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Conjugate Gradient MIMO Iterative Learning Control
Using Data-Driven Stochastic Gradients*

Leontine Aarnoudse1 and Tom Oomen1,2

Abstract— Data-driven iterative learning control can achieve
high performance for systems performing repeating tasks with-
out the need for modeling. The aim of this paper is to develop
a fast data-driven method for iterative learning control that
is suitable for massive MIMO systems through the use of
efficient unbiased gradient estimates. A stochastic conjugate
gradient descent algorithm is developed that uses dedicated
experiments to determine the conjugate search direction and
optimal step size at each iteration. The approach is illustrated
on a multivariable example, and it is shown that the method
is superior to both the earlier stochastic gradient descent and
deterministic conjugate gradient descent methods.

I. INTRODUCTION

Direct data-driven approaches are advantageous in many
control problems, because they avoid the costly process
of modeling and identification [1]–[3], and do not suffer
from performance limitations due to model uncertainties.
Examples of data-driven methods include procedures for
identifying system norms [4], [5] and tuning feedback con-
trollers [6]–[8].

In iterative learning control (ILC), measured data is used
in conjunction with approximate models in order to design
feedforward signals that are capable of rejecting repeating
disturbances completely. This significantly increases the per-
formance of systems that perform repeating tasks. Exam-
ples of ILC frameworks include frequency-domain based
inverse model ILC [9], [10], Arimoto-type ILC [11], and
optimization-based approaches such as norm-optimal ILC
[12], [13] and gradient- and coordinate-descent ILC [14],
[15]. These partially model-based approaches require system
knowledge in the form of invertible models in frequency-
domain ILC, or certain properties of the system’s Markov
parameters. Since models are always approximate, the meth-
ods provide robustness against model uncertainty through
Q-filters in frequency-domain ILC, regularization in norm-
optimal ILC, or robust design [16]–[18].

In [19], a model-free adjoint ILC algorithm is introduced,
in which experiments on the adjoint system [20] are used
to obtain the gradient of a cost criterion. These gradients
are used in a gradient-descent type ILC algorithm [21],
enabling a complete data-driven design for MIMO systems.
The approach is related to data-driven ILC approaches such
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as extremum-seeking based ILC [22]. In [19], as well as
in comparable approaches for MIMO experiment-based it-
erative feedback tuning [6] and H∞-norm estimation [5],
the gradient of an ni × no MIMO system is generated
through ni×no experiments. Because of the high number of
experiments per iteration required in model-free adjoint ILC,
the method does not scale well for massive MIMO systems.

Model-free ILC for massive MIMO systems is further
developed in [23], where the experimentally expensive deter-
ministic gradient from [19] is replaced by an unbiased gradi-
ent estimate, obtained from a single experiment. The estimate
is used in a stochastic approximation adjoint ILC (SAAILC)
algorithm based on stochastic gradient descent. The SAAILC
algorithm requires far fewer experiments to reach the same
cost compared to the deterministic gradient descent ILC in
[19]. However, in terms of the number of iterations needed to
converge, gradient descent algorithms are known to be slow
due to their lack of curvature information. In [19], first steps
are made towards a data-driven quasi-Newton adjoint ILC
algorithm using Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updates to increase the convergence speed, but this approach
is not directly applicable to stochastic gradients.

Although several steps have been made towards efficient
data-driven iterative learning control, an optimal data-driven
approximate approach is underdeveloped. The aim of this
paper is to develop an approach which converges faster
than standard gradient descent, while using experimentally
efficient gradient estimates. The contribution of this paper is
threefold:
• A conjugate gradient ILC algorithm using unbiased gra-

dient approximations is developed. It is shown that the
standard expressions for conjugate gradient methods are
not applicable in case of stochastic gradients. Instead,
two additional experiments are used to determine the
conjugate search direction and the optimal step size.

• An analysis of related methods, including gradient de-
scent ILC and deterministic conjugate gradient descent
ILC is provided.

• The proposed approach is illustrated using a random
MIMO system.

Preliminary research results related to improving gradient
estimation, in particular by obtaining unbiased estimates in
a fast manner, are presented in [23]. There, the gradient
estimates were used in a relatively naive gradient descent
algorithm. The current paper contains the above three con-
tributions that are completely new.

The problem of increasing convergence speed for stochas-
tic optimization algorithms is well-studied in the field of
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machine learning, where the use of mini-batching results
in non-deterministic algorithms. As classical quasi-Newton
methods are not applicable in stochastic situations [24], much
research is aimed at developing stochastic quasi-Newton
methods. Examples include the work by [25] on stochastic
BFGS and limited-memory BFGS. In [26], regularization is
added to the stochastic BFGS method, and [27] combines
stochastic BFGS methods with variance reduced stochastic
gradients. A recent overview is given by [28]. These methods
typically use multiple gradient evaluations of one mini-batch
to obtain locally deterministic Hessian estimates, a consis-
tency assumption that cannot be satisfied for the stochastic
gradients used in ILC, see [23].

