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Abstract: The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic 
chemistry is becoming more and more popular, and both academia and industry are keen on finding 
and developing novel enzymes capable of performing otherwise impossible or challenging 
reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore 
makes it one of the key bacterial hosts in many areas of research. This review focused on the broad 
utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting 
the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention 
was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview 
of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism 
in the spotlight of further research. 
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1. Introduction 

The genus Rhodococcus belongs to the phylum Actinobacteria and its members are aerobic, 
Gram-positive, non-motile bacteria showing high GC-contents [1]. Numerous members have been 
isolated from copious sources such as soil, groundwater, marine sediments, internal organs of insects, 
diseased and healthy animals, or plants-to name a few [2]. While the vast majority is considered 
harmless, a few species have shown pathogenic properties leading to foal pneumonia (R. equi) or 
leafy gall disease in plants (R. fascians). Starting in the 1980s, their application as a (whole-cell) 
biocatalyst came to the fore and since then, numerous reports of successful bioconversions have been 
published with an increasing trend [3]. The longstanding synthesis of acrylamide on a multi-ton scale 
run at several production sites worldwide is hereby considered as the most outstanding example of 
a rhodococcal whole-cell process [4–6]. 

Rhodococcus members are diverse catalysts that degrade a variety of both natural organic and 
xenobiotic compounds [7]. Amongst others, the Rhodococcus species showed biodegradation potential 
against short- and long-chain alkanes, halogenated and nitro-substituted aromatic, heterocyclic, and 
polycyclic compounds [8]. Next to physiological attributes such as a high general tolerance to 
substrates and solvents [8,9], the metabolic diversity of the genus Rhodococcus can be explained by 
the (i) presence and mobility of large, linear plasmids; (ii) the multiplicity of catabolic genes; (iii) the 
high redundancy of biosynthetic pathways; and (iv) sophisticated regulatory networks of their 
genomes [1,3,10]. This brands the genus Rhodococcus as the strong biocatalytic powerhouse that it is 
seen as today. The usage of whole biosynthetic pathways from Rhodococcus strains in the 
bioremediation of organic pollutants derived from petroleum such as o-xylene has been intensively 
investigated [11,12] and shown to be successful as was, for example, the lignin degradation catalyzed 
by R. jostii RHA1 [13–15]. Here, vanillin, a valuable chemical for food flavoring, was mainly produced 
[13]. The same strain also displayed biodegradation activity against polychlorinated biphenyls 
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(PCBs) [16]. Additionally, Rhodococcus strains were used in desulfurization reactions able to degrade 
sulfur-containing compounds produced in the treatment of fossil fuels like benzothiophene (BT) or 
dibenzothiophene (DBT) [10,17]. 

As shortly displayed, the implementation of whole pathways to degrade numerous compounds 
is a promising tool with strong future potential application [7,18]. Nevertheless, this review will only 
focus on Rhodococcus as a useful tool in organic synthesis, concentrating on defined enzyme reactions 
catalyzed by purified enzymes or whole-cells primarily leading to enantioenriched products. It 
should serve as a comprehensive overview of the state-of-the-art biocatalysis that is feasible with 
Rhodococcus, concentrating on the reaction diversity and the respective substrate scope of each 
enzyme class described. 

2. Promiscuous Redox-Reactions in Rhodococcus 

Oxidoreductases (EC 1) catalyze the electron transfer from one molecule (reductant) to another 
molecule (oxidant), thereby enabling oxidation–reduction reactions often under the requirement of 
cofactors like the NAD(P)H serving as an electron donor or acceptor. They make one of the biggest 
groups and as such, an impressive range of redox-reactions is feasible. Additionally, the genus 
Rhodococcus harbors a large amount of oxidoreductases, some of which are already well-established 
systems even running at an industrial scale, while others are still being thoroughly investigated and 
developed. 

2.1. Alcohol Dehydrogenases/Keto Reductases 

Alcohol dehydrogenases (ADHs, EC 1.1.x) catalyze the transformation of primary and 
secondary alcohols to aldehydes and ketones. A common feature of an ADH-catalyzed reaction is the 
requirement for a primary oxidant within the active site of the enzyme, which oxidizes the alcohol. 
This process generally occurs via a hydride abstraction. Nicotinamide cofactors (NAD+, NADP+), 
pyrroquinoline quinones, or flavins are typical prosthetic groups acting as hydride acceptors that 
need to be regenerated during the reaction for the overall process to be a success [19]. A 
nicotinoprotein from R. erythropolis DSM 1069 showed activity toward aliphatic and aromatic 
primary and secondary alcohols whereby primary alcohols were the preferred substrates yielding 
aldehydes [20]. Another application of ADHs in an oxidative sense is the kinetic resolution of 
secondary alcohols leading to both ketones and enantiopure alcohols. When applying whole-cells of 
R. ruber DSM 44541, only the (S)-enantiomer of racemic mixtures of alcohols was oxidized leaving 
behind the unreacted (R)-alcohol. This proof-of-principle was successfully shown for the substrate 
sulcatol as well as aromatic and aliphatic alcohols [21]. A R. erythropolis mediated kinetic resolution 
of methyl-nonactate yielded the two enantiomers (+)- and (-)-nonactate in excellent enantiomeric 
purity [22]. Fascinatingly, the stereoselectivity of the main product was influenced by switching the 
conditions from aerobic to anaerobic. (+)- and (-)-nonactate are the desired building blocks for the 
macrotetrolide nonactin. 

To overcome the limitation of only 50% theoretical yields in kinetic resolutions, a two-ADH 
system was developed resolving racemic alcohols (1) [23]. First, one ADH (ADH-1) catalyzes the 
oxidation of one enantiomer to the corresponding ketone (3), leaving one alcohol-enantiomer 
unreacted (2). A second, stereocomplementary ADH (ADH-2) is afterward applied, which reduces 
the obtained ketone (3) to the wanted alcohol-enantiomer (2), thereby enabling a theoretical yield of 
100% (Scheme 1). Each step is catalyzed by two different ADHs, each requiring another cofactor. 
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Scheme 1. Deracemization of racemic alcohols using a two-enzyme system with 
stereocomplementary ADHs [23]. 

The (S)-selective ADH from R. ruber DSM 44541 (termed ADH-A) was part of this study leading, 
in combination with (R)-selective ADH from Lactobacillus kefir (LK-ADH), to the formation of (S)-
alcohols in excellent yields and ee. A complete stereoinversion of chiral secondary alcohols was also 
achieved by coupling two stereocomplementary ADHs: while the first ADH oxidized the starting 
alcohol to the ketone intermediate, a second ADH reduced the ketones to the other alcohol 
enantiomers, resulting in a complete inversion of the stereochemistry [24]. 

ADHs from Rhodococcus were also employed in an oxidative manner in whole-cell 
biotransformations for straightforward one-pot multistep reactions [25]. Two representative 
examples demonstrate the broad applicability of ADHs from Rhodococcus within biocascades: the 
double oxidation of c-octane was achieved by a combination of three enzymes, namely a 
monooxygenase P450 BM3, Lactobacillus brevis ADH (LbADH) and R. erythropolis ADH (ReADH) 
including a cofactor regeneration system, whereby all enzymes were coexpressed in a single host cell 
[26]. The monooxygenase first oxyfunctionalizes the non-activated c-octane to c-octanol, which is 
further oxidized by the two stereocomplementary ADHs. In a similar fashion, four recombinant 
enzymes (a self-sufficient P450 monooxygenase, two stereocomplementary ADHs (LbADH and 
ReADH) as well as a ω-transaminase (ATA-117)) were co-expressed in E. coli, catalyzing the chiral 
amination of benzylic compounds such as (substituted)-ethylbenzene in a one-pot two-step process 
[27]. 

ADHs that catalyze the reverse reaction are so-called ketoreductases (KREDs). Through 
carbonyl reduction, the generation of (chiral) alcohols is thereby enabled. As the introduction of chiral 
centers is seen as more valuable than the loss of enantiomeric centers, this reverse reaction is more 
often applied in synthetic chemistry.  

The reduction of aldehydes is hereby less often reported due to the fact that this reduction does 
not invoke a new stereocenter, but leads to primary alcohols. However, a KRED from Rhodococcus sp. 
was employed in the multi-step chemo-enzymatic synthesis of Guerbet alcohols [28]. It was used to 
catalyze the final step by reducing an aldehyde to form a primary alcohol. The use of enzymes in this 
example led to an improvement of the overall reaction conditions, reducing the temperature and 
applied pressure, and increasing the selectivity compared to alternative routes. 

