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A B S T R A C T   

Parent rock strength and crumb rubber modification are two critical mechanical parameters that significantly 
decide the ballast layer degradation subjected to train dynamic loading. Using machine learning to predict ballast 
degradation considering these two parameters is helpful for deciding ballasted track maintenance cycle. In the 
current study, the ballast degradation process data (variables: parent rock types, loading types, ballast gradations 
and compositions of crumb rubber-ballast mixture) were used to train machine learning models. The drop-weight 
impact loading tests were performed to simulate different train dynamic loadings. 

Two well-established machine learning models, i.e., random forest (RF) and support vector regression (SVR) 
were trained and verified, to more effectively assess the importance of these variables. The results from the 
validated machine learning models confirm that the parent rock type is the most influential parameter, followed 
by the loading type (applied stress level), to control and predict the degradation of the ballast-CR mixture. 

The experimental assessment reveals that although the incorporation of CR suppresses degradation across all 
characterized rock types, the improvement in performance of the ballast-CR specimen against degradation is 
more noticeable for high-strength parent rock subjected to a considerable stress level. Meanwhile, this positive 
influence is also observed for ballast of weaker strength when the applied stress level is low.   

1. Introduction 

The ballast layer is characterized as one of the major components of 
typical railway ballasted tracks. Comprising large-sized, tough, crushed 
particles, it serves as a structural layer designed to fulfill the following 
main functions [18,37,15]:  

• Providing stable support for both rails and sleepers subjected to 
moving train loads,  

• Distributing the exerted train forces to reduce the applied pressures 
on the subgrade,  

• Facilitating the process of vertical and lateral adjustment of the track 
with respect to the geometry and stiffness,  

• Draining infiltrated water through the granular system, while also 
absorbing noise and vibration. 

Ballasted track geometry deterioration typically results from ballast 
layer degradation leading to considerable reduction of lateral stability of 
track [33]. The degradation of the ballast layer is often attributed to 

fracture/breakage, wear/abrasion, and the movement of individual 
ballast particles [15,30]. Factors that influence ballast layer degradation 
include the types of loading, parent rock type, and the application of 
geo-inclusions (e.g., crumb rubber/tire-derived aggregates, under- 
sleeper pads, geogrid, etc.). 

Regarding loading types, the train-induced impact loading is absor-
bed by particle breakage, which wears the angularity and rough surface 
of ballast particles [35]. In this context, Koohmishi and Palassi [25] 
assessed the breakage of single ballast particles by performing a point 
load test (PLT) on individual particles, considering the effects of size and 
shape. Although the influence of shape was marginal, the size of indi-
vidual particles was a significant factor. Similarly, Koohmishi [27] 
conducted a PLT on ballast particles, establishing a bilateral loading 
condition. As expected, this modified loading approach led to an 
extension in the point load strength index. 

Concerning parent rock type, high-quality igneous or metamorphic 
rocks are preferred for producing ballast particles to ensure the perfor-
mance of ballasted tracks. Notably, the parent rock determines the 
ballast’s resistance to weathering, loading, etc. In this respect, Sadeghi 
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Fig. 1. Flowchart representing the process of sequential divisions being followed in the current study. a Characterized conditions for carrying out the large-scale 
impact loading test on ballast reinforced with CR particles. b Development of ML models. 
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et al. [37] categorized the parent rock for the selection of ballast into 
four subdivisions: igneous, metamorphic, sedimentary rocks, and slag 
aggregate. Similarly, Alabbasi and Hussein [2] noted that the most 
widely used parent rock for the ballast layer of railway tracks is extru-
sive igneous rocks, followed by metamorphic and then sedimentary 
rocks. Given the importance of the strength of the parent rock, as re-
ported by Wnek et al. [46], the geological characteristics and the 
quarrying process were crucial factors influencing the mechanical and 
physical properties of crushed stone ballast. 

As for geo-inclusions, various practical methods have been employed 
to mitigate ballast layer degradation in ballasted tracks. These include 
the placement of under-sleeper pads and under-ballast mats, as well as 
the incorporation of crumb rubber (CR) into the ballast layer. Mixing 
crumb rubber with ballast could be an effective solution due to the 

disposal of waste tires and the associated reduction in vibration of the 
ballast layer. Truly, appropriate reusing of these solid wastes can reduce 
environmental burdens [22,23]. In relation to this, Sol-Sánchez et al. 
[39] conducted a cyclic uniaxial compression test on ballast-CR samples 
and concluded that the fusion of CR particles abated both degradation 
and stiffness. Similarly, establishing the stone-rubber blowing mini-
mized the recurrence of track maintenance due to degradation reduction 
[40]. Sol-Sánchez et al. [41] discovered that adding rubber particles 
could provide an elastic layer beneath the sleepers. 

