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Abstract

Search based synthesis has emerged as a powerful tool in
program synthesis, the process of automatically generating
implementations for software programs given some form
of semantic specification. Search based synthesis involves
a search over the space of candidate programs that can
be derived from a given grammar. A recently developed
new inductive logic programming system called Brute
demonstrates how the introduction of example-dependent
loss functions can dramatically improve the effectiveness of
the search. However, as problem sizes grow its performance
drops and at the same time Brute produces programs that are
not optimally concise. To overcome this problem, we develop
an alternative to Brute that uses A* search and we make it
available in an imperative setting (Python). We study to what
extent A* search can aid the synthesis of highly accurate and
more concise programs in a shorter amount of time using
several bench-marking problems, i.e. string manipulation,
robot planning and pixel art. We initially find A* to have
a higher accuracy. However, when we introduce the use of a
new improved heuristic both methods end up with an equally
high performance. These results emphasize the importance of
the choice of heuristic and that both methods excel in solving
distinct problems and can therefore complement each other.

1 Introduction

Program synthesis is the process of automatically generating implemen-
tations for software programs given some form of semantic specification.
Compared to compilers for which this definition also holds, program
synthesizers accept specifications to be given in a much larger variety of
forms. Compilers generally require the specification to be embodied by
a step-by-step procedure. During translation to machine code, they apply
a sequence of local transformations, staying close to the syntactical
structure of the procedure in order to preserve semantic equivalence. In
contrast, program synthesizers don’t require guidance from a procedure
to meet the semantic constraints. In fact, the area of program synthesis
aims to construct synthesizers that can deal with any kind of constraint,
expressed by any logical formula.

This research focuses specifically on inductive program synthesis,
the technique of generating programs from descriptions of their desired
behaviour. Rather than relying on the completeness of a formal specifica-
tion, as is the case for its deductive counterpart, this technique is able to
induce programs from even a very limited amount of hints. In particular
we engage in programming-by-example (PBE), in which these hints are
given as input data together with the desired output data. One can imagine
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Figure 1: Specification for a robot problem with the input data on the left and
the desired output on the right.

PBE offering useful applications on its own. For example, by enabling
non-programmers to manipulate large data sets in an automated way,
simply by first demonstrating the intended behaviour on a few elements
of the data. A less obvious result is that PBE even allows for generating
programs from any logical formula, as outlined in the next section.

A commonly known method for doing PBE is so-called search-
based synthesis. This method involves a search over the space of
candidate programs that can be derived from a given grammar. A recent
study [2] demonstrates how the introduction of example-dependent loss
functions can have substantial impact on the effectiveness of search-based
synthesis. Traditionally, during the search, candidate program are either
rejected after they were found to produce the wrong outputs, or otherwise
accepted as the solution program. The authors in [2] developed a new
inductive logic programming system called Brute, which extends upon
this method by not only rejecting candidate programs, but also taking note
of how close their outputs are to being correct. The distance is determined
by a loss function that is specific to the type of problem at hand. This
information is then used to decide which candidate program to test next.

However, according to [2], as problem sizes are getting larger, Brute
more frequently suffers from performance drops. The main explanation
for this is the greedy nature of the best-first-search algorithm, which
causes an attraction to local minima. The search space has regions where
the loss function goes down with respect to the immediate surroundings,
but not low enough to reach the global minimum that we aim for if
we want a program that satisfies the specifications. Unsuccessfully
scanning these regions introduces large delays to the point where the
search becomes infeasible. To illustrate this problem, consider the case
in which Brute is given the specification in fig. 1.

The specification requires the ball on a grid that is initially on position
(3,1) to be moved to position (1,3). Since we can only directly control
the movement of the robot, the robot should move to the ball and
then carry it to the destination (1,3). As a loss function Brute uses the
distance that the robot must travel to its desired destination (without any
detours) added to the distance the ball would need to travel (if it were



able to move by itself). In this scenario Brute first produces a program

that immediately moves the robot to (1,3), minimizing the loss function

as quickly as possible. After this it explores all programs that make
this first move exhaustively, before it finally discovers a program that
moves the robot to the ball first. In other words, if Brute encounters

a local minimum it exhaustively tries to find a solution in that region

of the search space, wasting execution time.

