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Abstract
Electric vehicles (EVs) take advantage of reducing fossil-based environmental pollution and developing a more
sustainable logistics network. Compared with internal combustion engine vehicles (ICEVs), EVs have new
technical characteristics like limited battery capacity and long charging time at charging stations. With the
diffusion of EVs, vehicle routing problems (VRPs) of EVs draw transportation service providers’ attention,
which extends VRPs with intra-route charging considerations. In real-life practice, the punctuality of pre-
planned vehicle routing may be affected by uncertain travel time caused by traffic congestion, which derives
undesirable penalty costs for violating time windows. Besides, long intra-route charging time at charging stations
presents an even greater challenge to trade-off between completing tours with enough electricity and providing
delivery service on time. This assignment aims to investigate the impact of travel time uncertainty and electric
vehicle characteristics on planning fleet size, vehicle routing, and charging schedules. A pickup and delivery
problem of electric vehicles is studied in this assignment, which considered flexible fleet size, partial charging
policy, soft time windows and uncertain travel time. The problem is formulated as a two-stage stochastic linear
programming model. The fleet size, vehicle routing, and charging decisions are determined in the first stage.
After the realization of travel times, the second stage determines specific charging times at charging stations. The
objective is to minimize the total operational cost, which consists of travel costs of vehicle usage and charging,
and the expected penalty cost of earliness, delay and overtime. The sample average approximation method is
applied to model the stochastic programming to the deterministic equivalent and the Gurobi Optimizer is used
to solve this mixed-integer programming. A computational experiment is conducted based on a small data set
with one depot, 9 pickup and delivery requests, 5 charging stations at service vertices and 3 available electric
trucks. The travel times along the delivery tour are assumed to follow Gamma distribution. To investigate
the trade-off between travel costs and penalty costs, 12 instances are conducted in the experiment by tuning
parameters of time windows, the uncertainty of travel time, and the importance of punctuality. The experiment
results showed an increasing vehicle fleet size could improve the level of service but also derive more vehicle
usage costs. Besides, the intra-route charging operations impact vehicles’ departure times at each charging
station, which subsequently impacts service start time at customer vertices. Longer intra-route charging time
has the potential to enhance punctuality in instances with tight time windows or congested traffic conditions.
Moreover, different operator inclination leads to different fleet size and charging time preference. Instances
attaching more importance to punctuality have a larger fleet size and longer intra-route charging time.

1 Introduction
Road vehicles release excessive energy-related carbon emissions annually, which is one of the non-negligible
causes of global warming and climate change. Currently, a mode shift from internal combustion engine vehicles
(ICEV) to electric vehicles (EV) is a worldwide practice in the transport sector, which helps to curb CO2

emissions and achieve carbon neutrality. Governments in European countries have also implemented attractive
incentive measures to reduce the cost of purchasing and using EVs and promote the construction of charging
facilities. In addition, the EU plans to stop the sales of new ICVs in 2035 (Council of European Union, 2021),
which also promotes more EV purchases and usages. Due to the diffusion of EVs, the implementation of subsidy
incentives, the development of charging facilities and the limitation of greenhouse gas emission regulation, more
and more logistics companies have started adopting EVs to provide more sustainable transport services.

With the increasing fleet proportion of EVs, more and more studies considered the EV application case in
vehicle routing problems (VRPs). The electric vehicle routing problems (EVRPs) are extensions of traditional
vehicle routing problems with ICEVs. Though EVs take advantage of reducing air pollution and fossil reliance,
more issues should be considered when designing an efficient EV routing plan to process all customer orders.
Compared with ICEVs, EVs have limited battery capacity and require intra-route charging operations to fin-
ish the delivery tour without running out of electricity, which occupies operating time and leads to additional
operating costs (Felipe et al., 2014). Besides, the scarcity of public charging stations increases the difficulty of
planning routing and charging schedules (Montoya et al., 2017). In addition to the above considerations in a
deterministic environment, uncertain factors also affect the outcome of VRP, including uncertainty of customer
demand, road environment and resources (Soeffker et al., 2022). Uncertain customer demand in EVRPs consists
of unknown demand quantities and uncertain service time. The sources of uncertainties in the road environ-
ment include weather, traffic congestion and road closures, which affects the energy consumption and travel
times of EVs. Resource uncertainties could be the availability of public charging stations (Montoya et al., 2017).

As discussed above, long charging times at charging stations are not neglectable. Charging locations and
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charging times should be carefully considered when planning vehicle routes to satisfy all customer demands. In
practice, uncertainties of weather and traffic conditions impact travel times along delivery routes. Uncertain
travel times could influence the reliability of pre-planned routines and result in unexpected earliness or delay
of delivery service, which increases the operational cost of remedial measures. Besides, the uncertain travel
time may occupy the reserved charging time, which causes conflict between ensuring punctuality and avoiding
battery depletion. Departing more vehicles for delivery service could alleviate the problem and improve the level
of service. Also, increasing the fleet size increases the possibility of finishing delivery routes without intra-route
charging operations. The potential benefit may be obtained if EVs charge more in the depot with a lower energy
price during the off-peak time. On the other hand, a larger fleet size also means more fixed costs of vehicle
usage and longer delivery distances for providing service to all customers, which increases travel costs. There-
fore, how to trade off between reducing travel costs and ensuring punctuality is an interesting topic to be studied.