Considering the influence of size and quantity of CR particles, Guo 
et al. [13] assessed the degradation reduction of ballast-crumb rubber 
specimens by implementing the Los Angeles Abrasion (LAA) test. They 
found that incorporating larger-sized CR, comparable to the size of 
ballast, led to a lower impact on degradation mitigation [13]. Likewise, 
Koohmishi and Azarhosh (2021) conducted a drop-weight impact 
loading test on mixtures of crushed basalt ballast and CR particles, 
considering the influence of the content and size of rubber material. 
Moreover, Zhang et al. [48] assessed the influence of CR on corner 
abrasion and bulk fracture of ballast particles subjected to impact 
loading. The results confirmed that the most significant effect was 
achieved in the size range of 25–35.5 mm. Furthermore, Arachchige 
et al. [4] proposed a design criterion in which the acceptable range of 
weight percentages of rubber was concluded to be between 7.5 % and 
10 %, considering the compound effects of breakage and associated axial 
strain. Establishing the numerical analysis, Guo et al. [16] concluded 
that smaller-sized CR particles had a more significant influence on the 
dynamic interaction of the train-track-subgrade system. Zhang et al. 
[49] simulated the box test by developing a discrete element model in 
PFC3D. The observed results supported a more homogeneous distribu-
tion of contact forces when a higher percentage of CR was incorporated, 
leading to a reduction in the possibility of particle breakage. 

Taking into account the influence of parent rock, Esmaeili and 
Namaei [11] conducted a ballast box test on rubber-coated ballast (RCB) 
specimens. The test results corroborated that softer ballast resulted in 
the most substantial improvement of RCB deterioration, even though the 
level of stiffness reduction was independent of the parent rock type. 
Similarly, Esmaeili et al. [12] categorized ballast materials based on the 
uniaxial compressive strength (UCS) into hard rock core and consider-
ably hard rock core to scrutinize the influence of rock strength on the 
degradation degree of ballast particles equipped with under-sleeper 
mats. Recently, approaches based on the artificial intelligence, such as 
machine learning (ML), are characterized as well-established methods to 
predict the considered target feature. However, until now machine 
learning to ballast degradation prognosis considering crumb rubber 
modification and parent rock strength has never been performed. 

Multiple earlier studies have revealed the achievability of machine 
learning employment for predicting railway ballast performance. Liu 
et al. [29] employed artificial neural networks (ANN), support vector 
machines (SVM), random forests (RF), and multiple linear regression to 
envision the rut depth of asphalt concrete. Zhang et al. [50] assessed the 
potency of distinct machine learning methods for predicting the 
compressive strength of cement-reinforced soil. Regarding the usage of 
machine learning models in ballasted railway tracks, Aela et al. [1] used 
machine learning methods to predict the number and sizes of ballast 
granular particles after breakage, considering three distinct types of 
ballast material. Statistical indices identified RF regression as the best 
method for estimating the size of crushed particles. 

Azarhoosh and Koohmishi [9] utilized distinct models, including 
adaptive network-based fuzzy inference systems (ANFIS), ANNs, and 
RFs, to predict the hydraulic conductivity of large-sized particles, such 
as railway ballast. The comparative analysis revealed RF as the most 
appropriate approach. Similarly, Indraratna et al. [19] employed ANFIS 
and ANNs to predict the resilient modulus of ballast subjected to cyclic 
loading. 

A thorough literature review confirms that the effect of combining 
CR with ballast on particle degradation resistance has been extensively 

Table 1 
General properties of rock-type ballast derived from distinct queries in Iran.  

Rock type Color PLSI1 

(MPa) 
Water absorption2 

(%) 
LAAI3 

(%) 

Trachyte Grayish yellow  13.4  1.73  14.6 
Basalt Gray  11.9  0.56  18.5 
Limestone Light grayish white  10.8  0.55  22.6 
Andesite Dark purple  9.2  0.39  23.0 
Marlstone Grayish white  5.9  0.32  29.5  

1 Average value of point load strength index of cube-shaped individual par-
ticle - Sieve size range of 37.5–50 mm [6]. 

2 ASTM C 127-12 [8]. 
3 Los Angeles abrasion index [7]. 

Fig. 2. Gradation curves of ballast particles considered in the current study.  

Table 2 
Main characteristics relevant to the characterized gradations of fresh crushed 
ballast particles.  

Grading type dmax (mm) dmin (mm) d10 (mm) d60 (mm) Cu 

AREMA No. 3 50 25  28.1  41.2  1.47 
AREMA No. 4 37.5 9.5  20.1  26.4  1.31 
AREMA No. 4A 62.5 9.5  19.5  35.2  1.81 
AREMA No. 24 62.5 25  28.1  45.5  1.62 
AREMA No. 25 62.5 4.75  15.0  41.3  2.75  

M. Koohmishi and Y. Guo                                                                                                                                                                                                                    
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Fig. 3. Prepared mixtures of ballast-rubber particles.  
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addressed in previous research. The determination of the optimal per-
centage of rubber material and the appropriate size range for the most 
positive effect of rubber granules on ballast degradation resistance were 
all evaluated in preceding investigations [13,26,16,48]. However, the 
contribution of the strength of the parent rock for ballast particles 
reinforced with granulated rubber particles is not clear. Moreover, there 
is no study in which the effects of distinct parameters, including the 
parent rock, the gradation of ballast, the applied stress level, and the CR 
content, have been thoroughly considered. Most importantly, no studies 
have been performed using machine learning to predict ballast degra-
dation considering these parameters. 

