry we consider is the only one used in our
simulations so far—the sigmoidal quantum well, defined in
Eq. (21). [See Fig. 7(b)iii. Note that the ultrasharp interfaces
considered in Sec. IV A were also sigmoidal, with characteris-
tic widths of λint = 1 ML.] The second geometry we consider
is the linearly graded interface [Fig. 7(b)i]. For this profile, in
the ultrasharp limit, the interface Ge concentration jumps from
its minimum value to its maximum value over a single cell
width. Below, we also explore a range of linear interfaces with
smaller slopes. While such interfaces are more realistic than
ultrasharp interfaces, they possess unphysically sharp corners
that induce 2k0 components in the Fourier spectrum of Uqw(z),
which artificially enhances the valley splitting. To correct this
problem, we consider a third geometry [Fig. 7(b)ii], which is
similar to the linear geometry, but includes a slight rounding
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FIG. 7. Valley splitting (Ev) depends sensitively on the width (λint) and shape of the interface, and requires alloy disorder to attain realistic
results. (a) The deterministic valley splitting Ev0 as a function of λint, obtained using the virtual crystal approximation to remove alloy disorder.
Results are shown for the three Ge concentration profiles illustrated as insets in (b), with corresponding color coding. Dot markers: minimal
tight-binding model. Open circles: effective-mass model. Dashed and solid green lines correspond, respectively, to a continuum variational
calculation, Eq. (E5), and the discretized version of the same calculation. Inset: the same data plotted on a semilog scale. (b) Valley splittings
computed for the same geometries as (a), in the presence of alloy disorder. Dot markers: averaged value of 1000 minimal tight-binding
simulations with different disorder realizations. Open circles: averaged effective-mass model, Eq. (15). Insets: (i) linear interface of width λint,
(ii) same linear interface with smoothed corners (see main text), (iii) sigmoidal interface of width 4τ = λint. All simulations here assume a
vertical electric field of E = 5 mV/nm, a wide 200 ML quantum well to ensure that the wave function only feels the top interface, and a
quantum well Ge concentration offset of �Y = 30%.

of the corners, obtained by averaging the Ge concentration
over three successive cell layers: Xl → X ′

l = (Xl−1 + Xl +
Xl+1)/3.

1. Without alloy disorder

To provide a baseline for analyzing the three model ge-
ometries, we first consider the virtual crystal approximation,
which does not include alloy disorder (by definition). In the
next section, we solve the same geometries while including
alloy disorder.

Figure 7(a) shows the results of valley-splitting simula-
tions as a function of interface width, in the absence of
alloy disorder. We compare the three quantum well profiles,
which are color-coded to match the insets of Fig. 7(b). We
also compare two different calculation methods: the min-
imal tight-binding model (dots) and effective-mass theory
of Eq. (8) (open circles). In the latter case, the envelope
function ψenv is computed numerically using a Schrödinger
equation. The excellent theoretical agreement again demon-
strates the validity of the effective-mass approach. For all
three geometries, the valley splittings are found to be larger
for narrow interfaces, while quickly decreasing for wider
interfaces.

Figure 7(a) also illustrates the strong dependence of Ev on
the shape of the interface. We note that perfectly linear Ge
profiles (green data) yield valley splittings that are determin-
istically enhanced, compared to the other two methods, due to
the sharp corners. It is interesting to note that even minimal
smoothing of the sharp corners causes a significant reduction
of the valley splittings (blue data), compared to the sharp-

corner geometry. The more realistic sigmoidal geometry has
even lower valley splitting over most of its range (orange
data).

The two linear geometries (blue and green) exhibit periodic
oscillations, which can be explained as sampling effects, or
discreteness of the atoms at the interface. We may confirm this
hypothesis analytically as follows. The dashed green line in
Fig. 7(a) shows the results for a continuum-model variational
approximation for Ev , which does not take into account the
discreteness of the atoms, and does not correctly reproduce
the tight-binding oscillations in Fig. 7(a). In contrast, a nu-
merical, but discrete, solution of the same variational model
(solid green line), exhibits the same oscillations as the tight-
binding results. Details of these calculations are presented in
Appendix E.

Finally, to make contact with experiments, we con-
sider a sigmoidal interface of width of λint ≈ 0.8 nm, as
consistent with recent atom probe tomography (APT) mea-
surements [19]. The corresponding valley-splitting estimate,
from Fig. 7(a), is given by Ev ≈ 0.1 μeV. This predicted value
is much smaller than the average measured value of Ēv ≈
42 μeV, indicating that random-alloy disorder is a key ingre-
dient for understanding the experimental results. A corollary
to this statement is that the quantum wells studied in Ref. [19]
fall into the disorder-dominated regime, despite having inter-
face widths below 1 nm.

2. With alloy disorder

Figure 7(b) shows the same type of valley-splitting results
as Fig. 7(a), for the same three quantum well geometries,
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but now including alloy disorder. Here the sigmoidal results
(orange) are the same as in Fig. 6(c), where we used the same
quantum well geometry. In Fig. 7(b), the dot markers show
the average of 1000 minimal tight-binding model simulations,
while open circles show effective-mass results from Eq. (15),
where �0 is taken from Fig. 7(a) and σ� is computed in
Eq. (13). Here again we observe excellent agreement between
the two theoretical approaches.

Figures 7(a) and 7(b) are nearly identical in the deter-
ministically enhanced regime (very low interface widths).
This is expected since alloy disorder plays a weak role in
this case. In the randomly dominated regime (λint � 0.4 nm),
the mean valley splitting is enhanced above its determinis-
tic value, similar to results obtained in previous sections. In
particular, for the interface width λint = 0.8 nm, we obtain
Ēv ≈ 42 μeV in the presence of alloy disorder, which is more
than two orders of magnitude higher than the disorder-free re-
sult, and much more in line with experimental measurements
[19].

While the valley splitting generally trends downward for
large λint in Fig. 7(a), it is interesting to note that the opposite
is true in Fig. 7(b). This is due to the wave function being
exposed to higher Ge concentrations, and more disorder, for
larger λint. The effect is especially prominent for the sigmoidal
Ge profile. We also observe that the deterministic enhance-
ment of the valley splitting, due to unphysically sharp corners,
persists into the large-λ regime. In this case, the valley split-
tings closely match those shown in Fig. 7(a), for larger Ev0

values. Finally, we note that it is possible to derive an analyti-
cal estimate for Ēv in the randomly dominated regime using a
variational calculation, as shown by the gray line in Fig. 7(b)
and explained in Appendix E.

V. ALTERNATIVE HETEROSTRUCTURES

Moving beyond conventional SiGe/Si/SiGe heterostruc-
tures, several alternative schemes have been proposed to boost
the valley splitting. In this section, we analyze the perfor-
mance of such proposals, focusing on the effects of alloy
disorder. In Sec. V A, we consider quantum wells containing
a uniform concentration of Ge, as proposed in Ref. [19].
Here we study the dependence of the valley splitting on Ge
content and electric field, finding that the extra Ge greatly
enhances the valley splitting on average, but also increases
the variability. Taking this a step further, we explore how
such variability allows for enhanced tuning of the valley
splitting in these structures. In Sec. V B, we study nar-
row quantum wells and compare our simulation results to
the experimental results of Ref. [18], obtaining very good
agreement. In Sec. V C, we explore the effects of a nar-
row Ge spike centered inside a quantum well [45], focusing
on how the spike width affects the valley splitting in the
presence of alloy disorder. In Sec. V D, we comment on
the Wiggle well heterostructure, which contains intentional
Ge concentration oscillations with a carefully chosen pe-
riod [42]. Finally in Sec. V E, we develop a procedure for
determining the optimal Ge profile for a quantum well, to
maximize Ev in either the deterministic or disorder-dominated
regime.

FIG. 8. Valley splittings as a function of uniform Ge concen-
tration Yw inside the quantum well for three vertical electric fields:
Ez = 0 (gray), 5 (pink), and 10 mV/nm (blue). Here, the dots indi-
cate mean values, and error bars indicate the 25–75 percentile range,
for 1D minimal tight-binding simulations based on 1000 different
disorder realizations. (Blue and gray dots are offset to the left and
right, respectively, for clarity.) Dashed lines show theoretical predic-
tions from Eq. (23). The simulations assume a dot with an orbital
energy splitting of h̄ωorb = 2 meV and are performed in a quantum
well of width W = 80 ML, concentration offset �Y = 30%, and
sigmoidal interface of width λint = 10 ML. (Top inset) Schematic
illustration of the quantum well simulation geometry. (Bottom inset)
Valley-splitting distribution results, corresponding to Yw = 5% and
Ez = 5 mV/nm in the main plot.

A. Uniform Ge in the quantum well

1. Valley-splitting distributions

In Ref. [19], it was proposed to add a uniform concentra-
tion of Ge to the quantum well to significantly increase the
random component of the intervalley coupling δ� and the
average valley splitting Ēv . The resulting valley splittings fall
deep within the disorder-dominated regime.

Figure 8 shows the results of minimal-model tight-binding
simulations of the valley splitting, as a function of the uniform
Ge concentration Yw, for vertical electric fields Ez = 0 (gray),
5 (pink), and 10 mV/nm (blue), in quantum wells of width W
as defined in the upper inset. Here we plot the average of 1000
disorder realization (closed circles), and the corresponding
25–75 percentiles (bars). We see that even a small amount of
Ge produces a large enhancement of the valley splitting, as
compared to a conventional, Ge-free quantum well (Yw = 0).

We can approximate the scaling form for the mean valley
splitting using Ēv ≈ √

πσ� in the disorder-dominated regime,
where σ� is given in Eq. (13), and we adopt a very simple
approximation for the envelope function:

ψenv(z) =
{√

2/Lz sin (πz/Lz ), (0 � z � Lz ),
0, (otherwise).

(22)
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FIG. 9. Tuning the valley splitting in quantum wells with uniform Ge concentrations. [(a)–(c)] The valley splitting Ev is computed as a
function of the quantum dot center position (x, y), in the presence of alloy disorder. Results are shown for three uniform Ge concentrations
inside the quantum well: (a) Yw = 0, (b) 0.01, and (c) 0.05. We assume sigmoidal quantum wells with interface widths of λint = 10 ML,
quantum well widths of W = 80 ML, quantum well offsets �Y = Ys − Yw = 30%, and vertical electric fields Ez = 5 mV/nm. In the color
maps, valley splittings below 100 μeV are considered dangerous for qubit operation, and are shaded gray. (d) Quantum well simulation
geometry, with x and y directions labeled. The quantum dot is located in the quantum well, with the density profile indicated by the shading on
the top of the device. (e) Schematic illustration of the simulation procedure used to compute the failure probability Pfail of finding an acceptable
valley splitting (i.e., with Ev � 100 μeV) when a quantum dot is allowed to explore different locations inside a 1D or 2D search box of size l
or w, respectively. (See main text for details.) [(f) and (g)] Pfail as a function of search-box size. For simplicity, we only consider quantum dots
centered at grid points, with spacing d = 5 nm. Red, green, and blue markers show results for heterostructures with average Ge contents of
Yw = 0, 0.01, and 0.05, respectively. Solid dots correspond to numerical averages, computed from 10 000 disorder realizations. Open circles
show corresponding theoretical results, as computed in Appendix D.