Another downside of Brute is that it generates programs that aren’t
optimally concise. Aside from the programs being less performant, their
prediction of the actual intent of the user is suboptimal, since shorter
programs are often more generally applicable.

In order to overcome these challenges we have developed an
alternative to Brute that uses A* search. The advantage of A* search
compared to greedy best-first-search is two-fold:

* A* postpones going down a level of the search tree for longer than
best-first-search, since this will add to the path cost. This could make
the search less inclined to chase local optima that are contained deep
in the search tree and therefore waste time on uselessly scanning a
large region.

* A* optimizes for program length. Therefore we are more likely to
accurately predict user intent.

This study aims to determine to what extent A* search, guided by
domain-specific loss functions, can aid in synthesizing programs that
have a higher predictive accuracy compared to a greedy best-first-search
strategy in a shorter amount of time. For this, we make the following
contributions:

* We make the functionality of Brute available in an imperative setting
(Python) as an alternative for the logic programming paradigm that
Brute was originally written for.

* We incorporate A* search and run experiments on the same problem
domains with the same domain-specific loss functions used by the
greedy best-first-search version in [2].

* We test how using better loss functions influences the results.

2 Background

The roots of program synthesis lie in early mathematics on the deduction
of constructive proofs from logical specifications, since algorithms can
be extracted from these proofs. In practice, the downside of a deductive
approach is that users need to come up with logical specifications that
are complete and unambiguously reflect their intent such that the desired
solution can be deduced from it.

2.1 SyGuS

Arguably, a more useful alternative is inductive synthesis, which
recently gained much attention since syntax-guided synthesis (SyGuS)
was being popularized by [1] and community efforts to organize and
annual competition (SyGuS-Comp). The idea behind SyGuS is that
the semantic (logical) specification is supplemented with a syntactic
specification, which mostly comes in the form of a grammar. The
synthesis challenge is now as follows: Given all the candidate programs
derived from the grammar, find one that has the functionality as captured
by the semantic specification. Adding syntactic constraints on the
programs to be generated has multiple advantages:
* The space of candidate programs can be reduced significantly. In
most situations this leads to much more efficient synthesis.
* The possibility to exclude undesired operations from the solutions.
* Minimal languages can be used for obtaining concise implementations,
that are easy to interpret by humans.
SyGusS has proved useful in lots of real-word applications. For

example, the second advantage can be leveraged for code optimization.

Let the semantic specification be the original implementation, that

contains expansive operations. By excluding these operations from
the grammar a faster alternative can be synthesized. More generally, in
theory this technique allows for automatically making existing programs
adhere to any new syntactical constraints. This opens the gate to an
endless amount of new possibilities.

2.2 Programming-by-example

The third advantage is being leveraged in the area of programming-by-
example for very specific problem domains. The power of PBE was
demonstrated with the coming of FlashFill in Excel 2013 [3]. Given
a column of strings and another column with a handful of manipulated
versions thereof, FlashFill first synthesizes a function that implements
these manipulations and then applies it to the rest of the column. The
synthesized function can be easily interpreted and modified by the user
afterwards. The grammar for this problem domain consists of only a
small set of string manipulation expressions. Minimal grammars like
these are commonly refered to as domain-specific languages (DSL).

23 CEGIS

PBE might seem limited to synthesizing from input/output examples
at first. However, it was shown by [9] that PBE can be deployed in
situations where the specifications equal any logical formula. This
strategy for solving general SyGuS problems is called counterexample-
guided inductive synthesis (CEGIS). The architecture of the CEGIS
solver consists of a Learner and a Verifier. The Learner is a PBE system
that receives an initially empty set of input/output examples. The Learner
synthesizes a candidate program that satisfies the input/output examples
(initally this will be any program that is accepted by the grammar) and
passes it to the Verifier. The Verifier then checks the program against the
logical formula. If the program does not fully satisfy the specification, a
counter-example is produced, i.e. an input/output pair that follows from
the logical formula which the program is not able to solve. The counter-
example is added to the set of examples and fed back to the Learner. This
loop ends when either the Learner can no longer produce a candidate
program or the Verifier has acknowledged a program that satisfies the
specification. Aside from the Verifier which is out of the scope of this
research, the quality of a CEGIS solver is determined heavily by the
quality of the PBE solver, which is the focus of this research.