To address these research gaps, a series of drop-weight impact 
loading tests were performed to establish the dataset. Based on the 
prepared dataset, consisting of 360 specimens, we established high- 
powered machine learning methods to predict ballast degradation, 
considering the parent rock, gradation of ballast, crumb rubber rein-
forcement, and loading conditions. These influential variables signifi-
cantly affect the degradation resistance of ballast particles. The results 
reveal the most critical variable, along with the individual effect of each 
characterized condition. The research output is very helpful for the 
smart maintenance of railway ballasted tracks by providing a more 
precise ballast maintenance cycle. 

2. Methodology 

In this research, machine learning (ML) models are used to investi-
gate the suitability of incorporating CR particles among ballast extracted 
from non-identical parent rocks on the degradation resistance. Ballast 
samples have been collected from five quarries and include rock types of 

trachyte, basalt, limestone, andesite, and marlstone. The developed 
large-scale impact loading test is conducted on different gradations of 
freshly crushed ballast reinforced with various fractions of CR particles, 
applying distinct stress levels to specify the degradation extent. There-
fore, through the experimental program, variables including rock type, 
gradation of fresh ballast, stress level, and CR content are considered. 

In the second stage, ML models, including random forest (RF) and 
support vector regression (SVR), are used to reveal the importance of 
these aforementioned variables. According to the sequential divisions of 
the current study illustrated in Fig. 1, diverse conditions of impact 
loading tests are established on rubberized ballast specimens, which are 
succinctly clarified in the following subsections. 

2.1. Test material and equipment 

2.1.1. Materials 

2.1.1.1. Fresh crushed ballast. The properties of ballast particles derived 
from distinct parent rocks are summarized in Table 1. Taking into ac-
count the sieve size range of specimens gathered from various quarries, 
as well as the characterized gradation curves from previous studies [43] 
depicted in Fig. 2, five distinct gradations of granular specimens were 
selected which fulfil the AREMA recommendations. Table 2 abridges the 
main characteristics corresponding to the selected gradations of fresh 
ballast particles. 

2.1.1.2. Crumb rubber particles. The CR materials were derived from 
end-of-life bicycle tires by granulating and disintegrating large-sized 
particles. The specific gravity of the prepared rubber material is 

Fig. 3. (continued). 
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approximately 1.10. The characterized size range of CR particles is be-
tween 9.5 and 25 mm. In this regard, Khoshoei et al. [24] reported that 
the stiffness of specimens with larger-derived aggregate (20–60 mm) 
was significantly less than that of rubber granules in the range of 10 to 
20 mm. Also, as pointed out by Arachchige et al. [4], the merit of 
establishing a CR size range from 9.5 to 19 mm was associated with a 
decrease in the breakage of large-sized particles. Moreover, the incor-
poration of rubber particles smaller than 9.5 mm could hinder the 
drainage of water, especially in the case of contamination due to the 
invasion of exterior small-sized particles. Furthermore, considering 
previous relevant studies [39,26], volume-based quotas of 0 %, 5 %, 10 
%, 20 %, and 30 % were established to reinforce the crushed ballast with 
a characterized by-product. Fig. 3 illustrates the fresh ballast and CR 
particles, as well as the ballast-CR mixtures representing the rock-based 
ballast from different quarries. 

2.1.2. Large-scale impact loading test 
To assess the degradation resistance of ballast particles under impact 

loading, the ballast samples are subjected to a developed large-scale 
drop-weight impact loading test, which represents a simple index test 
for the assessment of ballast quality. The impact loading device was 
assembled based on the European standard [10], taking into account the 
actual loading extent exerted on the ballast layer in the field. 

Fig. 4a illustrates the impact loading testing device, which includes a 
specimen mold (with a diameter of 240 mm) and a hammer (weighing 
50 kg) used to apply falling-weight induced impact loading. Fig. 4b 
shows the position of the compression load cell used to measure the 
impact force applied to the ballast specimen. By adjusting the falling 
height, different stress magnitudes are applied to the prepared sample. 
Fig. 5 illustrates the stress levels applied, which comply well with the 
range of stress levels recommended by AREMA [5] for the ballast layer. 
The measured values represent the utmost impact force applied to a 

Fig. 4. Large-scale impact loading test apparatus used for exerting impact loads on the ballast.  
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prepared specimen comprising only ballast particles. As expected, 
reinforcing the ballast particles with crumb rubber particles eventuates 
in an abatement in stress magnitude. 

For each specified condition, 40 shocks are applied to the ballast 
specimens via impact loading, whether incorporating various percent-
ages of CR or not, by adjusting the predetermined falling height levels. 
After this, the degraded ballast sample is sieved to specify the extent of 
degradation. In this regard, Qian et al. [34] considered the effect of the 
number of drum turns on changes in the size of ballast during the LAA. 
Likewise, as reported by Alves and Gomes [3], additional weathering 
cycles lead to more particle breakdown and disaggregation through 
physical and chemical weathering cycles. Similarly, in this study, the 
application of a higher number of blows leads to additional 

disintegration of the specimen. 