While most of the following research is based on the use of KREDs identified from R. erythropolis 
(ReADH) and R. ruber (ADH-A), a newly characterized ketoreductase from R. jostii TMP1 was applied 
in the synthesis of chiral alcohols showing a broad substrate acceptance with increased affinity 
toward aliphatic 2,3-diketones, butan-3-one-2-yl alkanoates, and acetoin as well as the respective 
derivatives [29].  

The substrate scope of a recombinantly expressed KRED from R. erythropolis was evaluated 
showing that a multitude of ketones was eligible for KRED-mediated reduction forming the (S)-
selective alcohols [30]. Next to mono-, di-, and tri-substituted acetophenones, aliphatic ketones have 
also been implemented in a biphasic reaction medium using an integrated cofactor-recycling system 
(formate dehydrogenase system). The synthesis of 1-[3,5-bis(trifluoromethyl)phenyl]ethanol, another 
di-substituted acetophenone, which acts as a key intermediate in the synthesis of NK-1 receptor 
antagonists, was achieved with the same enzyme coupled to another cofactor-recycling system 
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(glucose dehydrogenase system) [31]. In a stirred-tank reactor, space-time yields of 260 g/L per day 
were achieved.  

Interestingly, electron-deficient α,β-unsaturated ketones (4) were treated in a tandem reduction–
epoxidation–dehydrogenation cascade involving two enzymes, namely an AHD from R. erythropolis 
DSM 43297 and a styrene monooxygenase both co-expressed in E.coli [32]. While aiming for the 
synthesis of chiral epoxy ketones (7), it was found that allylic epoxy alcohol intermediates (6) also 
form valuable synthons due to the presence of three contiguous stereocenters. Through adaption of 
the reaction conditions (the addition of isopropanol, which caused high concentrations of NADH, 
thereby blocking the dehydrogenation reaction), the major product could easily be switched from an 
epoxy ketone (7) to an allylic epoxy alcohol (6), thereby providing two useful synthons with only one 
reaction set-up (Scheme 2). 

 

Scheme 2. Enzymatic cascade for selective synthesis of epoxy ketones and allylic epoxy alcohols [32]. 

Additionally, trifluoroacetyl-acetophenones lead to chiral fluorinated hydroxyketones when 
converted by ReADH [33]. The conversion of phenylacyl halides, here especially fluorides, was 
performed with recombinantly expressed ADH-A yielding fluorohydrins with high yields and 
enantiomeric purity [34]. ADH-A was also applied in the synthesis of pharmacologically active 
compounds (R)-Ramatroban (10), a thromboxane receptor and protaflandin DP2 receptor antagonist, 
and (R)-Frovatriptan (11), a 5-hydroxytryptamine (serotonin) receptor antagonist, treating allergic 
rhinitis and asthma or migraine headaches, respectively [35,36]. In both total syntheses, the KRED 
was used to install an (S)-alcohol (9), which was subsequently inverted following a SN2-mechanism 
to an (R)-amine. Afterward, the selective functionalization of the amine allowed generation of both 
desired compounds (Scheme 3). 

 

Scheme 3. KRED catalyzed ketone reduction in a multistep chemo-enzymatic reaction sequence to 
pharmacologically active compounds (R)-ramatroban and (R)-frovatriptan [35,36]. 
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The same enzyme (ADH-A) was applied in the production of syn-α-alkyl-β-hydroxy amides 
through means of dynamic kinetic resolution. Various acyclic α-alkyl-β-keto amides were reduced, 
yielding the (S)-selective products’ high yields and excellent ee [37]. Enantiopure 3,4-
dihydroisocoumarins were easily accessible via a one-pot dynamic reductive kinetic resolution 
process catalyzed by ADH-A [38] as was the asymmetric synthesis of (S)-N-Boc-3-hydroxypipridines 
(13) using a variant (Y54F) of a KRED from R. erythropolis WZ010 [39]. N-Boc-3-piperidone (12) was 
selectively reduced, thereby forming an important intermediate of ibrutinib, an inhibitor of Bruton’s 
tyrosine kinase. The enzymatic process enhanced the yield significantly when compared to the 
chemical route (Scheme 4). 

 
Scheme 4. Asymmetric bioreduction of N-Boc-3-piperidone (12) catalyzed by KRED [39]. 

The discussed examples show the broad applicability of ADHs/KREDs in organic synthesis by 
opening up the possibility of introducing new stereocenters through reduction processes or 
(dynamic) kinetic resolutions. 

2.2. Oxidases 

Another class of enzyme, alcohol oxidases, also catalyze the oxidation of alcohols to aldehydes, 
ketones, and sometimes carboxylic acids. In comparison to alcohol dehydrogenases that catalyze this 
reaction via an electron-transfer to an organic cofactor, alcohol oxidases transfer electrons to 
molecular oxygen forming hydrogen peroxide as a side-product. Using oxygen as a cheap and readily 
available oxidant makes oxidases more interesting than alcohol dehydrogenases as they require 
expensive cofactors in either stoichiometric amounts or respective cofactor regeneration systems [40]. 

Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum is known to catalyze the 
oxidation of many 4-hydroxybenzylic alcohols. A homologue of this enzyme was found in R. sp. 
RHA1, which was termed eugenol oxidase (EUGO) [41]. The enzyme was shown to catalyze the 
oxidation of vanillyl alcohol more efficiently than VAO from P. simplicissimum, but 4-alkylphenols as 
well as 4-(methoxymethyl)phenol were only poorly converted. 

Cholesterol oxidases (ChoX), on the other hand, catalyze the oxidation of the C3 hydroxyl-group 
of cholesterol and an isomerization reaction, ultimately yielding cholest-4-en-3-one [40]. In addition 
to cholesterol, a cholesterol oxidase discovered in R. erythropolis also showed activity toward non-
steroidal compounds such as smaller cyclic allylic alcohols with good stereo- and enantioselectivity 
[42]. In an attempt to produce high-quality cholest-4-en-3-one, the use of an aqueous/organic biphasic 
system was explored which simplified the production process by improving separation and 
purification [43]. This led to a final product with a purity of 99.78%, which makes this new process 
design more approachable for industrial applications. 

A Rhodococcus oxidase catalyzed reaction already running on industrial scale is a kinetic 
resolution through the oxidation of racemic iso-propylideneglycerol (14) yielding both (R)-iso-
propylideneglyceric acid (15) and (R)-iso-propylideneglycerol (16) [44,45]. The use of this biocatalytic 
process simplifies the synthesis of desired (R)-iso-propylideneglycerol (16) compared to chemical 
processes. Whole-cells of R. erythropolis are employed in a fed-batch reactor leading to 50% maximum 
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yield with high ee values. The product is a valuable C3 synthon in the synthesis of β-blockers like (S)-
metoprolol (17) (Scheme 5). 

 
Scheme 5. R. erythropolis oxidase catalyzed process to produce (R)-iso-propylideneglycerol (16), 
which is used as C3-synthon for (S)-metoprolol (17) [44]. 

2.3. Oxygenases in Rhodococcus 

Oxygenases utilize molecular oxygen as both a substrate and electron acceptor, while the (above) 
discussed dehydrogenases catalyze the oxidation via hydrogen transfer reactions. Oxygenases can be 
classified into two groups: while monooxygenases introduce only one oxygen-atom, dioxygenases 
catalyze the introduction of two oxygen atoms from molecular oxygen. This type of reaction is 
particularly useful in synthetic chemistry as a selective activation of chemically inert C–H bonds is 
otherwise extremely difficult to achieve using classical chemical procedures. 

2.3.1. Monooxygenases 

2.3.1.1. P450 Monooxygenases 

The so-called cytochrome P450s (P450s, CYPs) monooxygenases contain a heme prosthetic 
group with an Fe(III)-ion embedded in a porphyrin ring with a cysteine sulfur as an axial ligand to 
the iron. They activate molecular oxygen for the hydroxylation of organic compounds. In this process, 
the second oxygen is reduced to water. P450s are NAD(P)H dependent enzymes. Therefore, the 
redox-reaction required electrons are transferred from the cofactor to the heme through one or two 
‘electron transport enzymes’ or ‘redox partners’ [46,47]. This makes P450s multicomponent enzymes. 
The involved components can either be free or directly linked to each other with the latter being 
called a self-sufficient enzyme. One of these self-sufficient P450s was discovered in R. sp. NCIMB 
9784 where the reductase partner (RhFRed) containing the FMN- and NADPH binding motif and a 
Fe2S2-ferredoxin-like component is directly linked to the oxidase part [48,49]. The natural substrate 
of this enzyme has not been discovered yet, but it shows a promiscuous substrate scope mediating 
dealkylation reactions, aromatic hydroxylation, epoxidation, and asymmetric sulfoxidation (Scheme 
6) [50]. 
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Scheme 6. Representative bioconversion catalyzed by P450RhF monooxygenase showing aromatic 
hydroxylation, dealkylation, and sulfoxidation potential [50]. 