24 Search-based Synthesis

Search-based synthesis is a simple, yet popular technique for solving
PBE problems. It involves enumerating the vast amount of candidate
programs derived from the grammar, until a valid program is found.
For this method to be practical, optimization techniques are essential.

* A common practice is reducing the search space by limiting the size of
the language. This includes the usage of small subsets of programming
languages or even specially crafted minimal languages that are usable
for the specific problem domain. DSL’s have the additional advantage
that the resulting programs are more concise and thus more likely to ac-
curately predict the intended output for future, still unseen input values.

* Another commonly applied optimization is that of pruning parts of
the search space based on program equivalence. Suppose we prefer
shorter programs over longer ones. If the current candidate program
produces the same outputs as and earlier, shorter program for our
inputs of interest it is said to be equivalent to the shorter program
and therefore ignored.

* Further optimization can be achieved by smart ordering of the search
space.



2.5 Brute

The effectiveness of the last mentioned optimization technique was
recently demonstrated by [2] with the development of Brute. Brute
is capable of learning logic programs much faster than current
state-of-the-art inductive logic programming systems by guiding the
search with domain-specific loss functions.

However, according to [2], as problem sizes are getting larger the
performance of Brute drops. The main explanation for this is the greedy
nature of the best-first-search algorithm, which causes an attraction to
local minima. The search space has regions where the loss function goes
down with respect to the immediate surroundings, but not low enough
to reach the global minimum that we aim for if we want a program
that satisfies the specifications. Unsuccessfully scanning these regions

introduces large delays to the point where the search becomes infeasible.

2.6 A* Search

Another, widely acclaimed informed search strategy is A* search. It uses

f(n)=g(n)+h(n) ey

as its loss function, in which g(n) is the cheapest path from start

to node n found at this time, h(n) is the estimated minimal remaining

cost to goal from n. f(n) can also be seen as the current estimate of
the minimal cost path that goes through n.

Admissibilty

Unlike greedy best-first-search, A* finds cost optimal paths by
incorporating preceding path costs in its loss function, that is, as long
has the heuristic function /(n) is admissible [7]. A heuristic is said to be
admissible if it never overestimates the remaining cost to goal. However,
even with a non-admissible heuristic A* prefers shorter programs than
greedy best-first-search with the same heuristic.

Consistency

A¥* is optimally efficient in the sense that nodes are never expanded
more than once if and only if the heuristic is consistent in addition to
being admissible [8]. A heuristic is a said to be consistent if f(n) always
increases as n gets closer to goal. For an inconsistent heuristic the

worst-case time complexity is O(2V) due to the risk of re-expansions.

However as shown by (cite), if the edge weights in the graph to be
searched don’t depend on the size of the graph (like in the search over
a grammar) the search takes worst-case O(N?) time.

Relaxation

A common way of obtaining a heuristic function for combinatorial
problems, is by looking at a simplified version of the problem. For
example, if a robot on a grid needs to move around obstacles to reach a
destination, we can obtain a lower bound on the actual cost by ignoring
the obstacles and just taking the manhattan distance, which is the
shortest path that respects the grid. The situation in which there are no
obstacles is a valid simplification, since a solution to the harder problem
with obstacles is always a valid solution for simpler problem as well.

As layed out by [5] the enormous improvements on finding optimal
solutions to combinatorial problems are the result of better heuristic
functions, not better search algorithms. Better heuristics result in search
trees with smaller effective depth, not a lower branching factor.

3 Methodology

In our own imperative version of Brute, we also distinguish two stages,
invent and search. The invent stage constructs a set of partial programs
that serve as building blocks for the search.

3.1 Invent

In analogy to the way in which Brute builds its library, we use elementary

tokens in order to create more complex tokens. By elementary tokens

(our imperative counterpart of predicates) we mean primitive expressions

in the language. We distinguish between two kinds of elementary tokens:

1. Transition: When applied to a state it causes a transition to another
state e.g. [MoveUp] in the robot problem increments the y-coordinate
of the robot.

2. Boolean: When applied to a state returns true or false, e.g.
[IsHolding] in the robot problem returns whether the ball is being
held by the robot.