2.1.3. Quantification of ballast degradation 
To appraise the level of deterioration, two diverse degradation 

indices are computed as follows:  

1. Fouling index (FI): The value of FI is quantified by the Eq. (1) as 
defined by Selig and Waters [38] 

FI = P4 +P200 (1)   

P4 = Percentage of particles passing through 4.75 mm sieve 
P200 = Percentage of particles passing through 0.075 mm sieve. 

Fig. 5. Established falling height through the impact loading test for implementing the characterized stress levels on prepared specimens of the ballast- 
rubber mixture. 
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2. Marsal’s breakage ratio (Bg): Quantification of breakage ratio by 
adding up the positive values of the difference in percentage retained 
on the same sieve size after the impact test. The variation in per-
centage remained on each sieve size (ΔWk) is calculated as follows 
[32]: 

ΔWk = Wki − Wkf (2)   

Wki = The percentage retained on sieve size k before the impact test 
Wkf = The percentage retained on sieve size k after the impact test. 

Fig. 6 demonstrates the intact ballast-CR specimens prepared for 
impact loading test upon which the degraded samples are generated, as 

shown for three parent rock types. 

2.2. Machine learning models 

2.2.1. Random forest model 
Random forest (RF) regression is explicated as a supervised learning 

approach, where a composite of multiple machine learning procedures is 
established to enhance prediction truthfulness, identified as an 
ensemble procedure [28,21]. As schematically illustrated in Fig. 7, 
multiple regression trees are established to run in parallel, thereby 
reducing the variance of the learning approach [20]. 

In this procedure, the training data are initially split into several 
subdivisions by intermittently sampling the data for separate training, 

Fig. 6. Comparing the gradation of rubberized ballast specimens derived from distinct parent rock types before and after impact loading.  
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Fig. 7. A representative arrangement of RF regression structure.  

Fig. 8. Schematic layout of established approach for training and testing the ML models.  
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Table 3 
Average values of computed degradation indices for different characterized conditions of parent rock type, gradation of fresh ballast, applied stress level and CR 
percentage.  

Parent rock type CR content (%) CR content (%) 