Approximating the sum in Eq. (13) as an integral, we obtain
the useful scaling relation

Ēv ≈
√

3

32

a3/2
0

adotL
1/2
z

|�Ec|
Xw − Xs

√
Xw(1 − Xw ), (23)

where �Ec is determined by the quantum well concentration
offset, taken to be �Y = 30% in this section. For the case of
no vertical electric field, Lz is given by the physical width of
the quantum well, W = zt − zb, as defined in Eq. (21). When
the electric field is large enough that the wave function does
not feel the bottom of the well, the well can be treated as a
triangle potential. In this case, a variational calculation using
Eq. (22) gives

Lz ≈
(

2h̄2π2

eEzml

)1/3

, (24)

as described in Appendix E. These analytical estimates are
shown as dashed lines in Fig. 8.

The resulting distribution of tight-binding results is plot-
ted in the lower inset of Fig. 8, for the case Yw = 0.05. We
note that the distribution takes the characteristic Rician form
expected in the disorder-dominated regime, σ� � Ev0, for
which the density of states near Ev = 0 is nonvanishing. As
the Ge concentration increases, the whole distribution moves
towards higher energies, and fewer samples have low energies.
In the following section, we explain how to leverage this
important result.

2. Spatial variability and tunability of the valley splitting

As the mean valley splitting increases with Ge concen-
tration, the variability also increases. This can be seen in
Figs. 9(a)–9(c), where the valley splitting is plotted as a
function of quantum dot position, for three different Ge con-
centrations. Here, the calculations are performed similarly to

Fig. 6, although the effective simulation geometry is now
reduced to 1D, since there are no interface steps. Regions
with dangerously low valley splittings (here defined as Ev <

100 μeV) are shaded gray. These gray regions decrease in
size as the Ge concentration increases, as consistent with
the previous section, while the variability is seen to increase
significantly.

We can take advantage of this behavior by proposing that,
when a quantum dot is initially centered at a dangerous
location, the gate voltages should be adjusted to change its lo-
cation. For larger Ge concentrations, such desirable locations
are typically found in close proximity. Indeed, dot motion of
up to 20 nm has been reported in recent experiments [28,42],
which has in turn been used to explain the large observed
variations in valley splitting.

We now study the likelihood of being able to find a
nearby ‘safe’ alloy-disorder configuration, for which Ev �
100 μeV. We consider two scenarios, illustrated schemati-
cally in Figs. 9(d) and 9(e). In the first case, the dot can be
shifted in a single, fixed direction. In the second, the dot can
be shifted in either of two directions. To begin, we generate
valley-splitting maps, similar to Figs. 9(a)–9(c), for the same
three Ge concentrations. To simplify the search procedure, we
divide each map into a 2D grid of points separated by 5 nm, as
shown in Fig. 9(e). For every grid point initially characterized
as “dangerous” (i.e., with Ev < 100 μeV), we search for at
least one nondangerous grid point within a 1D or 2D search
box of size l or w, as illustrated in Fig. 9(e). Defining Pfail

as the probability of failure, we repeat this procedure for
10 000 disorder realization and plot the average Pfail values
in Figs. 9(f) and 9(g) (dots) as a function of l or w. Analytical
results for the same disorder realizations are also shown as
open circles, by accounting for the correlations between valley
splittings in neighboring sites, as described in Appendix D.
We see that the ability to search over larger regions greatly
enhances the success rate of these procedures, particularly for
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FIG. 10. Comparison of experimental valley splitting measure-
ments [18] (open circles) to tight-binding simulations with alloy
disorder, as a function of quantum well width. Experimental data
points with the same color represent quantum dots fabricated on
the same chip. Bars indicate the 10-90 percentile ranges of 1000
1D minimal tight-binding simulations, assuming a relatively sharp
top interface of width λ

top
int = 2 (light-gray bars) or 3 ML (dark-gray

bars). As in Ref. [18], the bottom interface width is taken to be
λbot

int = 8 ML, and we assume an electric field of Ez = 5 mV/nm, and
an orbital splitting of h̄ωorb = 1.5 meV.

2D searches. For larger Ge concentrations, many orders of
magnitude of improvement can be achieved in this way.

B. Narrow quantum wells

It is known from theory and experiment that narrowing a
quantum well while keeping other growth and confinement
parameters fixed should enhance its valley splitting [20,29].
For example, in Fig. 10, we reproduce the valley-splitting
results reported in Ref. [18] (open circles), where it was found
that 3 nm wells have higher valley splittings on average than
wider wells. However, significant variability is also observed,
and some 3 nm quantum wells are still found to have valley
splittings that are dangerously low. Such behavior is in con-
trast with the deterministic enhancement predicted for narrow
wells, but can be fully explained by alloy disorder, noting that
the electron wave functions are forced to overlap with Ge in
the barriers when the quantum wells are very narrow.

To study this behavior, we perform tight-binding simu-
lations of the valley splitting as a function of well width,
assuming sigmoidal barriers and a vertical electric field of
Ez = 5 mV/nm, for the same well widths as Ref. [18]. Similar
to theoretical calculations reported in that work, we consider
a range of widths for the top interface, while keeping the
bottom interface width fixed at 8 ML. In contrast with that
work, we include the effects of alloy disorder by performing
simulations with 1000 different disorder realizations for each
geometry. We plot our results as 10–90 percentile ranges (gray
bars) in Fig. 10. Here we only show the results for interface
widths of 2 or 3 ML and quantum dot confinement poten-
tials h̄ωorb = 1.5 meV, since those values provide excellent
agreement with the data, for both the mean valley splitting

values and the variability. These results lend strong support
for the role of alloy disorder in determining the variability of
the valley splitting.

We conclude that valley splittings can be enhanced on
average by using narrow quantum wells, due to increased
overlap with Ge in the barrier regions. Considering the trends
observed in Fig. 10, it is interesting to ask whether determin-
istically enhanced behavior (e.g., exponential suppression of
small valley splittings) could potentially be achieved in ultra
narrow quantum wells. We can answer this question using the
crossover criterion of Eq. (16), finding that, for all the results
shown in Fig. 10, only wells with interface widths of λ

top
int =

2 ML fall into the deterministically enhanced regime. This is
consistent with our more general results for wider quantum
wells, showing that deterministic enhancement of the valley
splitting still requires super sharp interfaces, and indicates that
there is no deterministic advantage in using narrow quantum
wells. Finally, by comparing the experimental and theoretical
results in Fig. 10, for W = 3 nm, we see that the experiments
are most consistent with λ

top
int = 3 ML, whose behavior is

randomly dominated. This again emphasizes the difficulty of
achieving deterministically enhanced valley splittings.

C. Ge spike

In Ref. [45], it was shown that a narrow spike of Ge in
the quantum well can increase the valley splitting by a factor
of two, and theoretical calculations indicate that much larger
enhancements are possible. However, alloy disorder was not
considered in that work. In this section, we explore the inter-
play between optimal geometries (single monolayer spikes,
which are difficult to grow), realistically diffused geometries,
varying spike heights (i.e., the Ge concentrations at the top of
the spike), and interface steps, and we include the effects of
alloy disorder.

We first consider the case without interface steps. Fig-
ures 11(a)–11(c) show heterostructures with Ge spikes of
height Ysp = 10%, 20%, and 30%, respectively, and their cor-
responding tight-binding wave functions. Here we define the
Ge spike profile as Y (z) = Ysp exp[−(z − zsp)2/2λ2

sp], where
zsp is the position of the center of the spike, and λsp is the spike
width. An important effect can be observed by comparing
panels (a)–(c): for increasing spike heights, the wave func-
tion envelope is suppressed, at and above the spike location,
with consequences for disorder-induced valley coupling. We
explore this dynamic in Fig. 11(d), where we plot the average
valley splitting for varying spike widths and heights. Here, the
stars labeled (a)–(c) correspond to Figs. 11(a)–11(c). We also
include the singular case of a monolayer spike with no Ge
outside this layer, which is defined as λsp = 0 in the figure,
and is of interest because it allows for analytical estimates, as
obtained in Ref. [45].

Three types of limiting behavior are observed in Fig. 11(d),
which we also indicate with horizontal lines in Fig. 11(e).
(i) In the limit of vanishing spike height, Ysp → 0, we re-
cover results for a conventional quantum well without a spike
[dashed black line in Fig. 11(e)], which falls into the disorder-
dominated regime for the quantum well considered in Fig. 11.
(ii) In the limit of ultra-narrow spikes, λsp → 0, we recover
the analytical predictions of Ref. [45] [dotted blue line in
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FIG. 11. Interplay between deterministic and random contributions to the valley splitting, for the Ge spike geometry. [(a)–(c)] Ge
concentration profiles (gray) for spike geometries of width λsp = 2.5 ML and heights Ysp = 10%, 20%, and 30%, respectively. The resulting
ground-state (closed circles) and excited-valley state (open circles) tight-binding wave functions are also shown. For increasing spike heights,
we see that the wave function is pushed away from the spike, resulting in lower Ge overlap and lower disorder-enhanced valley splittings.
(d) Mean valley splittings (color scale) as a function of spike width λsp and spike height Ysp. Here, each pixel represents an average of 1000 1D
minimal tight-binding simulations, and the results corresponding to (a)–(c) are indicated with stars. (e) Valley splitting as a function of spike
width, for a fixed 10% Ge spike height, and a variety of device geometries, including a virtual crystal approximation without alloy disorder (Ev0,
open circles), and averaged results from 1000 random-alloy simulations (Ēv , closed circles, with 25–75 percentile error bars). In both cases,
we consider both step-free geometries (blue), and geometries with a single step through the center of the dot (orange). Here, deterministically
enhanced behavior occurs only for very narrow spikes of width <1 ML, corresponding to a single atom in our model geometry. The black
dashed line shows the average valley splitting for the same quantum well as the other simulations, including random alloy, but without the Ge
spike. The blue dotted line is the maximum valley splitting, corresponding to a perfect single-atom spike geometry, computed as in Ref. [45]
for a spike height of Ysp = 10%. The orange dotted line shows the same result for the case of a single-atom step running through the center of
the dot. Here we assume the step is present on both top and bottom interfaces, as well as the single-atom spike, resulting in a suppression of
the valley splitting by a factor of ∼0.28, as explained in the main text. In all calculations reported here, we assume an isotropic quantum dot
with an orbital energy splitting of h̄ωorb = 2 meV and a vertical electric field of Ez = 5 mV/nm.