These tokens are composed into two kinds of library tokens by taking

their permutations:

1. Invented: A sequence of transition tokens, which are sequentially
applied to a state.

2. Control: Contains boolean and transition tokens for performing
some conditional transition, e.g. a while loop or an if-statement.

Pruning

In our case the main purpose of the library is putting further constraints
on the DSL for further pruning the search space. For example, we can
prevent the creation of

If(IsHolding, [MovelLeft, MoveUp, MoveRight])

by allowing a maximum of two transition tokens in control bodies. The
language is further reduced by disallowing nested control tokens.

Smoothing
Another advantage of the library due to its invented tokens, is smoothing
out a rough loss function. Consider the token:

[MoveRight]

Applying this to the input in fig. 1 results in a decreasing loss function,
since the robot moves away from its desired destination. Using only
singular tokens the search will have little incentive to explore this
direction. If however, the robot would move a little further, i.e.

[MoveRight], [MoveRight], [MoveRight]

the loss function suddenly increases due to the robot being at the ball.
Because of invented tokens, the above program is considered as a single
token during the search:

[MoveRight, MoveRight, MoveRight]

3.2 Search

Programs are constructed by arranging library tokens in a sequence.

Roughly the following steps are repeatedly performed during the search:

1. From the current candidate program (initially the empty program)
multiple new programs are constructed as a result of appending one
of the library tokens.

2. The new candidate programs are being executed on the specified
input values.

3. The result is compared to the desired output. If it matches stop
iterating, otherwise estimate how close it is to the desired output.
Enqueue the program for further extension with a priority based on
this estimate.

This process can be seen as traversing an infinite graph, in which
every node corresponds to a program and the outgoing edges correspond
to tokens that extend the program.

Recall the robot problem from fig. 1. Part of the corresponding
search tree is shown in fig. 2. Note that for this specific problem,
the programs in both branches produce the same state when applied
to the input state. Even though these programs are not equivalent on
their own, they are commonly referred to as equivalent with respect



kT A
Y A\ 4 Y
[LoopWhile(NotAtTop, MoveUp) ] MoveUp
K| A
K.oY A 4

—————

[ MoveUp, MoveUp J

< .
‘ \ .

. VI
T g A\ 4

-----

Figure 2: Search tree with program nodes

fo the specification. In such a situation it can be justified to discard the
higher-cost program, since its future extensions will keep on producing
the same outputs as the extensions of the lower-cost program, while
all being inferior cost-wise. Recall that applying these programs to the
robot example results in a local minimum. Therefore the search wastes
time exploring subsequent states, which result from the future programs
that are depicted by P. In both branches these subsequent states are
the exact same, therefore the search can suffer from the same minimum
more than once. One way to avoid this, is to keep track of visited states
and costs for reaching them in order to prevent exploring equivalent
programs with higher costs, e.g. the right-most branch in the figure.

State nodes

However, our implementation approaches this problem differently (and
thereby deviates from the original Brute): The nodes contain states
instead of programs (fig. 3). An edge from any node v to w still
corresponds to a token that produces the state in w when applied to
v. When the desired output state is reached, the solution program is
obtained from the edges on the path to the output state. Now equivalent
programs with higher costs are implicitly discarded due to standard
cycle avoidance. For the situation in fig. 3 this means that only the
left-most edge is included in the search tree.

State nodes have another benefit. If the current candidate program
p=[t1,..,t,] is being extended to p* =[t1,..,t,+1], the latter needs to be
ran in full on the input states, in order to determine the new distance to
the solution. The largest part of the work, which involves applying tokens
t1 up to ¢, to the input states, needs to be done twice (once for evaluating
p and once for evaluation p*). By using state nodes, our current node
is already the result of executing p. To obtain the result of p* we only
need to apply ¢,,+1 to our current node. In cases where program lengths
grow linearly with the search tree depth d, this can have a significant
effect on the execution time, resulting in time complexity O(b), instead
of O(bd) for node expansions (with b being the branching factor).
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Figure 3: Search tree with state nodes