0 5 10 20 30 0 5 10 20 30 

Gradation of ballast: AREMA No. 3 Gradation of ballast: AREMA No. 4 

Stress level: 200 kPa 

Trachyte 2.1
10.8 

1 1.7
9.3 

1.4
8.9 

1.2
8.5 

1.1
8.3 

2.5
12.6 

2.1
10.9 

1.7
9.4 

1.4
9.0 

1.2
8.7 

Basalt 2.4
13.4 

2.0
11.7 

1.9
11.0 

1.7
9.8 

1.6
9.2 

2.8
14.4 

2.3
12.6 

2.1
11.9 

1.9
11.2 

1.8
10.7 

Limestone 3.3
16.2 

2.6
14.2 

2.3
12.6 

2.0
11.3 

1.8
10.6 

3.6
17.5 

3.0
15.3 

2.6
14.1 

2.3
12.8 

2.1
11.6 

Andesite 5.6
25.8 

4.6
22.3 

4.1
20.1 

3.7
18.3 

3.5
17.6 

6.1
28.3 

5.2
24.5 

4.3
21.6 

4.0
20.3 

3.7
19.2 

Marlstone 8.3
33.5 

6.1
26.8 

5.0
24.6 

4.3
22.4 

4.0
21.4 

9.6
35.0 

7.2
28.5 

5.5
26.2 

4.4
24.5 

4.1
23.1  

Stress level: 420 kPa 
Trachyte 3.2

20.2 
2.4
16.3 

2.0
13.9 

1.5
11.3 

1.4
10.2 

3.7
21.5 

3.1
16.9 

2.5
14.8 

1.9
12.3 

1.5
10.9 

Basalt 3.6
22.4 

2.8
18.1 

2.4
15.3 

2.0
12.7 

1.8
11.5 

4.3
23.5 

3.0
18.9 

2.5
16.3 

2.1
13.7 

1.8
12.6 

Limestone 6.4
24.1 

5.2
19.3 

4.7
17.0 

4.2
14.4 

4.0
12.4 

6.9
25.9 

5.8
20.2 

5.2
17.9 

4.7
15.3 

4.4
13.5 

Andesite 8.2
31.1 

6.8
27.1 

6.2
25.9 

5.6
24.7 

5.4
24.2 

8.9
39.2 

7.6
35.6 

7.0
33.3 

6.3
32.1 

5.9
30.9 

Marlstone 12.1
42.4 

10.9
39.0 

10.2
36.9 

9.3
35.5 

9.1
34.6 

12.6
43.3 

11.4
39.9 

10.6
38.1 

10.1
36.7 

9.6
35.7  

Stress level: 780 kPa 
Trachyte 5.2

29.0 
3.8
19.9 

2.8
16.3 

2.1
14.0 

1.9
13.4 

5.7
29.9 

4.2
21.0 

3.2
17.4 

2.5
15.2 

2.1
14.1 

Basalt 5.9
30.0 

4.3
22.0 

3.4
17.4 

3.0
15.2 

2.7
14.0 

6.7
31.2 

5.0
22.9 

3.9
19.0 

3.3
16.3 

3.0
14.9 

Limestone 9.0
32.0 

7.9
26.5 

7.4
23.3 

7.0
21.3 

6.6
20.0 

9.9
33.5 

8.6
28.1 

8.1
24.5 

7.4
22.1 

7.1
21.1 

Andesite 12.1
37.3 

11.6
35.2 

11.1
33.4 

10.6
31.8 

10.4
31.0 

13.0
38.9 

12.3
36.1 

11.8
34.4 

11.4
32.9 

11.2
30.7 

Marlstone 14.8
48.3 

14.2
46.7 

13.8
45.3 

13.5
44.0 

13.4
43.2 

15.7
49.9 

14.6
48.6 

14.0
47.3 

13.8
45.9 

13.6
44.3  

Gradation of ballast: AREMA No. 4A Gradation of ballast: AREMA No. 24  
Stress level: 200 kPa 

Trachyte 1.7
9.6 

1.3
8.2 

1.1
8.0 

0.9
7.9 

0.8
7.8 

2.0
10.5 

1.9
9.0 

1.3
8.6 

1.1
8.2 

1.0
8.0 

Basalt 2.0
12.1 

1.6
10.6 

1.4
10.0 

1.2
9.0 

1.1
8.5 

2.3
13.2 

1.9
11.4 

1.8
10.7 

1.6
9.6 

1.5
9.0 

Limestone 2.9
14.5 

2.2
12.9 

1.9
11.6 

1.7
10.2 

1.6
9.8 

3.2
15.9 

2.5
13.8 

2.2
12.3 

1.9
11.0 

1.7
10.4 

Andesite 5.0
24.1 

3.9
20.3 

3.4
18.6 

2.9
17.2 

2.7
16.6 

5.5
25.3 

4.5
21.9 

4.0
19.7 

3.6
18.0 

3.4
17.3 

Marlstone 7.3
32.0 

5.4
24.3 

4.4
22.9 

3.8
21.0 

3.4
20.1 

8.1
33.0 

5.9
26.0 

4.8
24.0 

4.2
22.0 

3.9
21.0  

Stress level: 420 kPa 
Trachyte 2.7

18.5 
2.0
14.0 

1.7
12.1 

1.2
10.2 

1.0
9.5 

3.1
19.8 

2.3
15.9 

1.9
13.5 

1.4
10.9 

1.3
9.8 

Basalt 3.1
20.3 

2.5
16.3 

2.1
13.4 

1.7
11.4 

1.5
10.5 

3.5
21.9 

2.7
17.6 

2.3
14.9 

1.9
12.4 

1.7
11.1 

Limestone 5.8
22.6 

4.7
18.1 

4.3
15.2 

3.8
12.8 

3.5
11.3 

6.2
23.7 

5.0
18.9 

4.6
16.6 

4.1
13.9 

3.9
12.1 

Andesite 7.5
29.8 

6.2
26.1 

5.7
24.7 

5.2
23.4 

4.9
22.7 

7.8
30.6 

6.6
26.7 

6.0
25.4 

5.5
24.3 

5.3
23.7 

Marlstone 11.0
40.3 

9.9
37.6 

9.2
35.4 

8.6
34.2 

8.3
32.9 

11.9
42.0 

10.7
38.6 

10.0
36.6 

9.4
35.2 

9.0
34.3  

Stress level: 780 kPa 
Trachyte 4.8

28.0 
3.4
19.0 

2.4
15.1 

1.7
12.9 

1.5
11.3 

5.0
28.6 

3.6
19.6 

2.6
15.9 

1.9
13.7 

1.7
12.9 

Basalt 5.5
29.0 

3.8
21.1 

3.0
16.5 

2.6
14.2 

2.3
12.9 

5.7
29.7 

4.0
21.7 

3.2
17.2 

2.8
14.9 

2.6
13.7 

Limestone 8.5
30.5 

7.6
25.0 

7.0
21.6 

6.7
20.2 

6.5
19.5 

8.9
31.7 

7.8
26.2 

7.3
22.9 

6.9
20.9 

6.5
19.7 

Andesite 11.5
35.0 

11.0
33.2 

10.7
31.9 

10.3
30.9 

10.1
30.1 

11.9
37.0 

11.4
34.9 

11.0
32.9 

10.5
31.4 

10.3
30.7 

Marlstone 14.0
46.9 

13.8
45.5 

13.5
43.9 

13.1
42.7 

12.8
41.9 

14.5
47.8 

13.9
46.2 

13.6
44.9 

13.3
43.6 

13.2
42.8  

Gradation of ballast: AREMA No. 25  
Stress level: 200 kPa Stress level: 420 kPa 

Trachyte 1.3
8.5 

1.0
7.4 

0.8
7.1 

0.6
6.9 

0.5
6.8 

2.4
16.7 

1.7
12.9 

1.4
11.3 

1.1
9.4 

0.9
9.3 

Basalt 1.6
11.0 

1.3
9.7 

1.1
9.0 

0.9
8.4 

0.8
8.2 

2.7
18.7 

2.1
14.9 

1.9
12.7 

1.4
10.9 

1.3
10.2 

Limestone 2.5
13.3 

1.9
11.8 

1.6
10.9 

1.5
9.7 

1.4
9.4 

5.2
20.9 

4.4
17.0 

3.9
14.3 

3.6
11.8 

3.4
11.5 

Andesite 4.4
22.7 

3.6
19.1 

3.2
17.7 

2.7
16.4 

2.5
15.9 

6.9
26.8 

5.8
24.2 

5.4
22.8 

5.0
21.6 

4.7
21.3 

(continued on next page) 
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Table 3 (continued ) 

