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The activation of fracture networks poses significant risks and raises safety concerns for projects 
involving such geological structures. Consequently, an accurate and efficient simulation strategy 
is essential for modeling highly fractured subsurface formations. While the extended finite 
element method (XFEM), coupled with the penalty method, effectively models slip-stick conditions 
along fracture surfaces and fracture propagation under compression, its efficiency declines when 
handling dense fracture networks. To address this challenge, a multiscale XFEM (MS-XFEM) 
approach is developed and presented. MS-XFEM approximates fine-scale displacement field by 
interpolating solutions on a coarser-scale mesh using algebraically constructed basis functions. 
All extra degrees of freedom (DOFs) are incorporated within the basis functions matrix, rendering 
the coarse-scale system a standard finite element-based system. In each propagation step, basis 
functions are algebraically and locally updated to capture fracture propagation. Through four 
proof-of-concept test cases, the accuracy and efficiency of MS-XFEM in simulating fractured 
geological formations are demonstrated, emphasizing its potential for real-world applications.

1. Introduction

Fractured geological formations play a pivotal role in the energy transition, particularly in hydrogen storage and carbon sequestra-

tion [1–9]. Disturbances to the equilibrium of these formations, especially during fluid injection or production, may activate fractures, 
leading to sliding along major faults and subsequent fracture propagation. Such events can result in adverse consequences, including 
induced earthquakes and leakage of injected fluids, which pose significant risks to both personnel and infrastructure. Consequently, 
developing accurate and efficient simulation strategies to understand deformation and fracture propagation in these formations is 
crucial for effectively mitigating these risks. 
The extended finite element method (XFEM), widely used in fracture mechanics, offers a precise and efficient approach for simulating 
deformation and fracture propagation in highly fractured geological formations [10–13]. As an embedded method, XFEM eliminates 
the need for extensive unstructured grids and the remeshing when simulating complex fracture networks [14–28]. XFEM accom-

plishes this through the use of enrichment functions, which, when multiplied by shape functions, effectively represent discontinuities 
caused by fractures. Extra degrees of freedom (DOFs) are introduced at enriched nodes to satisfy the partition of unity (PoU) [29]. 
This simplification in mesh selection makes XFEM particularly advantageous for simulating highly fractured subsurface formations. 
While XFEM offers an effective approach for simulating highly fractured formations, challenges persist in its application to real-world 
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subsurface formations. The large number of fractures in fractured geological formations leads to a significant increase in the number 
of extra DOFs that must be computed. As a result, maintaining computational efficiency remains a major challenge when applying 
XFEM in geoscientific applications. To address this, homogenization or upscaling can be coupled with XFEM to enable the use of 
coarser grid sizes [30–37]. However, this approach often compromises accuracy and limits the ability to capture detailed deforma-

tion features, such as fracture slip, within subsurface geological formations. 
The multiscale strategy is employed alongside XFEM to delicately balance efficiency and accuracy while preserving XFEM’s inherent 
convenience [38–47]. This strategy maintains accuracy by constructing basis functions capable of capturing fine-scale heterogeneities, 
which are then used to establish a coarse-scale matrix system based on coarser-level meshes. Notably smaller in size compared to 
the original fine-scale system, this coarse matrix significantly enhances overall efficiency. The final fine-scale solution is obtained by 
interpolating the solutions on the sparser coarse-scale grid using these basis functions. In a fracture mechanics context, the recent 
development of the multiscale extended finite element method (MS-XFEM) by Xu et al. addresses the simulation of fractured materials 
under tensile loading [48,49]. This method incorporates fractures into the basis functions, generating a finite element–type system on 
the coarse-scale mesh without extra DOFs. During fracture propagation, the basis functions are updated locally and algebraically to 
capture the extension of these fractures. The extra DOFs do not impose an additional computational burden during the coarse-scale 
solution process; they merely contribute to an increased size of the basis functions. 
This study extends MS-XFEM to simulate the deformation and fracture propagation of fractured formations under compression. The 
Kuhn-Tucker conditions are used to determine contact between fracture surfaces, while Coulomb’s law of friction governs slip along 
the fracture surfaces [50–52]. To prevent interpenetration between fracture surfaces, the penalty method is employed, introducing 
artificially high stiffness to the fractured elements. This contact and stick-slip behavior is captured by the basis functions within MS-

XFEM. Unlike fractures propagating under tensile loading, fracture propagation under compression occurs in a mixed-mode setting. 
Contact and slip behavior (mode-II) along the original fracture induce opening of the newly propagated fracture segments, may result 
in a localized mode-I fracture propagation process. The basis functions in MS-XFEM are constructed to capture self-contact between 
fracture surfaces and are locally updated to represent fracture propagation, following the same algebraic method demonstrated in 
[48,49]. Additionally, an iterative strategy is employed in post-processing to minimize errors when simulating intricate fracture net-

works. 
The structure of this paper is as follows. First, the governing equations are presented in Section 2, along with formulations addressing 
the self-contact problem and fracture propagation. Next, in Section 3, the fine-scale strategies are detailed, employing the fine-scale 
extended finite element method (XFEM) coupled with the penalty method to simulate deformation and fracture propagation under 
compression. Following this, Section 4 elaborates on the principles governing the application of MS-XFEM, including a discussion 
on basis function updates. Finally, five numerical test cases are presented in Section 5 to demonstrate the accuracy and efficiency of 
MS-XFEM in simulating deformation and fracture propagation in underground formations.

2. Problem formulation

Consider a domain Ω with its boundary surface defined as Γ, as shown in Fig. 1. This domain contains a discontinuity surface 
Γ𝑐 . Compressive displacements �̄� are imposed on Γ𝑢, and tractions �̄� are applied on Γ𝑡, causing the discontinuity surface Γ𝑐 to be 
in self-contact, and thus the contact forces 𝒕 between the two sides of the fracture surfaces are non-zero. Ω+ and Ω− represent the 
two bodies separated by the fracture Γ𝑐 . 𝒏𝚪𝒄 is defined as the unit normal of the fracture Γ𝑐 pointing toward Ω+, and 𝒏𝚪 is the unit 
normal pointing outward from the domain Ω.

2.1. Governing equations

The momentum balance equations and boundary conditions read

𝛁 ⋅ 𝝈 + 𝒇 = 0 in Ω, (1)

𝝈 ⋅ 𝒏𝚪𝒕 = �̄� on Γ𝑡, (2)

𝝈 ⋅ 𝒏𝚪𝒄 = 𝒕 on Γ𝑐 , (3)

𝒅 = �̄� on Γ𝑢, (4)

where 𝝈 is the stress tensor, 𝒇 is the body force vector, and 𝒅 is the displacement field over the entire domain. The second-order 
partial differential equation for the displacement field 𝒅 is given by

𝛁 ⋅ (𝑪 ∶ 𝛁𝒔𝒅) + 𝒇 = 0, (5)

where 𝛁𝒔 denotes the symmetrical part of the gradient operator. 𝑪 is the linear elastic constitutive tensor as

𝑪 =
⎡⎢⎢⎣
𝜆+ 2𝜇 𝜆 0

𝜆 𝜆+ 2𝜇 0
0 0 𝜇

⎤⎥⎥⎦ , (6)

with 𝜆 and 𝜇 denoting the Lame’s parameters [53]. The strain tensor 𝜀 is expressed as
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Fig. 1. An illustration of a fractured domain under compression. 

𝜺 = 𝛁𝒔𝒅 = 1
2
(𝛁𝒅 +𝛁𝑻 𝒅), (7)

where 𝛁 denotes the gradient operator, 𝛁𝑻 denotes the transpose gradient operator. 
The space of admissible displacement fields is given as

𝒰 = {𝒅 = �̄� on Γ𝑢, 𝒅 is C0 and discontinuous on Γ𝑐}. (8)

The test function is then given as

𝒰0 = {𝒗 = 0 on Γ𝑢, 𝒗 is C0 and discontinuous on Γ𝑐}. (9)

The weak form of Eq. (5) is given as

∫ Ω
𝝐 (𝒗) ∶ 𝝈 𝑑Ω+ ∫ Γ𝑐

𝒕 ⋅ �𝒗� 𝑑Γ𝑐 = ∫ Γ𝑡
�̄� ⋅ 𝒗 𝑑Γ𝑡 + ∫ Ω

𝒇 ⋅ 𝒗 𝑑Ω ∀𝒗 ∈𝒰0, (10)

where, the �𝒗� represents the difference of test functions across the discontinuity surface Γ𝑐 defined as

�𝒗� = 𝒗+ − 𝒗−, (11)

in which 𝒗+ and 𝒗− are the values of the test functions on the fracture surfaces belonging to Ω+ and Ω−, respectively.