Compound states

The preceding examples all assumed a single input-output pair. One
of the key aspects of search-based PBE is dealing with multiple
input-output pairs, producing a single program that satisfies all of them.
In part, this is simple to achieve by treating an ordered list of multiple
states as a new kind of single state. Formally, if we are given the input
states s1,..,5,, we use the compound state s=(sy,..,s,,) as our input
state. Additional rules are:

1. Tokens are applied to compound states element-wise, e.g.
MoveUp(s) = (MoveUp(sy),..,MoveUp(sy,)).

2. Some state s* and output state ¢ are equal if they are equal
element-wise, that is s1 =t1,..,5, =t,.

3. There are several options for computing the distance between s*
and ¢. Brute essentially uses

n
dist(s*,t)= z:(dist(s;k b))

=1

The last rule gives rise to the interesting question of which aggregation
of element-wise distances is most suitable when doing A* search.
This could be either taking the sum, the average or the maximum- or
minimum value. For the last two options a case can be made:

1. Every individual problem, i.e. computing the distance (s7,¢;) can
be regarded as a relaxation of satisfying the parallel problem, i.e.
computing the distance (s*,t). This is because if we find a single
token-sequence that, when applied to compound state s* correctly
returns t, this token-sequence will also correctly return ¢; when
applied to any s;. Therefore the individual distances are all lower
bounds for the compound distance and we can safely take the
maximum of these lower bounds, in order to obtain the tightest
possible lower bound. The more tight our lower bound on the
compound distance is, the faster A* will be.

2. The previous argument assumes that we know the individual
distances, but we can only obtain distance estimates from the
original loss functions. As long as these estimates are always lower
bounds we are fine, but as we will later show, there are situations
in which they overestimate. In order to prevent overestimating the
compound distance as much as possible we can take the minimum
of the lower bounds, to stay on the safe side. By overestimating
distances A* is less admissible and therefore more likely to produce
program which are non-minimal in length.

Both options are being explored in this study. (In algorithm 1, the first
option is shown on line 2).



Loss function

Recall the loss function for A* (eq. 1). The loss (or f-cost) of node

n that the search is currently at, is comprised of two values:

* h(n) is set to the estimated distance to the solution (i.e. the node that
contains the ouput states), which is obtained from a heuristic that is
specific to the problem domain. For the robot domain for example, the
Manhattan distance is such a heuristic. Values of A(n) are commonly
referred to as h-cost.

* g(n) is set to the cost of the path that was taken to the current
node. The cost of a single edge is the cost that we assign to the
corresponding token. (Composite tokens will be assigned a higher
cost than elementary tokens). Values of g(n) are referred to as g-cost.

As an extension to the traditional A* strategy we accommodate the loss

function with weight constant w:

£(n) =wg(n)+(w—1)h(n), @)
which allows for convenient switching between the different search strate-
gies by setting w to 0, 0.5 and 1 for selecting greedy best-first-search,

A¥* or Dijkstra respectively. Values in between can also be explored.
This section concludes with explanatory notes on optimization

techniques.

Queue updates

Nodes are enqueued with priorities equal to their f-costs. A* can’t
guarantee cost-optimal solutions with an inadmissible heuristic, because
nodes may be visited a second time along a path with lower g-cost
and therefore also lower f-cost. Whenever this happens, there is a
significant chance that the node is still waiting in the queue with a
priority based on the higher g-cost from the first visit. When the node is
added a second time together with the lower f-cost, it takes precedence
over the old instance. At some point in the future the old instance
will cause an unnecessary re-expansion of the node. How often this
happens depends on the quality of the heuristic, but it can be avoided
altogether with the use of a special priority queue that supports updating
priorities. Under the hood this is achieved without adding to the time
complexity by keeping node hashes together with references to queue
items in a hash table. If a node is re-added, the existing queue item can
be dereferenced and marked as removed. Removed queue items are
immediately discarded when they become dequeued.

Infinite distances

It might so happen that the input-output pairs cannot possibly be satisfied
by any program that exists in the language. Since the program space
is infinite, this situation is impossible for the search to recognize, but
for certain problem domains the heuristic function can be supplied with
knowledge on the limitations of the DSL (as demonstrated in the next
section for the string domain). When the heuristic function recognizes
reaching a solution is impossible it returns an infinite i-cost. The search
refrains from enqueuing nodes with infinite h-cost (line 31 in algorithm
1). If the h-cost is infinite for all possible node expansions, the queue be-
comes empty and the search reports the specification to be unsatisfiable.