The reductase unit of this P450 is, however, more often employed. The heme domain of P450RhF 
can be swapped with other heme domains, thereby fusing the reductase domain RhFRed to a number 
of different enzymes [47,51]. One successful example is given by the hydroxylation of testosterone by 
a chimeric fusion protein consisting of the heme-domain from CYP154 from Nocardia farcinca IFM 
10152 and the reductase domain RhFRed [51]. 

2.3.1.2. Baeyer-Villiger Monooxygenases 

The Baeyer-Villiger reaction involves the oxidation of a carbonyl compound, ultimately leading 
to an ester or lactone. So-called Baeyer-Villiger monooxygenases (BVMOs) catalyze this reaction 
under milder reaction conditions compared to harsh chemical procedures [52]. Flavin-containing 
enzymes require electrons from a reduced cofactor. The flavin-cofactor reacts with molecular oxygen, 
thereby forming a reactive peroxyflavin intermediate, which performs the nucleophilic attack on the 
carbonyl function. Upon a rearrangement, the respective ester or lactone is formed [52].  

Prochiral c-butanones with alkyl- or aromatic substituents in the 3-position were converted by 
the two c-hexanone monooxygenases discovered earlier in Rhodococcus [53] (CHMORhodo1 and 
CHMORhodo2) to yield (S)-selective butyrolactones [54]. Both enzymes displayed especially high 
activity toward bulky substituent piperonyl and aromatic residues with substituents in the m- and p-
position. The same enzymes were employed in an activity screening toward 4-4-disubstituted c-
hexanones (24) to obtain the respective caprolactones (25) [55]. In the special case of 4-hydroxy-4-
methyl-c-hexanone (24c), a caprolactone (25c) was generated, which spontaneously formed a five-
membered ring (26) (Scheme 7). 
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Scheme 7. Rhodococcus Baeyer-Villiger monooxygenase catalyzed oxidation of 4,4-disubstituted c-
hexanones (24) [55]. 

Additionally, the same set of enzymes was used in another screening toward a number of 
bridged c-ketones [56]. Both tested Rhodococcus enzymes readily converted almost all tested bridged 
ketones (27,29) with high yields and good to excellent stereoselectivities yielding bicyclic lactones 
(28,30) (Scheme 8). 

 
Scheme 8. Representative Baeyer-Villiger oxidations of bridged c-ketones (27,29) catalyzed by 
CHMOs from Rhodococcus [56]. 

The ability to resolve N-protected β-amino ketones was investigated using the two c-hexanone 
monooxygenases from Rhodococcus amongst other bacterial BVMO [57]. CHMORhodo1+2 both showed 
the ability to resolve linear(-branched) aliphatic and aryl-aliphatic 4-amino-2-ketones with a strong 
preference for middle-chain 4-amino-2-ketones. Longer substrates (C12) were, however, not 
converted. No activity was detected for 5-amino-3-ketones. Next to the more intensively studied c-
hexanone monooxygenases from Rhodococcus (CHMORhodo1+2), several novel BVMOs have been 
identified in various strains. Increasing the number of BVMOs leads to an expansion of the 
application potential of this useful enzyme class. 

Through a kinetic resolution of 2-(3-penten-1-yl)-c-hexanone catalyzed by a c-dodecanone 
monooxygenase from R. ruber SC1 (CDMO) [58], the formation of a homologue of the jasmine lactone 
was achieved with excellent stereoselectivity [59]. Preparation of the jasmine lactone, a desired 
compound in fragrance industry, was accomplished with a CHMO from Arthrobacter in the same 
study. The species R. jostii RHA1 is particularly known for a high abundance of oxidative enzymes 
[60,61], which gave rise to a comprehensive investigation of the presence of BVMOs in this strain [62]. 
Following a genome mining approach, a total number of 22 novel BVMOs was identified, expressed, 
and tested on a diverse set of 39 substrates ranging from linear and cyclic aliphatic ketones to 
aromatic amines, sulfides, and ketones. Here, in particular, six of the identified BVMOs stood out due 
to their high substrate promiscuity converting at least 10 and up to 29 of the tested substrates. 
Furthermore, the same microorganism was shown to also host eight new flavin-containing 
monooxygenases (FMOs), three of which were successfully applied in Baeyer-Villiger oxidations 
[63]. Interestingly, the novel enzymes did not favor a specific coenzyme (NADH or NADPH) and 
their potential as useful biocatalysts was shown by successful conversions of both an aromatic and a 
bicyclic ketone. A novel CHMO from Rhodococcus sp. Phi1 (CHMOPhi1) was used in an attempt to 
chemo-enzymatically produce the lactone monomer dihydrocarvide (32/33) from monoterpenoid 
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starting materials (31) [64]. A subsequent metal-assisted ring opening polymerization (ROP) led to 
the generation of polydihydrocarvide (34), a polymer used as a thermoplastic elastomer. Depending 
on whether the wild-type enzyme or a triple mutant was employed, the synthesis of so-called 
abnormal (32) and normal lactone (33) were favored, respectively (Scheme 9). 

 

Scheme 9. ‘Semisynthetic’ production of polydihydrocarvide (32/33) using a triple mutant of 
CHMOPhi1 [64]. 

In a similar fashion, a c-pentadecanone monooxygenase from Pseudomonas sp. HI-70 led to the 
formation of polymenthide in the same study. Finally, a novel BVMO from R. pyridinivorans DSM 
44555 with extraordinary resistance toward high substrate loading and good stability was shown to 
convert a number of linear aliphatic ketones [65]. Both 2- and 3-ketones and their respective 
derivatives were converted. Particularly interesting was the production of 3-acetoxypropionate from 
methyl levulinate with a space-time-yield of 5.4 g/L per day, thereby more than doubling the highest 
STY reported thus far. 

2.3.1.3. Styrene and Indole Monooxygenases 

While the BVMOs are built up by a single-component, the styrene (SMO) and indole 
monooxygenases (IMO) form their own subgroup within the two-component flavin-dependent 
monooxygenases [66]. Reduced FAD, which binds in the active site of the monooxygenase, is used 
for the activation of molecular oxygen and is delivered by a NAD(P)H-dependent flavin reductase. 
While SMOs consist of a monooxygenase (StyA) and a reductase component (StyB), IMOs can either 
be built up in the same manner (two-component system with monooxygenase ‘IndA’ and reductases 
‘IndB’) or as a self-sufficient fusion protein (ImoA2B) associated with an additional monooxygenase 
(IndA1). 

Styrene monooxygenases catalyze the conversion of styrene and its derivatives and also showed 
activity against aryl alkyl sulfides. The epoxidation reaction as well as the sulfoxidation reaction 
solely yielded the respective (S)-enantiomers using rhodococcal SMOs with different regeneration 
systems [67–70]. Furthermore, the SMO from R. sp. ST-10 was used to convert aliphatic alkenes 
including terminal, internal, unfunctionalized as well as di- and tri-substituted alkenes, thereby 
generating (S)-epoxyalkanes [71]. The same gene was overexpressed in Kocuria rhizophila DC2201, a 
strain with exceptionally high tolerance against organic solvents [72]. This led to an increased 
conversion yield, thereby making this system a suitable biocatalyst for the environmentally milder 
production of (S)-epoxyalkanes in high purity. 

Indole monooxygenases (IndA1 and IndA2B-systems) from Rhodococcus species also act on 
styrene derivatives and catalyze epoxidation and sulfoxidation reactions [67,73,74]. Additionally, 
SMOs and IMOs were shown to produce indigoid dyes without the formation of byproducts like 
indirubin [66,75]. 

2.3.2. Dioxygenases 

Aromatic dioxygenases carry out the cis-dihydroxylation to arene substrates, thereby generating 
valuable vicinal cis-dihydrodiols. The aromatic ringhydroxylating dioxygenases are non-heme iron-
dependent enzymes containing a mononuclear iron-active site and a Rieske type [FeS] cluster for 
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electron transfer. These enzymes also require a ferredoxin and a flavin containing reductase that 
reacts with NADH. To date, mainly toluene and naphthalene dioxygenases from Pseudomonas putida 
(mutants) have been exploited, but next to those, naphthalene dioxygenases [76] and novel o-xylene 
degrading Rhodococcus strains were also discovered [77].  

In particular, an increased interest on the isolation of the strain R. sp. DK17 arose when it was 
shown to replicate on o-xylene and utilize several aromatic compounds (benzene, alkylbenzene, 
phenol, phthalate), thereby displaying its high degradation potential [11]. Until now, subsequent 
studies primarily dealt with the deeper understanding of its unique reaction mechanism including 
the point of initial attack in the arene substrate [77]. In the course of this in-depth investigation, 
several substrates have already been shown to be modified by either the wild-type or engineered 
enzyme [78]. Amongst others, the o-xylene-3,4-dioxygenase from R. sp. DK17 showed, for example, 
activity against m- and p-xylene [79] as well as larger substrates such as naphthalene, indan, tetralin 
and indene, whereby in all cases, the respective cis-dihydrodiols were generated [80–82]. 