Recently, methods that do not depend on this consistency
have been developed in [29], where Gaussian processes are
used to model the inverse Hessian, and [30], where the quasi-
Newton secant condition is relaxed in a direct least-squares
estimate of the inverse Hessian. However, model-free ILC
uses quadratic objectives, for which the Hessian is constant
and conjugate gradients are the method of choice [31, Section
8.3]. Therefore, in this paper an approach is proposed that
is based on conjugate gradients.

The paper is structured as follows. In Section II, the
problem considered in this paper is introduced. In Section III,
the proposed conjugate gradient ILC algorithm is developed.
In Section IV, related methods are analyzed in comparison to
the proposed method. In Section V the approach is illustrated
using simulations. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

In this section, the problem considered in this paper is
introduced. Consider the aim of finding a control signal that
minimizes the error of a system, which is expressed by the
criterion

J (f) = ‖r − Jf‖22. (1)

Here, ‖x‖2 =
√
xTx and the unknown MIMO system J with

ni inputs and no outputs is given in lifted form by e
1

...
eno


︸ ︷︷ ︸

e

=

 r
1

...
rno


︸ ︷︷ ︸

r

−

 J
11 . . . J1ni

...
...

Jno1 . . . Jnoni


︸ ︷︷ ︸

J

 f
1

...
fni


︸ ︷︷ ︸

f

(2)

with input f , error e, unknown exogenous disturbance r and
output y = Jf . Here, J lm ∈ RN×N for finite signal length
N ∈ Z+, and yl, el, rl, fm ∈ RN×1 for l = 1, ..., no, m =
1, ..., ni. An example of system J , which can represent both
open-loop and closed-loop systems, is shown in Figure 1.

The aim of this paper is to develop an efficient data-driven
approach to minimizing (1). To this end, judiciously chosen
experiments experiments are used to generate the gradient
∂J
∂f (more specifically, an unbiased estimate thereof). The
approach, which is based on conjugated gradients, is intro-
duced in the next section.

C P
r e y

−

f

Fig. 1: Closed-loop system with reference r, error e and
feedforward input f , for which J = P (I + CP )−1 is the
process sensitivity of the closed-loop system.

III. STOCHASTIC CONJUGATE GRADIENT ILC

In this section, model-free conjugate gradient ILC is intro-
duced. First, a suitable search direction is found. Secondly,
the optimal step size in this direction is computed. Thirdly, it
is explained how unbiased gradient estimates can be obtained
from experiments and lastly, the implementation of model-
free conjugate gradient ILC is explained.

Consider again criterion (1), and assume that estimates
ĝ(f) of the gradient g(f) = ∂J

∂f can be obtained for which

E(ĝ(f)) = g(f),

i.e., the estimates ĝ(f) are unbiased. In addition, while
the system J is unknown, noise-free evaluations of Jf are
available through experiments. Since the criterion J (f) is
quadratic, it can be minimized by setting the gradient g(f)
equal to zero, i.e., by solving g(f) = 0 with

g(f) = 2JTJf − 2JTr. (3)

This is equivalent to solving a system of linear equations,
given by

2JTJf = 2JTr. (4)

Since the system J is unknown in a model-free setting, (4) is
solved iteratively based on data by using parameter updates
of the form

fj+1 = fj + εjpj , (5)

with step size εj and search direction pj . Note that for pj =
g(fj), a gradient descent algorithm is recovered. If a model
J is available, standard norm-optimal ILC [12] is recovered
by taking εjpj = (JTJ)−1JTej .

A. Conjugate search directions

The main idea of conjugate gradient descent for quadratic
problems is that fast convergence can be achieved by min-
imizing the criterion (1) along a sequence of conjugated
gradient directions.

Definition 1. Two vectors x and y are A-conjugate if

xTAy = 0. (6)

Let gj denote the gradient at iteration j, i.e., gj = g(fj).
By taking the initial search direction p1 equal to the initial
gradient g1 and choosing all subsequent search directions
such that i 6= j =⇒ pTi J

TJpj = 0 for 1 ≤ i < j ≤ Nni,
i.e., pi and pj are conjugate with respect to JTJ , a sequence
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of Krylov subspaces is generated [32, Section 11.3] that is
given by

Sj = K(JTJ, g1, j)
= span

{
g1, J

TJg1, (J
TJ)2g1, ..., (J

TJ)j−1g1
}
. (7)

For each iteration, an exact line search is used that ensures
that fj solves

min
fj∈S̃j

J (fj), (8)

with

S̃j = span
{
f1, g1, J

TJg1, ..., (J
TJ)j−1g1

}
. (9)

Since S̃j+1 includes both fj and the gradient gj , it is
guaranteed that the update based on conjugated gradients is
at least as good as the steepest descent update [33].