Fig. 11(e)], which fall into the deterministically enhanced
regime; (iii) For larger Ysp and λsp, we observe disorder-
dominated behavior, characterized by larger valley splittings
when the electron overlaps significantly with the Ge (lower
spike heights), and smaller valley splittings otherwise (larger
spike heights).

In Fig. 11(e), we compare several types of spike behavior,
for spikes of height Ysp = 10%, including the case when the
dot is centered at a step. For simulations with (orange) and
without (blue) a step, we plot the average valley splitting val-
ues (closed circles) and the corresponding 25%–75% quartiles
(error bars). We also plot the corresponding deterministic,
disorder-free results (open circles), obtained using the virtual-
crystal approximation. These results indicate a well-defined
crossover from deterministic to disorder-dominated behavior
when λsp ≈ 1 ML, suggesting that deterministic enhancement
of the valley splitting should be difficult to achieve in this
system. The theoretical maximum Ev due to a single-layer
Ge spike (blue dotted line) is computed following Ref. [45],
assuming a vertical electric field of Ez = 5 mV/nm, obtaining
Ev ≈ 3.3 meV. We also note that, in the absence of a step, the
valley splitting abruptly transitions from its deterministically
enhanced upper bound (blue dotted line) to an asymptote that
is slightly larger than the valley splitting in the absence of a
spike (black dashed line). Such enhancement is expected in
the disorder-dominated regime, as discussed in Sec. IV. In the
presence of a step, the valley splitting asymptotes to the same
value, as anticipated in Sec. IV A 3, since the steps do not

have a strong effect in this regime. In the deterministically
enhanced regime however, the valley splitting approaches a
value suppressed below the step-free result by a factor of
1
2 |1 + exp(−ik0a0/2)| ≈ 0.28 (orange dotted line), for the
case where the step runs through the center of the dot.

D. Wiggle well

The most effective method for deterministically enhancing
the 2k0 component of the confinement potential Uqw(z) in
Eq. (7) is to add it directly to the quantum well, where it
overlaps strongly with the electron wave function. This is
accomplished by introducing Ge concentration oscillations of
the form

Yw(z) = Aw[1 − cos(qz + φ)], (25)

where Aw is the average Ge concentration and q is the os-
cillation wave vector. Several wavelengths were proposed to
enhance the valley splitting in Refs. [42] and [46], including
λ = 2π/q = 1.8 and 0.32 nm. The latter corresponds to q =
2k0, which we refer to as the short-period Wiggle well. Below,
we make use of the Wiggle well’s large valley splitting to
further characterize the transition between deterministic and
random-dominated behavior.

In Fig. 12(a), we compare three closely related calculations
of the valley-coupling matrix element �, each of which shows
the averaged results of 500 alloy disorder realizations. The
simulation geometries include (i) a short-period Wiggle well
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FIG. 12. Short-period Wiggle wells provide deterministic en-
hancement of the valley splitting. (a) Intervalley matrix elements �

are computed for short-period Wiggle wells using the 1D effective-
mass approach, and are plotted in the complex plane. Results are
shown for geometries with (blue dots) and without (red dots) a step
passing through the center of the quantum dot confinement potential.
Additionally we show results for quantum wells with uniform Ge in
the quantum well, but no concentration oscillations, with the same
average Ge concentration as the Wiggle wells, Yw = Aw = 0.5%
(gray dots). All three geometries include random-alloy disorder, and
each simulation set is comprised of 500 disorder realizations. Addi-
tionally, we choose a quantum well offset of �Y = Ys − Ȳw = 30%,
a vertical electric field of Ez = 5 mV/nm, a quantum well width of
W = 80 ML, and an interface width of λint = 10 ML. To ensure that
Ev < Eorb in each case, we choose h̄ωorb = 4 meV for all geometries.
(b) A correlation plot comparing tight-binding and effective-mass
simulations of the valley splitting, for the same disorder realizations
shown in (a). Nearly perfect correlations confirm the importance of
the 2k0 wave vector for determining the valley splitting.

with no interface steps (red dots), (ii) a short-period Wiggle
well with a single-atom step passing through the center of
the dot (blue dots), and (iii) uniform Ge in the quantum well
with no concentration oscillations, but with the same average
Ge concentration as the Wiggle wells, Yw = Aw = 0.5% (gray
dots). The results reveal several interesting features. First, the
red data display a striking deterministic enhancement of the

valley splitting, for which the number of solutions with � val-
ues near zero is exponentially suppressed. This is particularly
impressive given the small amplitude of the concentration os-
cillations. The valley splitting is strongly reduced for the blue
data, due to the step; however, a significant deterministic en-
hancement is still apparent, attesting to the potency of Wiggle
well approach. Finally, as anticipated in Sec. V A, we see that
devices formed in quantum wells with uniform Ge have � val-
ues centered near zero, as consistent with randomly dominated
behavior. A second important observation in Fig. 12(a) is that
the standard deviations of the three distributions about their
mean values are nearly identical for the three distributions.
This is consistent with the fact that the mean Ge concentration,
and therefore the alloy disorder, is the same in all three cases.
Thus, by moving from the Wiggle well to the uniform-Ge
geometry, we observe a clear crossover from deterministically
enhanced to disorder-dominated behavior.

Finally, in Fig. 12(b) we show a correlation plot compar-
ing effective-mass and tight-binding calculations, similar to
Fig. 1(f), that includes the three data sets of Fig. 12(a). Here
again we observe nearly perfect correlations, demonstrating
that the 2k0 theory explains the full range of valley splitting
behavior, from extreme deterministic enhancement to totally
disorder-dominated.

E. Optimizing the Ge distribution

We have shown that the valley splitting can be determin-
istically enhanced in structures such as the Wiggle well, or
enhanced on average in quantum wells with uniform Ge.
However, most schemes considered here require increasing
the contact with random Ge alloy, which has the undesired
side effect of decreasing the mobility [42]. It is therefore
interesting to search for Ge concentration profiles that max-
imize the valley splitting while reducing the total amount of
Ge in the quantum well. In this section, we use a projected-
gradient-descent routine to maximize the valley splitting for
a specified amount of Ge. In its simplest form, this algorithm
tends to remove all Ge inside or outside the quantum well,
which is not the desired solution. We therefore constrain the
procedure to only add Ge to an initial sigmoidal quantum
well. The following steps are then repeated until a steady-state
solution is achieved: (i) estimate the gradient of the reward
function, which we take to be the valley splitting computed
using the 1D minimal tight-binding method, (ii) update the
Ge concentration in each layer in the direction of the gradient,
and (iii) renormalize the Ge concentration in all layers so
that the resulting concentration profile has a fixed density
of additional Ge atoms, Gmax. (With out this renormalization
step, the algorithm would continually increase the amount of
Ge in the quantum well, which is also not a desired solution.)
Full details of the optimization procedure can be found in
Appendix G. Note that the total Ge content is computed by
summing the contributions from individual layers in the z
direction; Gmax is therefore reported in units of atoms/nm2.
Below, we apply the routine separately for optimizations in
the deterministic versus random regimes.

1. Deterministically enhanced regime

Deterministically enhanced valley splittings are achieved
by allowing the routine to optimize both the short-wavelength
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FIG. 13. Optimizing the Ge concentration profile to provide a large deterministic enhancement of the valley splitting. (a) The initial Ge
profile (gray) and added Ge content (vertical bars centered on individual atomic layers) corresponding to the Gmax value indicated by the
colorbar. Optimization is performed as described in the main text, in the absence of random-alloy disorder. The initial sigmoidal profile is
defined in Eq. (21), with λint = 10 ML and W = 80 ML, and with a vertical electric field of Ez = 5 mV/nm and quantum dot orbital splitting
of h̄ωorb = 2 meV. (b) Optimized valley splitting distributions, including random-alloy disorder, as a function of the added Ge. Results are
shown for the mean values and 25–75 percentile range of 1000 1D tight-binding simulations at each Gmax value. (c) Discrete Fourier transform
of the weighted barrier potential |Ũqw|, as a function of the reciprocal wave vector, for the optimized concentration profile corresponding to
Gmax = 5 atoms/nm2. The green dashed line identifies the wave vector q = 2k0 responsible for valley splitting. (d) Best fit of Eq. (27) (solid
curve) to the optimized Ge concentration profile (red dots) shown in (a), for the case of Gmax = 5 atoms/nm2.

oscillations and the large-scale Ge concentration envelope
that determines the shape of the wave function envelope. To
focus on deterministic effects, we perform the optimization
in the virtual crystal approximation (i.e., without including
random-alloy fluctuations). Results for the added Ge con-
centration are shown in color in Fig. 13(a), for the initial
sigmoidal concentration profile shown in gray. Here the color
scale represents the total added Ge concentration, where
Gmax ∈ (0.5, 5) atoms/nm2, for a fixed electric field of Ez = 5
mV/nm. The resulting behavior is reminiscent of the Wiggle
well.

To analyze this behavior, we Fourier transform the
weighted confinement potential defined in Eq. (7), Ũqw(z) =
Uqw(z)|ψenv(z)|2. Results are shown in Fig. 13(c) as a func-
tion of the reciprocal wave vector kz, for the case of Gmax =
5 atoms/nm2. Here as usual, the 2k0 component, Ũqw(kz =
2k0), determines the valley splitting. We therefore expect to
find an enhancement of |Ũqw(kz )| at this wave vector (dashed-
green line). Indeed this is the observed behavior, indicating
that our optimization routine naturally reproduces key features
of the short-period Wiggle well.

The results also differ from the Wiggle well in interesting
ways. First, we note that approximately half the atomic layers
in Fig. 13(a) contain no added Ge. Indeed, the secondary peak
observed at kz ≈ 8.3 nm−1 in Fig. 13(c) corresponds to the
first harmonic of 2k0, shifted to lower kz values due to aliasing
effects on a discrete lattice. Such harmonics are a hallmark
of truncated sinusoids. For example, the following “truncated

Wiggle well” yields such harmonics:

Yw(z) = (πAw ) max[cos(2k0z + φ), 0]. (26)

As in Eq. (25), Aw is defined here as the average Ge concen-
tration. However, the Fourier component of Uqw(2k0) for this
concentration profile is π/2 times larger than for the conven-
tional Wiggle well, for the same value of Aw. Therefore the
truncated Wiggle well found by our optimization procedure
should improve the valley splitting of the Wiggle well by a
factor of π/2, for the same total Ge content. We confirm this
prediction through simulations in Appendix H.