R. sp. I24 was found to be a strain that oxidizes indene via three different enzyme activities: next 
to a monooxygenase and a dioxygenase both inducible with naphthalene, a toluene inducible 
dioxygenase is present [83,84]. Great attention has been paid to the bioconversion of indene to cis-
(1S,2R)-indandiol, which is a known precursor for (-)-cis-(1R,2R)-1-aminoindan-2-ol, a key chiral 
synthon for the HIV protease inhibitor Crixivan. Whole-cell experiments with R. sp. I24 carried out 
in a batch- or fed-batch manner struggled with low yields due to the numerous side-reactions 
catalyzed by the other oxygenases present [83,85]. Therefore, the toluene inducible dioxygenase (TID) 
was heterologously expressed in E. coli and investigated [86]. The desired cis-(1S,2R)-indandiol was 
produced with an enantiomeric excess of 45.2% over cis-(1R,1R)-indandiol. 

Several other Rhodococcus species have been investigated for their degradation potential toward 
the group of BTEXS (benzene, toluene, ethylbenzene, xylene isomers, styrene) aromatics. For 
example, the conversion of benzoate was catalyzed by a benzoate dioxygenase with a narrow 
substrate scope from R. opacus 1CP [87]. 2,3-dihydroxybiphenyl-1,2-dioxygenases from Rhodococcus 
have been recombinantly expressed, showing activity toward a number of catechols with 2,3-
dihydroxybiphenyl being the best accepted substrate [88,89] and several catechol-1,2-dioxygenases 
were shown to cleave (alkyl-substituted and halogenated) catechols [90,91]. 

However, to the best of our knowledge, their use as biocatalysts in synthetic chemistry has been 
limited and not been exploited to its full potential yet. 

2.4. Miscellaneous Oxidation Potential 

As already mentioned, Rhodococcus strains show impressive degradation behavior toward a 
multitude of compounds. Several monooxygenases present in these biodegradation pathways have 
been identified and implemented in biocatalytic applications. To further showcase the hydroxylation 
potential of enzymes isolated from Rhodococcus as well as whole-cells, several examples are discussed. 

With the responsible enzymes staying elusive in some cases, a number of different terpenoids 
were described to be transformed by whole-cells of Rhodococcus. As an example, D-limonene was 
oxidized to (+)-trans-carveol by R. opacus PWD4 [92] and β-myrcene to geraniol [93]. 

A 3-ketosteroid-9α-hydroxylase was identified in R. erythropolis SQ1, which the 9α-
hydroxylation of compounds 4-androstene-3,17-dione and 1,4-androstadiene,3-17-dione [94]. R. equi 
ZMU-LK19 was applied in the asymmetric hydroxylation and diastereoselective oxidation of (+)-2-
substituted tetrahydroquinolines generating chiral 2-substituted-1,2,3,4-tetrahydroquinoline-4-ols 
and chiral 2-substituted-2,3-dihydroquinolin-4(1H)-ones [95]. 

2.5. C=C–Bond Reductases 

The selective reduction of C=C-double bonds, especially in α,β-unsaturated carbonyl 
compounds, is seen as a valuable reaction in the production of chiral building blocks and is catalyzed 
by flavin-dependent ene-reductases (EREDs, EC 1.3.1.31, also called Old Yellow Enzymes (OYE) [96]. 
Like many other reported organisms, Rhodococcus also showed the reduction-potential toward a 
diverse number of substrates. The reactivity toward seven chalcone-derivatives was screened for 
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using R. sp. DSM 364 amongst other microorganisms [97]. Whole-cells of R. sp. DSM 364 catalyzed 
the reduction of all seven substrates including all derivatives with both electron withdrawing and 
electron donating groups, exclusively to the respective dihydrochalcones while leaving the carbonyl 
moiety unreacted. Several Rhodococcus strains (R. erythropolis and R. rhodochrous) were used in an 
investigation into their reduction potential toward activated ketones, an aldehyde, an imide, and 
nitro-compounds [98]. Based on the conversion of ketoisopherone to levodione, stereoselectivity 
studies have been performed: all so far have reported that ene-reductases found in plants, yeasts, 
bacteria, and parasites only gave access to the (R)-configurated product. However, in this study, 
whole-cell bioconversions of six out of seven strains led to the formation of the (S)-product. The same 
reaction was carried out with purified ene-reductases, which led to the (R)-product. It was therefore 
proposed that the whole-cells produce a mixture of both (R)- and (S)-levodione from which only the 
(R)-enantiomer is further converted by the other enzymes present in the whole-cell mixture leaving 
the (S)-levodione as main product unreacted [98]. A (R)-selective ‘thermophilic-like’ ene-reductase 
from R. opacus 1CP obtained by genome mining was heterologously expressed in E. coli and 
subsequently characterized [99]. Based on sequence similarity, this enzyme was categorized as a 
member of the ‘thermophilic-like’ (YqjM-like) OYE group, but it only showed a temperature 
optimum of 37 °C instead of higher temperatures of ≥70 °C, which are usually described for 
thermophilic enzymes. It showed the highest activities toward (substituted) maleimides (35) leading 
to the corresponding succinates (36) (Scheme 10). 

 
Scheme 10. Ene-reductase catalyzed reduction of α,β-unsaturated maleimides (35) [99]. 

2.6. Amino Acid and Amine Dehydrogenase  

Amino acid (AADH, EC 1.4.1.x) and amine dehydrogenases (AmDH) catalyze the reductive 
amination of α-keto acids and ketones, yielding α-amino acids and amines, respectively, using 
NAD(P)H as a cofactor. Ammonia is mostly chosen as the nitrogen source.  

R. sp. M4 hosts a phenylalanine dehydrogenase (PheDH), which primarily converts 
phenylpyruvate to L-phenylalanine via a reductive amination process [100]. Additionally, the enzyme 
was also shown to accept other (sterically demanding) α-keto acids such as 4-(methylsulfanyl)-2-
oxobutanoic acid, 2-oxo-4-phenylbutanoate or 2-oxo-5-phenylpentanoate, making it interesting for 
its broad substrate tolerance [100,101].  

The amine dehydrogenases (AmDH) are a recently developed group of enzymes derived from 
amino acid dehydrogenases [102]. They act on prochiral ketones, opening up a new synthetic route 
toward chiral amines. A new (R)-selective AmDH (TM_pheDH) was engineered from the Rhodococcus 
phenylalanine dehydrogenase by directed evolution [103]. With this new enzyme, it was possible to 
reduce phenylacetone (37a) and 4-phenyl-2-butanone, leading to (R)-amphetamine (38a) and (R)-1-
methyl-3-phenylpropylamine with excellent ee values (>98%). The immobilization of this AmDH on 
magnetic nanoparticles (MNP) increased the productivity and stability compared to the free enzyme 
[104]. The enzyme was also found to be active toward o-methoxyphenylacetone derivatives (37b), 
aliphatic ketones, and so-called ‘bulky-bulky’ ketones such as 1-phenylbutan-2-one or 1-
phenylpentan-3-one (Scheme 11) [105]. 
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Scheme 11. Reductive amination of representative ketones catalyzed by AmDH engineered from R. 
sp. M4 [103,105]. 

2.7. Desaturase  

A Δ6-desaturase from a R. sp. KSM-B-MT66 mutant was applied in a two-phase system to 
catalyze a cis-desaturation of low-cost saturated starting material [106]. Next to unsaturated acyl fatty 
acids, chloroalkanes and simple alkanes were accepted and the dehydrogenation always took place 
9-C-atoms away from the terminal methyl group. This reaction was used to generate intermediates 
for the preparation of substituted fatty acids used in the dermatological pharmacy and was run with 
a space-time-yield of 16.8 g/L per day. Recently, novel Δ6-desaturase enzymes were identified in R. 
sp. and their use to produce cis-6-hexadecenoic acid were patented for future applications [107,108]. 

3. Enzymes from the Aldoxime-Nitrile Pathway 

Enzymes present in the aldoxime-nitrile pathway catalyze both the synthesis and decomposition 
of nitrogen-containing organic compounds, thereby playing a key role in the carbon and nitrogen 
metabolism of microbes and plants (Scheme 12) [109–111]. Through the oxidation and 
decarboxylation of amino acids, aldoximes (39) are generated [112,113], which are subsequently 
dehydrated to give nitriles (40). These nitriles can either undergo a hydroxynitrile lyase-catalyzed 
decomposition reaction yielding hydrogen cyanide and aldehydes or they can be converted to 
carboxylic acids (42) via two possible routes: a one-step reaction catalyzed by nitrilases or via an 
amide intermediate (41) catalyzed by a coupled nitrile hydratase and amidase system [109,110]. The 
resulting acids and ammonia are afterward consumed in the carbon and/or nitrogen metabolism. 