2.2. Self-contact law

To model the self-contact between two sides of the fracture, first, the displacement difference �𝒅� between two sides of fracture 
Γ𝑐 is defined similarly to Eq. (11) as

�𝒅� = 𝒅+ − 𝒅−, (12)

where 𝒅+ and 𝒅− are the displacements on the fracture surfaces that belong to Ω+ and Ω−, respectively. The scalar normal gap 
function, which describes the opening between the two sides of the fracture surfaces, is then defined as

𝑔𝑁 = 𝒏𝑇𝚪𝒄 �𝒅�, (13)

and its vector form, 𝒈𝑵 , is given as

𝒈𝑵 = (𝒏𝚪𝒄 ⊗ 𝒏𝚪𝒄 )�𝒅�, (14)

where (𝒏𝚪𝒄⊗𝒏𝚪𝒄 ) represents the projection matrix that projects a vector onto the normal direction of the fracture. The scalar tangential 
gap function, representing the displacement difference along the tangential direction of the fracture surfaces, is defined as

𝑔𝑆 =𝒎𝑇
𝚪𝒄

�𝒅�, (15)

where the 𝒎𝚪𝒄 is the tangential unit vector along the fracture surface. The vector form, 𝒈𝑺 , is defined as
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Fig. 2. Illustration showing that the propagation of a fracture tip is induced by shearing along the main body of the fracture. The shear deformation along the initial 
segment (black) generates forces that lead to the opening of the kinked propagated part (red).

𝒈𝑺 = (𝑰 − 𝒏𝚪𝒄 ⊗ 𝒏𝚪𝒄 )�𝒅�, (16)

where 𝑰 is the identity matrix, and the term (𝑰 −𝒏𝚪𝒄 ⊗𝒏𝚪𝒄 ) represents the projection matrix that projects the vector to the tangential 
direction of fracture. 
During the simulation of contact and sliding, strict non-penetration between the two sides of the fractures is enforced. When a gap 
occurs between fracture surfaces, no contact force is present. However, when two sides of the fracture come into contact, the normal 
directional contact force scalar 𝑡𝑁 becomes negative. The Kuhn-Tucker conditions are used to describe this contact law as follows

𝑔𝑁 ⩾ 0, 𝑡𝑁 ⩽ 0, 𝑔𝑁𝑡𝑁 = 0. (17)

In the self-contact problem, the behavior of the sides of the fracture, whether they slide or remain in contact, depends on both 
external loading and the material-specific frictional coefficient 𝜇𝑓 . This state of sliding or sticking is determined using Coulomb’s law 
of friction, i.e.,

𝑡𝑆 + 𝜇𝑓 𝑡𝑁

{
= 0 slip

< 0 stick,
(18)

where 𝑡𝑆 represents the tangential contact force scalar.

2.3. Fracture propagation criterion

Fracture propagation under compressive global loading typically involves mixed-mode failure, as depicted in Fig. 2. The applica-

tion of compressive outer boundary loading causes the fracture surfaces to come into contact, resulting in non-zero contact forces. 
Once these fractures are activated, the dominant behavior along the fracture surfaces manifests as slip, indicative of mode-II shearing 
behavior. This shearing slip can activate the fracture tips to propagate. Notably, the newly propagated segment of the fracture tends 
to open promptly due to the slip along the original part of the fracture, characterizing this propagation as, essentially, a local mode-I 
propagation mechanism.

For multiple fractured media, a fracture tip is considered to propagate if the maximum principal stress, 𝜎1 , exceeds the tensile strength 
of the material 𝜎𝑡. This is expressed as

𝜎1 > 𝜎𝑡. (19)

The propagation speed, or the distance that fracture tips propagate in one time step, is taken as a constant value defined by the user. 
The propagation angle of the fracture tip is perpendicular to the maximum principal stress around the tip. In this paper, a weighted 
spatial averaging method is used to compute this angle [54]. In this method, all stress vectors at Gauss points within a circular sector 
window ahead of the fracture tip are averaged, as illustrated in Fig. 3. The weight of each stress vector at a Gauss point, which 
contributes to the averaged stress vector, is given by

𝑤 = 1 

(2𝜋)
3
2 ⋅ 𝑙3

exp(− 𝑟2

2𝑙2
), (20)

where 𝑙 is the radius of the window, typically 3 to 4 times the mesh size, and 𝑟 is the distance from each Gauss point to the fracture 
tip. After obtaining the spatially averaged stress vector, the propagation angle is calculated as the direction perpendicular to the 
maximum principal stress direction of this averaged stress vector. 

3. Fine-scale XFEM strategy

Unlike classical FEM, which employs a large number of unstructured grids along fractures and requires remeshing to capture 
fracture propagation, XFEM can be effectively implemented using static, lower-density structured grids. XFEM introduces enrichment 
functions to the nodes affected by fractures, as shown in Fig. 4. The fine-scale XFEM simulation strategies for modeling the deformation 
and propagation of fractured formations will be fully explained below. 
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Fig. 3. A sketch of circular sector window. All stress vectors belong to the Gauss points marked with ‘plus’ signs in the figure are used for weighted spatial average of 
stress vectors.

Fig. 4. An illustration of enrichment in XFEM. The black square nodes denote the jump enriched nodes. The black triangle nodes represent the cross enriched nodes. 
Green colored elements are the elements that are cut through by fractures. Blue colored elements are the elements that contain fracture tips. The red element represents 
an element intersected by fractures in a crosswise manner. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Extended finite element method

XFEM approximates the displacement field 𝒅 on a fine-scale mesh Ωℎ by 𝒅ℎ which is defined as

𝒅 ≈ 𝒅ℎ =
∑
𝑖∈𝑵𝑰

𝑢𝑖𝑁
𝑠𝑡
𝑖 +

∑
𝑗∈𝑵𝑬

𝑎𝑗𝑁
𝑠𝑡
𝑗 (F(𝒙) −F(𝒙𝒄)), (21)

where 𝑵𝑰 represents all the nodes in the domain while 𝑵𝑬 denotes the group of enriched nodes. 𝑁𝑠𝑡
𝑖

and 𝑁𝑠𝑡
𝑗

represent the standard 
FEM shape functions at nodes 𝑖 and 𝑗, respectively, and F represents the enrichment functions, which will be defined later. 𝒙𝒄
represents the enriched mesh nodes. The multiplication of standard shape functions and enrichment functions results in enriched 
shape functions, 𝑵𝒆𝒏, which are defined as

𝑵𝒆𝒏 =𝑵𝒔𝒕(F(𝒙) −F(𝒙𝒄)), (22)

where 𝒖 denotes the standard DOFs associated to the classical finite element method and 𝒂 denotes the extra DOFs associated to the 
enriched nodes. The augmented XFEM linear system therefore reads[

𝑲𝒖𝒖 𝑲𝒖𝒂
𝑲𝒂𝒖 𝑲𝒂𝒂

]
⏟ ⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏟

𝑲ℎ

[
𝒖

𝒂

]
⏟ ⏟ ⏟
𝒅ℎ

=
[
𝒇𝒖
𝒇𝒂

]
⏟ ⏟ ⏟
𝒇ℎ

. (23)
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Fig. 5. Two types of the junction enrichment (a) T-shape junction enrichment functions. (b) X-shape junction enrichment subdivided into two T-shape enrichment 
functions. The solid segment represents the major crack and the dashed segment represents the minor crack.

The strain tensor 𝜺 of Eq. (7) is then expressed as

𝜺 =𝑩𝒔𝒕𝒖+𝑩𝒆𝒏𝒂, (24)

in which the standard strain nodal displacement matrix 𝑩𝒔𝒕 contains derivatives of standard shape functions 𝑵𝒔𝒕 as

𝑩𝒔𝒕 =
⎡⎢⎢⎣
𝜕𝑁𝑠𝑡

𝑖
∕𝜕𝑥 0 ...

0 𝜕𝑁𝑠𝑡
𝑖
∕𝜕𝑦 ...

𝜕𝑁𝑠𝑡
𝑖
∕𝜕𝑦 𝜕𝑁𝑠𝑡

𝑖
∕𝜕𝑥 ...