For conjugate gradient ILC, the initial search direction p1
in (5) is chosen equal to the unbiased gradient estimate ĝ1 =
ĝ(f1). Subsequent search directions are given by

pj+1 = ĝj+1 + τjpj , (10)

where the scalar τj is chosen such that the direction pj+1

is JTJ-conjugate to the previous search direction pj . Since
ĝj 6= gj , standard conjugate gradient expressions cannot
be applied, as is shown in Section IV. For the stochastic
conjugate gradient approach using gradient estimate ĝj , the
expression for τj is given in the following theorem.

Theorem 2. The search directions pj+1 and pj are JTJ-
conjugate if

τj = −
(Jpj)

T(Jĝj+1)

(Jpj)T(Jpj)
(11)

Proof. Because pj+1 and pj are chosen to be JTJ-conjugate,
it holds that

pTjJ
TJpj+1 = 0. (12)

Substituting (10) in (12) gives

pTjJ
TJpj+1 = pTjJ

TJĝj+1 + τjp
T
jJ

TJpj = 0, (13)

from which it follows that

τjp
T
jJ

TJpj = −pTjJTJĝj+1, (14)

τj = −
(Jpj)

T(Jĝj+1)

(Jpj)T(Jpj)
. (15)

Note that although the system J is unknown, the terms
Jpj and Jĝj+1 in the expression for τj can be evaluated
through experiments on the system.

B. Step size selection
The optimal step size εj in (5) for a general search

direction pj is given by

εj = argmin
ε
J (fj+1)

= argmin
ε
‖r − J(fj + εjpj)‖22. (16)

Since the criterion (1) is quadratic, (16) can be solved
analytically. However, for a search direction pj that is based
on gradient estimate ĝj , the standard conjugate gradient
expression for εj cannot be applied. Instead, the optimal
step size for stochastic conjugate gradient ILC is given in
the following theorem.

Theorem 3. The optimal step size εj that minimizes (16) is
given by

εj =
eTj (Jpj)

(Jpj)T(Jpj)
. (17)

Proof. Criterion (16) is minimized by setting
∂J (fj+1)

∂ε
= 0. (18)

It holds that
∂

∂ε
(r − J(fj + εpj))

T
(r − J(fj + εpj)) (19)

= fTj J
TJpj + pTjJ

TJfj + 2εpTjJ
TJpj − pTjJTr − rTJpj ,

from which it follows that

εj =
pTjJ

T(r − Jfj) + (r − Jfj)TJpj
2pTjJ

TJpj

=
eTj (Jpj)

(Jpj)T(Jpj)
. (20)

C. Unbiased gradient estimates through experiments on J
Unbiased estimates of the gradient

g(fj) = 2JTJfj − 2JTr = −2JTej (21)

can be generated through experiment on J by noting that JT

is the adjoint operator of J and relates to J through a time
reversal, as described in the following.

Definition 4. Let 〈f, g〉 = fTg denote the inner product of
two signals f, g ∈ RN×1. The adjoint J∗ of J is defined as
the operator that satisfies the condition

〈f, Jg〉 = 〈J∗f, g〉, ∀f, g ∈ RN×1.

The adjoint J∗ of J is given by JT, which follows from

f>Jg = (J∗f)Tg = fT(J∗)Tg, ∀f, g ∈ RN×1.

Lemma 5. The adjoint of a SISO system J = J11 is given by(
J11
)T

= T J11T , where the involutory permutation matrix

T =


0 . . . 0 1
... 1 0

0 . .
. ...

1 0 . . . 0

 ∈ RN×N
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has the interpretation of a time-reversal operator.

For SISO systems, Lemma 5 enables the measurement
of the gradient using a single experiment by performing
two time reversals. However, this is not applicable to non-
symmetric MIMO systems, as is shown next.

Lemma 6. The adjoint of a MIMO system J is given by

JT =

 (J11)T . . . (Jno1)T

...
...

(J1ni)T . . . (Jnoni)T

 (22)

=

T 0
. . .

0 T


︸ ︷︷ ︸

T ni

 J
11 . . . Jno1

...
...

J1ni . . . Jnoni


︸ ︷︷ ︸

J̃

T 0
. . .