A second difference between Fig. 13(a) and a Wiggle
well is in the nonuniform envelope of the concentration pro-
file, which mimics the density profile of the wave function
|ψenv(z)|2. This behavior enhances the valley splitting by in-
creasing the wave function overlap with Ge. (We note that the
precise shape of the Ge concentration envelope depends on
the quantum well profile [gray region in Fig. 13(a)] and the
electric field.) Based on these observations, we hypothesize
that the optimal Ge distribution observed in Fig. 13(a) should
be well approximated as a truncated Wiggle well weighted by
the envelope probability, |ψenv(z)|2. To test this hypothesis, we
fit the added Ge profile in Fig. 13(a), for the case of Gmax = 5
atoms/nm2, to the form

Yfit(z) = afit|ψenv(z)|2max[0, cos(2k0z + φfit)], (27)

where afit and φfit are fitting parameters and ψenv(z) is obtained
from effective-mass theory by solving a Schrödinger equation.
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FIG. 14. Optimized Ge profiles for enhancing the valley splitting
in the disorder-dominated regime. (a) The initial Ge concentration
profile (gray) and added Ge content (colored region), using the
procedure described in the main text and the same quantum well
as Fig. 13. The colorbar indicates the total added Ge concentration,
Gmax, and the resulting envelope functions ψenv(z) are shown for
the cases of Gmax = 3, 15, and 30 atoms/nm2. (b) Optimized valley
splitting distributions as a function of Gmax, showing the mean values
and 25–75 percentile ranges of 1000 1D tight-binding simulations at
each Gmax value.

The resulting fits are excellent, as shown in Fig. 13(d), where
the solid line is Yfit(z) and the red dots are the optimized
simulation results.

Finally in Fig. 13(b), we study the statistical effects of alloy
disorder by performing 1000 valley splitting simulations for
the optimized Ge profiles obtained at each Gmax value con-
sidered in Fig. 13(a). Here, the markers indicate mean values
and the error bars show the corresponding 25–75 percentile
range. The very small standard deviations are indicative of
very strong deterministic enhancements, which are robust in
the presence of alloy disorder.

2. Randomly dominated regime

Concentration profiles like Fig. 13(a) are challenging to
grow in the laboratory (just like the Wiggle well), due
to their short-period features. We therefore also apply a
concentration-optimizing procedure in the randomly domi-
nated valley splitting regime, where the Ge profiles are more
slowly varying (analogous to quantum wells with uniform
Ge). Here, to avoid obtaining a deterministically enhanced
profile, we choose σ 2

� as the reward function, as defined in
Eq. (13). This has the effect of maximizing the mean valley
splitting as well as the variance, since σ 2

� ≈ Ē2
v /π in the

randomly dominated regime.
Figure 14(a) shows concentration profiles obtained from

this procedure, where the color scale indicates the added
Ge content in the range of Gmax ∈ (3, 30) atoms/nm2. Here
we adopt the same initial quantum well and electric field as
Fig. 13(a). The corresponding envelope functions ψenv(z) are

shown for the cases Gmax = 3, 15, and 30 atoms/nm2. For low
Gmax values, the resulting Ge profiles are roughly uniform,
with the Ge shifted slightly towards the top of the quantum
well where |ψenv(z)|2 is large. For high Gmax values, the peak
of added Ge shifts towards the center of the quantum well,
squeezing the electron more tightly against the top interface.
(Note again that the final Ge profile depends on the precise
shape of the quantum well and the electric field.) This has a
twofold effect of (i) exposing the wave function to more Ge in
the barrier region, and (ii) causing the electron to overlap with
fewer atomic layers, which also enhances the concentration
fluctuations. We interpret these results as a preference for
narrower quantum wells. Figure 14(b) shows the resulting
mean values and 25–75 percentile distributions of the valley
splitting, as a function of Gmax. The valley splitting enhance-
ments here are slightly larger than for the case of uniform Ge,
if we compare the same total Ge content. Overall, optimized
valley splittings in the disorder-dominated regime (Fig. 14)
are found to be much smaller than in the deterministically
enhanced regime (Fig. 13), although the devices are much
easier to grow.

VI. SUMMARY

In this paper, we derived a universal effective-mass theory
of valley splitting in Si/SiGe heterostructures, based on the
2k0 reciprocal wave vector of the Fourier transform of the
weighted confinement potential, Ũqw(z) = Uqw(z)|ψenv(z)|2
(Sec. III D). By comparing our results to those of tight-binding
simulations, we showed that this theory accurately predicts
the valley splitting across a diverse set of heterostructures
and disorder models. We then used the 2k0 theory to identify
two valley splitting regimes (Sec. III F): (i) the deterministic
regime, in which the valley splitting is determined by atom-
istic details of the quantum well, such as the sharpness of the
interface or the location of an atomic step at the interface,
and (ii) the disorder-dominated regime, in which the valley
splitting is fully determined by SiGe random alloy disorder. In
the deterministic regime, the valley splitting is reliably large
and independent of the alloy disorder, and the probability
of finding a low valley splitting is exponentially suppressed
(Sec. III G). In the disordered regime, valley splittings can be
large on average, but there is still a good chance of finding
a small valley splitting. The crossover between these two
regimes was shown to be sharp and universal (Fig. 4), since
it depends only on the integrated overlap of the electron
with Ge in the quantum well or the quantum well interface.
However it was also shown that the crossover occurs in a
regime where heterostructure features are very sharp (e.g.,
sharp interfaces or single-atom spikes). Such sharp features
are difficult to achieve in the laboratory; therefore, determin-
istically enhanced valley splittings are difficult to achieve in
physical devices.

Several conventional heterostructure geometries were in-
vestigated by means of simulations (Sec. IV). Sharp interfaces
were found to give a large deterministic enhancement of the
valley splitting (Sec. IV A 1), but only in the ultra-sharp limit
(λint <3 ML), which is difficult to achieve in the laboratory.
Single-atom steps at the interface were shown to suppress the
valley splitting by up to 71% at ultra-sharp interfaces, but were
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found to have almost no effect for interfaces with λint > 3
ML (Sec. IV A 2). Indeed, the precise shape of the interface
was found to be important only for the case of ultra-sharp
interfaces (Sec. IV C). Wider interfaces were also shown to
enhance the variability of the valley splitting, due to greater
exposure of the electron to the SiGe random alloy (Sec. IV B).
This enhanced variability has the interesting side-effect of
increasing the average valley splitting as a function of λint in
the disorder-dominated regime (Figs. 6 and 7).

Several unconventional heterostructures were also investi-
gated (Sec. V). Uniform Ge in the quantum well was found
to enhance both the average valley splitting and its standard
deviation, due to significant overlap of the electron with Ge
inside the quantum well, where the wave function is largest
(Sec. V A). Similar effects occur in other geometries, in-
cluding the sharp Ge spike, where the Ge concentration is
maximized where the wave function is largest (Sec. V C),
and narrow quantum wells, for which the wave function is
squeezed into the quantum well barrier region where the Ge
concentration is high (Sec. V B). The Wiggle well geometry
provides a very effective enhancement of the valley splitting
by engineering the 2k0 wave vector directly into Ge concentra-
tion oscillations inside the quantum well. This geometry also
experiences enhanced valley splitting variability due to high
Ge exposure (Sec. V D).

Such unconventional geometries are found to be optimal,
in the following sense. When the Ge concentration profile is
optimized numerically, to obtain the maximum valley splitting
while allowing for short-wavelength concentration oscilla-
tions, it naturally converges to a Wiggle well-like geometry
(Sec. V E 1). This procedure can be understood as optimiz-
ing the valley splitting, deterministically. Alternatively, in the
disorder-dominated regime, the average valley splitting is pro-
portional to its standard deviation. Maximizing this quantity
yields results similar to the geometry with uniform Ge in the
quantum well (Sec. V E 2).

VII. CONCLUSIONS: BEST STRATEGIES
FOR ENHANCING Ev

We now conclude by describing the best strategies for en-
hancing the valley splitting in Si/SiGe heterostructures. Just
as there are two types of valley splitting behavior, there are
also two approaches for obtaining large valley splittings. The
first is to establish layer-by-layer growth control, which would
allow for the implementation of structures like short-period
Wiggle wells, single-atom spikes, and supersharp interfaces.
We emphasize however, that if 1–2 monolayer growth ac-
curacy cannot be achieved, then deterministic attempts to
enhance the valley splitting will be overwhelmed by random-
alloy disorder, and will fail. In this case, there is no benefit to
striving for deterministic enhancement.

An alternative strategy for enhancing the valley splitting
is to intentionally add Ge to the quantum well, to increase
the exposure to disorder. This has the effect of increasing the
mean value as well as the standard deviation of the valley
splitting. Additionally, and just as importantly, one should
arrange for electrostatic control of the dot position. The most
straightforward approach for adding Ge is to choose a simple,
smooth Ge profile, such as a broadened interface or uniform

Ge in the quantum well, because such structures are easy to
grow. Very narrow quantum wells are also effective for in-
creasing the exposure to Ge. Finally, we note that even low Ge
concentrations and modest tunability of the dot’s position can
increase the probability of achieving useful valley splittings
by many orders of magnitude.
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APPENDIX A: THEORETICAL TREATMENT OF ALLOY
DISORDER IN 1D AND 2D MODELS

In this Appendix, we describe how to account for alloy
disorder in the coarse-grained 1D and 2D models we use in
both tight-binding and effective-mass simulations. First, we
consider how to compute the weighted average Si concentra-
tion in each cell, starting from a fully atomistic, 3D model
of the heterostructure. Then, we derive effective probability
distributions for the Si concentrations in each cell. These
effective distributions allow us to sample many realizations of
alloy disorder without generating fully atomistic, 3D models,
thus greatly improving our computational efficiency.

1. Averaging method for obtaining Si and Ge concentrations

As described in Sec. III B, for 1D models, the Si con-
centration in each cell Xcell = Xl , where Xl is the average
Si concentration at layer l , weighted by the dot probability
density. We can define this quantity as follows:

Xl =
∑
a∈Al

1[a = Si]w(a), (A1)

where Al is the set of atoms in layer l , a = {Si, Ge} is a Si or
Ge atom, and 1[a = Si] is the indicator function which returns
1 if a = Si and 0 otherwise. The weight function w(a) is
proportional to the dot probability density, which we assume
to be the ground state of a 2D isotropic harmonic oscillator.
Following Ref. [19], w(a) should be normalized such that
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∑
a∈Al

w(a) = 1. Because there are two atoms in each layer
of the Si cubic unit cell, spread out over an area of size a2

0, we
can approximate the sum over atoms as an integral using the
transformation ∑

a∈Al

→ 2

a2
0

∫ +∞

−∞
dx dy. (A2)

Hence, the correctly normalized weight function is

w(a) = a2
0

2πa2
dot

e−r2
a /a2

dot (A3)

where ra is the distance of atom a from the center of a dot
of radius adot = √

h̄/mtωorb, mt = 0.19me is the transverse
effective mass in Si, me is the bare electron mass, and h̄ωorb

is the characteristic energy level spacing of the confinement
potential. So, starting from a fully atomistic model of a het-
erostructure, we can incorporate concentration fluctuations
into a 1D cell model by taking the weighted average Si con-
centration in each cell, where the weight function is given by
Eq. (A3). As noted in the main text, we assume a cell size of
�z = a0/4 here.