Tie-breaking

In practice, the front of the queue often contains multiple nodes with the
same f-cost, there is a tie. Enforcing nodes with the lower h-cost to take
precedence in case of a tie improves performance of A* in most cases
[4]. We’ve observed experimentally that this is true for our use-case
when compared to using no tie-breaking rule at all. This result can be
mostly ascribed to the fact that h-cost tie-breaking causes the solution
node to be dequeued as soon as it enters the queue. Without tie-breaking,
oftentimes numerous nodes with equal f-cost would be expanded first,
even though the solution was already in the queue, which lead to more
iterations. Our implementation breaks ties by making the queue use
h-costs as secondary keys.

Algorithm 1 A*-based inductive program synthesis

Require: 0<w<1, T':The set of invented tokens
1: procedure COMPOUNDDISTANCE(S,t)

: return max}"_, {DISTANCE(s;,t;)}
3: end procedure

4. procedure LOSSFUNC(g,h)
5: return wg+(1—w)h
6: end procedure

7. procedure CONSTRUCT(s,parents,tokens)

8: program <— ]
9: while parents[s] do
10: prepend tokens|s] to program
11: 8¢ parents|s]
12: end while
13: return program

14: end procedure

15: procedure SEARCH(s,t) > s: inputs, t: outputs

16: Q+0 > queue with priority (f,h)
17: parents, tokens,g,h, f < ||

18: g[s]«0

19: h[s] <~ COMPOUNDDISTANCE(s,t)

20: f[s] < LossFunc(g[s],h[s])
21: Enqueue(Q,s)
22: while Q+#£0 do

23: s+« Dequeue(Q)

24: ifVie [ln}, s;=t; then

25: return CONSTRUCT(s,parents,tokens)
26: end if

27 foralltcT do

28: s* < [APPLYTOKEN(Ss;):i € [1..n]]
29: g* <—g[s]+TOKENLENGTH(t)

30: h* <~ COMPOUNDDISTANCE(s* t)
31 if h*#ooN(s* ¢ gVg* <g[s*]) then
32: parents[s*]«s

33: tokens[s*] ¢t

34: g[s*]«g*

35: h[s*]«h*

36 fls*] +LossFunc(g[s*],h[s*])
37: Enqueue(Q,s™) > Or update priority
38: end if

39: end for

40: end while

41: return Specification is unsatisfiable

42: end procedure

4 Experimental Setup and Results

For doing our measurements, a search-based inductive programming
system similar to Brute was implemented in Python. We also made
use of the same three problem domains and DSL’s, only we used their
imperative counterparts. For our measurements we used the same
bench-marking tasks that were used in [2]. In all cases we chose the
search to timeout after 10 seconds.

Invention

During the invention stage we put further syntactical constraints on the
generated programs according to the following grammar:



<ctrl>
<trans>
<transl> <trans2>

<token> :=
|
|
| <transl> <trans2> <trans3>
|
|

<ctrl> If(<bool>, <transl>, <trans2>)
LoopWhile(<bool>, <trans>)
LoopWhile(<bool>, <transl> <trans2>)

<trans> := varies per problem domain

<bool> := varies per problem domain

We have limited the invented tokens to contain up to three transition
tokens. If-conditionals had singular transition-token bodies and
while-loop-bodies contained up to three transition-tokens. The following
g-costs were assigned:

* cost(transition token) =1

* cost(control token) = 14-sum of costs for all tokens in the body
Multiple alternatives were tried, but this particular configuration
was observed to perform best and was therefore used for all of the
measurements that follow.

4.1 String domain

Setup

First we looked at the manipulation of strings by a cursor that moves
along the individual characters and modifies them. The string DSL
contains the above grammar and is further extended by:

<trans> := Move[Left|Right]
Make[Lower |Upper]Case
Drop

NotAt[Start|End]
Is[Letter|Number|Spacel

|
|
<bool> := At[Start|End]
|
|
| IsNot[Letter|Number|Spacel

In a addition to using the Levenshtein distance as a heuristic (as was
done in [2]) we worked out a better quality heuristic, mainly by using

the fact that our DSL only supports removing (not adding) characters.