The research focuses on the pickup and delivery problem (PDP) with travel time uncertainties, a variant
of VRP with paired pickup and delivery demands. And following features of the problem could be considered:
Firstly, each pickup and delivery request should be served by the same electric truck within a soft time window.
Applying the soft time windows is a more practical case because vehicles cannot always arrive at the service
point on time. Customers can receive service outside the expected time window, but a violation of time windows
will cause customer dissatisfaction, which leads to unwanted penalty costs. Secondly, due to the restriction of
maximum range, some delivery tours need to be completed with intra-route charging operations. The problem
considers the popularity of charging facilities in parking lots and allows electric trucks to use fast-charging
facilities at service vertices before providing service to customers. Thirdly, the travel time of electric trucks
along the route might be uncertain and occupy pre-arranged charging time, which leads to more challenges in
deciding fleet size, route plan and charging schedules. Simply overlooking these uncertainties and solving the
problem in a deterministic environment may obtain a vehicle routing with low reliability, which leads to a high
possibility of violating time windows in practice and causes additional penalty costs for the low level of service.

Therefore, the research objective is to get insight into the formulation of electric vehicle PDP with a soft
time window, partial charging policy and uncertain travel time. By conducting a simple computational experi-
ment, the research also explored how travel time uncertainties affect the optimum EV routing plan and what is
the trade-off between travel costs and penalty costs of unpunctuality. In the following, two research questions
about travel time uncertainties are formulated, which will be answered in this research:

• How should travel time uncertainties in electric vehicle pickup and delivery problems be formalized, and
what kind of framework could be developed to model such problems?

• How do travel time uncertainties in electric vehicle pickup and delivery problems affect the optimal routing
plan, charging schedule and electric vehicle fleet size?

The report is organized as follows: Section 2 presents a brief review of related literature about EVRP and VRP
with uncertainties. Section 3 presents the description of electric vehicle pickup and delivery problems with
soft time windows, partial charging and stochastic travel time. In sections 4 and 5, the mathematical model
of the routing problem and the method to solve the model are discussed. Section 6 conducts computational
experiments with a simple logistics network consisting of one depot and eight pickup and delivery requests.
Section 7 presents the conclusion and future study direction of the assignment.

2 Literature Review
Literature related to the studied pickup and delivery problem is discussed in this section. Firstly, studies
regarding electric vehicle routing problems are reviewed. Secondly, the literature on vehicle routing problems
with stochastic travel times is reviewed.

2.1 Electric Vehicle Routing Problem
EVRPs extend VRP with considerations of the technical characteristics of EVs. In this context, constraints
of EV energy consumption, battery depletion, charging policies, and charging process are considered by re-
searchers. One of the earliest research about EVRP is made by Schneider et al. (2014), who incorporated
concepts of detouring to charging stations into VRPs with time windows. Most reviewed literature assumes
that charging stations are always available and the capacity of charging stations does not restrict the design
of the charging schedule. But in practice, the scarcity of chargers in a public charging station will limit the
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number of simultaneous charging operations. Among reviewed studies, only Froger et al. (2021) and Lam et al.
(2022) considered the availability of charging stations. The capacity of charging stations was represented as the
number of chargers in their models.

The battery is an important element that should be considered in the charging schedule. Battery deprecia-
tion will happen due to the large current during fast charging and discharging (Abdulaal et al., 2017) and
some research considered the cost of battery replacement in their objective functions. Abdulaal et al. (2017)
defined the corresponding cost as the loss of battery life using a fixed loss rate. Guo et al. (Guo et al.) ex-
pressed the battery wearing cost as a piecewise linear function of the SOC. Most reviewed literature assumes
energy consumption of the battery follows a linear function. In practice, the energy consumption of a bat-
tery may be nonlinear, which is associated with factors like vehicle speed, vehicle load, traffic conditions and
so on. Masmoudi et al. (2018) studied the dial-a-ride problem with a more realistic energy consumption function.

Due to limited battery capacity, intra-route charging operations are necessary to help EVs complete long deliv-
ery tours. Charging policy is important for designing an intra-route charging schedule, which can be classified
into complete charging (Shao et al., 2018; S. Zhang et al., 2019), partial charging (Keskin & Catay, 2016;
Cortes-Murcia et al., 2019; Montoya et al., 2017; Uhrig et al., 2015; Guo et al., 2022; Lam et al., 2022), and
combining charging and discharging (Lin et al., 2021; Abdulaal et al., 2017). Shao et al. (2018) proposed hybrid
genetic algorithm combined with dynamic Dijkstra algorithm to obtain the optimal routes, charging schedule
and paths with minimum operational costs. The complete charging strategy was adopted and the charging time
was assumed as constant in their model. Swapping a fully charged battery in the battery swap station can
be regarded as a special complete charging policy, which occupies little operating time compared with charg-
ing operations. S. Zhang et al. (2019) developed a location-routing problem that integrated the allocation of
battery swap stations and the routing of electric vehicles. Partial charging allows the fleet operator to decide
on charging time and charging type, which increases the complexity of EVRP. Besides, the partial charging
policy needs to consider the pattern of the battery charging process. Keskin & Catay (2016) developed an
Adaptive Large Neighborhood Search method to solve the EVRP with partial charging and time windows. The
problem assumed charging the battery has a linear pattern with a constant charging rate and the experiment
results showed that applying partial charging may have better performance than applying complete charging.
Cortes-Murcia et al. (2019) also considered a linear partial charging process. The studied problem utilized long
charging times at charging stations and allowed customers to visit the parking lot by walking when EVs are
charging. The results showed that this strategy can reduce EV charging time and driving distance. These
two research all assumed a linear charging process. But in practice, the charging process of a battery shows a
nonlinear pattern. Montoya et al. (2017) applied a piecewise-linear charging function in the EVRP, which is an
approximation of the charging pattern experimented by Uhrig et al. (2015). Different charging technologies and
charging functions were considered in this research. The result showed that simply considering a linear charging
function may lead to infeasible or costly solutions. Guo et al. (2022) and Lam et al. (2022) also considered
nonlinear partial charging with the same piecewise linear approximation of EV charging process. With the
development of Vehicle-to-Grid (V2G), EVs equipped with V2G equipment are allowed to sell excess electricity
to the grid, which offers the possibility of making a profit from electricity price variations. Lin et al. (2021)
considered this technique and proposed the EVRP considering the policy of charging/discharging under time-
variant electricity prices. Abdulaal et al. (2017) also considered a stochastic demand of the grid and modelled
it with a hidden Markov model.