 
Scheme 12. General aldoxime-nitrile pathway in microbes with synthetically used enzymes from 
Rhodococcus highlighted [109]. 

Various Rhodococcus species use the aldoxime-nitrile pathway and therefore the respective 
enzymes (aldoxime dehydratase, nitrilase, nitrile hydratase, and amidase) are present in many strains 
[111,114]. The versatile use of these enzymes in synthetic organic chemistry from a laboratory ‘proof-
of-principle’ to multi-ton scale for industrial applications showcases the strength of Rhodococcus as a 
biocatalyst in this area. 

3.1. Aldoxime Dehydratase  

Nitriles are valuable starting points in the synthesis of both bulk chemicals and chiral 
pharmaceuticals [96,112]. Their synthesis, however, either requires high temperatures 
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(ammoxidation) or the use of highly toxic hydrogen cyanide as a reagent. Aldoxime dehydratases 
(Oxd, EC 4.99.1.5) are a recently discovered group of enzymes found in bacteria [115,116] and offer 
an environmentally friendly, cyanide-free alternative to producing nitriles that start from easily 
accessible aldoximes, which can be produced by a condensation reaction of aldehydes with 
hydroxylamine [117].  

Several studies have examined the substrate scope of aldoxime dehydratases from Rhodococcus 
for non-chiral aldoximes [116,118–120]: while arylaliphatic aldoximes were generally better 
converted by other organisms [121], strain Rhodococcus sp. YH3-3 was the only organism that showed 
activity against substituted aromatic and furan-derived aldoximes. It also displayed higher activities 
toward a number of substrates with heteroaromatic moieties compared to other Oxds, thereby 
showing unique properties [112,116]. Linear and branched aliphatic aldoximes with a chain length of 
C2 to C6 are accepted and converted to their respective nitrile by a number of ROxd [116,118,119]. A 
comprehensive study compared the activity of five heterologously expressed aldoxime dehydratases 
of which two originated from Rhodococcus strains (R. globerolus A-4, OxdRG; R. sp. N-771, OxdRE) 
toward chiral aldoximes including arylaliphatic, heteroaromatic aliphatic, cyclic aliphatic, and acyclic 
long-chain aliphatic aldoximes with an particular interest in the stereochemical course of the reaction 
[120]. Interestingly, in some cases, it was shown that depending on the choice of isomeric structure 
of the substrate (E- or Z-aldoxime), the enantiopreference in the final nitrile (R- or S-configuration) 
could be influenced.  

A recent example displaying the growing industrial importance of this enzyme class can be seen 
in a filed patent from BASF, which describes the conversion of a number of terpenes—important 
odoriferous compounds in the fragrance industry. One example is the biocatalytic production of 
citronellyl nitrile (44), which is known to have a rose-like fragrance (Scheme 13) [122]. 

 
Scheme 13. Patented biocatalytic citronellyl nitrile (44) production by dehydration of citronellal oxime 
(43) catalyzed by aldoxime dehydratase [122]. 

3.2. Nitrile Hydratase  

While aldoxime dehydratases form valuable nitriles, nitrile hydratases (NHase, EC 4.2.1.84), 
which are mononuclear iron- or cobalt-dependent enzymes, belong to the group of nitrile-degrading 
enzymes yielding amides through hydration reactions. This reaction is often followed by an amidase-
catalyzed hydrolytic step when applying Rhodococcus whole-cells, which converts the formed amides 
to their respective carboxylic acids. This section will summarize both the use of NHase as a single 
catalyst and systems using both enzymes as a coupled two-step system.  

3.2.1. NHase as A Single Biocatalyst 

The production of amides from nitriles has become crucial to industry and therefore the 
commercial interest in nitrile-degrading enzymes has gained immense attention, as many excellent 
reviews display [109,114,123,124]. Rhodococcus strains are industrially used to prepare amides 
essential for humankind such as acrylamide (R. rhodochrous J1, >400000 t/a, Nitto Chemical Industry 
[5,6]) or nicotinamide (R. rhodochrous J1, >11500 t/a, Lonza AG [45,125]). In this case, the nitrile-
hydratase of industrially important strain R. rhodochrous J1 was shown to be cobalt-dependent [126]. 
The main products of acrylamide and its polymers are used as coagulators in the leather and textile 
industry while nicotinamide is one of the two forms of vitamin B3 used in the cosmetics industry and 
in animal feed supplementation [109,127]. 
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NHases are versatile enzymes that accept a broad range of different nitriles. The hydrolysis of 
aromatic and arylalkyl nitriles was intensively studied and proven successful for pyridyl-, pyrazinyl-
, (substituted) benzyl-, furyl-, and thionyl-moieties [128–133] as well as trans-2,3-epoxy-3-aryl-
propannitriles [134] or rac-mandelonitrile [135]. R. boritolerans FW815 was shown to have a strong 2,2-
dimethyl-c-propanecarbonitrile (DMCPCN) hydratase activity in the absence of amidase activity, 
leading to an enrichment of 2,2-dimethyl-c-propanecarboxamide (DMCPCA)—an important 
precursor for the drug cilastatin, which is an inhibitor of a renal peptidase that is involved in the 
metabolism of other drugs, thereby making these other, combined drugs more effective [136]. 
Dinitriles are also accepted substrates: whole-cells of Rhodococcus sp. were shown to convert 
fluorinated aromatic dinitriles [137] and R. rhodochrous IFO 15564 was active toward alicyclic mono- 
and dinitriles, affording the products in low to moderate yields [138]. Resting cells of R. ruber 
CGMCC3090 converted the aliphatic adiponitrile to selectively give 5-cyanovaleramide (5-CVAM), 
which is used in the synthesis of caprolactam, a common precursor for Nylon 6 (Scheme 14) [139]. 

 

Scheme 14. Nitrile hydratase catalyzed bioconversion of adiponitrile (45) yielding 5-cyanovaleramide 
(46) using whole-cells of R. ruber GCMCC3090 [139]. 

Prochiral substrates such as α- or β-substituted nitriles have also been used in bioconversions: 
starting from α-racemic aminonitriles (47), respective (R)-(50) and (S)-selective α-amino acids (51) 
were produced each using a three-enzyme cascade reaction [140]. In both reaction pathways, a NHase 
from R. opacus 71D was first applied to give a racemic mixture of α-amino acid amides (48/49). A 
dynamic kinetic resolution catalyzed by ACL racemase and subsequently either D-aminopeptidase 
((R)-amino acid (50)), or L-amino acid amidase ((S)-amino acid (51)) yielded the final products 
(Scheme 15). 

 

Scheme 15. Dynamic kinetic resolution of rac-aminonitriles to produce chiral α-amino acids (50,51). 
The first step is catalyzed by a nitrile hydratase from R. opacus 71D [140]. 

On the other hand, a partially purified NHase was successfully applied in the conversion of β-
substituted nitriles such as 3-oxonitriles, 3-hydroxynitriles, and 3-(acyloxy)nitrile, yielding the 
corresponding amides in moderate to good yields [141]. Whole-cells of R. erythropolis NCIMB 11540 
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on the other hand were used in the synthesis of piperidin-2-ones (54) starting with a NHase-catalyzed 
hydration reaction of 1-(arylmethyl)-2-(2-cyanoethyl)aziridines (52) (Scheme 16) [142]. 

 

Scheme 16. Chemo-enzymatic cascade reaction to synthesize piperidin-2-ones (54). The enzymatically 
catalyzed step was performed by the soluble nitrile hydratase from R. erythropolis NCIMB 11540 [142]. 

3.2.2. Two-Enzyme Systems 

Most of the Rhodococcus strains used in these bioconversions express both NHase and amidase, 
which can lead to the direct follow-up reaction catalyzed by amidases yielding valuable carboxylic 
acids. Nitrile hydratases generally show low stereoselectivities. The amidase hydrolysis reaction, 
however, is usually very stereospecific, leading to the (S) carboxylic acid (58) and leaving the 
unreacted (R) amide (57) behind (Scheme 17) [143,144]. Many examples have successfully used the 
presence of both enzymes to achieve the production of both selective amides and carboxylic acids by 
kinetic resolution. 

 

Scheme 17. General scheme of the NHase/amidase catalyzed reaction. 