J if i=0
OPT(i—1j-1)  ifa;=y;
OPT(i,j)={ min{ 1+OPT(i—1,j—1) ifz;=y,
14+OPT(:—1,) otherwise

00 if 7=0

This formula optimizes for the following rules:

¢ For each character in x that is left unmatched, add a cost of 1, since
the character can later be dropped with our DSL.

* For each character in y that is left unmatched, add a cost of oo, since
the solution is not reachable with our DSL.

e If x and y are matched and they are equal, don’t add any cost.

* If x and y are matched and they are equal except for being lower/upper

case, add a cost of 1, since the case can later be toggled with our DSL.

An example of a program that was generated with A*, together with
an execution trace for the input "A-Starrr" is:

1. [MoveRight, Drop]

2. [MoveRight, MakeUppercase]

3. LoopWhile(NotAtEnd, [MoveRight, Drop])
4. LoopWhile(IsNotUppercase, Drop)

A-Starrr AStarrr ASTarrr ASTrr AST

N A A A A

We used string transformation tasks from 1 to 300 from [6]. Each
task has 10 input-output pairs (examples). For each n € {1,2.,n} we
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Figure 5: Predictive accuracies for the string domain

sampled n of the examples as train examples. These were fed to
the synthesizer and the results were verified against the other 10 —n
examples (the test examples).

Results
First of all we could confirm that with A* less local minima were
expanded in total over all of the searches (fig. 4). To be precise, we
counted every expanded node that was found to have no lower-h-cost
children and registered the search depth at which the expansion
happened. The histogram shows that Brute expanded significantly more
local minima at higher search depths, which is what we expected.
The predictive accuracy (the percentage of test examples that could
be solved with the generated program) is shown in fig. 5 (if no program
could be generated an accuracy of 0% was assumed). When using the im-
proved heuristic, the search methods Brufe+ and A*+ have similar accura-
cies, with Brute even slightly outperforming A* if more than five training
examples were used. We use a "+" suffix to indicate that the improved
heuristic was used. We will later come back to the meaning of Mulfi.
However, with the Levenshtein heuristic on the other hand, A*
has a significant edge over Brute. The reason for this contrast is
probably that with Levenshtein, the space contains more local minima,
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Figure 6: Program lengths for the string domain

which A* is more resilient to. The extra local minima are states with
too much characters removed. For example given the train example
"International Business Machines” — "IBM", Brute initially simply
deletes all character, since the empty string is only three characters away
from "IBM". A* is often still occupied with exploring lower-g-cost
states before visiting these local minima.

The figure also shows the performance when the individual distances
of a compound state are aggregated by taking the minimum (see A*+
min). It became quite clear that using the maximum, as done by the
other plotted searches is the better choice.

We define the length of a program to be equal to the total g-cost of its
tokens. In fig. 6 the average lengths of the generated programs are shown.
A* generates significantly smaller programs than Brute, which was ex-
pected because only A* optimizes for g-cost. However, when using Dijk-
stra (by setting the w to 0), even shorter programs are generated. This is
a consequence of the heuristics being inadmissible, due to the while-loop
tokens. Consider the example "aaa”— "". The h-cost will be 3, which
is an overestimation of the actual cost when using LoopWhile(Drop) for
reaching the solution. We made an attempt at preventing this overestima-
tion (at least for non-nested loops and a maximum of two tokens in the
body) by modifying the heuristic to assign a maximum cost to arbitrary
length repetitive string modifications, but unfortunately this slowed down
the search too much. Still, the programs obtained with A* are often much
more natural (i.e. similar to how a human would write code) than with
Brute, e.g. for the above "A-Starrr”— AST example, Brute generates:

predictive accuracy [%]
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Figure 7: Predictive accuracy for different weights (string domain)

performance can be gained from increasing w even more, compared to
w=0.5 which is the default for A*. Increasing w increases the priority
given to minimizing g-costs (eq. 1). Possibly the performance increase
for higher w is caused by avoiding even more local minima. Increasing
w too much results in a slower search, with more timeouts leading to
a drop in accuracy. Searching with the better heuristic on the other hand,
benefits from w < 0.5. We have found that for some individual w, there
can be a significantly large set of test cases that are exclusively solved
with that particular w. The "Multi" plots in fig. 5 and 6 represent the
combined capability of all weights from fig. 7.