2.2 Electric Vehicle Routing Problem with Uncertainties
EVRPs in stochastic environments are widely studied in this period. The sources of uncertainty in stochastic
vehicle routing problems include uncertain demand, uncertain environment, and uncertain resources. The tech-
nical characteristics of EVs and the requirement of intra-route charging operations improve the complexity of
the stochastic vehicle routing problem.

Customer demand is a factor that is often unknown during the route planning stage. S. Zhang et al. (2019) con-
sidered this uncertainty in a location-routing problem and proposed two policies to deal with customer demand
uncertainties, respectively recourse policy and preventive restocking policy. The former allows a replenishment
trip if the EV is unable to service customers’ demands. The latter allows the EV to return to the depot
with a part load, which is a preventive measure for satisfying remaining demands. Liu et al. (2023) developed
a two-stage adaptive robust model to consider the demand uncertainty and plan robust optimal vehicle routings.
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Charging EVs at the charging stations occupies longer time periods than fueling ICVs at gasoline stations.
The limited capacity of charging stations could lead to unexpected long waiting times for charging at charging
stations. Abdulaal et al. (2017) considered the uncertain charging demand at charging stations and potential
delays that could occur due to uncertain waiting times at charging stations. The charging station stochastic
was modelled as a Markov decision process and the VRP was solved by genetic algorithms.

Energy consumption of batteries are always uncertain due to factors of weather, road conditions and driver
behaviours (Pelletier et al., 2019). This uncertainty is an important concern in EVRP to avoid running out of
charge and alleviate drivers’ range anxiety. Pelletier et al. (2019) considered an urban logistics case that delivery
routes are shorter than range of EVs and intra-route charging operation is unnecessary. The objective was to
find robust delivery routes and the problem was formulated as a robust programming. Soysal et al. (2020)
considered the requirement of intra-route charging to extend vehicle range and proposed a chance-constrained
model. The stochastic constraints were rewritten into linear approximations.

Punctuality is one of the most important customer concerns, which is affected by uncertainties of travel time
and service time along the delivery route. L. Zhang et al. (2022) studied the VRP with the application of the
shared autonomous electric vehicle, which considered stochastic travel time and customer service time. The
robust programming technique was adopted to plan conservative and robust vehicle routes and charging sched-
ules. Another widely applied framework for VRP with uncertain travel time is stochastic programming. Tas et
al. (2013) assumed soft time windows and expected recourse cost of violating time windows were considered in
the objective function. Wang et al. (2023) considered hard time windows and proposed a chance-constrained
model to ensure an acceptable route success probability under the stochastic environment with uncertain travel
time.

In reviewed literature, no research studied EVRP with uncertain travel time in the framework of stochastic
programming. The research, therefore, studies a PDP with partial charging policies, soft time windows, and
uncertain travel time. These uncertainties are modelled with the stochastic optimization and customer dissat-
isfaction derived from unpunctuality is considered a penalty cost in the objective function.

3 Problem Description
The investigated problem in this assignment can be described as an extension of the pickup-and-delivery prob-
lem, which considers applying an electric truck fleet, the partial charging policy at service points and stochastic
travel times along delivery routes. In this case, the fleet responsible for pickup-and-delivery requests is com-
bined exclusively with electric trucks, which have limited range and may need to charge at charging stations
during the tour. Though rapid charging operation can extend the driving range, intra-route charging occupies
operational time and affect the level of service provided by the fleet. The uncertain travel times may occupy
pre-planned charging time and leads to the dilemma between avoiding unpunctuality and avoiding running out
of battery, which impacts the reliability of vehicle routing and charging schedules. EVs breaking down halfway
leads to a more severe consequence than violating time windows. More recourse cost is required for battery
charging and continuing failure delivery tasks. Therefore, the vehicle routing and charging schedule must ensure
EVs are able to complete delivery tours with enough electricity. The violation of time windows may happen in
the actual operation to give priority to completing the intra-charging requirement, which results in additional
penalty costs of customer dissatisfaction and working overtime. If the penalty costs of earliness, delay, and
overtime are not affordable, increasing the fleet size of electric trucks could be a more economical scheme with
a high level of service. The problem can be defined as follows:

Denote the transportation network as a connected digraph G = (V,A), where V = {0, 1, ..., 2n + 1} is the
vertex set and A = {(i, j), i, j ∈ V, i ̸= j} is the arc set. There is a depot with a fleet of k electric vehicles avail-
able for providing service, where electric vehicles should depart from and return to. Vertices {0} and {2n+1}
denote this depot as route origin and route destination respectively for the convenience of developing the math-
ematical model. All vehicles are assumed to be homogeneous with the same capacity Q and battery capacity
B. There are n customer requests that should be responded to within the planning horizon [e0, l2n+1], which
are known before the planning horizon. For i-th request with ri loads, the corresponding pickup and delivery
points are denoted as {i} ∈ P = {1, 2, . . . , n} and {i+ n} ∈ D = {1 + n, 2 + n, . . . , 2n} respectively. There are
s charging stations S ⊂ P ∪D in service vertices where electric vehicles can partially charge the battery during
the delivery tour. Fleet operators and their customers have different concerns in practice. The former focuses
on improving the efficiency of delivery service and rapid charging with a more expensive price cc at a charging
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station is considered as a temporary expedient. Therefore, detouring to a charging station and not providing
delivery service is not allowed in this problem, i.e., vehicles can only charge at vertices where they visit and
provide transportation service. The latter concerns the reliability of arriving on time and a soft time window
(ev, lv) is assigned to each pickup and delivery node v ∈ P ∪ D. The problem assumes the delivery service
can start before or after the time windows but violating these time windows leads to customer dissatisfaction
and additional penalty costs. For i-th pickup and delivery vertex i ∈ P ∪D, the specific unit penalty costs of
earliness and delay are given as cei , cli respectively. Besides, arriving at the depot outside the planning horizon
is allowed, but overtime salary should be paid to the vehicle driver with a unit cost of co. Moreover, service
time sev is considered in each customer node v ∈ P ∪D.