Parent rock type CR content (%) CR content (%) 

0 5 10 20 30 0 5 10 20 30 

Gradation of ballast: AREMA No. 3 Gradation of ballast: AREMA No. 4 

Stress level: 200 kPa 

Marlstone 6.7
31.6 

4.8
25.5 

4.0
22.9 

3.5
21.0 

3.1
20.1 

10.3
38.6 

9.3
36.2 

8.7
34.5 

8.3
32.8 

8.1
31.7  

Stress level: 780 kPa  
CR content (%): 0 CR content (%): 5 CR content (%): 10 CR content (%): 20 CR content (%): 30 

Trachyte 4.2
25.7 

2.8
17.6 

2.0
14.1 

1.4
11.3 

1.2
10.9 

Basalt 5.0
26.9 

3.5
19.6 

2.8
15.2 

2.3
13.6 

2.1
12.7 

Limestone 7.8
28.2 

7.1
22.7 

6.6
19.4 

6.2
17.5 

5.9
17.2 

Andesite 10.9
32.6 

10.4
30.7 

10.0
29.6 

9.7
28.6 

9.5
27.9 

Marlstone 13.3
43.9  

13.1
42.7  

12.8
42.2  

12.7
41.3  

12.6
40.5   

1 FI
Bg

.  

Table 4 
Performance indices computed for training and testing datasets based on the characterized ML models.  

ML model Degradation index Training Testing 

R2 RMSE (%) VAF (%) R2 RMSE (%) VAF (%) 

RF FI  0.999  0.141  99.934  0.992  0.324  99.684 
Bg  0.998  0.419  99.928  0.988  1.145  99.551 

SVR FI  0.989  0.393  99.454  0.981  0.678  98.461 
Bg  0.977  1.608  98.823  0.959  2.367  98.296 

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. 

Fig. 9. Measured versus predicted values of target features based on the utilized ML models.  
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referred to as bootstrapping. In this step, subsets of data and features are 
selected from the prepared dataset to construct each individual regres-
sion tree. Subsequently, the final output is estimated by integrating and 
averaging the outcomes of all trees, a process known as aggregation. 

ŷ =
1
B

∑B

b=1
fb(x) (3)   

ŷ = Final output 
fb(x) = bth bootstrapped regression tree. 
B = Number of separate regression trees. 

2.2.2. SVR model 
Support vector regression (SVR) is a form of machine learning model 

where the main goal is to find a regression function that has a maximum 
deviation from the actual targets, representing an extremely flat hy-
perplane. To achieve this, the inputs are initially delineated to a high- 
dimensional feature space. Then, the regression function in the desig-
nated feature space is determined by identifying the least of the risk 
function. The regression function can be expressed as follows [44]: 

ŷ = f (x) = w.φ(x)+ b (4)   

f(x) = Regression function 
w = Weight vector. 
φ(x) = Mapped input onto high-dimensional feature space. 
b = Bias of the model. 

Also, the risk function is represented as follows considering the 
characterized constraints of Eqs. (6) and (7): 

τ(w, ξ+, ξ− ) =
1
2
|w|2 +C.

1
n

∑n

i=1
(ξ−i + ξ+i ), i = 1, 2,…, n (5)  

(w.φ(x) + b) - yi⩽ε+ ξ−i , i = 1, 2,…, n (6)  

yi - (w.φ(x) + b)⩽ε+ ξ+i , i = 1, 2,…, n (7)   

C = Regularization parameter. 
ξ−i and ξ+i = Slack variables. 
ε = Vapnik’s insensitive loss. 

2.2.3. Implementing the ML models on data and performance assessment 
A database of 360 specimens is prepared to train and test the ma-

chine learning models developed for evaluating the degradation level of 
the ballast-CR mixture. The output variable is the degradation resis-
tance, quantified based on the defined indices, and the input variables 
are the parent rock type, the gradation of fresh ballast, the stress level 
applied through the impact loading test, and the CR content, respec-
tively. In this study, following relevant studies [42,17,9], 70 % of the 
dataset is employed to train the model, while the remaining 30 % is used 
as the testing set. 