⎤⎥⎥⎦ ∀𝑖 ∈𝑵𝑰 . (25)

The enriched matrix 𝑩𝒆𝒏 contains derivatives of enriched shape functions 𝑵𝒆𝒏 as

𝑩𝒆𝒏 =
⎡⎢⎢⎣
𝜕𝑁𝑒𝑛

𝑖
∕𝜕𝑥 0 ...

0 𝜕𝑁𝑒𝑛
𝑖
∕𝜕𝑦 ...

𝜕𝑁𝑒𝑛
𝑖
∕𝜕𝑦 𝜕𝑁𝑒𝑛

𝑖
∕𝜕𝑥 ...

⎤⎥⎥⎦ ∀𝑖 ∈𝑵𝑬 . (26)

3.2. Enrichment functions

In XFEM, enrichment functions F(𝒙) include jump enrichment functions 𝐻(𝒙), junction enrichment functions 𝐽 (𝒙), and tip en-

richment functions 𝑇 (𝒙). The jump enrichment functions 𝐻(𝒙) are defined as

𝐻(𝒙) =

{
1 on Ω+

−1 on Ω− . (27)

The junction enrichment functions 𝐽 (𝒙) are defined based on different crossing scenarios between fractures. Typically, fractures can 
intersect in either a T-shape, as shown in Fig. 5(a) or an X-shape, as shown in Fig. 5(b). The details of these two crossing scenarios 
are thoroughly explained in previous work [49]. The junction enrichment function 𝐽 (𝒙) for a T-shape crossing is then given by

𝐽 (𝒙) =

{
𝐻𝐼𝐼 (𝒙) 𝐻𝐼 (𝒙) > 0
0 𝐻𝐼 (𝒙) < 0

, (28)

where 𝐻𝐼 (𝒙) is the jump function value at any Gauss point due to the major crack (the solid segment in Fig. 5(a)), and 𝐻𝐼𝐼 (𝒙) is 
the jump function value due to the minor crack (the dashed segment in Fig. 5(a)). The X-shaped junction enrichment functions are 
decomposed into two sets of T-shaped enrichment functions, as shown in Fig. 5(b). 
In this work, a local-zone tip enrichment, which is more consistent with the jump enrichment, is applied [55]. An example of this 
local-zone tip enrichment function is illustrated in Fig. 6. A segment 𝐸𝐹 , parallel to 𝐴𝐷 and encompassing the fracture tip 𝑇 , is 
delineated. Only nodes 𝐴 and 𝐷 are affected by this local-zone tip enrichment function, as 𝐴𝐷 is the boundary cut by the fracture. 
Notably, only Gauss points situated within the gray-shaded rectangular area 𝐴𝐹𝐸𝐷 will exhibit non-zero values for the local tip 
enrichment function. The local-zone tip enrichment function is determined as follows: the area 𝐴𝐹𝐸𝐷 is mapped to the reference 
rectangle 𝐴′𝐹 ′𝐸′𝐷′. The Gauss point with coordinates [𝜉, 𝜂] in the original element 𝐴𝐵𝐶𝐷 is mapped to the corresponding Gauss 
point in the reference rectangle 𝐴′𝐹 ′𝐸′𝐷′ with coordinates [𝜉′, 𝜂′]. The local-zone tip enrichment function at the Gauss point [𝜉, 𝜂]
is then computed as

𝑇 (𝜉, 𝜂) =𝑁∗
𝑥𝑛
(𝜉′, 𝜂′)(𝐻(𝜉, 𝜂) −𝐻(𝒙𝒄)), (29)

where 𝑁∗
𝑥𝑛
(𝜉′, 𝜂′) represents the standard shape functions on Gauss point [𝜉′, 𝜂′] inside the reference rectangle 𝐴′𝐹 ′𝐸′𝐷′. 𝒙𝒄 are 

the jump enriched nodes of the element 𝐴𝐵𝐶𝐷, i.e., 𝐴𝐷. 𝐻(𝜉, 𝜂) is the jump enrichment function on Gauss point [𝜉, 𝜂] inside the 
original element 𝐴𝐵𝐶𝐷 and 𝐻(𝒙𝒄) are the jump enrichment function values on the enriched nodes 𝐴𝐷. 
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Fig. 6. An illustration of the modified local-zone tip enrichment function. This modified local-zone tip enrichment function only affects in the gray colored zone 
𝐴𝐹𝐸𝐷. 𝐴′𝐹 ′𝐸′𝐷′ is then transferred reference rectangle of 𝐴𝐹𝐸𝐷.

3.3. Penalty method

The penalty method is often paired with XFEM for simulating self-contact problems. It introduces a penalty term into the problem 
formulation that penalizes violations of contact constraints. To enforce the contact constraints in Eq. (17), a penalty term is added 
by incorporating a penalty coefficient into the formulation. This penalty coefficient is a sufficiently large positive number, ensuring 
satisfaction of the contact constraints. The normal contact force vector acting on the fracture is expressed as

𝒕𝑵 = 𝐶𝑁𝒈𝑵 , (30)

where 𝐶𝑁 represents the normal directional penalty parameter across the fracture surface, ensuring the prevention of penetration. 
To compute slip along the fracture surfaces, the tangential force 𝒕𝑺 along the fracture surface must be determined. The rate of change 
of the tangential contact force is expressed as

�̇�𝑺 = 𝐶𝑇 (�̇�𝑺 − �̇�
𝒕𝑺‖𝒕𝑺‖ ), (31)

where, 𝐶𝑇 denotes the penalty parameter along the tangential direction of the fracture. The vector �̇�𝑺 represents the rate of change 
of the 𝒈𝑺 in Eq. (16). �̇� represents the slip rate along the fracture surface. Under the “stick” condition, �̇� equals 0. Conversely, when 
“slip” occurs, a return mapping method is employed to calculate the tangential direction contact force in Eq. (31) [50,13]. 
The return mapping method operates as follows: at iteration 𝑖, after obtaining the incremental tangential displacement jump Δ𝒈𝑖

𝑺
, 

which represents ̇𝒈𝑺 in iteration 𝑖, along with the normal displacement jump 𝒈𝑖
𝑵

and the tangential contact force vector 𝒕𝑖−1
𝑺

from 
the previous iteration, the predicted updated tangential contact force is calculated as

𝒕
𝑝𝑟,𝑖

𝑺
= 𝒕𝑖−1
𝑺

+𝐶𝑇 ⋅Δ𝒈𝑖
𝑺
. (32)

If this predicted value adheres to Coulomb’s law of friction, as expressed by

‖𝒕𝑝𝑟,𝑖
𝑺

‖− 𝜇𝑓‖𝐶𝑁 ⋅ 𝒕𝑖
𝑵
‖ ≤ 0, (33)

it is accepted as the tangential contact force at this iteration 𝒕𝑖
𝑺

. Otherwise, it is corrected to reflect the fact that the fracture is indeed 
in slip mode. The corrected tangential contact force is equal to the sliding frictional force and is given by

𝒕𝑖
𝑺
= 𝜇𝑓‖𝐶𝑁 ⋅ 𝒕𝑖

𝑵
‖ ⋅ 𝒕𝑝𝑟,𝑖𝑺‖𝒕𝑝𝑟,𝑖

𝑺
‖ . (34)

Note that using return-mapping requires iteratively updating the contact forces.

3.4. Linear system of XFEM with penalty method

As for the linear matrix system, one additional term needs to be added to matrix 𝑲ℎ in Eq. (23) as

𝑲𝑝 =
[
𝑲𝒖𝒖 𝑲𝒖𝒂

𝑲𝒂𝒖 𝑲𝒂𝒂 +𝑲𝒄𝒐𝒏

]
, (35)

where the contact matrix 𝑲𝒄𝒐𝒏 is expressed as

𝑲𝒄𝒐𝒏 = ∫ Γ𝑐
�𝑵𝒆𝒏�𝑇

𝜕𝒕

𝜕�𝒅�
𝑑Γ𝑐 = ∫ Γ𝑐

�𝑵𝒆𝒏�𝑇𝑫�𝑵𝒆𝒏�𝑑Γ𝑐 . (36)

The term �𝑵𝒆𝒏� is expressed as
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�𝑵𝒆𝒏� = (𝑵𝒆𝒏+ −𝑵𝒆𝒏− ), (37)

where, 𝑵𝒆𝒏+ and 𝑵𝒆𝒏− represent the values of the enriched shape functions on the two sides of the fracture surfaces. The 𝑫 matrix 
contains the penalty parameters in both normal and tangential directions. Dependent on the stick or slip state, the matrix 𝑫 can be 
different. In slip state, the tangential force is equal to the sliding frictional force in Eq. (34) thus in slip state 𝑫 matrix is