The problem assumes that energy consumption only has a linear positive correlation with travel distance.
Given the constant energy consumption rate ϵ and travel distance dij , the energy consumption for travelling
through arc (i, j) ∈ A is calculated as ϵ · dij . The battery charging function is based on the nonlinear function
applied by Montoya et al. (2017), who showed that the nonlinear function can be accurately approximated
by piece-wise linear functions. The problem assumes rapid charging technique is applied in charging stations,
which allows electric trucks to fast charge to 80% state of charge (SoC). Based on Montoya et al.’s charging
function, this segment can be approximated as a linear increase with a known charge rate δc. Given the time u
of the vehicle charges at the charging station and unit cost cc, the charging cost is calculated as cc · δc · u. Each
electric truck has to back the depot with a minimum SoC of 20%. The problem also assumes that the depot
charging during the night has a lower off-peak electricity price cnight < cc. After returning to the depot, trucks
will be fully charged overnight to ensure that next-day services start with fully charged batteries.

Each arc (i, j) ∈ A connecting vertices i and j is weighted by a travel distance dij . The corresponding travel
time τij is uncertain in this problem with a known probability distribution. Based on the research of Tas et
al. (2013), the problem scales the travel time τij with respect to corresponding arc distance dij and assumes it
follows Gamma distributed with shape parameter αdij and scale parameter θ. Denote the realization of τ with
a probability of occurrence p(ω) as ω ∈ Ω.

The research aims to develop a stochastic programming model considering the uncertainty of travel time and
find an optimal vehicle routing plan and charging schedule for a planning horizon with known customer demand.
The objective is to determine the minimum operational cost for satisfying all customer requests. Therefore, the
problem can be modelled as a two-stage stochastic programming considering the possibility of violating time
windows and related penalty costs. The fleet size, vehicle routes and charging decisions will be determined
in the first stage. In the second stage, the specific charging times will be decided after realizing the random
variables of travel times. The correction costs of violating time windows will be calculated based on vehicle
routing and charging schedules.

Figure 1: Illustration Example of A Deterministic Case
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Table 1: Notation of parameters and decision variables used in the model

Notation Description
E(..) The expected value of a random variable.
n Number of pickup and delivery requests
s Number of service vertices equipped with charging stations
k Number of available electric trucks

Sets
O Set of depot, where O = {0, 2n+ s+ 1}. Vertices {0} and {2n+s+1} denote this depot

as route origin and route destination respectively.
P Set of n demand origins, where P = {1, ..., n}.
D Set of corresponding n demand destinations, where D = {n+ 1, ..., 2n}.
S Set of demand vertices with charging stations, where S ⊂ P ∪D
V Set of vertices, where V = {P ∪D ∪O}
A Set of arcs connecting vertices in V , where A = {(i, j)|i, j ∈ V, i ̸= j}.
K Set of electric trucks available at depot, where K = {1, ..., k}.
Ω Set of scenarios for random variables, where ω ∈ Ω refers to a realization with probability

of occurrence p(ω)
Parameters

dij Total distance between vertices i and j, where (i, j) ∈ A. (km)
τij Stochastic travel time between nodes i and j, where (i, j) ∈ A. These random variables

follow Gamma distribution τij ∼ Γ(αdij , θ) with shape parameter αdij and scale
parameter θ. The mean value is αθdij and the variance is αθ2dij . (minutes)

sei Service time for customer vertex i, where i ∈ P ∪D. (minutes)
(ei, li) Time window at node i where ei is the earliest service time and li is the latest service

time. The planning horizon is e0, l2n+s+1. (minutes)
cie Unit penalty cost of earliness at service vertex i ∈ P ∪D. (Euro/minute)
cil Unit penalty cost of delay at service vertex i ∈ P ∪D. (Euro/minute)
co Unit cost paid by operators for working overtime. (Euro/minute)
Q Capacity of electric truck.
ri The pickup/delivery load at point i, where i ∈ P ∪D. These parameters have positive

values in pickup points and negative values in delivery points.
B Battery capacity of electric vehicle. (kWh)
ϵ Energy consumption rate related to travel distance. (kWh/km)
δc Charge rate at charging station. (kW)
cc Unit charging price at planning horizon. (Euro/kWh)
cn Unit charging price at night. (Euro/kWh)
ca Unit fixed cost of electric truck used. (Euro/veh)