The accuracy of machine learning models developed for predicting 
the characterized outputs based on the input variables is assessed by 
computing the following statistical indices [31,45]: 

R2 = [

∑n
i=1(yi - μy)(ŷi - μ̂y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi - μy)

2 ∑n

i=1
(ŷi - μ̂y)

2
√ ]

2

(8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi - ŷi)/n

√

(9)  

VAF = (1 -
Var|y - ŷ|

Var(y)
) × 100 (10)   

R2 = Coefficient of determination 
RMSE = Root mean square error 
VAF = Variance account for 
y = Actual values of y1 , y2 , ... , yn 

ŷ = Predicted values of ŷ1 , ŷ2 , ... , ŷn 
μy = E(y) = Average value of y 
μ̂y = E(ŷ) = Average value of ŷ 

To train and test the machine learning models, a large dataset of 
input–output combinations is prepared by conducting an impact loading 
test in which different conditions related to the parent rock type, the 
ballast gradation, the applied stress level, and the CR content are pro-
vided. The defined functions are as follows: 

FI = f (Rock type,Cu, σ,CR content) (11)  

Bg = f (Rock type,Cu, σ,CR content) (12)   

Cu = Coefficient of uniformity based on the gradation curve of fresh 
ballast 
σ = Stress level applied through the impact loading test. 

Fig. 8 schematically illustrates the outline of training and testing the 
constructed ML models. 

3. Results and discussion 

3.1. Summary results of experimental program 

In this subsection, the summary results of the impact loading test 
conducted on ballast-CR specimens are provided. Table 3 succinctly 
presents the values of ballast degradation resulting from the drop-weight 
impact loading test, based on two indices, namely FI and Bg. As noted, 
the abridged experimental outcomes border various conditions, such as 
the parent rock, ballast gradation, the applied stress level, and the CR 
percentage. 

Fig. 10. Contribution of considered inputs on estimated values of FI and Bg - 
Based on the RF model. 
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3.2. Summary results of ML models 

3.2.1. Validation of models 
In the present study, the hyperparameters of both ML models were 

tuned by employing a 5-fold cross-validation. In the case of RF regres-
sion, the number of trees in the forest (1–150), the maximum depth of 
the trees (2–16), and the minimum number of samples required to be at a 
leaf node (1–10) were examined to make out the optimum values. 
Implementation of the grid search method led to the determination of 
100 trees, a maximum depth of 12, and a minimum sample leaf of 1. 
Similarly, in the case of SVR, tuning the RBF kernel parameters, 
including C (0.1–50) and gamma (0.01–10), was conducted using 5-fold 
cross-validation. Evaluation of the model performance for different 
combinations of these parameters’ values based on the grid search 
method led to the optimal values of C = 10 and gamma = 0.1, repre-
senting the margin of the regression function and the inverse of the area 
of influence of the support vector, respectively. 

Table 4 presents the derived values of computed indices representing 

the performance of developed predictive models based on the most 
appropriate parameters. Although the efficacy of both models is 
acceptable, the RF model outperforms the SVR. Similarly, Fig. 9 shows 
the measured degradation indices versus the predicted values of the 
characterized output features. The slope of the line with zero intercept 
further confirms the efficient predictive capability of both ML models. 

3.2.2. Importance of characterized input variables 
The contribution of the considered variables for mitigating the 

degradation of the ballast-CR mixture is evaluated by determining the 
factors of importance derived from validated ML models. As illustrated 
in Fig. 10 in an ascending pattern of significance, based on the RF 
regression characterized as the superior model, the most influential 
parameter is the parent rock type, followed by the applied stress level. 
Truly, the strength of the parent rock is a crucial property for an indi-
vidual ballast particle to remain intact under impact loading. 

The marginal influence of the gradation of fresh crushed ballast 
particles (based on Cu) on the degradation level of the ballast-rubber 

Fig. 11. Summary plot of SHAP values of characterized inputs for each specific row of dataset based on the RF model - Red color representing the higher values of 
input, blue color representing lower values of input. 
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Fig. 12. Effect of rock type and CR content on degradation level of ballast particles for distinct applied stress levels - Gradation of fresh ballast: AREMA No. 24.  
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Fig. 13. Effect of rock type and applied stress level on degradation level of ballast reinforced with CR particles - Gradation of fresh ballast: AREMA No. 24.  
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mixture can be attributed to the size range of the incorporated CR, i.e., 
9.5–25 mm, leading to no meaningful difference between the large-sized 
gradations and the medium-sized ones. Meanwhile, Rosa et al. [36] 
observed more generation of fine particles passing through a 4.75 mm 
sieve after conducting a triaxial cyclic test when there was a further 
increment in the initial Cu values of ballast gradation. 

Furthermore, the contribution of the rock type to the degradation 
index of Bg is higher than its influence on FI because the Bg index more 
significantly covers the breakage of individual particles instead of pro-
jection and abrasion of angular particles. Similarly, the effect of CR 
content on Bg is more evident because of the higher positive effect of 
rubber granules on bulk breakage rather than corner abrasion. In this 
regard, Zhang et al. [48] determined the same trend considering the 
degradation of ballast-CR samples exposed to impact loading. 