0 T


︸ ︷︷ ︸

T no

.

Since J̃ 6= J for non-symmetric MIMO systems, the term
JTej , and therefore the gradient (21), cannot be determined
exactly from a single experiment on J . However, it is
possible to obtain an unbiased estimate ĝ(fj) of the gradient,
for which E(ĝ(fj)) = g(fj), from a single experiment on J
as described in the following [23].

Lemma 7. An unbiased estimate ĝ(f) of (3) is given by

ĝ(fj) = −2T niAjJAjT noej . (23)

The matrix Aj ∈ R(Nni)×(Nno) is given by

Aj =

 a
11
j . . . a1no

j
...

. . .
...

ani1
j . . . anino

j

⊗ IN (24)

where IN is the N ×N identity matrix and the entries almj
are samples from a symmetric Bernoulli ±1 distribution, i.e.,
almj ∈ {−1, 1} and the probabilities are given by P (almj =
1) = 1/2 and P (almj = −1) = 1/2.

The unbiased gradient estimates generated according to
(23) can be used in the stochastic gradient descent ILC
algorithm (5), with conjugate directions according to (10)
and Theorem 2, and optimal step sizes given by (17).

D. Implementation of conjugate gradient ILC

The implementation of conjugate gradient ILC is outlined
in Algorithm 1. Note that Jpj−1 does not need to be
measured in order to determine τj−1, as it is already known
from the computation of εj−1. As such, determining the
conjugate search direction and the step size each require one
dedicated experiment per iteration.

IV. ANALYSIS OF RELATED APPROACHES

In this section, related methods are analyzed in comparison
to the proposed stochastic conjugate gradient ILC method.
First, the conjugate gradient method with exact gradients is
analyzed. Secondly, search direction resets are proposed for
situations where the available evaluations of the system J are
noisy. Lastly, the gradient descent algorithm is recovered.

Algorithm 1 Stochastic Conjugate Gradient ILC

1: for j = 1 : niteration
2: Apply input fj and measure ej = r − Jfj .
3: Find approximation ĝj of gj = −2JTej using

one experiment according to (23).
4: if j = 1
5: Set p1 = ĝ(f1).
6: else
7: Measure Jĝ(fj) and use Jpj−1 to find τj−1 in (11).
8: Take direction pj = ĝj + τj−1pj−1.
9: end

10: Measure Jpj to find step size εj in (17).
11: Update fj+1 = fj + εjpj .
12: end

A. Conjugate gradient descent with exact gradients

In the model-free conjugate gradient ILC approach pro-
posed in the previous section, only approximate gradients
are available. In the theoretical case with exact gradients
and function evaluations, the expressions for the search
direction and the step size can be simplified, resulting in the
well-known standard expressions for the conjugate gradient
method. If ĝj = gj ∀ j, expression (11) for τj reduces to

τj =
gTj+1gj+1

gTj gj
, (25)

see e.g. [32, Section 11.3] for a derivation. In addition,
expression (17) for εj reduces to

εj = −
gTj gj

(Jpj)T(Jpj)
. (26)

Since these expressions are based on the assumption that
exact gradients are known, they do not hold for ĝj 6= gj .
As a result, the standard expressions for conjugate gradient
descent cannot be used in the model-free conjugate gradient
descent ILC algorithm.

B. Stochastic conjugate gradient ILC with noisy system
evaluations

In typical control applications, the available evaluations of
the system J are noisy. While the influence of added noise on
the stochastic gradients used in stochastic conjugate gradient
ILC is limited, the search direction and step size that were
previously assumed to be exact depend on evaluations of J
and are therefore influenced by the noise. As a result, in
a noisy experimental setting it is not possible to maintain
the conjugacy of search directions over multiple iterations.
Therefore, it can be useful to reset the search direction to the
gradient after a number of iterations, which is a common
practice for Krylov subspace methods, see e.g. [34]. In
Section V, the proposed approach is simulated for a situation
with noisy system evaluations.
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C. Recovering gradient descent

A gradient descent ILC algorithm is recovered from the
conjugate gradient ILC algorithm by taking τj = 0, such that
pj = ĝj . Then, the input fj+1 at iteration j + 1 is given by

fj+1 = fj − εj ĝ(fj), (27)

and the optimal step size is found to be

εj =
eTj (Jĝ(fj))

(Jĝ(fj))T(Jĝ(fj))
. (28)

For exact conjugate gradient (CG) and gradient descent
(GD), it holds that a CG step is at least as good as a GD step,
provided that JTJ is symmetric positive definite [32, Thm.
11.3.3], [33]. In [23] the gradient estimates ĝ(fj) are used in
a Robbins-Monro type stochastic gradient descent algorithm
[35] and εj is chosen such that criteria of almost sure con-
vergence for a Robbins-Monro algorithm are met. As shown
in Section V, this results in slow convergence compared to
the proposed stochastic conjugate gradient approach.