Decision Variables
xk
ij Binary decision variables which take the value 1 if arc (i, j) ∈ A is covered by electric

truck k and 0, otherwise
yki Binary decision variables which take the value 1 if electric truck k charges at charging

point i ∈ S and 0, otherwise
zk Binary decision variables which take the value 1 if electric truck k is used for delivery

service and 0, otherwise
qki Integer variable defines the vehicle load when electric truck k leaves vertex i

uk
i (ω) Non-negative integer decision variables which means the charging time period of electric

truck k at charging station i ∈ S in scenario ω. (minutes)
SoCk

i (ω) Continuous variable defines the state of charge when electric truck k arrives at vertex i
in scenario ω (kWh)

tki (ω) Continuous variable defines the arrival time when electric truck k visits vertex i in
scenario ω. (minutes)

eaki (ω) Continuous variable defines the earliness of truck k at node i in scenario ω. (minutes)
deki (ω) Continuous variable defines the delay of truck k at node i in scenario ω. (minutes)

dek2n+s+1(ω) refers to the overtime of the driver working on truck k in scenario ω.
(minutes)
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Figure 1 presents an illustration example of a pickup-and-delivery tour of an electric truck and the correspond-
ing curve of SoC. The green line sections are fixed service times at service vertices. The red line sections are
charging times at charging stations, which are determined in the second stage after the realization of uncertain
travel times. Electric trucks could provide pickup-and-delivery service after finishing charging operations. The
start time of service should be arranged within time windows and violating time windows leads to additional
penalty costs of earliness or delay. The black line section refers to the vehicle trips between two vertices and
the gradient is the average speed along this arc. The problem assumes uncertain travel times along delivery
tours so average speeds vary in different arcs. The blue line graph illustrates the change in SoC along the deliv-
ery tour. Electric trucks are allowed to do partial charging operations at the charging stations, with an upper
bound of a maximum of 80% SoC. Besides, electric trucks have to back to the depot with a minimum of 20% SoC.

Specifically, the following decision variables are introduced to define the first stage problem: xk
ij is a binary

decision variable that indicates whether arc (i, j) is travelled by vehicle k. The binary decision variables yki
characterize whether vehicle k charges at charging station i. The usage of electric vehicle k is characterized
by binary decision variables zk. Additionally, for any vertex i ∈ V , and integer variable qki are used to define
the vehicle load of vehicle k in this node. For a realization, ω ∈ Ω, the following second-stage variables can be
defined. The continuous variable SoCk

i (ω) define the state of charge along delivery tour. For the convenience of
drivers operating the charging facility, the time vehicle k charges at station i is characterized by integer decision
variables uk

i (ω). The arrival time of vehicle k at node i is defined as a continuous variable tki (ω). In addition, the
earliness and delay of vehicle k at node i are denoted as eaki (ω) and deki (ω), respectively. Similarly, the expected
overtime of the driver working on the route of vehicle k is denoted as dek2n+s+1(ω). The necessary notation
of parameters and decision variables used in the assignment is given by Table 1. The problem is formulated
as a two-stage stochastic programming. The first stage decides the fleet size, vehicle routing and intra-route
charging decision. The second stage decides specific charging time after knowing the realization ω ∈ Ω. The
development of the mathematical model is discussed in the next section.

4 Two-stage Stochastic Linear Programming

4.1 Objective Function
The assignment aims to investigate the trade-off between travel costs of vehicle usage and charging, and penalty
costs of earliness, delay and overtime. This dilemma is described as minimizing the total cost in the objective
function. The total cost consists of three components, respectively the fixed cost for EV usage, the charging cost
for both intra-route charging and depot charging, and the expected penalty cost for violating time windows.
Additionally, a weight factor ρ is assigned to travel costs and penalty costs to evaluate the importance of
punctuality. In the first-stage problem, the routing decision x, charging decision y and vehicle usage decision z
are determined. Given the realization of travel times ω ∈ Ω, specific charging time uk

i (ω) at each charging station
can be decided at the second stage. Subsequently, earliness eaki (ω), delay deki (ω) and overtime dek2n+s+1(ω) can
be calculated. The objective function of the two-stage stochastic program can be given as follows:

minC =ρ · ca ·
∑
k∈K

zk + E[Q(x, y, z,f(ω))] (1)

=ρ · ca ·
∑
k∈K

zk +
∑
ω∈Ω

p(ω) ·Q(x, y, z,f(ω) (2)

Where p(ω) is the percentage of realization ω and Q(x, y, z,f(ω)) is the optimal value of the second-stage
problem:

minQ(x, y, z, u,f(ω)) =ρ · [cc ·
∑
k∈K

∑
i∈S

δc · uk
i (ω) + cn ·

∑
k∈K

(
∑
i,j∈V

ϵ · dij · xk
ij −

∑
i∈S

δc · uk
i (ω))] (3)

+ (1− ρ) ·
∑
k∈K

[
∑

i∈P∪D

cie · eaki (ω) +
∑

i∈P∪D

cil · deki (ω) + co · dek2n+s+1(ω)] (4)

4.2 First-Stage Constraints
The constraints for the first stage ensure requirements of fleet size, flow, and vehicle capacity, i.e., all pickup
and delivery demands are satisfied and each vehicle never overloads. The first-stage constraints are given by
constraints (5)-(16). Constraint (5) associates electric truck usage with depot departure. The binary decision
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variable xk
0,2n+1 takes the value 1 if the electric truck k is not selected for delivery service and stays at the

depot during the planning horizon. Constraint (6) ensures each electric vehicle starts from and ends at the
depot, where the source depot is denoted as {0} and the sink depot is {2n+s+1}. Constraint (7) ensures each
pickup request is satisfied by one vehicle and constraint (8) forces each pair of pickup and delivery vertices
to be visited by the same vehicle. Constraint (9) ensure the flow balance in pickup and delivery vertices.
Constraint (10) ensures all vehicles are empty when departing from and arriving at the depot. Constraint (11)
determines vehicles’ onboard loads at nodes along their routes. Constraint (12) ensure capacity limitations
of electric vehicles. The charging operation is not mandatory and constraint (13) ensures this consideration.
The constraint (14) ensures the inaccessibility of arcs. As illustrated in Table 1, decision variables (x, y, z) for
vehicle routing, charging decisions, and vehicle usage are binary decision variables. Variables q for vehicle load
are non-negative integer variables.