When starting with prochiral α-substituted nitriles, the synthesis of optically active (R)-amides 
and (S)-carboxylic acids was achieved. Several 2-aryl-alkylnitriles were accepted substrates [145,146] 
as was rac-naproxen nitrile, which directly formed the desired and biologically active drug (S)-
naproxen [147]. Additionally, enantioenriched 3-aryl-3-hydroxy-2-methylene carboxylic acids and 
amides were prepared from the respective nitriles using whole-cells of R. rhodochrous AJ270 [148]. 

Multiple examples of dinitriles were also applied: incubation of R. erythropolis AJ270 cells with 
meso-c-pentane-1,3-dinitriles yielded optically active amide-products in high yields [149]. Via an 
amidase-catalyzed kinetic resolution step and following treatment with CH2N2, monocyano amides 
were resolved into (-)-amide and (-)-ester. Additionally, it was shown that the amidase also catalyzes 
the desymmetrization of meso-c-pentane-1,3-dicarboxamides, affording enantiopure 
pentanecarboxylic acids.  

Malononitriles are α, α-substituted dinitriles that form malonic diamides and malonic acid 
monoamides upon incubation with whole-cells of R. rhodochrous IFO 15564 [150]. Next to that, 
cyanohydrins (α-hydroxy nitriles) were also successfully hydrolyzed, leading to enantiopure α-
hydroxy carboxylic acids like the pharmaceutical intermediate (R)-chloromandelic acid on gram-
scale [151] as was a large variety of aminonitriles ranging from α-aryl-, α-alkyl-substituted glycine 
nitriles [152–154] to aziridine-2-carbonitriles [155], azetidine-2-carbonitriles, and 4-oxoazetidine-2-
carbonitriles [156,157].  

Aside from α-substituted nitriles, β-substituted nitriles are also suitable substrates for the 
NHase/amidase system, yielding interesting building blocks with more remote stereogenic centers. 
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Next to several studies focusing on 3-substituted glutaronitrile derivatives [158–160], 3-hydroxy-
arylpropanenitriles [161], 3-hydroxy-4-aryloxybutanenitriles [161,162], and 3-
(benzoyloxy)pentanenitrile [163] were also converted using Rhodococcus cells. A number of 
Rhodococcus strains was also shown to be active on 3-benzyl-oxy- and 3-benzoyloxypentanedinitriles 
[88,159–161,164], which opens up a new synthetic route to the drug Atorvastatin (trade name Lipitor 
by Pfizer), an HMG-CoA reductase inhibitor for lowering blood cholesterol [165].  

The above-mentioned examples all successfully exploit the presence of both enzymes to obtain 
amides and carboxylic acids. However, the amidase also causes unwanted side-product formation in 
other reactions when the intermediate amide is the desired final product. To avoid the amidase-
catalyzed follow-up reaction in the preparation of acrylamide, an amidase-negative mutant was 
designed using a genetic knock-out technique. This approach increased the acrylamide yield by 25% 
compared to the wild-type strain [166]. 

3.3. Amidase  

Amidases (EC 3.5.1.4) belong to the group of amidohydrolases and have been widely researched 
due to the biological relevance of amides in nature. They generally show a broad substrate scope and 
good enantioselectivity [167]. The examples discussed in the above section already display the 
versatility of Rhodococcus amidases and their synthetic potential in combination with nitrile 
hydratases. However, this section highlights specific examples achieved with single-amidase 
systems.  

An amidase from R. sp. MTB5 showed good activity toward a large number of aliphatic, 
aromatic, and heterocyclic amides [168]. Diamides and specific amino acids were, however, only 
poorly accepted. α-alkyl phenylacetamides have been kinetically resolved using an amidase present 
in R. sp. AJ270 [169]. (S)-naproxen can be produced starting from both racemic naproxen nitrile using 
the two-enzyme system [147] as well as from a racemic naproxen amide using cells of R. erythropolis 
MP50 [170]. In a similar manner, R. erythropolis AJ270 catalyzed the enantioselective hydrolysis of 
racemic ibuprofen amide leading to the biologically active compound [171].  

In the production of (R)-malonamic acids, amidases from Rhodococcus have proven to be 
successful tools. Whole-cells of R. sp. CGMCC 0497 converted aromatic α,α-disubstituted 
malonamides with substituents in ortho-, meta-, and para-position with high yields and excellent 
enantioselectivities as well as dialkyl-substituents with slightly lower ee-values [172]. The amidase 
present in whole-cells of R. erythropolis AJ270 transformed a number of prochiral malonamides 
yielding a range of carbamoylacetic acid products [173]. α-substituted α-amino-malonamides (59) 
were transformed to highly functionalized tetrasubstituted α-amino acids (60) with high yields with 
excellent ee-values by the same organism (Scheme 18) [174]. 

 

Scheme 18. Synthesis of enantioenriched functionalized α-tetrasubstituted α-amino acids (60) 
through amidase-catalyzed hydrolysis [174]. 

Interestingly, this organism was also used to catalyze the desymmetrization of both five-
membered meso-N-heterocyclic- and meso-c-pentane dicarboxamides to afford functionalized 
enantiopure derivatives of pyrrolidine, dihydropyrrole, and piperidine as well as c-
pentanecarboxylic acids [175,176]. The same amidase was reported to also hydrolyze a palette of 
prochiral 3-aryl- and 3-arylmethyl glutaramides (61), leading to highly enantioselective glutaric acid 
monoamide derivatives (62) [177]. This amidase-catalyzed hydrolysis paved the way for a 
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straightforward chemo-enzymatic synthesis of dihydroquinolinone (64) and a δ-lactone (65), thereby 
showcasing the many synthetic applications of this biocatalyst (Scheme 19). 
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Scheme 19. Chemo-enzymatic syntheses of dihydroquinolinone (64) and δ-lactone (65) [177]. 

Lactams, cyclic analogues of amides, are generally more stable and their hydrolysis therefore 
often requires harsher reaction conditions leading to the respective amino acids [167]. Nonetheless, 
certain amidases (i.e., lactamases from Rhodococcus) were effectively used in the hydrolysis reaction. 
The hydrolysis of Vince-lactams (66) (2-azabicyclo[2.2.1]hept-5-en-3-one) and their derivatives have 
received increased attention due to the fact that the two resulting products are valuable synthons in 
the pharmaceutical industry for the manufacture of antiviral agents carbovir (69) and abacavir (70) 
or for the antidiabetic melogliptin (71) [178]. R. equi NCBI 40312 showed activity against Vince-lactam 
[179], and an amidase from R. globerulus presented excellent enantioselectivities for the obtained 
amino acid products (Scheme 20) [180]. 

 

Scheme 20. Kinetic resolution of Vince-lactam using an amidase from R. globerulus with subsequent 
follow-up chemistry of enantiopure products leading to antiviral compounds carbovir (69) and 
abacavir (70) and antidiabetic melogliptin (71) [180]. 



Int. J. Mol. Sci. 2019, 20, 4787 18 of 35 

 

Strains R. sp Oct1 and R. sp U224 were recently shown to act on various ω-lactams with the 
enzyme present in R. sp Oct1 having a more relaxed substrate scope, while the enzyme from R. sp 
U224 only accepted ω-octo- and ω-laurolactam [181,182]. 

3.4. Nitrilase 

While all of the above-mentioned enzymes from Rhodococcus present in the aldoxime-nitrile 
pathway have been intensively studied and applied in many different processes and reactions, 
nitrilases (EC 3.5.5.1, or nitrile aminohydrolase) from Rhodococcus are less prominent and other 
microorganisms (Synechocystis, Alcaligenes, Pseudomonas, etc.) clearly dominate this area of research. 
However, a small number of reactions have been described using Rhodococcus whole-cells or purified 
enzymes. 

Bioconversions of acrylonitrile with R. rhodochrous J1 yielded acrylic acid with exceptional yields 
of 390 g/L [183], which were even further improved with a mutant strain of R. rhodochrous tg1-A6 
leading to 414.5 g/L [184]. 

The production of ammonium acrylate by two Rhodococcus isolates was further investigated and 
compared [185]. While R. erythropolis 3843 expressed a nitrile hydratase/amidase system, R. ruber 
NCIMB 40757 expressed a nitrilase. In this comparative study, the single-enzyme nitrilase-system 
was superior to the two-enzyme carboxylic acid production due to favorable reaction kinetics and 
because the NHase and amidase do not share the same temperature optimum. 

R. rhodochrous PA-34 was shown to hydrolyze α-aminonitriles to obtain optically active L-amino 
acids (amongst others L-leucine, L-valine and L-methionine) as well as D-alanine [186]. Furthermore, 
strains R. rhodochrous J1 and R. sp. NDB 1165 were used to generate nicotinic acid, also called niacin, 
starting from 3-cyanopyridine with yields of 172 and 196.8 g/L, respectively [187,188]. Nicotinic acid 
is, next to nicotinamide, a form of vitamin B3 and its synthesis is therefore commercially interesting. 