𝑫 = 𝐶𝑁 ⋅ (𝒏𝚪𝒄 ⊗ 𝒏𝚪𝒄 ) − 𝜇𝑓𝐶𝑁 ⋅ (𝒎𝚪𝒄 ⊗ 𝒏𝚪𝒄 ), (38)

and in stick state, 𝑫 matrix is

𝑫 = 𝐶𝑁 ⋅ (𝒏𝚪𝒄 ⊗ 𝒏𝚪𝒄 ) +𝐶𝑇 ⋅ (𝑰 − 𝒏𝚪𝒄 ⊗ 𝒏𝚪𝒄 ). (39)

The return mapping strategy requires an iterative solver. The linear system

(𝑲𝑝)𝑖Δ𝒅𝑖+1 = 𝒓𝑖 (40)

is iteratively solved until convergence is reached. Matrix 𝑲𝑝 undergoes updates in accordance with the stick-slip conditions observed 
at the Gauss points on the fractures. The right hand side 𝒓 in Eq. (40) is expressed as

𝒓 =
⎡⎢⎢⎣

∫ Γ(𝑵
𝒔𝒕)𝑇 ⋅ �̄�𝑑Γ + ∫ Ω(𝑵

𝒔𝒕)𝑇 ⋅ 𝒇𝑑Ω− ∫ Ω(𝑩
𝒔𝒕)𝑇 ⋅ 𝝈𝑑Ω

∫ Γ(𝑵
𝒆𝒏)𝑇 ⋅ �̄�𝑑Γ + ∫ Ω(𝑵

𝒆𝒏)𝑇 ⋅ 𝒇𝑑Ω− ∫ Ω(𝑩
𝒆𝒏)𝑇 ⋅ 𝝈𝑑Ω− ∫ Γ𝑐

(�𝑵𝒆𝒏�)𝑇 ⋅ 𝒕𝑑Γ𝑐

⎤⎥⎥⎦ . (41)

The matrix 𝑲𝒄𝒐𝒏 and contact force vector 𝒕 = 𝒕𝑻 + 𝒕𝑵 are determined through integration across the Gauss points situated along the 
fracture segments. Two standard convergence conditions within the outer loops are involved. The first convergence condition is the 
residual control condition, i.e.,‖𝒓𝒊‖ ‖𝒓𝟎‖ ⩽ 𝜏𝑟, (42)

and the second one is the displacement incremental control criterion, i.e.,

‖Δ𝒅𝑖+1‖‖𝒅𝑖‖ ⩽ 𝜏𝑑 . (43)

𝜏𝑟 and 𝜏𝑑 are the two tolerance values set by the user. The result is considered acceptable if either of these two criteria is met. This 
algorithm can be found in Algorithm 1 in Appendix A.

3.5. Fractures propagation simulation using level sets functions

In the XFEM community, it is commonly observed that level set functions are incorporated into XFEM to simulate fracture prop-

agation, as they can accurately represent the extension of embedded surface geometries [56,57]. This paper also utilizes level set 
functions to aid in fracture propagation simulation. At each propagation time step, the displacement is computed following Algo-

rithm 2 in Appendix A and is then used to determine the propagation direction based on the strategy outlined in Section 2.3. The 
level set functions are subsequently updated using the computed propagation direction and a user-defined length. Further details can 
be found in the previous work [49].

4. MS-XFEM simulation strategy

From previous section, it is evident that classical XFEM exhibits limitations when applied to the simulation of highly fractured 
subsurface formations. The excessive number of fractures in the subsurface formation leads to a substantial increase of the number of 
extra DOFs, thereby expanding the size of the linear system to a point where computational efficiency becomes a significant challenge. 
To resolve this challenge, a multiscale strategy is incorporated with fine-scale XFEM. This multiscale extended finite element method, 
or MS-XFEM, will be explained.

4.1. Multiscale simulation strategy

In the multiscale simulation strategy, the fine-scale solution field 𝒅ℎ on the mesh Ωℎ can be approximated by 𝒅′ℎ, which is 
interpolated from the coarse-scale solution field 𝒅𝐻 on a coarser scale mesh Ω𝐻 . The coarse mesh contains significantly fewer 
elements compared to the fine-scale mesh, making the computation of the coarse-scale solution 𝒅𝐻 less expensive than directly 
obtaining the fine-scale solution 𝒅ℎ from the fine-scale system in Eq. (23). The coarse-scale mesh is generated on top of the fine-scale 
mesh, as illustrated in Fig. 7. The coarsening ratio is defined as the ratio between the coarse mesh size and the fine-scale mesh size, 
which is 4 × 4 in Fig. 7.

This multiscale formulation is expressed as

𝒅ℎ ≈ 𝒅′ℎ = 𝑷 ⋅ 𝒅𝐻, (44)
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Fig. 7. Illustration of the multiscale mesh imposed on a given fine-scale mesh, with a coarsening ratio of 4× 4. The fine-scale mesh nodes in each coarse scale element 
can be categorized as internal nodes, edge nodes and vertex nodes.

where 𝑷 is the matrix of basis functions. 𝑷 has dimensions of 𝑁ℎ ×𝑁𝐻 , where 𝑁ℎ is the size of the fine-scale enriched XFEM system, 
including the extra DOFs, and 𝑁𝐻 is the size of the coarse mesh. To construct the coarse-scale system of equations and solve for 𝒅𝐻 , 
the fine-scale linear system is restricted to the coarse scale via

(𝑷 𝑇 ⋅𝑲𝑝 ⋅ 𝑷 )
⏟ ⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏟

𝑲𝐻

𝒅𝐻 = 𝑷 𝑇 ⋅ 𝒇ℎ, (45)

where 𝑲𝑝 is defined in Eq. (35). This results in the coarse-scale system matrix 𝑲𝐻 of size 𝑁𝐻 ×𝑁𝐻 . Once the coarse-scale system 
is solved for 𝒅𝐻 , the approximate fine-scale solution can be computed using Eq. (44). Overall, the multiscale procedure can be 
summarized as finding an approximate solution 𝒅′ℎ according to

𝒅ℎ ≈ 𝒅′ℎ = 𝑷 𝒅𝐻 = 𝑷 (𝑷 𝑇 𝑲𝒑 𝑷 )−1𝑷 𝑇 𝒇ℎ. (46)

In here, the term 𝑷 (𝑷 𝑇 𝑲ℎ 𝑷 )−1𝑷 𝑇 is called the multiscale operator 𝑴−1
𝑴𝑺

. Once 𝑷 is constructed, all terms in Eq. (46) are defined.

4.2. Algebraic construction of basis functions

In MS-XFEM, the primary concept behind constructing the basis functions matrix is to incorporate all extra DOFs into the matrix 𝑷
instead of the coarse-scale solution 𝒅𝑯 . This approach is crucial for significantly improving computational efficiency, as the coarse-

scale system becomes a small, finite-element-like system without extra DOFs. To maintain this structure, the local XFEM problem 
must be solved within each coarse element. The local equilibrium equation is expressed as

∇ ⋅ (𝑪 ∶ (∇𝑆Φ𝑘
𝑗 )) = 0 in Ω𝑗 . (47)

Here, Φ𝑘
𝑗

represents the value of the basis function associated with coarse mesh node 𝑘 in the coarse element Ω𝑗 . A reduced-

dimensional equilibrium equation is first solved, and its solution is used as the boundary condition for Eq. (47), i.e.,

∇∥ ⋅ (𝑪𝒓 ∶ (∇𝑆
∥ Φ

𝑘
𝑗 )) = 0 on 𝜕Ω𝑗 . (48)

Here, 𝜕Ω𝑗 denotes the boundary of the coarse element Ω𝑗 . Additionally, ∇𝑆
∥ represents the reduced-dimensional divergence and sym-

metric gradient operator, which act parallel to the direction of the local domain boundary. Moreover, 𝑪𝑅 is the reduced-dimensional 
(here, 1D) average elasticity tensor along the boundary of the coarse element, defined as