zk = 1− xk
0,2n+1, ∀k ∈ K (5)∑

i∈V

xk
0,i =

∑
i∈V

xk
i,2n+1 = 1, ∀k ∈ K (6)∑

k∈K

∑
j∈V

xk
ij = 1, ∀i ∈ P (7)

∑
j∈V

xk
ij −

∑
j∈V

xk
n+i,j = 0, ∀i ∈ P, k ∈ K (8)

∑
i∈V

xk
iv −

∑
j∈V

xk
vj = 0, ∀v ∈ P ∪D, k ∈ K (9)

qki = 0, ∀i ∈ O, k ∈ K (10)

qki + rj · xk
ij −Q · (1− xk

ij) ≤ qkj , ∀i, j ∈ V, k ∈ K (11)

0 ≤ qki ≤ Q · zk, ∀i ∈ V, k ∈ K (12)

yki ≤
∑
j∈V

xk
ji, i ∈ S, k ∈ K (13)

xk
ii = xk

i,0 = xk
2n+1,i = 0, ∀i ∈ V, k ∈ K (14)

xk
ij , y

k
ij , zk ∈ {0, 1}, ∀i, j ∈ V, k ∈ K (15)

qki ∈ N, ∀i ∈ V, k ∈ K (16)

4.3 Second-Stage Constraints
Constraints in the second stage determine the specific charging time at charging stations after the realization
of uncertain travel times. These constraints ensure all vehicles finish delivery tours without running out of
battery. The constraint (17) ensures vehicles are fully charged at the beginning of tours. The constraint (18)
ensures electric trucks are back to the depot with a minimum of 20% SoC. The constraints (19)-(20) calculate
the state of charge at each vertex along routes. The constraint (21) ensures battery capacity limitations of
electric vehicles. The constraints (22)-(23) ensure that electric trucks can partial charge at charging stations
to a maximum of 80% SoC. As shown in Table 1, decision variables u(ω) for intra-route charging times are
non-negative integer variables, which are ensured by constraints (36).

Given the vehicle routing x and charging decisions y and vehicle usage z determined in the first stage and
the specific charging times u(ω) determined in the second stage, the following constraints can calculate arrival
times t(ω) at vertices along delivery tours and determine earliness, delay and overtime. The M is a constant
larger than the planning horizon. Constraints (24)-(25) ensures vehicles leave the depot and visit other nodes
after the beginning of the planning horizon. The arrival time of vertices outside the route of vehicle k is set
to e0. Constraints (26)-(29) calculate the arrival time of vertices in the network. The equation is converted
into two inequalities using the big M technique. Constraint (30) ensures each pickup location i is visited before
pickup location n + i. The calculation of earliness and delay at each node is realized by constraints (31)-(35).
Since the objective function aims to minimize the expected penalty cost, these constraints only restricted the
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lower bound of earliness eai and delay dei.

SoCk
0 (ω) = B, ∀k ∈ K,ω ∈ Ω (17)

SoCk
2n+1(ω) ≥ 0.2 ·B, ∀k ∈ K,ω ∈ Ω (18)

SoCk
j (ω) ≤ SoCk

i (ω)− ϵ · dij · xk
ij +B(1− xk

ij), ∀i ∈ V |S, j ∈ V, k ∈ K,ω ∈ Ω (19)

SoCk
j (ω) ≤ SoCk

i (ω) + δc · uk
i (ω)− ϵ · dij · xk

ij +B(1− xk
ij), ∀i ∈ S, j ∈ V, k ∈ K,ω ∈ Ω (20)

B · (1− zk) ≤ SoCk
j (ω) ≤ B, ∀j ∈ V, k ∈ K,ω ∈ Ω (21)

0 ≤ δc · uk
i (ω) ≤ 0.8 ·B · yki , ∀i ∈ S, k ∈ K,ω ∈ Ω (22)

δc · uk
i (ω) ≤ 0.8 ·B − SoCk

i (ω) +B · (1− yki ), ∀i ∈ S, k ∈ K,ω ∈ Ω (23)

tk0(ω) = e0, ∀k ∈ K,ω ∈ Ω (24)

e0 ≤ tkj (ω) ≤ e0 +M ·
∑
i∈V

xk
ij , ∀j ∈ V, k ∈ K,ω ∈ Ω (25)

tkj (ω) ≥ tki (ω) + [τij(ω) + sei] · xk
ij −M · (1− xk

ij), ∀i ∈ V |S, j ∈ V, k ∈ K,ω ∈ Ω (26)

tkj (ω) ≤ tki (ω) + [τij(ω) + sei] · xk
ij +M · (1− xk

ij), ∀i ∈ V |S, j ∈ V, k ∈ K,ω ∈ Ω (27)

tkj (ω) ≥ tki (ω) + [τij(ω) + sei] · xk
ij + uk

i −M · (1− xk
ij), ∀i ∈ S, j ∈ V, k ∈ K,ω ∈ Ω (28)

tkj (ω) ≤ tki (ω) + [τij(ω) + sei] · xk
ij + uk

i +M · (1− xk
ij), ∀i ∈ S, j ∈ V, k ∈ K,ω ∈ Ω (29)

tki (ω) + sei + τki,n+i(ω)−M · (1−
∑
j∈V

xk
ij) ≤ tkn+i(ω), ∀i ∈ P, k ∈ K,ω ∈ Ω (30)

eaki (ω) ≥ ei − tki (ω)−M · (1−
∑
j∈V

xk
ji), ∀i ∈ V |S, k ∈ K,ω ∈ Ω (31)

eaki (ω) ≥ ei − tki (ω)− uk
i −M · (1−

∑
j∈V

xk
ji), ∀i ∈ S, k ∈ K,ω ∈ Ω (32)

eaki (ω) ≥ 0, ∀i ∈ V, k ∈ K,ω ∈ Ω (33)

deki (ω) ≥ tki (ω)− li, ∀i ∈ V, k ∈ K,ω ∈ Ω (34)

deki (ω) ≥ 0, ∀i ∈ V, k ∈ K,ω ∈ Ω (35)

uk
i (ω) ∈ N, ∀i ∈ S, k ∈ K,ω ∈ Ω (36)