The summary plot of Shapley values for each characterized input 
across the entire rows of the dataset is illustrated in Fig. 11. Each single 
point for an input variable represents the Shapley value of an individual 
row of the dataset, such that positioning on the right side of the x-axis 
confirms a direct influence of the characterized variable on the degra-
dation level. Meanwhile, an indirect effect of a variable on FI or Bg is 
concluded whenever the single point is placed on the left side of the x- 
axis. For instance, change in the parent rock type from trachyte (1) to 
marlstone (5) leads to the variation of the dot’s position from left (blue) 
to right (red), corroborating a surge in the degradation extent. Similarly, 
augmentation of the stress level from a lower value (blue) towards a 
higher value (red) results in a shift in the point position from left to right 
on the x-axis. On the contrary, an increase in the CR content and Cu 
brings about the reduction of both FI and Bg, although a subordinate 
influence is observed. 

3.3. Discussion 

3.3.1. Combined effect of rock type and CR content on degradation of 
ballast-rubber mixture 

To understand the combined effectiveness of rock type and CR con-
tent on the degradation resistance of ballast particles, Fig. 12 is plotted 
solely for the initial gradation of AREMA No. 24 of fresh ballast. Truly, 
the outcomes of validated ML models affirm the marginal effect of the 
gradation of fresh crushed ballast. 

Considering the depicted figure for each specific stress level, 
although an increase in CR percentage results in a reduction of FI and Bg 
indices, this influential effect is more noticeable in the case of using 5 % 
and 10 % rubber contents compared to the 0 % ballast-CR specimen. 
Afterwards, the incorporation of 20 % and 30 % of CR results in a 
reduction of degradation indices compared to specimens mixed with 
lower CR percent; however, this improvement is not significantly pro-
nounced. Furthermore, as illustrated, the level of reduction of the 
characterized degradation indices caused by the addition of rubber 
material depends on the parent rock strength and the applied stress level 
through the impact loading test. This trend aligns well with the relative 
factors of importance derived through the validated ML models. 

Generally, as expected, an increase in the amount of rubber particles 
contributes to mitigating ballast degradation. In this matter, Wu et al. 
[47] pointed out that the incorporation of waste tire-derived aggregate 
among ballast led to the reduction of contact stress. Likewise, the 
discrete element analysis of rubber-protected ballast subjected to cyclic 
loading and a direct shear test revealed a reduction of ballast-ballast 
contact and an augmentation of ballast-CR contact, leading to a surge 
in the coordination number and a decrease in the ballast breakage 
[14,49]. 

3.3.2. Combined effect of rock type and applied stress level on degradation 
of ballast-rubber mixture 

Fig. 13 shows the variations of characterized degradation indices for 
distinct rock types and various implemented stress levels. Generally, the 
breakage of individual ballast particle is further exacerbated when high- 

level stress is applied or a low-strength parent rock is utilized. As illus-
trated, for lower stress levels (i.e. 200 kPa), the incorporation of rubber 
granules leads to a further abatement of degradation in the case of rock 
types with lower strength, like marlstone. 

CR particles play an effective role in the plunge of degradation of 
high-strength rocks (trachyte and basalt) when high-stress levels (i.e. 
780 kPa) are considered. This general trend is more pronounced for 
values of Bg, confirming further reduction of breakage of individual 
particle. Truly, a surge in the applied stress level results in considerable 
ballast breakage derived from weak parent rock so that no evident 
positive influence is observed through the incorporation of CR. Mean-
while, CR particles considerably improve the breakage resistance of rock 
types of trachyte and basalt subjected to the exacerbated stress level. 
Conversely, Esmaeili and Namaei [11] reported that rubber-coated 
ballast was more effective in the reduction of long-term settlement of 
ballast derived from parent rock with lower UCS. In this matter, Esmaeili 
et al. [12] pointed out that the effect of bedding modulus of under the 
sleeper pad was mitigated as long as the ballast material derived from 
the intact rock core with higher UCS was tested. 

4. Conclusions 

The present study investigated the influence of using granulated 
rubber in the ballast layer on degradation mitigation subjected to impact 
loading, considering the influences of parent rock strength along with 
the ballast gradation, the applied stress level, and the CR content. 
Particularly, machine-learning models, i.e., RF and SVR, were estab-
lished to further reveal the involvement of aforementioned variables. 
Based on the observations of the current research, the following findings 
are relevant:  

• The predictive performance of the RF model is superior to the SVR in 
order to anticipate the characterized degradation indices of the 
ballast-CR mixture.  

• In order to mitigate the degradation level of ballast particles, the 
outcomes of validated ML models confirm that the parent rock type is 
the most influential parameter, followed by the applied stress level 
over the ballast specimen.  

• The predictions of the RF model reveal that an increase in the Cu 
value of initial gradation of ballast constrains the FI and Bg, although 
the effect of this parameter is far less than other characterized 
factors. 

• As expected, using a higher percentage of CR results in a more sig-
nificant reduction of ballast degradation. Meanwhile, the most 
meaningful effect is achieved in the case of the incorporation of CR 
particles between 5 % and 10 %.  

• Considering a low-stress level, the positive effect of CR on the 
diminution of degradation of particles is more highlighted in the case 
of ballast derived from low-strength parent rock (such as marlstone).  

• In the case of high-strength parent rock (such as trachyte and basalt), 
CR granules are an influential additive to effectively suppress the 
degradation of ballast particles subjected to exacerbated stress levels. 
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