For 2D models, we divide the atoms on layer l into cells
of width �x. We assume the dot envelope function is sep-
arable, (x, y, z) = ψxz(x, z)ψy(y), and we take ψy(y) to be
the ground state of a parabolic confinement potential with
characteristic orbital splitting h̄ωy. The Si concentration in
each cell, weighted by the dot wave function, is given by

Xj,l =
∑

a∈Aj,l

1[a = Si]w2D(a), (A4)

where Aj,l is the set of atoms in the j th cell along x̂, in the l th
layer, 1 is the indicator function, and w2D(a) is proportional
to the dot orbital wave function in the y direction. Proper
normalization should ensure that∑

a∈Aj,l

w2D(a) = 1. (A5)

Because there are two atoms per unit cell per layer, we can
approximate the sum as an integral using∑

a∈Aj,l

→ 2�x

a2
0

∫ ∞

−∞
dy. (A6)

Thus we find

w2D(a) = a2
0

2�xay
√

π
e−y2

a/a2
y , (A7)

where ya is measured from the center of the dot, and ay =√
h̄/mtωy. In this case, we adopt the same vertical cell dimen-

sion �z as the 1D model, and a lateral cell width of �x =
a0/2 for the 2D cell model. Thus we account for concentration
fluctuations in each cell of a 2D model by taking the weighted
average Si concentration in each cell of size �x × �z, where
the weight function is given by Eq. (A7).

2. Generating probability distributions for Si and Ge
concentrations

In the previous section, we took alloy disorder into account
by generating fully 3D heterostructures atomistically, then

populating each cell of a coarse-grained model by computing
the weighted average Si concentration in each 1D or 2D cell.
However, it is slow and computationally expensive to repeat
this procedure for every simulation. Here, we show that we
can generate valley splitting distributions by randomly sam-
pling the Si concentration in each cell from known probability
distributions based on the Si/Ge concentration profile.

In Ref. [19], by examining the statistical properties of
Eq. (A1), we showed that the Si concentration in each cell of
a 1D model can be described as a binomial random variable:

Xl ∼ 1

Neff
Binom(Neff , X̄l ), (A8)

where Neff = 4πa2
dot/a2

0 is the number of Si atoms per layer
inside a 2D dot of radius

√
2 adot [19] and X̄l is the average Si

concentration in layer l . Here, we derive a similar sampling
rule for cells in a 2D model. Taking the variance of Eq. (A4),
we find

Var[Xj,l ] = X̄ j,l (1 − X̄ j,l )
∑

a∈Aj,l

w2
2D(a)

= X̄ j,l (1 − X̄ j,l )
1

2
√

2π

a2
0

ay�x

= X̄ j,l (1 − X̄ j,l )

N2D
eff

, (A9)

where N2D
eff = 2

√
2πay�x/a2

0 and X̄ j,l is the expected Si con-
centration of the 2D cell with indices ( j, l ), obtained by
averaging uniformly over the entire layer (X̄ j,l = X̄l , for the
case of no step), or by using Eq. (1) (for the case of a step).
Comparing these relations to the known properties of a bino-
mial distribution, we can identify

Xj,l ∼ 1

N2D
eff

Binom
(
N2D

eff , X̄ j,l
)
. (A10)

In this way, we can account for alloy disorder in the 1D and
2D models by sampling each cell according to Eqs. (A8) and
(A10), rather than generating a full 3D lattice geometry and
explicitly averaging the Ge concentration in every cell.

APPENDIX B: CHARACTERIZING
TIGHT-BINDING MODELS

1. Comparing NEMO-3D, two-band tight-binding model,
and effective-mass theory

In this Appendix, we compare results obtained from
NEMO-3D, the minimal two-band tight-binding model, and
effective-mass theory in heterostructures without steps. We
first construct a 3D crystal lattice atom by atom, including
alloy disorder. Taking the dot to be in the orbital ground
state of a harmonic confinement potential with a characteristic
strength of h̄ωorb = 2 meV, we then reduce the 3D model to
an effective 1D cell geometry as described in Appendix A.
This geometry can be solved immediately, using the 1D min-
imal tight-binding model to obtain the valley splitting. For
the effective-mass model, we use the same 1D concentration
profile to numerically solve for ψenv(z), and then compute
EEM

v from Eq. (8). Figures 15(a) and 15(c) show correlation
plots for valley splittings computed this way for 10 disorder
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FIG. 15. Valley splitting comparisons between effective-mass
theory, two-band tight-binding, and NEMO-3D models. [(a) and
(b)] Using the same 10 alloy disorder realizations, we calculate
valley splittings in three ways. In (a), we compare valley splittings
computed from the minimal tight-binding model (ETB

v ) and effective-
mass theory [EEM

v , from Eq. (8)], obtaining nearly perfect agreement.
In (b), we compare the minimal tight-binding model to NEMO-3D
(ENEMO

v ). The red dashed line indicates the best fit to ENEMO
v = αETB

v

with α = 0.74. Gray dotted lines indicate y = x. For both (a) and (b),
we use quantum wells of width W = 80 ML and sigmoid interfaces
of width λint = 20 ML. [(c) and (d)] show the same data as (a), (b) for
10 heterostructures with λint = 1 ML. In (d), the red line indicates
the best fit, with α = 0.99. In all simulations, we assume a vertical
electric field of Ez = 5 mV/nm and an orbital energy splitting of
h̄ωorb = 2 meV. The NEMO-3D valley splitting results shown here
are the same used in Fig. 6(c).

realizations, obtaining nearly perfect agreement between the
two methods, for both (a) wide and (c) sharp interfaces.

The full 3D crystal lattice geometries used in these simula-
tions are then used to obtain the valley splitting in NEMO-3D.
Figures 15(b) and 15(d) show correlation plots for the same
10 heterostructures, now comparing the minimal tight-binding
model to the NEMO-3D model, for (b) wide and (d) sharp
interfaces. The NEMO-3D valley splitting results consis-
tently fall slightly below the minimal tight-binding values;
however the results are very strongly correlated, and well-
approximated by a linear scaling relation, ENEMO

v ≈ αE (TB)
v ,

where α = 0.74 for wide interfaces and α = 0.99 for sharp
interfaces. Thus the effect of the higher bands ignored in the
two-band model are effectively captured by a modest linear
scaling of the valley splitting, which depends on interface
width.

2. Comparing 1D and 2D tight-binding models

In this paper, we employ the 1D tight-binding model in
systems without steps, and the 2D tight-binding model in
systems with steps, assuming a cell width of �x = a0/2.

FIG. 16. Discrepancy between 1D and 2D tight-binding models
in systems without steps. [(a) and (b)] Plots show the median values
(red lines), quartile ranges (boxes), and maximum ranges (whiskers)
of �Ev = E 2D

v − E 1D
v , for the same disorder realizations in 1D and

2D cell geometries (see main text and Appendix A), as a function of
the cell size �x. Here we consider quantum wells with smoothed lin-
ear interface profiles, as described in Sec. IV C, with interface widths
of (a) λint = 1 and (b) 10 ML and well widths of W = 80 ML. For
all simulations we assume a vertical electric field of Ez = 5 mV/nm
and an isotropic orbital energy splitting of h̄ωorb = 2 meV.

In this section, we show that these choices yield consistent
results.

We first choose a value for the cell width. We generate a
full 3D crystal lattice atom-by-atom, including alloy disorder.
We then create a coarse-grained 2D cell geometry using the
methods described in Appendix A, and solve this using the 2D
minimal tight-binding model. Next, we coarse grain the model
a second time, as described in Appendix A, to obtain a
1D cell geometry, and solve this using the 1D minimal
tight-binding model. We then compute the corresponding dif-
ferences �Ev = E2D

v − E1D
v . This procedure is repeated for

1000 realizations of random alloy disorder. �x is then mod-
ified, choosing values that are integer multiples of a0/2. The
results are plotted in Fig. 16 for a range of �x values, showing
the resulting median values (red lines), 25%–75% quartiles
(boxes), and maximum ranges (whiskers). The very small val-
ues obtained for �Ev indicate excellent consistency between
the 1D and 2D models for systems without steps. Since the
smallest cell width, �x = a0/2, is found to provide the best
agreement, we adopt this as the cell width for our 2D model.

APPENDIX C: CHOOSING THE CENTER OF THE
QUANTUM WELL INTERFACE

In quantum wells with very sharp interfaces, the exact
location of the interface [e.g., zb or zt in Eq. (21)] strongly
affects the deterministic valley splitting Ev0. Figure 17 shows
this variation in Ev0 for a λint = 1 ML sigmoidal interface,
as the center of the sigmoid is moved between two adjacent
atomic monolayers. While all interfaces in Fig. 17 are drawn
from the same sigmoid profile, Ev0 nonetheless varies by a
factor of 2. In this work, whenever narrow interfaces are
considered, we choose the center of the interface to be exactly
halfway between two adjacent monolayers, as shown in the
inset labeled with a red diamond.
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FIG. 17. For quantum wells with sharp interfaces, the determin-
istic valley splitting Ev0 depends sensitively on the interface position.
Here we compute Ev0 for quantum wells with sigmoid interfaces,
and interface widths of λint = 1 ML, as the center of the interface
is varied between two adjacent atomic layers. (Insets) (Blue star)
An interface centered exactly on an atomic layer; (red diamond) an
interface centered halfway between atomic layers.

APPENDIX D: VALLEY SPLITTING
SPATIAL CORRELATIONS

In this Appendix, we theoretically compute the probability
Pfail of measuring a valley splitting lower than a nominal
threshold value Emin

v , as defined in Sec. V A of the main text.
In that Section, we considered geometries with uniform Ge
in the quantum well, which are always disorder-dominated,
with |�0| 
 σ�. The probability of failure for a single valley
splitting measurement is therefore given by Eq. (18):

p1 := P
(
Ev < Emin

v

) ≈ 1 − exp
[ − (

Emin
v

)2/
4σ 2

�

]
. (D1)

In the protocol described in Sec. V A, a dot is allowed to
sample either a 1D or 2D region of a device, along a set of grid
points with spacing 5 nm. If n sites are sampled, a naive esti-
mate for Pfail would be pn

1. However, this estimate is inaccurate
because the quantum dot is larger than the grid spacing, so the
valley splittings measured when the dot is centered on nearby
grid points are not independent. A more accurate estimate of
Pfail should therefore account for correlations between nearby
grid points. Empirically, for the setup described in Sec. V A
and Fig. 9(e), we find that it is sufficient to account for nearest-
neighbor correlations between sites separated by � 5 nm.