It is worth mentioning that even though only a small number of nitrilase-catalyzed reactions 
with Rhodococcus have been described, this nitrile-degrading enzyme class in general is well-studied 
and applied in a multitude of reactions, which can be followed-up on in several comprehensive 
reviews and books [114,189–191]. 

4. Hydrolase Activity in Rhodococcus 

4.1. Epoxide Hydrolase (EC 3.3.2.x) 

Epoxide hydrolases (EHs) catalyze the ring-opening reaction of oxirane rings, leading to vicinal 
diols and enantiopure epoxides as the final products. Most valuable are EHs that either show high 
enantioselectivities or a low enantiopreference with high levels of enantioconvergence. Many studies 
have focused on the asymmetric hydrolysis of geminal (2,2-disubstituted) oxiranes using Rhododoccus 
as a biocatalyst, whereby all investigated EHs hydrolyzed the (S)-enantiomer forming an (S)-diol and 
leaving the (R)-epoxide behind [192]. The investigated substrate scope includes linear alkyl-, alkenyl-
, alkynyl- or benzylsubstituted epoxides. While R. ruber DSM 43338 acted on 2-methyl-2-
(aryl)alkoxyoxiranes [193], R. sp. NCIMB 11216 was shown to convert (±)-2-methyl-2-alkyl-epoxides 
[194]. Oxiranes bearing an alkene or alkyne function were particularly well transformed using the 
same strain [195]. Additionally, two Rhodococcus strains isolated from marine sediments were used 
in the hydrolysis of styrene oxide and its chlorinated derivatives [196]. 

R. erythropolis DCL14 bears an epoxide hydrolase that holds a particular position within the 
family of EHs. While most of the described EHs belong to the α,β-hydrolase fold superfamily, the so-
called ‘limonene-1,2-epoxide hydrolase’ (LEH) shows a 3-dimensional structure that is dissimilar to 
the others [197]. Consequently, it follows a different reaction mechanism, which was proposed as a 
single step ‘push–pull’ mechanism rather than a multiple-step mechanism described for members of 
the α,β-hydrolase fold superfamily [192]. Initial investigations showed a narrow substrate range for 
the wild-type enzyme. Only the natural substrate limonene-1,2-epoxide was converted with excellent 
stereoselectivity while several alicyclic and few 2-methyl-1,2-epoxides showed only reasonable 
stereoselectivities [198,199]. With an iterative saturation mutagenesis strategy, three LEH variants 
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were developed with an expanded substrate range and opposite stereoselectivities, making this 
enzyme more attractive for future applications [200]. 

A preparative hydrolytic kinetic resolution of rac-trans-spiroepoxides was first achieved with 
EHs from Aspergillus niger (AnEH) and wild-type LEH from R. erythropolis DCL14. In the kinetic 
resolution of rac-trans-spiroepoxides (72), the two employed EHs exhibited opposite 
enantioselectivities, and by applying both enzymes in a combined two-step process, both 
enantiomers (75,76) were generated with excellent enantiomeric excess values and in high yields: the 
racemic spiroepoxide (72) was, for example, first hydrolyzed by LEH leading to the (R),(R)-diol (73) 
and (S),(S)-epoxide (76). Through a chemical recyclization the (R),(R)-diol (73) was transformed into 
(R),(R)-epoxide (74), keeping the moderate enantiopurity. The spiroepoxide (74) was then 
subsequently resolved by the enantiocomplementary EH from A. niger. Enantiopure spiroepoxides 
are seen as valuable synthons in the synthesis of 11-heterosteroids (Scheme 21) [201]. 

 
Scheme 21. Optimized two-enzyme system for hydrolytic kinetic resolution of trans-spiroepoxide 
(72) using AnEH and LEH. Enantiopure spiroepoxides (75,76) can be used in the synthesis of 
enantiopure 11-heterosteroids (79) [201]. 

The asymmetric hydrolysis of (±)-2,3-cis- and trans-disubstituted oxiranes was performed by 
Rhodococcus ruber DSM 43338 with excellent enantioselectivities reaching 95% and 86% ee, 
respectively [202]. 

Next to geminal oxiranes, tri-substituted epoxides were also successfully converted. In an 
enantioconvergent fashion, whole-cells of R. ruber SM 1789 catalyzed the hydrolysis of trialkyl-
oxiranes achieving high yields of the respective (R)-configured vicinal diols with high ee values [203]. 
Expanding the epoxide hydrolase system to substrates bearing olefinic side-chains enabled the 
straightforward asymmetric synthesis of natural compounds myrcenediol and 7,7-dimethyl-6,8-
dioxabicyclo[3.2.1]octane, which is known to be a volatile contributor to the aroma of beer in a 
chemoenzymatic reaction procedure [204]. In another enantioconvergent asymmetric synthesis using 
an EH from Rhodococcus, it was possible to synthesize the monoterpenoid coumarin (R)-(+)-marmin 
with 95% ee under anaerobic reaction conditions [205]. 

The biocatalytic desymmetrization of meso-epoxides with EHs was the focus of other studies: an 
EH from R. ruber ML-0004 was expressed in E. coli that showed a selective activity toward cis-
epoxysuccinate producing enantiopure L-(+)-tartaric acid [206]. An enzyme-triggered hydrolysis-
cyclisation reaction was observed when transforming methylene-interrupted meso-bis-epoxide (80) 
(6,7:9,10-bis(epoxy)pentadecane) with whole-cells of R. sp. CBS717.73 (Scheme 22). With this reaction, 
in total, four stereocenters were established in the obtained THF-derived product (82) [207]. 
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Expansion of this study showed that four different THF-derivatives (representative 82,84) each with 
excellent ee and de values were achieved by using EHs from multiple organisms (e.g. Rhodococcus 
species, Solanum tuberosum, Aspergillus niger, Mycobacterium tuberculosis). The stereospecificities of the 
enzymes thereby determined the final stereoselectivities of the products while the cyclization reaction 
follows Baldwin’s rule without the operation of a cyclase [208]. 

 
Scheme 22. Stereochemical course of hydrolysis/cyclisation reaction catalyzed by two Rhodococcus 
representatives. 

The three aforementioned variants of LEH obtained by an iterative saturation mutagenesis 
approach were applied in the hydrolytic desymmetrization of several meso-epoxides and cis-1,2-
homodesubstituted meso-epoxides forming both the (R,R)- and (S,S)-diols with very good ee values 
[200]. 

The resolution of rac-2-methylglycidyl benzyl ether, a versatile building block, was achieved 
through a whole-cell bioconversion of R. ruber SM 1789 yielding (R)-vicinal diol [209]. Following this 
study, several other strains were tested on the same substrate. While most Rhodococcus strains showed 
(S)-selectivity and acted with the retention of the stereoselectivity, the limonene epoxide hydrolase 
from R. erythropolis showed an inversion of the substrate, leading to a homochiral mixture [210]. R. 
ruber CBS 717.73 catalyzed the hydrolysis of 2-benzyloxymethyl-2-methyloxirane, another protected 
epoxy-alcohol, and was applied in a chemoenzymatic route to produce (S)-chromanemethanol, an 
important building block in Vitamin E synthesis, in 26% overall yield and 99% ee [211]. 

As portrayed, epoxide hydrolases from Rhodococcus are biocatalysts forming valuable synthons 
that can be used in a multitude of follow-up reactions. Next to the described application potential, 
Rhodococcus was also utilized in the production of other natural products such as linalool oxides 
(88,89) or pityol (93). Cis-(88) and trans-linalool (89) oxides were obtained via a chemo-enzymatic 
route starting from (3RS,6R)-2,3-epoxylinalyl acetate (85) with the R. sp NCIMB 11216 mediated 
resolution of the diastereomeric mixture of the starting compound as a key step (Scheme 23A) [212]. 
(2R,5R)-pityol (93), a bark beetle pheromone, was synthesized starting from (±)-sulcatol (90) via an 
lipase-catalyzed deracemization and a subsequent EH-catalyzed diastereoconvergent hydrolysis of a 
haloalkyl oxirane (91) (Scheme 23B) [213]. 
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Scheme 23. Natural product synthesis of (A) cis-(88) and trans-linalool oxides (89) and (B) pityol (93) 
using Rhodococcus whole-cell biocatalysts. 

4.2. Esterase Activity 

Few reports have concentrated on the application of other hydrolases from Rhodococcus. 
Amongst them, an esterase from R. sp. ECU1013 (RhEst1) was shown to hydrolyze rac-ethyl-2,2-
dimethyl-c-propanecarboxylate (94, rac-DMCPCM) to give (S)-(+)-2,2-dimethyl-c-propylcarboxylic 
acid (96, (S)-DMCPCA)—a valuable precursor in the synthesis of the drug cilastatin (97) (Scheme 24) 
[214,215]. This shows an alternative route to cilastatin compared to the previously mentioned nitrile 
hydratase-catalyzed process starting with 2,2-dimethyl-c-propanecarbonitrile [136]. 