5 Sample Average Approximation Method
The section 4 presents the development of a two-stage stochastic linear programming. To solve this model,
the technique of sample average approximation is implemented to construct scenarios and model this stochastic
programming to the deterministic equivalent. This deterministic equivalent is a large mixed integer programming
and can be solved by Gurobi Optimizer. A large number N of sample scenarios Ξ = {ξ1, ξ2, ..., ξN} ⊂ Ω are
generated from Ω through Monte Carlo sampling and each realization is treated as an individual deterministic
sub-problem. The expectation of the second-stage objective value is approximated by the average value of these
sample scenarios. The sample average approximation problem of the original objective function can be given as
follows:

minCΞ =ρ · ca ·
∑
k∈K

zk +
1

N

N∑
n=1

Q(x, y, z,f(ω)) (37)

With the number of scenarios considered in the sample average problem |Ξ| approaches |Ω|, the value of CΞ will
approach the optimal solution C∗.

6 Computational Experiment

6.1 Test Instances and Parameter Setting
The computational experiments are conducted to illustrate the trade-off between fleet size and punctuality with
uncertain travel time and to investigate the influence of different time windows and travel time uncertainties
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on optimal solutions. A small data set with one depot, 9 customers, 5 charging stations and 3 available electric
trucks are used in the computational experiments. The geographic distribution of vertices is generated ran-
domly and two sets of time windows are assigned to customers, respectively large and tight time windows. The
travel distance is calculated as the Euclidean distance between two vertices. That is, for two vertices (x1, y1)
and (x2, y2), the travel distance is d12 =

√
(x1 − x2)2 + (y1 − y2)2. The experiment assumes travel time spent

for one unit of distance follows the Gamma distribution, which is described by shape parameter α and scale
parameter β. The Coefficient of Variation (CV) is the product of these two parameters CV = α · β. The
planning horizon [e0, l2n+s+1] is set to [0, 480]. Cost coefficients of earliness and delay (cei , c

l
i) for all customers

are set the same in this experiment, taking the values of (4, 5) respectively. The rest cost coefficients of over-
time, en-route charging and depot charging (co, cc, cn) are set to (6, 1, 0.5). The vehicle characteristics are given
as follows: The truckload Q is 3. The usable battery capacity B is 60 kWh. The energy consumption ϵ is
estimated as 1 kWh/km. The average charging rate of chargers δc is 60kW. The number of scenarios used to
obtain the SAA estimate is N = 20 for each instance. The mathematical formulations were implemented using
the Python programming language, and Gurobi 9.5 was used as the underlying MILP solver. All calculations
were performed by a laptop with an AMD Ryzen 7 5800H @ 3.20 GHz and 16GB RAM.

Table 2 illustrates the parameters of 12 instances tested in computational experiments. The experiment gener-
ated these instances by tunning three types of parameters, respectively time windows, Coefficient of Variation
(CV), and weight parameter ρ. Each instance tuned one parameter to control variables. Two types of time
windows were considered in experiments: large time windows and tight time windows. Besides, the experiments
considered two types of traffic conditions, respectively smooth traffic and congested traffic condition. The CV
of a smooth traffic condition takes a value of 1.5, which means trucks travel with a faster speed and a smaller
variance. The congested traffic condition has a larger CV value, assuming trucks travel with a slower speed
and a larger variance. Moreover, the experiment considered the importance of two cost components by tuning
a weight factor ρ. Two cost components refer to travel costs consisting of fixed vehicle cost and charging cost,
and penalty cost for violating time windows. A larger value of weight factor ρ means operators draw more
importance to travel costs.

Instance Time Windows CV α β ρ
1 Large 1.5 7.5 0.2 0.5
2 Large 1.5 7.5 0.2 0.7
3 Large 1.5 7.5 0.2 0.3
4 Tight 1.5 7.5 0.2 0.5
5 Tight 1.5 7.5 0.2 0.7
6 Tight 1.5 7.5 0.2 0.3
7 Large 2 8.5 4/17 0.5
8 Large 2 8.5 4/17 0.7
9 Large 2 8.5 4/17 0.3
10 Tight 2 8.5 4/17 0.5
11 Tight 2 8.5 4/17 0.7
12 Tight 2 8.5 4/17 0.3

Table 2: Parameters of Instances in Computational Experiments

The base instance is defined as follows: There are large time windows in service vertices. The travel time
spent for one unit of distance is Gamma distributed where (α, β) are equal to (7.5, 0.2). The Coefficient of
Variation (CV) is, therefore, equal to 1.5. Set the weight factor ρ to 0.5, which gives the equal importance of
two cost components. The vehicle routing of the SAA problem is given in Figure 2, where the red vertex refers
to the depot, green vertices refer to service vertices with charging stations and purple vertices refer to service
vertices without charging stations. Delivery tours between two vertices are represented by directed segments
and routes for three vehicles will be distinguished by different colours, respectively orange, red, and blue. The
vehicle routing of the optimal solution shows that two electric trucks with intra-route charging operations are
enough to provide delivery service to all customers in the instance with large time windows and smooth traffic
conditions. When it comes to tighter time windows, more congested traffic conditions or higher requirements of
LoS, the fleet size and intra-route charging demand would change. The experiment results of 12 instances and
findings will be discussed in the next subsection.
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Figure 2: Optimal Solution of SAA Problem with Parameters in Instance 1