Figure 18 illustrates the different types of correlations rele-
vant to the 1D and 2D simulation schemes shown in Fig. 9(e).
In Fig. 18(b), we consider four neighboring sites in a 1D
geometry. To explain the correlation analysis, we can think
of the valley splitting simulations at each of these sites as
‘measurements” performed in a particular order, as indicated
by the arrows. The first measurement (blue dot) clearly has
no prior measurements to correlate with, so its probability of
failure is simply given by p1 in Eq. (D1). However, the next
three measurements (green dots) are all correlated with the
prior measurement. If we define the conditional probability of

FIG. 18. An explanation of the types of correlations taken into
account when computing Pfail. (a) The difference between a sin-
gle Ev measurement, two-point correlations between neighboring
measurements, and three-point correlations between neighboring
measurements. We only consider these three types of correlations
in our model. (b) Illustration of a series of Ev measurements, in
increments of d , along a 1D line. The first measurement is uncorre-
lated to anything prior, and the next three are correlated to one prior
measurement. (c) Illustration of a series of Ev measurements along
a square grid with spacing d . We see one initial measurement, six
measurements correlated to one prior measurement within distance
d , and 9 measurements correlated to two prior measurements within
distance d .

failure at site (2), given failure at site (1), as

p2 := P
(
E (2)

v < Emin
v

∣∣E (1)
v < Emin

v

)
. (D2)

then the total estimated probability of failure for the linear
geometry shown in Fig. 18(b) is given by Pfail ≈ p1 p3

2. In
general, for a 1D chain of n sites, we have

Pfail ≈ p1 pn−1
2 . (D3)

Figure 18(c) illustrates a series of valley splitting measure-
ments exploring a 2D region, on a 4×4 grid. If we imagine
performing these measurements by snaking across the lattice
as indicated by the arrows, we see there is only one mea-
surement (blue dot) having no prior correlations. There are
six measurements (green dots) correlated with one prior mea-
surement, and nine measurements (orange dots) correlated
with two prior measurements. If we define the conditional
probability function

p3 := P
(
E (2)

v < Emin
v

∣∣E (1)
v < Emin

v , E (3)
v < Emin

v

)
(D4)

for measurements at sites (1), (2), and (3) in Fig. 18(a), then
we can estimate Pfail ≈ p1 p6

2 p9
3. In general, for an n × n lat-

tice, we have

Pfail ≈ p1 p2n−2
2 p(n−1)2

3 . (D5)

In Appendix D 1 (below) we compute the probability p2,
and in Appendix D 2 we compute p3. Numerical values for p1,
p2, and p3 are given in Table I, and the resulting Pfail values
are given in Tables II and III.
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TABLE I. Numerical parameters used to calculate Pfail. To com-
pute σ�, we use Eq. (13), and we assume quantum wells with a
sigmoidal profile defined by λint = 10 ML and W = 80 ML, an
isotropic harmonic confinement potential of strength h̄ωorb = 2 meV,
corresponding to adot ≈ 14 nm, and a vertical electric field of Ez = 5
mV/nm. To compute p2 and p3, we set d = 5 nm.

σ� (μeV) p1 p2 p3

0% Ge 36.21 0.8515 0.9531 0.98
1% Ge 96.43 0.2357 0.6763 0.83
5% Ge 203.82 0.0584 0.3397 0.53

1. Two-point correlations

We consider quantum dots centered at two neighboring
grid sites, (1) and (2). The corresponding dot positions in the
x-y plane are r1 and r2, and we assume the dots are separated
by the grid spacing d = |r2 − r1|. We want to compute p2,
the conditional probability that E (2)

v < Emin
v , given that E (1)

v <

Emin
v , where as usual, the valley splittings are related to the

intervalley couplings through E (1)
v = 2|�1| and E (2)

v = 2|�2|.
In the disorder-dominated regime, we simply assume the de-
terministic intervalley couplings are zero, such that �1 and
�2 become complex random variables centered at zero. The
probability distributions of �1 and �2 are assumed to be cir-
cular Gaussian distributions in the complex plane. To account
for the correlations between �1 and �2, we need to compute
the covariances between real and imaginary components of
�1 and �2, defined as �R

1 , �I
1, �R

2 , and �I
2.

We begin with the following identity for covariances:

Cov[X,Y ] = 1
2 (Var[X ] + Var[Y ] − Var[X − Y ]). (D6)

TABLE II. Numerical and simulated values of Pfail for a 1D grid
geometry, using the same parameters as Table I. These are the same
values plotted in Fig. 9(f) in the main text. Calculated values are
computed using the methods described in Appendix D. Simulated
values are obtained by averaging 10 000 tight-binding simulations,
as described in the main text.

Calc. Pfail Sim. Pfail

0% Ge
n = 1 0.85 0.8510
n = 2 0.81 0.8111
n = 3 0.77 0.7715
n = 4 0.74 0.7328
n = 5 0.70 0.6936

1% Ge
n = 1 0.24 0.2358
n = 2 0.16 0.1576
n = 3 0.11 0.1013
n = 4 0.073 0.0617
n = 5 0.049 0.0411

5% Ge
n = 1 0.058 0.0650
n = 2 0.020 0.0230
n = 3 0.0067 0.0081
n = 4 0.0023 0.0035
n = 5 0.00078 0.0014

TABLE III. Numerical and simulated values of Pfail for a 2D grid
geometry, using the same parameters as Table I. These are the same
values plotted in Fig. 9(f) in the main text. Calculated values are
computed using the methods described in Appendix D. Simulated
values are obtained by averaging 10 000 tight-binding simulations,
as described in the main text.

Calc. Pfail Sim. Pfail

0% Ge
n = 1 0.85 0.8473
n = 2 0.76 0.7588
n = 3 0.65 0.6548
n = 4 0.53 0.5503
n = 5 0.42 0.4441
1% Ge
n = 1 0.24 0.2359
n = 2 0.090 0.0925
n = 3 0.023 0.0237
n = 4 0.0042 0.0046
n = 5 5.2 × 10−4 0.0010
5% Ge
n = 1 0.058 0.0552
n = 2 0.0036 0.0042
n = 3 6.1 × 10−5 2 × 10−4

n = 4 3.0 × 10−7 0
n = 5 4.0 × 10−10 0

Previously, we have found that Var[�R] = Var[�I ] = σ 2
�/2,

or Var[�] = σ 2
�. Following Ref. [19], we also find that

Var[�2 − �1] =
(

a0

4

�Ec

Xw − xs

)2

×
∑

l

|ψenv(zl )|4Var
[
δ

(2)
l − δ

(1)
l

]
, (D7)

where from Eq. (A1) we have

δ
( j)
l = X ( j)

l − X̄ ( j)
l =

∑
a∈Al

1[a = Si]w j (a) − X̄ ( j)
l . (D8)

Here, X ( j)
l are the weighted Si concentrations at sites j = 1, 2,

and the properly normalized probability density for site j is
given by

w j (a) = a2
0

2πa2
dot

e−|ra−r j |2/a2
dot , (D9)

where ra is the position of atom a in layer l . Using Eqs. (D7)–
(D9) and the sum-to-integral transformation Eq. (A2), we can
evaluate

Var[�2 − �1] = 2
(
1 − e−d2/2a2

dot
)
σ 2

�. (D10)

Using Eq. (D6), we then have

Cov
[
�R

2 ,�R
1

] = Cov
[
�I

2,�
I
1

] = 1
2 e−d2/2a2

dot σ 2
�. (D11)

We can now construct the joint probability density function
for �1 and �2. For the basis ordering {�R

1 ,�I
1,�

R
2 ,�I

2} the
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covariance matrix is given by

� = σ 2
�

2

⎛
⎜⎜⎝

1 0 A 0
0 1 0 A
A 0 1 0
0 A 0 1

⎞
⎟⎟⎠, (D12)

where

A = exp
( − d2/2a2

dot

)
. (D13)

Using the standard definition of conditional probability, we
now have

p2 = P
(
E (2)

v < Emin
v , E (1)

v < Emin
v

)
p1

. (D14)

We can evaluate the numerator using the joint probability
density function, giving

P
(
E (2)

v < T, E (1)
v < T

) = 1√
(2π )4|�|

×
∫

|�1|<Emin
v /2

|�2|<Emin
v /2

d�1d�2 exp

(
−1

2
vT �−1v

)
(D15)

where we define v = (�R
1 ,�I

1,�
R
2 ,�I

2)T and d� j is short-
hand for d�R

j d�I
j . This integral can be evaluated numerically

for a given set of parameters σ�, d , and adot. Numerical results
for p2, for a typical set of parameters, are presented in Table I,
and the corresponding results for Pfail are reported in Table II
for a 1D grid geometry.

2. Three-point correlations

The conditional probability p3 is computed similarly to
p2. In this case, there are three intervalley couplings, so the
covariance matrix becomes

� = σ 2
�

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 A 0 B 0
0 1 0 A 0 B
A 0 1 0 A 0
0 A 0 1 0 A
B 0 A 0 1 0
0 B 0 A 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D16)

in the basis {�R
1 ,�I

1,�
R
2 ,�I

2,�
R
3 ,�I

3}, where A is given in
Eq. (D13) and B = exp(−d2/a2

dot ), which differs from A be-
cause the distance between sites (1) and (3) is given by

√
2d .

Similar to Eq. (D14), we apply the standard definition of
conditional probability,

p3 = P
(
E (1)

v < Emin
v , E (2)

v < Emin
v , E (3)

v < Emin
v

)
P
(
E (1)

v < Emin
v , E (3)

v < Emin
v

) (D17)

Here, the denominator can be evaluated using Eq. (D15),
while the numerator is given by

P
(
E (1)

v < Emin
v , E (2)

v < Emin
v , E (3)

v < Emin
v

)
=

∫
|�1|<Emin

v /2
|�2|<Emin

v /2
|�3|<Emin

v /2

d�1d�2d�3
1√

(2π )6|�|
exp

(
−1

2
vT �−1v

)
,

(D18)

FIG. 19. Schematic illustration of the sinusoidal variational en-
velope function ψenv(z) and the variational parameters z0, λint, and Lz

used to study linear interfaces.

where now, v = (�R
1 ,�I

1,�
R
2 ,�I

2,�
R
3 ,�I

3)
T

. Numerical re-
sults for p3 are presented in Table I, and the corresponding
results for Pfail are reported in Table III for a 2D grid geometry.