 

Scheme 24. Enantioselective resolution of a racemic mixture of DMCPCM (94) to yield (S)-DMCPCA 
(96)—a precursor for the drug cilastatin (97) [214]. 

The production of both (S)- and (R)-linalool was achieved with two (partially) purified enzymes 
((S)- and (R)-linalyl acetate hydrolase, respectively) from R. ruber DSM 43338 via the hydrolysis of 
the corresponding acetate esters [216]. An urethane hydrolase from R. equi TB-60 hydrolyzed a 
diverse range of compounds including anilides, amides, and esters such as toluene-2,4-dicarbamic 
acid butyl ester (TDCB) [217]. 

5. Hydratase Activity 
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Hydratases catalyze the addition of water to (un)-activated double bonds to form valuable 
enantiopure alcohols. It can be stated that nitrile hydratases from Rhodococcus have been profoundly 
investigated and were the center of research regarding hydratase activity. However, several 
Rhodococcus strains have shown an intriguing hydration potential toward other diverse compounds 
and their development is on the rise. 

5.1. Oleate Hydratase 

Recently, a novel oleate hydratase (Ohy, EC 4.2.1.53) was isolated from R. erythropolis CCM 2595 
and characterized [218]. Structural analysis showed that this Ohy differed structurally from the 
previously described bacterial Ohys. This enzyme was shown to be an active monomer while all other 
characterized Ohys showed dimeric structures instead [219–221]. The purified Ohy was shown to 
accept a small range of unsaturated fatty acids, adding water exclusively in the 10-position while 
more complex lipids were not converted [218]. In-silico analysis of the occurrence and phylogenetic 
relationship of annotated oleate hydratases in 43 Rhodococcus strains revealed that distinct 
Rhodococcus clades showed Ohy potential, thereby discovering 19 novel oleate hydratases [222]. Two 
representatives, Ohys from R. erythropolis PR4 and R. pyridinivorans DSM 20415, sharing a sequence 
similarity and identity of 46% and 30%, respectively, were heterologously expressed and tested on 
(multiple) unsaturated fatty acids. While both Ohys converted smaller fatty acids in the same manner, 
they showed a complementary substrate scope toward sterically demanding and longer fatty acids 
(Figure 1). 

 
Figure 1. Exemplary display of complementary substrate scope of two Ohy from Rhodococcus. The 
bold number indicates the location of the hydroxy-group in the final hydrated product. 

A recently filed patent involves the Ohy-catalyzed conversion of free fatty acids such as oleic 
acid derived from the renewable feedstock of bio-based oils [223]. This is one example of the 
successful use of a novel Ohy from Rhodococcus that further improves the potential application of 
Rhodococcus as a useful biocatalyst. 

5.2. Michael Hydratase 

Whole-cells of R. rhodochrous ATCC 17896 were shown to catalyze a so-called Michael addition 
of water to α,β-unsaturated carbonyl compound (E)-4-hydroxy-3-methylbut-2-enoic acid and its 
respective ethyl-derivative [224]. Upon water addition, an internal nucleophilic attack leads to the 
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formation of useful synthon (R)-4-hydroxy-4-methyldihydrofuran-2(3H)-one. The stereochemical 
course of the reaction was investigated, showing that the water-addition takes place in syn-fashion 
[225,226]. Interestingly, this hydratase demonstrated unusual behavior as it requires oxygen for 
higher activities, but labeling studies with D2O and 18O2 proved a true water addition instead of an 
oxidative process [226]. Unfortunately, this membrane-associated enzyme has not been isolated and 
the coding gene remains elusive up to this point. 

6. Rhodococcus Acting on Sulfur-Containing Compounds 

6.1. Sulfatase 

Sulfatases (EC 3.1.6.x) are a group of enzymes that catalyze the hydrolytic cleavage of sulfate 
esters by releasing inorganic sulfate and the corresponding alcohols [227]. Fascinatingly, sulfatases 
can achieve an enantio-convergent transformation of racemic sulfate esters (102) into only one 
stereoisomeric secondary alcohol yielding up to 100% yield theoretically, thereby surpassing 
traditional kinetic resolution processes. Sulfatases thereby determine not only the enantioselectivity, 
but also the stereoselectivity with respect to the retention (104) or inversion (103) of the configuration 
(Scheme 25) [228]. 

 
Scheme 25. Retention or conversion during enzymatic sulfate ester hydrolysis catalyzed by sulfatase. 

The hydrolysis of an alkyl-sulfate through the breakage of the S-O-bond by nucleophilic attack 
leads to a retention while the breakage of the C–O-bond on the other hand leads to an inversion of 
the configuration at the carbon atom bearing the center of chirality [228]. R. ruber DSM 44541 was 
shown to have a secondary alkyl sulfatase, called RS2, which acts through strict inversion. Methyl- 
and ethyl-(alkyl)sulfate esters with a varying chain-length were shown to be hydrolyzed [229,230]. 
The addition of Fe3+-ions led to an increase in activity, which, however, was not suitable for 
preparative scale reactions [231,232]. 

While most of the investigations concentrated on secondary alkyl-sulfates, few reports about 
cyclic sulfates have come forward. Growing cells of R. sp. CCZU10-1, however, were used to 
transform four cyclic sulfates: 1,3-propanediol cyclic sulfate (1,3-PDS), 1,2-propanediol cyclic sulfate 
(1,2-PDS), ethylene sulfate, and glycol sulfate [227]. All four cyclic sulfates were hydrolyzed, which 
makes this the first time that a Rhodococcus species acted on sulfate or sulfite, thereby generating diols. 

6.2. Sulfide Monooxygenase 

Chiral sulfoxides are key synthons in chiral drug production and are used as versatile auxiliary 
compounds as chiral ligands or catalysts. The asymmetric oxidation of prochiral sulfides catalyzed 
by whole-cell biocatalysts is superior to classical chemical routes [233]. Phenyl methyl sulfide (PMS) 
was oxidized into (S)-phenyl methyl sulfoxide (PMSO) by whole-cells of R. sp. ECU0066 [234,235] 
and R. sp. CCZU10-1 [233]. Both studies showed the expansion of the substrate scope to a small set 
of PMS derivatives. A sulfide/sulfoxide flavin-dependent monooxygenase from R. sp. IGTS8 was 
produced in E. coli and investigated in detail [236]. It was shown that the enzyme oxidizes DBT in 
two consecutive steps, yielding DBT sulfone. 

7. Conclusions 

Enzymes present in Rhodococcus strains cover a broad field of diverse reactions ranging from 
redox-reactions and hydrolysis reactions of epoxides or esters to the hydration of fatty acids or 
Michael acceptors. The most prominent and best exploited enzymes in Rhodococcus are mostly the 
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enzymes present in the aldoxime-nitrile pathway, with the nitrile hydratase being the prime example 
of a successful biocatalyst being run on a multi-ton industrial scale process. On the other hand, 
enzymes that have only recently been discovered like aldoxime dehydratase or enzymes acting on 
sulfur-containing compounds have the potential for further development as the industrial 
biocatalysts of the future. 

Genome mining as well as the isolation of more Rhodococcus strains especially from rare sites 
opens up the chance to identify new enzymes with interesting properties such as an extraordinarily 
broad substrate scope, higher enantio- or stereoselectivities for defined reactions, better overall 
stabilities at extreme temperatures, or unusual reaction media. Additionally, the engineering of 
known enzymes to enhance their function also increases the number of possible chemical reactions. 
One such example is the evolution of amine dehydrogenase from amino acid dehydrogenase, which 
led to a straightforward synthesis of (R)-selective amines, which had been a major challenge in the 
past. 

Few reactions have been carried out with purified enzymes while the majority of reactions 
shown were catalyzed by either Rhodococcus whole-cells (wild-type or mutants) or E. coli whole-cell 
reactions with heterologously expressed enzymes from Rhodococcus. It was shown that enzymes from 
Rhodococcus are valuable resources in the design of novel biocascades, which will attract only more 
attention in the near future. Here, the combination of enzymes in well-established expression hosts 
is theoretically boundless given that the present enzymes share reaction condition ranges (e.g., pH, 
temperature, solvent) and act on the same desired compounds. 

In summary, the genus Rhodococcus truly deserves to be termed as a ‘biocatalytic powerhouse’: 
its enzymatic diversity and overall robustness make these microorganisms one of the key players in 
many areas of biocatalysis and will continue to do so. 
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