𝑪𝑅
𝑥 =

⎡⎢⎢⎣
�̄� 0 0
0 0 0
0 0 �̄�

⎤⎥⎥⎦ 𝑪𝑅
𝑦 =

⎡⎢⎢⎣
0 0 0
0 �̄� 0
0 0 �̄�

⎤⎥⎥⎦ , (49)

where, �̄� and �̄� are averaged elasticity properties of the adjacent 2D elements containing to the same 1D boundary edge. 
The construction of basis functions can be done algebraically for convenience. To achieve this, the stiffness matrix needs to be 
permuted. As shown in Fig. 7, all nodes within any coarse element can be divided into three groups: internal, edge, and vertex nodes. 
Note that the group of vertex nodes also corresponds to the coarse mesh nodes. The basis functions can then be described as functions 
that express the values at internal and edge nodes using only the vertex nodes. Therefore, the permutation should be performed based 
on the locations of fine-scale nodes within the coarse elements. After permutation, the system is expressed as
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𝑲ℎ

𝐼𝐼
𝑲ℎ

𝐼𝐸
𝑲ℎ

𝐼𝑉

𝑲ℎ
𝐸𝐼
𝑲ℎ

𝐸𝐸
𝑲ℎ

𝐸𝑉

𝑲ℎ
𝑉 𝐼
𝑲ℎ

𝑉 𝐸
𝑲ℎ

𝑉 𝑉

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝒅ℎ
𝐼

𝒅ℎ
𝐸

𝒅ℎ
𝑉

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝒇ℎ
𝐼

𝒇ℎ
𝐸

𝒇ℎ
𝑉

⎤⎥⎥⎥⎦ . (50)

Here, 𝐼 represents the internal nodes, 𝐸 represents the edge nodes, and 𝑉 represents the vertex nodes. As shown in Fig. 7, the coarse-

scale solutions are located at the vertex nodes. The functions that interpolate the solution between the vertex nodes through the 
edge and internal nodes constitute the necessary basis functions. Note that the fine-scale matrix 𝑲ℎ, which is permuted in Eq. (50), 
does not include the contact matrix 𝑲𝒄𝒐𝒏. However, these basis functions will be multiplied by the matrix 𝑲𝑝, which includes the 
sub-matrix 𝑲𝒄𝒐𝒏, to obtain the coarse-scale system. 
The reduced-dimensional boundary condition in Eq. (48) is now imposed by a 1D XFEM discrete system within the 2D XFEM problem. 
This causes the entry 𝑲𝐸𝐼 in Eq. (50) to vanish, as the connectivity between the edge and internal nodes for the edge elements is 
assumed to be absent. These 1D edge equations can then be expressed as

𝑲𝑅
𝐸𝐸
𝒅ℎ
𝐸
+𝑲𝑅

𝐸𝑉
𝒅ℎ
𝑉
= 0, (51)

where, 𝑲𝑅 denotes the reduced-order stiffness matrix, employing the 𝑪𝑅 matrices as defined in Eq. (49)

𝑲𝑅
𝑚 = ∫ Ωℎ

[𝑩𝑅,𝑠𝑡
𝑚 𝑩𝑅,𝑒𝑛

𝑚 ]𝑇 ⋅𝑪𝑅
𝑚 ⋅ [𝑩𝑅,𝑠𝑡

𝑚 𝑩𝑅,𝑒𝑛
𝑚 ]𝑑Ωℎ, 𝑚 = 𝑥, 𝑦. (52)

Note that the reduced-dimensional equilibrium equations are solved along the horizontal and vertical boundaries of coarse elements 
in 2D; thus, 𝑲𝑅 is assembled from 𝑲𝑅

𝑥 and 𝑲𝑅
𝑦 . The matrices 𝑩𝑅,𝑠𝑡

𝑚 and 𝑩𝑅,𝑒𝑛
𝑚 contain derivatives of 𝑵 𝑠𝑡 and 𝑵𝑒𝑛 in either the 𝑥

direction or 𝑦 direction (2D). For example, 𝑩𝑅,𝑠𝑡
𝑥 is

𝑩𝑅,𝑠𝑡
𝑥 =

⎡⎢⎢⎣
𝜕𝑁𝑠𝑡

𝑖
∕𝜕𝑥 0 ...

0 0 ...

0 𝜕𝑁𝑠𝑡
𝑖
∕𝜕𝑥 ...

⎤⎥⎥⎦ . (53)

After assembling the 𝑲𝑅 matrix, it will be permuted similar to Eq. (50). Then the edge terms 𝑲𝐸𝐼 , 𝑲𝐸𝐸 and 𝑲𝐸𝑉 in the permuted 
stiffness matrix will subsequently be substituted with the corresponding edge terms in the permuted 𝑲𝑅. Since the solutions at vertex 
nodes will be obtained from the coarse-scale system, the reordered fine-scale matrix can now be reduced to

⎡⎢⎢⎢⎣
𝑲𝐼𝐼 𝑲𝐼𝐸 𝑲𝐼𝑉

0 𝑲𝑅
𝐸𝐸

𝑲𝑅
𝐸𝑉

0 0 𝑲𝐻

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝒅′
𝐼

𝒅′
𝐸

𝒅′
𝑉

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣

𝟎
𝟎
𝒇𝐻

⎤⎥⎥⎦ , (54)

where, 𝒅′
𝐼
, 𝒅′

𝐸
and 𝒅′

𝑉
are the approximated displacements solutions for the internal nodes, edge nodes and vertex nodes. Given the 

coarse nodes solutions 𝒅′
𝑉

, one can obtain the solution at the edge via

𝒅′
𝐸
= −(𝑲𝑅

𝐸𝐸
)−1𝑲𝑅

𝐸𝑉 𝒅
′
𝑉
= 𝑷 𝐸𝑉 𝒅

′
𝑉
. (55)

Similarly, the solution at the internal cells reads

𝒅′
𝐼
= −𝑲−1

𝐼𝐼
(𝑲𝐼𝐸𝒅

′
𝐸
+𝑲𝐼𝑉 𝒅

′
𝑉
)

= −𝑲−1
𝐼𝐼
(−𝑲𝐼𝐸 (𝑲𝑅

𝐸𝐸
)−1𝑲𝑅

𝐸𝑉 +𝑲𝐼𝑉 ) 𝒅′𝑉 = 𝑷 𝐼𝑉 𝒅
′
𝑉
. (56)

The basis function matrix 𝑷 is then defined as

𝒅′ =
⎡⎢⎢⎢⎣
𝒅′
𝐼

𝒅′
𝐸

𝒅′
𝑉

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
𝑷 𝐼𝑉

𝑷 𝐸𝑉

𝑰𝑉 𝑉

⎤⎥⎥⎦
⏟ ⏟ ⏟
𝑷

𝒅′
𝑉
. (57)

Here, 𝑰𝑉 𝑉 is the diagonal identity matrix equal to the size of the number of vertex nodes. An illustration of a basis function obtained 
using this algebraic construction approach is presented in Fig. 8. Note that the illustrated basis function captures the discontinuities 
due to fracture. 

4.3. Algebraic update of basis functions locally

The propagation of fracture tips induces alterations in the geometries of fine-scale fractures, necessitating the incorporation of 
these changes into the basis functions within MS-XFEM. The basis functions can be updated algebraically and locally. Fig. 9 illustrates 
how to update basis functions locally. As the horizontal fracture (white-colored segment) propagates, the local domain containing 
five coarse elements at the center of the entire domain is affected. Only the basis functions within this local domain require updating. 
To accomplish this, the local basis functions matrix associated with this domain is first extracted. Based on the new geometry of 
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Fig. 8. Illustration of a basis function that captures the discontinuity of a fracture. Model size is 10[𝑚] × 10[𝑚]. Red lines represent the coarse scale mesh of 5 × 5. 
White segment represents the fracture extending from (3,5) to (7,5). The shown basis function belongs to the coarse node located at coordinate (4,6).

Fig. 9. Illustration of updating basis functions algebraically and locally. 

the propagated fracture, this local basis functions matrix is then updated by algebraically computing the new basis function values, 
following the same strategy as explained above. Finally, this updated local basis functions matrix is reassembled into the global basis 
functions matrix. This algebraic and local update strategy reduces the computational burden during fracture propagation simulations. 