4.2 Robot domain

Setup

The second problem was robot planning, in which a robot on a grid
needed to move a ball to the desired location. For this problem the
transition- and bool rules were replaced by:

<trans> := Move[ Left|Right|Up|Down ]
| Grab
| Drop

<bool> := At[Bottom|Top|Left|Right]

| NotAt[Bottom|Top|Left|Right]

An example program that solves the problem in fig. 1 is:

[MoveRight, Drop, MovelLeft]

LoopWhile(NotAtEnd, [MoveRight, MakeUppercasel])
[Drop, MovelLeft, MakelLowercase]

[MoveLeft, Drop, MoveRight]

[Drop, MakeUppercase, MovelLeft]

[MoveRight, Drop, MovelLeft]

ok, WN -

1. MoveRight
2. [MoveRight, Grab]
3. LoopWhile(NotAtTop, [MovelLeft, MoveUp])

Figure 5 showed that Brute+ and A*+ solve a near-equal amount of
test examples in total. However, instances in which a generated program
solves all of the test cases of a task were found to occur more often
with A*. We suspect this can be attributed to the programs being shorter
and therefore likely more general.

Lastly, we ran the experiments with several values for w (fig. 7). The
first thing that stands out when Levenshtein is used, is that even more

We used all robot planning tasks that were generated by [2]. The tasks
only contain a single train example and test examples. The complexity
of a task depends on the grid size, which ranges from 2 to 10.

Also to robot problem was provided with an alternative, better
heuristic. The original heuristic makes no distinction between the
different stages the problem can be in, e.g. whether the robot still needs
to find the ball or is already carrying it.

Results

The results are shown in fig. 8, from which we can again conclude that
the accuracy only benefits from A* if heuristic is suboptimal.
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Figure 8: Predictive accuracy for different problem sizes and weights (robot
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Figure 9: Predictive accuracy for different problem sizes and weights (pixel
domain)

4.3 Pixel domain

Setup

Our last problem was drawing pixel art. The environment consists of
a grid on which a cursor can be moved. Pixels under the cursor can
be drawn or erased. We used the grammar:

<trans> := Move[Left|Right|Up|Down]
| Draw
| Erase

<bool> := At[Bottom|Top|Left|Right]

| NotAt[Bottom|Top|Left|Right]

The problem complexity is determined by the amount of ASCII char-
acters that are pictured in the desired output canvas. In [2] the Hamming
distance is used as a heuristic. Again, we came up with an improvement
on this. For the new heuristic we first determine which of the pixels need
to be changed. Then we find one of these to-be-changed pixels, say pixel
a, that has the largest Manhattan distance from the pixel that the cursor
is currently at, pixel c. Their distance already is a lower bound for the
distance that needs to be travelled by the cursor. We can make this lower
bound even tighter by trying to find a triangle, spanned by the cursor and
two to-be-changed pixels, that is as large as possible. Of all the remaining
pixels we find the one that has the furthest combined distance to c and a
and call it b. It can be shown that a lower bound on the cursor movement
is now distance(c,b) +distance(a,b). The results are shown in fig. 9.

5 Conclusions and Future Work

A* can improve the performance of Brute especially when used heuristic
is sub-optimal an causes the search space to contain a lot of local
minima. In addition, the generated programs are shorter and therefore
more likely to correctly predict user intent.

It was also shown that a the weight that is used by A* (0.5), is not
always the optimal weight. For future work it can be interesting to adjust
the weight dynamically during the search. We had some success with
making the weight decrease as we near the time limit, basically imposing
a higher risk of visiting local minima in exchange of faster search.

6 Responsible Research

To the best of our believes we think this work is in compliance with
the Netherlands Code of Conduct for Academic Practice.
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6.2 Reproducibility

We have tried to the best of our capabilities to write down a methodology
that can be used by others to reproduce this work. Our implementation
of Brute and the A* search method as well as the analysis of the data
will be made available at github.com upon publication of this work.
Additional data related to this paper may be requested from the authors.
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