V. EXAMPLE

In this section, model-free conjugate gradient ILC is
illustrated on a random non-symmetric 21 × 21 MIMO
system with 84 states, generated using the function drss in
MATLAB. A Bode plot of a part of the system is shown in
Figure 2. The disturbance r consists of a step in all directions.
The approach is illustrated for examples with exact and noisy
evaluations of the system J .

A. Stochastic conjugate gradient

The proposed stochastic conjugate gradient descent is
compared to stochastic approximation adjoint ILC [23],
to deterministic adjoint ILC [19] and to a deterministic
conjugate gradient method. In [19], the gradient of criterion
(1) is generated through ni × no experiments, structured as

g(fj) = T ni

(
ni∑
l=1

no∑
m=1

ElmJElm

)
T noej , (29)

where Elm consists of zeros, with a one on the lmth entry.
The deterministic conjugate gradient method from Section
IV-A is implemented using deterministic gradients generated
by (29).

In Figure 3, it is shown that the proposed stochastic
conjugate gradient algorithm requires far fewer experiments
to reach the same cost than the deterministic conjugate
gradient algorithm. Both the stochastic and the deterministic
conjugate gradient algorithm outperform the gradient descent
algorithms. In addition, the smoothness of stochastic ILC is
greatly improved by the line searches used in the conjugate
gradient method.

B. Stochastic conjugate gradients for noisy system evalua-
tions

In typical control applications, evaluations of the system J
are noisy. As a result, gradient estimates generated through
(29) are not deterministic, although the variance of these

10−2 10−1

−20

0

20

40

M
ag

ni
tu

de
[d

B
]

10−2 10−1
−200

−100

0

100

200

Frequency [Hz]

Ph
as

e
[d

eg
]

Fig. 2: Bode magnitude and phase plots of the last column of
21 subsystems of the random non-symmetric 21×21 MIMO
system used in the example.

0 0.5 1 1.5 2

×104

0.1

0.2

0.3

0.4

Nr. of experiments [-]

C
os

t
[-

]

Fig. 3: The cost as a function of the number of experiments
for a non-symmetric 21 × 21 system. Four approaches
are shown: the proposed stochastic conjugate gradient ILC
method ( ), deterministic conjugate gradient ILC ( ),
stochastic gradient descent ILC ( ) and deterministic gradi-
ent descent ILC ( ). Stochastic conjugate gradient descent
ILC requires far fewer experiments than other approaches to
reach the same cost.

gradient estimates is typically smaller than that of those gen-
erated by (23). For a situation with noisy system evaluations,
the proposed stochastic conjugate gradient ILC approach is
compared to the conjugate gradient method of Section IV-A,
which is designed for deterministic gradients.

In Figure 4, it is shown that the deterministic method
diverges when noisy function evaluations are used. The
stochastic conjugate gradient ILC algorithm is implemented
with gradient estimates generated by respectively (23) and
(29). It is shown that while the proposed algorithm converges
for both gradient estimates, using gradient estimates obtained
from a single experiment results in much faster convergence
in terms of the required number of experiments.
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0 2 4 6

×104

0.1

0.2

0.3

0.4

Nr. of experiments [-]
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Fig. 4: The cost as a function of the number of experi-
ments for a noisy non-symmetric 21×21 system. Stochastic
conjugate gradient descent ILC based on (23) ( ) requires
far fewer experiments than the implementation using (29)
( ). Implementing the deterministic conjugate gradient ( )
method in case of noisy system evaluations and gradient
estimates leads to divergent behavior.

VI. CONCLUSIONS

A data-driven conjugate gradient method for model-free
iterative learning control is introduced that uses efficient
unbiased gradient estimates, such that it is suitable for
massive MIMO systems. Dedicated experiments are used to
determine conjugate search directions based on stochastic
gradient estimates and corresponding optimal step sizes,
resulting in a stochastic conjugate gradient ILC method.
Compared to a deterministic model-free conjugate gradient
method and to deterministic and stochastic model-free gra-
dient descent algorithms, the proposed stochastic conjugate
gradient method requires far fewer experiments to reach the
same cost. In addition, it is shown that the proposed method
converges when system evaluations are noisy, as opposed to
the algorithm designed for deterministic gradients. Future de-
velopments involve extension of the framework to ILC with
basis functions, experimental implementation and embedding
in related iterative frameworks.
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