4.4. Iterative strategy of MS-XFEM

Right preconditioned GMRES is used to control the error and reduce it to a desired tolerance [58]. A fine-scale smoother 𝑴−1
𝒔𝒎

(usually chosen as 𝐼𝐿𝑈 (0)) is paired with the multiscale operator 𝑴−1
𝑴𝑺

. The preconditioner used here involves the multiscale 
operator and the fine-scale smoothing operator following

𝑴−1 =𝑴−1
𝑴𝑺

+𝑴−1
𝒔𝒎
(𝑰 −𝑲𝑝 𝑴−1

𝑴𝑺
). (58)

Thus, in any iteration 𝑖 mentioned in Eq. (40), the displacement field is updated by iteratively solving the following system until 
convergence:

(𝑲𝒑)𝑖𝑴−1𝒛′ = 𝒓𝑖, with 𝚫𝒅𝑖+1 =𝑴−1𝒛′ (59)

The preconditioned GMRES tolerance is set by the user. The algorithms for using MS-XFEM to simulate deformations and fracture 
propagation are presented in Algorithm 3 and Algorithm 4 in Appendix B.
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Table 1
Test case 1: domain properties.

unit value

𝐿 length [m] 4
𝑊 width [m] 2
𝐸 Young’s modulus [Pa] 105
𝜇𝑓 frictional coefficient [-] 0.1
𝜈 Poisson’s ratio [-] 0.3
𝐶𝑁 , 𝐶𝑇 penalty parameters [N∕m3] 107

Fig. 10. Test case 1: illustration of two scenarios of cracked domain (a) fully cracked and (b) partially cracked. 

5. Test cases

The efficiency of the MS-XFEM method has been analyzed in previous work [48]. It is important to note that MS-XFEM becomes 
efficient only when the research domain is large and contains extremely complex fracture networks, i.e., when the final solutions 
involve a massive number of DOFs. In this paper, simpler test cases are designed to demonstrate the capability of MS-XFEM in 
simulating complex fracture networks under compression, as this is the primary focus of this study. In this section, four test cases 
are presented to illustrate the application of MS-XFEM for simulating deformation and fracture propagation in mixed mode under 
compressive loading are presented. Two convergence tolerance values, 𝜏𝑟 and 𝜏𝑑 , are set to 10−6 and 10−3, respectively.

5.1. Test 1: slip along edge-inclined crack

In this test case, the accuracy of the slip profiles simulated by MS-XFEM is verified by comparison with the slip profile results 
presented in [51]. A cracked homogeneous domain is considered here. The properties of this domain are listed in Table 1. The top 
boundary is subjected to a downward Dirichlet boundary condition of 0.1 [m], while the bottom boundary is fixed in both the 𝑥 and 
𝑦 directions. The left and right boundaries are stress-free. Here, the fine-scale mesh is set to 40 × 80, while the coarse-scale mesh is 
set as 4 × 8, employing a coarsening ratio of 10 × 10.

First, the crack is assumed to cut through the entire domain, as shown in Fig. 10(a). The coordinates of the fracture are given as 
[0,0.7] and [2,2.7]. For this setup, the slip along the crack follows a uniform profile with constant value of 0.1

√
2, or 0.1414. The 

simulated slip profile using MS-XFEM closely matches this value, as shown in Fig. 11. Note that no iterative improvement strategy is 
used here, which demonstrates the correctness of constructing basis functions without a penalty matrix.

Next, the crack is assumed to partially cut through the domain, as shown in Fig. 10(b). The coordinates of the fracture are given as 
[0,1] and [1.75,2.75]. Here, a non-uniform slip profile is obtained, as presented in [51], and this result is shown in Fig. 12(a). To 
obtain this non-uniform slip profile, an iterative improvement strategy is required. The tolerance for the preconditioned GMRES is 
set to 10−2 to reduce the number of iterations required by the iterative strategy. The slip profiles simulated using fine-scale XFEM 
and MS-XFEM are plotted in Fig. 12(b). The MS-XFEM slip profile closely matches the result shown in Fig. 12(a), demonstrating its 
capability to accurately simulate the deformation of fractured formations.

The convergence history of the preconditioned GMRES in each outer loop (line 3 of Algorithm 3 in Appendix B) is plotted in Fig. 13(a). 
The total number of preconditioned GMRES used here is 90. Additionally, the convergence history for a tolerance of 10−6 is presented 
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Fig. 11. Test case 1: slip profile computed by analytical method (black curve) and MS-XFEM method without iterative smoother (red curve with circle markers). 

Fig. 12. Test case 1: (a) non-uniform slip profile simulated in [51] (b) slip profile computed by fine-scale XFEM (blue) and MS-XFEM method with a tolerance of 10−2
(red).

in Fig. 13(b). The comparison between Fig. 13(a) and Fig. 13(b) indicates that MS-XFEM can achieve high-quality results without 
incurring excessive computational costs in the iterative improvement strategy. 

5.2. Test 2: wing crack propagation in uni-axial compression

In this test case, a rectangular granite sample under uni-axial compression is simulated using MS-XFEM. This test is based on the 
experimental study reported in [59]. The setup is shown in Fig. 14. The fracture is 6 [mm] long and is rotated by 𝛼 degrees with 
respect to the 𝑥-axis and located at the center of the sample. The properties of this domain are listed in Table 2. The lower-left corner 
is fixed in 𝑥 and 𝑦 directions, while the remaining nodes along the bottom boundary are restricted solely in 𝑦-direction. At the upper 
boundary, a controlled downward displacement condition is enforced at a rate of 0.1 [mm/s]. Lastly, the left and right boundaries are 
stress-free. The entire simulation duration spans 10 [s] and is discretized into 10 equal time steps, each lasting 1 [s]. For each step, 
the fracture propagation length is set to be 1.5 times the element size. The fine-scale mesh is defined as 30×60, while the coarse-scale 
mesh is set to 3 × 6. Within this context, preconditioned GMRES iterations are employed with a tolerance threshold of 10−2 . 
To evaluate the accuracy of the final result, a direct comparison is conducted between the major wing crack propagation paths 
simulated using fine-scale XFEM and those obtained in the experimental study from literature [59]. This analysis involves three 
different rotation angles: 𝛼 = 𝜋∕6, 𝜋∕4, 𝜋∕3. The results are depicted in Fig. 15. The red-colored crack paths represent simulations 
conducted with fine-scale XFEM and are superimposed onto images extracted from the experimental study in [59]. The black-colored 
paths labeled with ‘T’ denote the tensile wing cracks observed during the experiment. It is important to note that these labels are 
assigned numerical identifiers, indicating that these tensile wing cracks did not initiate simultaneously. In this particular test case, 
the branching of wing cracks is not considered; instead, the primary focus lies on the propagation of the major wing crack. Therefore, 
the experimental wing crack path labeled as ‘T1’, representing the initial major wing crack path, is selected as the reference for 
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Fig. 13. Test case 1: preconditioned GMRES convergence history with tolerance of (a) 10−2 and (b) 10−6 . 

Fig. 14. Test case 2: illustration of the model set-up. 

Table 2
Test case 2: domain properties.

unit value

𝐿 length [mm] 120
𝑊 width [mm] 60
𝐸 Young’s modulus [Pa] 62 × 109
𝜇𝑓 frictional coefficient [-] 0.577
𝜈 Poisson’s ratio [-] 0.22
𝐶𝑁 , 𝐶𝑇 penalty parameters [N∕m3] 62 × 1011
𝜎𝑡 tensile strength [𝑃𝑎] 16 × 106

comparison with the simulated crack propagation paths. It is evident that for all three tests with varying inclination angles, the 
simulated major wing crack paths closely resemble the dominant cracks in the experiment. 
If the crack paths simulated using MS-XFEM closely resemble those generated by fine-scale XFEM, it indicates that MS-XFEM can 
produce sufficiently accurate results. The crack paths simulated with MS-XFEM (utilizing preconditioned GMRES) for all three inclined 
angles are compared to the crack paths shown in Fig. 15 and are presented in Fig. 16. The figure clearly demonstrates a high degree 
of alignment between the crack paths simulated with MS-XFEM (with GMRES) and those obtained through fine-scale XFEM.

In Fig. 17, the 𝑥 directional displacement from fine scale XFEM and MS-XFEM with inclination angle of 𝜋∕6 are plotted. The error 
plot between these two displacements fields is also plotted in Fig. 17(c). A total of 333 iterations of preconditioned GMRES over 10 
time steps, averaging 33 iterations per time step, were performed to reduce the error in the MS-XFEM results. The basis functions for 
the coarse mesh node at coordinates [0.02,0.04], at both step 1 and step 6, are depicted in Fig. 18. It is evident that the update of 
basis functions has been successful in capturing the propagating fracture tip. 
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Fig. 15. Test case 2: crack paths simulated using fine-scale XFEM are compared to experimental crack paths for various inclination angles: (a) 𝜋∕6, (b) 𝜋∕4, and (c) 
𝜋∕3. The red lines represent crack paths simulated with fine-scale XFEM, while the black-colored crack paths labeled with ‘T’ on the experimental images denote the 
major wing cracks. The gray background images are sourced from [59].