APPENDIX E: VARIATIONAL APPROACH FOR
STUDYING EV VERSUS INTERFACE WIDTH

In this Appendix, we use a variational method to derive
the valley splitting as a function of interface width, both with
and without alloy disorder, as described in Sec. IV C. In both
cases, we use the perfectly linear interface model described in
Sec. IV C and Fig. 7(b)i.

We consider the variational envelope function

ψenv =
{√

2/Lz sin [π (z − z0)/Lz], z0 � z � z0 + Lz,

0 (otherwise),
(E1)

with variational parameters z0 and Lz, shown schemati-
cally in Fig. 19. Since the calculation only depends on
the wave function near the top interface, a simple sinu-
soidal envelope suffices [29]. The variational energy is given
by 〈H〉 = 〈T 〉 + 〈φ〉 + 〈Uqw〉, where the kinetic component
〈T 〉 = h̄2π2/2mlL2

z and the vertical field component 〈φ〉 =
(1/2)eEz(Lz + 2z0). The quantum well has barriers with Ge
concentration Ys = 1 − Xs and linear interfaces of width λint,
as illustrated in Fig. 19. In the remainder of this section, we
drop the subscript on λ to avoid clutter. In this section, to
simplify the variational calculation, we set z = 0 at the top of
the interface, as indicated in Fig. 19, and we use the quantum
well potential

Uqw(z) = |�Ec|
(

1 − X (z) − Xs

1 − Xs

)
. (E2)

Equation (E2) is equivalent to Eq. (3), offset by a constant, so
that Uqw = 0 in the middle of the quantum well.

1. No alloy disorder

First, we examine the system without alloy disorder. This is
accomplished by employing the virtual crystal approximation,
X (z) = X̄z. We separate the calculation into two cases: z0 < 0
or z0 � 0. The quantum well contribution to the variational
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energy is then given by

〈Uqw〉 = |�Ec|
4π2Lzλint

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π2λ2
int − 4π2λintz0 + L2

z cos
[

2π (λint−z0 )
Lz

]
−L2

z cos
(

2πz0
Lz

)
, z0 < 0,

−L2
z + 2π2(λint − z0)2 + L2

z cos
(

2π (λint−z0 )
Lz

)
, z0 � 0.

(E3)

We then expand the cosine functions to fourth order and solve for the variational parameters by minimizing the variational
energy, yielding

z0 ≈

⎧⎪⎨
⎪⎩

λint
2 − 1

2π

(
2eEzL3

z

|�Ec| − π2λ2
int

3

)1/2
z0 < 0,

λint −
(

3eEzL3
z

2|�Ec|π2

)1/3
λ

1/3
int z0 � 0,

Lz ≈
(

2h̄2π2

eEzml

)1/3

. (E4)

Applying these parameters to the envelope function, Eq. (E1), we can compute the intervalley coupling and the valley splitting,
using Eq. (8). The results are plotted as a solid green line in Fig. 7(a), showing very good agreement with numerical tight-binding
and effective mass solutions. Thus this simple variational model captures most of the interface physics.

We can also derive a continuum approximation for the intervalley coupling by transforming the sum in Eq. (8) to an integral
and approximating the envelope function as linear near the interface, yielding

�0 ≈
∫ λint

z0

dz e−2ik0zUqw(z)ψ2
env(z)

≈ |�Ec|π2

k3
0L3

z

[
e−2ik0λint

(
i + 3

4k0λint
− λintk0

2
+ z0k0 − iz0

λint
− z2

0k0

2λint

)
+

⎧⎨
⎩

i
2 e−2ik0z0 +

(
iz0
λint

+ z2
0k0

2λint
− 3

4k0λint

)
, z0 < 0

e−2ik0z0

(
i
2 − 3

4k0λint
− iz0

2λint

)
, z0 � 0

]
.

(E5)

Using z0 and Lz defined above and taking Ev = 2|�0| gives
an analytical expression for the valley splitting, plotted as a
green dashed line in Fig. 7(a). Again, this model captures the
significant decay of �0 for wide interfaces, although we find
the continuum result lacks some of the structure captured by
the discrete sum. This is due to the finite spacing between
layers, as explained in Sec. IV C.

2. Including alloy disorder

Here, we study the same variational system with linear
interfaces as above, using it to derive a scaling law for the
average valley splitting Ēv in the presence of alloy disorder,
due to the overlap of the wave function with Ge in wide
quantum well interfaces. In the wide interface limit, we can
restrict our analysis to z0 � 0. As discussed in Section IV C,
the deterministic valley splitting �0 is suppressed for wide
interfaces, so we only need to consider the contributions due
to alloy disorder, δ�. Using Eq. (13) for Var[�] and approxi-
mating the discrete sum as an integral, we obtain

Var[�] ≈ 1

π

[
a2

0�Ec

8adot (1 − Xs)

]2

× 4

a0

∫ λint

z0

dzψ4
env(z)X̄ (z)[1 − X̄ (z)]. (E6)

We can further simplify the calculation by approximating
X̄ (1 − X̄ ) ≈ 1 − X̄ , for X̄ ≈ 1. We then introduce the varia-
tional solution for the envelope function, Eq. (E1), and again

apply a linear approximation near the interface, yielding

σ 2
� = Var[�] ≈ 3

160π

a3
0mtωorbe2E2

z

(1 − Xs)h̄
λint. (E7)

We then finally obtain the result

Ēv ≈
√

πVar[�] = 1

4

√
3

10

[
a3

0mtωorbe2E2
z

(1 − Xs)h̄
λint

]1/2

. (E8)

Equation (E8) is plotted in gray in Fig. 7(b), giving good
agreement with simulation data for smoothed linear inter-
faces. For perfectly linear interfaces, this formula is still valid
and acts as a lower bound; however, Fourier components aris-
ing from the sharp corners raise Ēv above this bound for the
simulation results.

APPENDIX F: SIMULATIONS OF NARROW
QUANTUM WELLS

In this Appendix, we present additional simulations of the
narrow wells considered in Sec. V B, justifying the parameter
choices we made there. Figure 20(a) illustrates how the choice
of orbital energy affects the simulation results. Here we show
the 10–90 percentile range for Ev , from 1000 tight-binding
simulations of a 3 nm quantum well with λ

top
int = 3 ML inter-

faces, for various orbital energy splittings h̄ωorb, assuming an
isotropic dot. Larger orbital energies lead to larger average
valley splittings because they give smaller dots, for which
the Ge concentration fluctuations are larger. According to
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FIG. 20. Narrow quantum wells: our choice of vertical field Ez and orbital splitting h̄ωorb yield simulation results consistent with
experimental data considered in Sec. V B. (a) The mean values (dots) and 10-90 percentile range (bars) obtained from 1000 1D two-band
tight-binding simulations of Ev , with orbital energies h̄ωorb between 1 and 2 meV. Here we use an electric field Ez = 5 mV/nm, a top-interface
width of λ

top
int = 3 ML, and a well width of W = 3 nm. Ev data from Ref. [18], for the 3 nm quantum wells, are included for comparison

(open circles). [(b) and (c)] The 10–90 percentile ranges (bars) and mean values (dots and open circles) from 1000 1D two-band tight-binding
simulations of Ev , for different λ

top
int and Ez. Dots are used for Ez = 5 mV/nm, and open circles are used for Ez = 0 mV/nm. (b) Results for a

well width of W = 3 nm, including Ev data from Ref. [18]. (c) Results for a well width of 8 nm, including experimental Ev data from Ref. [18].
Dots and circles have the same meaning as in (b). Both (b) and (c) assume an orbital splitting h̄ωorb = 1.5 meV.

Eq. (13), we expect the valley splitting in the disordered
regime to scale as

√
ωorb. We find that using h̄ωorb = 1.5 meV

yields results consistent with the experimental data.
Figures 20(b) and 20(c) show how the choice of vertical

electric field, interface width, and well width interact. Larger
vertical fields have a larger impact on wide wells, where they
strongly increase the penetration of the wave function into the
top barrier. On the other hand, the wave function in narrower
wells is already strongly confined, so increasing the field has
a smaller effect. Figures 20(b) and 20(c) show the 10–90
percentile ranges of Ev , for quantum wells of width 3 and
8 nm, respectively, with various top interface widths λ

top
int and

vertical fields Ez = 0 and 5 mV/nm. We find that the field
only modestly affects Ev in the 3 nm well, but a larger field
significantly increases Ev in the 8 nm well. In particular, we
find that the parameters λ

top
int = 2–3 ML and Ez = 5 mV/nm

yield results consistent with the data.
Figures 21(a) and 21(b) illustrate the effect of steps on

a narrow quantum well. In this case, we consider a 3 nm
well with varying λ

top
int , and the electric fields (a) Ez = 0 or

(b) 5 mV/nm, where simulations were performed with and
without a step through the center of the confinement potential.
Results show that steps strongly affect the valley splitting for
very narrow interfaces, but the effect of a step becomes weak
for λ

top
int � 3 ML. For the range of parameters simulated in

Sec. V B, steps are found to have a modest impact on Ev .
Nonetheless, we find that alloy disorder is capable of explain-
ing the full range of Ev variations observed in the experimental
data.

APPENDIX G: OPTIMIZING THE GE DISTRIBUTION

In this Appendix, we provide details about the algorithm
used in Sec. V E to optimize Ge concentrations in the quantum
well. The algorithm pseudocode is outlined in Algorithm1.
We begin with a realistic heterostructure profile Y init

l [shaded

in gray in Figs. 13(a) and 14(a)], and we allow the algorithm
to only add Ge to this initial profile. We use an algorithm
based on the method of projected gradient ascent. At each
iteration, the gradient of the reward function with respect to
the Ge concentration (gradl ) is computed for each layer l ,
and the corresponding Ge concentrations (Yl ) are adjusted
by a small amount in the direction of the gradient. At each
iteration, the resulting concentrations are then projected onto
an acceptable parameter space as follows. First, we ensure that
the Ge concentration is never reduced below its initial value:

FIG. 21. Step disorder has the strongest effect on valley splitting
in narrow wells with sharp top interfaces. [(a) and (b)] The mean
values (dots and × markers) and the 10–90 percentile range (bars)
for 1000 2D two-band tight-binding valley splitting simulations of
the quantum wells described in Sec. V B, with varying top interface
widths λ

top
int , performed with no step at the interface (dots), or with a

single step at the center of the dot confinement potential (× markers).
We use electric fields of (a) Ez = 0 mV/nm, or (b) Ez = 5 mV/nm, a
well width W = 3 nm, and orbital energy splittings h̄ωorb = 1.5 meV.
Ev data for the 3 nm quantum wells in Ref. [18] are included for
comparison (open circles).
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Algorithm 1. for optimizing Ge distributions, to maximize the valley splitting.