Fig. 16. Test case 2: Crack paths simulated with MS-XFEM compared to the crack patterns generated by fine-scale XFEM. The inclination angles are (a) 𝜋∕6, (b) 𝜋∕4, 
and (c) 𝜋∕3. The blue circles represent the crack paths simulated with fine-scale XFEM, while the red lines represent the crack patterns from MS-XFEM.

5.3. Test 3: fracture network slip in heterogeneous formation

In this test case, a synthetic fracture network under compression is considered. Fig. 19(a) provides a visual representation of the 
synthetic fracture network within this domain. The fracture coordinates are listed in Table C.5 in Appendix C. The research domain 
properties are listed in Table 3. Heterogeneous Young’s modulus values, following a Gaussian distribution, are spatially mapped across 
the entire domain, as shown in Fig. 19(b). The penalty parameters, 𝐶𝑇 and 𝐶𝑁 , are adjusted for each element due to the varying 
Young’s modulus values in the domain. Specifically, these penalty parameters are set to be 100 times the local Young’s modulus of 
each element. 
The fine-scale mesh is set to 80×80 and the coarse mesh is set to 8×8. The bottom boundary is fixed in 𝑦-direction, while the left and 
right boundaries are fixed in 𝑥-direction. The top boundary is subjected to displacement-controlled compression of 1[m] downward. 
For this complex test case, preconditioned GMRES is paired with MS-XFEM. The tolerance for MS-XFEM is set to 10−2.
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Fig. 17. Test case 2: 𝑥 direction displacement of (a) fine scale XFEM and (b) MS-XFEM. The error plot between these two results is shown in (c). 

Fig. 18. Test case 2: basis functions of coarse mesh point [0.02,0.04] at step (a) 1 and (b) step 6. Red lines represent the coarse mesh and white segment represents 
the fracture.

Table 3
Test case 3: domain properties.

unit value

𝐿 length [m] 80
𝑊 width [m] 80
𝜇𝑓 frictional coefficient [-] 0.1
𝜈 Poisson’s ratio [-] 0.3

The displacements simulated by MS-XFEM closely match those obtained from fine-scale XFEM as shown in Fig. 20. With a total 250
of preconditioned GMRES iterations used, MS-XFEM obtains a reasonably high quality result for this complex fracture network. The 
error plots in Fig. 21 confirm this accuracy. 
Slip profiles of fractures 1, 2, and 8, marked in Fig. 19(a), are plotted in Fig. 22. The most slip occurs along major fracture 2 within 
the formation. This underscores the importance of closely monitoring slip events along this major fault due to their potential to 
cause significant surface subsidence. The dashed boxes in each slip profile plot indicate the fracture crossing points. Note that there 
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Fig. 19. Test case 3: (a) illustration of test case 3 set-up (b) Gaussian distributed heterogeneous Young’s modulus map. 

Fig. 20. Test Case 3: Comparison between displacement solutions from fine-scale XFEM and MS-XFEM. (a) and (b) show displacement fields in the 𝑥-direction and 
𝑦-direction, respectively, using fine-scale XFEM. (c) and (d) show displacement fields in the 𝑥-direction and 𝑦-direction, respectively, using MS-XFEM.

are oscillations in the slip profiles along the fractures, which is common in XFEM when using standard bi-linear shape functions. 
A smoothing strategy can be found in [60], but this is beyond the scope of this work. It can be observed that there are kinks in the 
slip profiles at the crossing points on the fractures, which is consistent with the results in [28]. This demonstrates the potential of 
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Fig. 21. Test Case 3: Errors between solutions from fine-scale XFEM and MS-XFEM in (a) the 𝑥-direction and (b) the 𝑦-direction. 

Fig. 22. Test Case 3: Slip profiles along fractures (a) 1, (b) 2, and (c) 8. Dashed boxes represent the crossing points on each fracture. 

Table 4
Test case 4: Domain properties.

unit value

𝐿 length [m] 10
𝑊 width [m] 10
𝐸 Young’s modulus [Pa] 25 × 109
𝜇𝑓 frictional coefficient [-] 0.577
𝜈 Poisson’s ratio [-] 0.23
𝐶𝑁 , 𝐶𝑇 penalty parameters [N∕m3] 25 × 1011
𝜎𝑡 tensile strength [𝑃𝑎] 6 × 106

MS-XFEM in accurately simulating slip in fracture networks.

In this test case, the basis functions must capture both heterogeneities and multiple fractures simultaneously. The basis functions 𝑃𝑦𝑦

corresponding to the coarse grid points [10,10] and [30,30] are plotted in Fig. 23. It is clear from Fig. 23(a) that the basis functions 
capture the heterogeneities within the Young’s modulus map, as they do not follow the standard bi-linear form. Fig. 23(b) illustrates 
that the basis functions also successfully capture multiple discontinuities.

5.4. Test 4: multiple fractures propagation under compression

In this test, a sandstone domain with 9 fractures under compression loading is simulated, as shown in Fig. 24. All 9 fractures have 
the same length of 1[m] and their coordinates are listed in Table C.6 in Appendix C. The domain and material properties are provided 
in Table 4. For the boundary conditions, the lower-left corner of the domain is fixed, while the nodes along the bottom boundary 
are constrained only in the vertical direction. A downward distributed load 𝑞 is applied to the top boundary. The initial value of 𝑞 is 
100 [MPa], increasing by 2 [MPa] at each time step. The simulation spans a total time of 25 seconds, with each time step lasting 1
second. For each step, the fracture propagation length is set to be 2 times the element size. 
The fine-scale mesh employed consists of a grid with dimensions of 50×50, while the coarse mesh employs a 5×5 grid. Preconditioned 
GMRES is utilized for the simulation, with a specified tolerance of 10−2.
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Fig. 23. Test Case 3: Basis functions 𝑃𝑦𝑦 corresponding to the coarse-scale mesh nodes at (a) [10,10] and (b) [30,30]. 

Fig. 24. Test case 4: Illustration of the model set-up. 

The crack propagation paths at steps 6 and 25 are illustrated in Fig. 25. The crack paths simulated using MS-XFEM are superimposed 
on those obtained with fine-scale XFEM. It is evident from Fig. 25 that these paths closely match, validating the accuracy of the 
MS-XFEM simulations in multiple fractures propagation under compression.

The displacement fields in the 𝑥 and 𝑦 directions at the final step are visualized in Fig. 26. Notably, the results obtained from MS-XFEM 
closely align with those from fine-scale XFEM. To further illustrate this agreement, the displacement errors between the two methods 
are depicted in Fig. 27. By employing a total of 1851 iterations of preconditioned GMRES over 25 steps, averaging 74 iterations per 
time step, the errors in the final displacement solution are effectively reduced to the desired level. The basis functions centered at 
the coarse mesh point [4,8] at initial time step and time step 11 are displayed in Fig. 28. Clearly, the basis functions update has 
effectively captured the fracture propagation. 

6. Conclusion

This work successfully extends MS-XFEM for simulating frictional slip as well as fracture propagation within subsurface fractured 
formations. The penalty method is employed to prevent penetration between fracture surfaces by assigning an artificially high stiff-

ness to the cracked elements. A return-mapping method, following Coulomb’s law of friction, is applied to determine the slip-stick 
conditions along the fracture surfaces. The weighted spatial averaging method is used to ensure smooth crack propagation paths in 
mixed mode under compression. In the application of MS-XFEM, basis functions are constructed algebraically and incorporate all extra 
DOFs from fine-scale XFEM solutions. The coarse-scale system is then generated as a standard, small-sized FEM-type system, which 
is highly efficient to compute. To reduce computational time, basis functions are not updated during the return-mapping iterative 
solution process. However, when fractures propagate, basis functions are updated locally to capture the extension of discontinuities. 
An iterative improvement strategy, employing preconditioned GMRES, is coupled with MS-XFEM to enhance the accuracy of the final 
solutions to the desired level. 
The successful construction of basis functions is evident, particularly in the first test case, where simple constant slip profile is accu-

rately captured using only MS-XFEM without the iterative improvement strategy. The basis function update strategy is validated in 
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Fig. 25. Test case 4: Crack patterns simulated by fine scale XFEM (blue circles) and MS-XFEM (red crosses) at time step (a) 6 and (b) 25. 

Fig. 26. Test case 4: Displacements fields simulated from fine scale XFEM and MS-XFEM with preconditioned GMRES using a tolerance of 10−2. 
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Fig. 27. Test case 4: Displacement errors between simulations from fine-scale XFEM and MS-XFEM in the (a) 𝑥 direction and (b) 𝑦 direction. Black lines depict the 
coarse-scale mesh.

Fig. 28. Test case 4: Basis functions centered at the coarse mesh point [4,8] at time steps (a) 1 and (b) 11. Red lines represent the coarse mesh and white segments 
represent fractures.

the second test case, which demonstrates that wing crack paths simulated by MS-XFEM closely align with experimental observations. 
Subsequent cases further highlight MS-XFEM’s capability in simulating the deformation of complex fracture networks and multiple 
fractures propagation within geological formations. All these results, along with the efficiency analysis of MS-XFEM in [48], empha-

size MS-XFEM’s significant potential for real-world applications in studying highly fractured geological formations, where precise 
and efficient modeling is crucial.

CRediT authorship contribution statement

Fanxiang Xu: Writing – original draft, Project administration, Methodology, Conceptualization. Hadi Hajibeygi: Writing – review 
& editing, Supervision, Resources. Lambertus J. Sluys: Writing – review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Fanxiang Xu reports financial support was provided by China Scholarship Council. If there are other authors, they declare 
that they have no known competing financial interests or personal relationships that could have appeared to influence the work 
reported in this paper.



Journal of Computational Physics 533 (2025) 113998

22

F. Xu, H. Hajibeygi and L.J. Sluys 

Acknowledgements

Fanxiang Xu acknowledges support from the China Scholarship Council (CSC, grant number 201807720039). The authors extend 
their gratitude to all members of the Delft Advanced Reservoir Simulation (DARSim) group, ADMIRE research group, and Computa-

tional Mechanics group in the Faculty of Civil Engineering and Geosciences at Delft University of Technology for their contributions 
and support.

Appendix A. Algorithm of fine-scale XFEM simulation strategy

Algorithm 1 Fine-scale XFEM simulation of fractures deformation.

1: Construct 𝑲ℎ

2: Construct 𝑲𝒄𝒐𝒏 following the "stick" state as Eq. (39)

3: while ‖𝒓𝑖+1‖‖𝒓0‖ ⩾ 𝜏𝑟 or ‖𝚫𝒅𝑖+1‖‖𝒅𝑖‖ ⩾ 𝜏𝑑 do

4: Update (𝑲𝑝)𝑖 =𝑲ℎ + (𝑲𝒄𝒐𝒏)𝑖
5: Solve for the updated solution displacement 𝚫𝒅𝑖+1
6: Update 𝒅𝑖+1 = 𝒅𝑖 +𝚫𝒅𝑖+1
7: Update 𝒓𝑖+1 following Eq. (41)

8: Update stick and slip conditions

9: Update 𝑲 𝑖+1
𝒄𝒐𝒏

10: end while

Algorithm 2 Fine-scale XFEM simulation of fracture propagation.

1: Construct 𝑲ℎ

2: for 𝑡 = 1→ final step do

3: while ‖𝒓𝑖+1‖‖𝒓0‖ ⩾ 𝜏𝑟 or ‖𝚫𝒅𝑖+1‖‖𝒅𝑖‖ ⩾ 𝜏𝑑 do

4: check normal gap 𝑔𝑁 at each Gauss point along the fractures

5: if 𝑔𝑁 < 0 then

6: Construct 𝑲𝒄𝒐𝒏 following the "stick" state as Eq. (39)

7: else

8: Construct 𝑲𝒄𝒐𝒏 with all zero inputs

9: end if

10: Update (𝑲𝑝)𝑖 =𝑲ℎ + (𝑲𝒄𝒐𝒏)𝑖
11: Solve for the updated solution displacement 𝚫𝒅𝑖+1
12: Update 𝒅ℎ,𝑖+1 = 𝒅ℎ,𝑖 +𝚫𝒅ℎ,𝑖+1
13: Update 𝒓ℎ,𝑖+1 following Eq. (41)

14: Update stick and slip conditions

15: Update 𝑲 𝑖+1
𝒄𝒐𝒏

16: end while

17: Determine the group of fractures tips that will grow

18: Update fractures geometries and level sets functions

19: Update 𝑲ℎ

20: end for

Appendix B. Algorithm of MS-XFEM simulation strategy

Algorithm 3 MS-XFEM simulation of fractures deformation.

1: Construct fine-scale 𝑲ℎ and basis functions 𝑷
2: Construct 𝑲𝒄𝒐𝒏 following the "stick" state as Eq. (39)

3: while ‖𝒓𝑖+1‖‖𝒓0‖ ⩾ 𝜏𝑟 or ‖𝚫𝒅𝑖+1‖‖𝒅𝑖‖ ⩾ 𝜏𝑑 do

4: Update (𝑲𝒑)𝑖 =𝑲ℎ + (𝑲𝒄𝒐𝒏)𝑖
5: Construct 𝑴−1

𝑴𝑺
and 𝑴−1

𝒔𝒎

6: Construct preconditioner 𝑴−1 =𝑴−1
𝑴𝑺

+𝑴−1
𝒔𝒎
(𝑰 − (𝑲𝑝)𝑖 𝑴−1

𝑴𝑺
)

7: Solve for 𝚫𝒅ℎ,𝑖+1 with preconditioned GMRES following Eq. (59)

8: Update 𝒅ℎ,𝑖+1 = 𝒅ℎ,𝑖 +𝚫𝒅ℎ,𝑖+1
9: Update 𝒓ℎ,𝑖+1 following Eq. (41)

10: Update stick and slip conditions along Gauss points on the fracture

11: Update 𝑲 𝑖+1
𝒄𝒐𝒏

12: end while
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Algorithm 4 MS-XFEM simulation of fracture propagation.

1: Construct fine-scale 𝑲ℎ and basis functions 𝑷
2: for 𝑡 = 1→ final step do

3: while ‖𝒓𝑖+1‖‖𝒓0‖ ⩾ 𝜏𝑟 or ‖𝚫𝒅𝑖+1‖‖𝒅𝑖‖ ⩾ 𝜏𝑑 do

4: check normal gap 𝑔𝑁 at each Gauss point along the fractures

5: if 𝑔𝑁 < 0 then

6: Construct 𝑲𝒄𝒐𝒏 following the "stick" state as Eq. (39)

7: else

8: Construct 𝑲𝒄𝒐𝒏 with all zero inputs

9: end if

10: Update (𝑲𝒑)𝑖 =𝑲ℎ + (𝑲𝒄𝒐𝒏)𝑖
11: Construct right preconditioner 𝑴−1

12: Solve for 𝚫𝒅ℎ,𝑖+1 with preconditioned GMRES following Eq. (59)

13: Update 𝒅ℎ,𝑖+1 = 𝒅ℎ,𝑖 +𝚫𝒅ℎ,𝑖+1
14: Update 𝒓ℎ,𝑖+1 following Eq. (41)

15: Update stick and slip conditions along the fracture

16: Update 𝑲 𝑖+1
𝒄𝒐𝒏

17: end while

18: Determine the group of fractures tips that will grow

19: Update fractures geometries and level sets functions

20: Update 𝑲ℎ

21: end for

Appendix C. Fracture coordinates of test case 3 and 4

Table C.5

Test case 3: Fracture coordinates.

Fracture Coordinates Fracture Coordinates

1 [7.76,51.86] - [35.86,11.73] 8 [20.38,33.84] - [38.40,46.50]
2 [31.43,59.90] - [63.55,14.02] 9 [27.34,8.20] - [45.36,20.82]
3 [29.63,78.16] - [43.97,57.69] 10 [40.78,27.37] - [53.40,9.35]
4 [29.96,63.75] - [46.00,75.00] 11 [41.52,7.14] - [59.54,19.76]
5 [46.83,78.00] - [58.88,60.80] 12 [51.32,51.84] - [64.52,35.50]
6 [46.42,59.41] - [64.45,72.03] 13 [54.00,38.00] - [72.99,49.10]
7 [17.18,52.36] - [34.50,26.50]

Table C.6

Test case 4: Fracture coordinates.

Fracture Coordinates Fracture Coordinates

1 [2.51,2.91] - [3.49,3.09] 6 [6.52,5.13] - [7.48,4.87]
2 [4.65,3.35] - [5.35,2.65] 7 [2.65,6.65] - [3.35,7.35]
3 [6.53,2.83] - [7.47,3.17] 8 [4.87,7.48] - [5.13,6.52]
4 [2.91,5.49] - [3.09,4.51] 9 [6.65,6.65] - [7.35,7.35]
5 [4.51,4.91] - [5.49,5.09]
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