Require: An array (Y init
l ) of minimum Ge concentrations for each layer l

Require: A maximum amount of Ge (Gmax) that can be added to the total heterostructure, in units of atoms/nm2

Require: ε > 0
1: Y curr ← Y init

2: while not converged do
3: Estimate gradl

4: Y next
l ← min[1, max(Y curr

l + ε · gradl ,Y init
l )] � Ensure that Y next

l is a valid concentration
5: δY next

l ← Y next
l − Y init

l

6: Y next
l ← Y init

l + δY next
l × min[1, ( 1

2 (109a0 )2Gmax/
∑

l δY next
l )] � Limit the additional Ge added to Gmax

7: Y curr
l ← Y next

l

8: end While

Y init
l � Yl � 1; this is accomplished by setting Yl = Y init

l if Yl

is too small, or Yl = 1 if Yl is too large. Second, we ensure
that the total Yl never exceeds the maximum allowed density
of additional Ge atoms, Gmax, defined in units of atoms/nm2.
This is accomplished by scaling the additional Ge added at
each layer (δYl ) by a common factor:

δYl ← δYl × min

[
1,

(
1

2

(109a0)2Gmax∑
l δYl

)]
. (G1)

If less Ge is added than Gmax, this factor is equal to 1, and
nothing is changed. However, if the added Ge is greater than
Gmax, the added Ge at each layer is rescaled such that the
density remains fixed at Gmax. [Note that the other factors
appearing in Eq. (G1) convert Gmax, in units of atoms/nm2, to
units consistent with

∑
l δYl .] Convergence is achieved when

the change in the reward function is no longer positive, for a
small enough step size.

When we optimize Yl in the deterministic regime, as in
Fig. 13, the tight-binding valley splitting is used as the reward
function. Here, the gradient function is defined as gradl =
δE δl

v /δY , and is estimated as follows. First, we compute Ev

for the existing concentration profile. Then, separately for
each layer l , we modify the concentration by a small amount,
δY , and recompute the resulting valley splitting E δl

v , which
includes this change. The ratio (E δl

v − Ev )/δY provides an
estimate of the gradient for each layer. In this work, we choose
δY = 10−8, and we find the algorithm step factor ε = 10−3 to
be effective for this protocol. (See Algorithm 1.)

When we optimize Yl in the disordered regime, as in
Fig. 14, Var[�] is used as the reward function, as explained
in the main text. We can re-express Eq. (13) in terms of Ge
concentrations as follows:

Var[�] = 1

π

[
a2

0�Ec

8adot (Ys − Yw )

]2 ∑
l

|ψl |4Yl (1 − Yl ), (G2)

where Ys is the Ge concentration in the barriers, Yw is the Ge
concentration in the quantum well before adding extra Ge (set
to 0 in this case), Yl is the Ge concentration at layer l , and ψl

is the value of the envelope function at layer l . In this case, we
again consider small layer-by-layer variations of Var[�]. We
then define the gradient functions as gradl = δVar[�]δl/δY
and proceed as in the previous paragraph. In this case, we also
find the algorithm step factor ε = 103 yields suitable results.

APPENDIX H: THE TRUNCATED WIGGLE WELL

In this Appendix, we validate the performance of the
truncated Wiggle well, which was the learned outcome of
our optimization algorithm in Sec. V E. To do this, we con-
sider both normal and truncated Wiggle wells, where the Ge
concentration oscillations are given by Eqs. (25) and (26),
respectively. The inset to Fig. 22(a) schematically illustrates
both types of wells. Figures 22(b) and 22(c) show the Fourier
components of the weighted quantum well potential |Ũqw|, for
the same average Ge concentration Aw = 0.01, as described
in the main text. We see in Fig. 22(b) that the truncated
Wiggle well has a Fourier peak at kz = 2k0, and that the

FIG. 22. For a fixed average Ge concentration in the quantum
well Aw , the truncated Wiggle well yields larger Ev than the nor-
mal Wiggle well. (a) Deterministic valley splitting values Ev0, for
normal (Ew

v0, black) and truncated (E tr
v0, red) Wiggle wells, plotted

against the average Ge concentration in the quantum well, Aw . The
theoretical estimate E tr

v0 = (π/2)Ew
v0 is also shown with gray circles.

(Inset) Schematic illustrations of the truncated (red) and normal
(black) Wiggle wells. [(b) and (c)] The weighted Fourier transforms
of the weighted quantum well potentials |Ũqw| for (b) truncated
and (c) normal Wiggle wells, for the Ge concentrations Aw = 0.01.
Vertical green dashed lines in (b) and (c) highlight the wave vector
kz = 2k0, and the vertical blue dashed line in (b) highlights the wave
vector kz = 4k0, aliased down to a lower value by the discrete lattice
spacing. All simulations are performed with a vertical electric field of
Ez = 5 mV/nm, a quantum well width of W = 80 ML, a sigmoidal
interface of width λint = 10 ML, and Ge barrier concentration of
Ys = 0.3.
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truncation also introduces higher harmonics into the spectrum,
including a large peak at 4k0. In the figure, the peak appears
at lower kz values due to an aliasing effect caused by the
finite spacing between layers. By zone folding, the aliased
4k0 peak location is given by 8π/a0 − 4k0. On the other
hand, the normal Wiggle well shown in Fig. 22(c) has a peak
at kz = 2k0 but no additional harmonics. As demonstrated

in Fig. 22(a), for a fixed average Ge concentration Aw, the
truncated Wiggle well produces larger Ev values than the
normal Wiggle well. The relation between the valley split-
tings for truncated (E tr

v ) vs normal (Ew
v ) Wiggle wells is very

well represented by the theoretical estimate given in the main
text, E tr

v = (π/2)Ew
v , which is shown in Fig. 22(a) as gray

circles.

[1] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[2] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Silicon quantum electronics, Rev. Mod.
Phys. 85, 961 (2013).

[3] X. Zhang, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, and G.-P.
Guo, Semiconductor quantum computation, Natl. Sci. Rev. 6,
32 (2019).

[4] X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G.
Scappucci, and L. M. K. Vandersypen, Quantum logic with spin
qubits crossing the surface code threshold, Nature (London)
601, 343 (2022).

[5] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G.
Scappucci, and S. Tarucha, Fast universal quantum gate above
the fault-tolerance threshold in silicon, Nature (London) 601,
338 (2022).

[6] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M.
Feldman, E. Nielsen, and J. R. Petta, Two-qubit silicon quantum
processor with operation fidelity exceeding 99%, Sci. Adv. 8,
eabn5130 (2022).

[7] M. G. Borselli, R. S. Ross, A. A. Kiselev, E. T. Croke, K. S.
Holabird, P. W. Deelman, L. D. Warren, I. Alvarado-Rodriguez,
I. Milosavljevic, F. C. Ku, W. S. Wong, A. E. Schmitz, M.
Sokolich, M. F. Gyure, and A. T. Hunter, Measurement of valley
splitting in high-symmetry Si/SiGe quantum dots, Appl. Phys.
Lett. 98, 123118 (2011).

[8] Z. Shi, C. B. Simmons, J. Prance, J. K. Gamble, M. Friesen,
D. E. Savage, M. G. Lagally, S. N. Coppersmith, and M. A.
Eriksson, Tunable singlet-triplet splitting in a few-electron
Si/SiGe quantum dot, Appl. Phys. Lett. 99, 233108 (2011).

[9] D. M. Zajac, T. M. Hazard, X. Mi, K. Wang, and J. R. Petta,
A reconfigurable gate architecture for Si/SiGe quantum dots,
Appl. Phys. Lett. 106, 223507 (2015).

[10] P. Scarlino, E. Kawakami, T. Jullien, D. R. Ward, D. E. Savage,
M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson,
and L. M. K. Vandersypen, Dressed photon-orbital states in
a quantum dot: Intervalley spin resonance, Phys. Rev. B 95,
165429 (2017).

[11] X. Mi, C. G. Péterfalvi, G. Burkard, and J. R. Petta, High-
Resolution Valley Spectroscopy of Si Quantum Dots, Phys. Rev.
Lett. 119, 176803 (2017).

[12] R. Ferdous, E. Kawakami, P. Scarlino, M. Nowak, D. R. Ward,
D. E. Savage, M. G. Lagally, S. N. Coppersmith, M. Friesen,
M. A. Eriksson, L. M. K. Vandersypen, and R. Rahman, Valley
dependent anisotropic spin splitting in silicon quantum dots, npj
Quantum Inf. 4, 26 (2018).

[13] X. Mi, S. Kohler, and J. R. Petta, Landau-Zener interferometry
of valley-orbit states in Si/SiGe double quantum dots, Phys.
Rev. B 98, 161404(R) (2018).

[14] S. F. Neyens, R. H. Foote, B. Thorgrimsson, T. J. Knapp, T.
McJunkin, L. M. K. Vandersypen, P. Amin, N. K. Thomas,
J. S. Clarke, D. E. Savage, M. G. Lagally, M. Friesen, S. N.
Coppersmith, and M. A. Eriksson, The critical role of substrate
disorder in valley splitting in Si quantum wells, Appl. Phys.
Lett. 112, 243107 (2018).

[15] F. Borjans, D. M. Zajac, T. M. Hazard, and J. R. Petta, Single-
Spin Relaxation in a Synthetic Spin-Orbit Field, Phys. Rev.
Appl. 11, 044063 (2019).

[16] A. Hollmann, T. Struck, V. Langrock, A. Schmidbauer, F.
Schauer, T. Leonhardt, K. Sawano, H. Riemann, N. V.
Abrosimov, D. Bougeard, and L. R. Schreiber, Large, Tun-
able Valley Splitting and Single-Spin Relaxation Mechanisms
in a Si/SixGe1−x Quantum Dot, Phys. Rev. Appl. 13, 034068
(2020).

[17] S. W. Oh, A. O. Denisov, P. Chen, and J. R. Petta, Cryogen-
free scanning gate microscope for the characterization of
Si/Si0.7Ge0.3 quantum devices at milli-kelvin temperatures, AIP
Adv. 11, 125122 (2021).

[18] E. H. Chen, K. Raach, A. Pan, A. A. Kiselev, E. Acuna, J. Z.
Blumoff, T. Brecht, M. D. Choi, W. Ha, D. R. Hulbert, M. P.
Jura, T. E. Keating, R. Noah, B. Sun, B. J. Thomas, M. G.
Borselli, C. A. C. Jackson, M. T. Rakher, and R. S. Ross,
Detuning Axis Pulsed Spectroscopy of Valley-Orbital States in
Si/Si-Ge Quantum Dots, Phys. Rev. Appl. 15, 044033 (2021).

[19] B. Paquelet Wuetz, M. P. Losert, S. Koelling, L. E. A.
Stehouwer, A.-M. J. Zwerver, S. G. J. Philips, M. T. Mądzik, X.
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