6.2 Results of Experiments

Instance Fleet Charging Earliness Delay Overtime Fixed Charging Penalty
Size Time (min) (min) (min) (min) Cost (Euro) Cost (Euro) Cost (Euro)

1 2 185.60 1.98 0.09 0 240 214.29 8.37
2 2 182.00 4.04 0.55 0 240 212.49 18.92
3 2 185.80 1.93 0.20 0 240 214.39 8.70
4 2 207.60 0.71 0.29 0 240 221.82 4.27
5 2 206.80 1.82 1.06 0 240 221.42 12.57
6 2 210.00 0.58 0.20 0 240 223.02 3.34
7 2 150.20 0 13.50 0 240 193.12 67.48
8 2 148.20 0 14.20 0 240 192.12 71.00
9 2 151.80 0 7.48 0 240 193.92 37.40
10 3 171.00 27.44 0.43 0 360 217.59 111.90
11 2 156.40 1.74 46.06 0 240 196.22 237.29
12 3 167.40 21.09 0.14 0 360 215.79 85.06

Table 3: Details of Solutions Obtained by SAA

Table 3 reports the results of instances tested in the experiment and Figure 3 illustrates the optimal vehicle
routing of each instance obtained in experiments. As shown by earliness, delay and overtime values in Table 3,
uncertainties of travel time along delivery tours will lead to violation of time windows. Tighter time windows
and more congested traffic conditions will increase the possibility of earliness and delay, which results in more
undesired penalty costs. The experiment results show two measures to alleviate the negative impact of travel
time uncertainties, respectively extending intra-route charging times and increasing fleet size.

The charging schedule is an important element which decides the actual cruise range of electric vehicles and
impacts the arrival times at service vertices. As discussed in the parameter setting section, charging at charging
stations is more expensive than depot charging. Since the studied problem assumes electric trucks will get fully
charged after returning to the depot, intra-route charging with higher electricity prices could be regarded as an
emergency measure to extend vehicle range and should be minimized to reduce charging costs. Vehicle routing
of instances 4-9 in Figure 3 are the same and instances 7-9 have shorter charging time than that of instances 4-6.
This result supports the argument that vehicles can finish delivery tours with shorter intra-routing charging
times. Instances 4-6 with tight time windows have similar penalty costs as instances 1-3 and longer intra-route
charging times. This comparison shows that charging longer at charging stations has the potential to adjust
vehicle departure time at service vertices and provide pickup and delivery service on time. When it comes to
congested traffic conditions where vehicles travel slower along delivery tours, the obtained solutions incline to
reduce intra-route charging time and only ensure electric vehicles do not use up electricity along delivery tours.
To sum up, charging at charging stations will occupy long time periods in the planning horizon, which impacts
the start time for providing service. Operators could obtain a more reliable vehicle routing by adjusting the
charging schedule and deciding departure time at each service vertex.
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(a) Instance 1 (b) Instance 2 (c) Instance 3

(d) Instance 4 (e) Instance 5 (f) Instance 6

(g) Instance 7 (h) Instance 8 (i) Instance 9

(j) Instance 10 (k) Instance 11 (l) Instance 12

Figure 3: Optimal Vehicle Routing of 12 Instances
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Increasing fleet size is another measure to ensure punctuality of delivery services. Compared with instance 11,
instances 10 and 12 assign more importance on the level of service and their optimal solutions have larger fleet
sizes with 3 vehicles and longer intra-route charging times. Penalty costs of these two costs are less than half of
that in instance 11, showing that increasing fleet size has the potential to decrease the negative impact of travel
time uncertainties and reduce the possibility of violating time windows. On the other hand, more fixed vehicle
costs and charging costs raise when more electric vehicles are used. Therefore, the trade-off between fleet size
and punctuality should be considered by operators.

As analyzed above, tuning values of weight factor ρ, i.e., assigning different importance to travel cost, also
has an impact on charging times and fleet sizes selection. Solutions which place a high value on punctuality
have the inclination to use more vehicles and charge longer at charging stations. Figure 3 shows that tuning
in the first 9 instances does not impact the optimal fleet size and vehicle routing. Two vehicles are optimal
for these instances and tuning the value of ρ only influences intra-route charging times. As for instances with
tight time windows and congested traffic conditions, fleet size decisions and vehicle routing are sensitive to the
operator’s preference. By reducing the weight factor ρ from 0.7 to 0.5 and 0.3, i.e., attaching more importance
to the level of service, the fleet sizes in instances 10 and 12 increase to 3 and the penalty cost decreases to half
of that in instance 11.

7 Conclusion
In this assignment, an electric vehicle pickup-and-delivery problem with soft time window, partial charging
policy and uncertain travel time is investigated. The studied problem is modelled as two-stage stochastic pro-
gramming with first-stage costs to minimize the vehicle usage costs and second-stage recourse costs to charge
EVs to complete the tour proposed by the first-stage and penalty for violating time windows. The sample
average approximation (SAA) method is applied to model the stochastic programming to the deterministic
equivalent. Specifically, the second-stage function is approximated by Monte Carlo sampling, whose objective
value will converge to the optimal expected value with increasing instance size. By using the SAA method, the
problem is approximated as a mixed integer programming and can be solved by optimization solver Gurobi.

A small set of 12 instances is used in the computational experiment, which involves the aspects of EV char-
acteristics, time windows, travel time uncertainties, and operator preference. The experiment results indicate
that larger vehicle fleet size and longer intra-route charging time have the potential to develop a more reliable
vehicle routing with high punctuality. On the other hand, these measures increase the travel costs of vehicle
usage and charging. The trade-off between travel costs and penalty costs of customer dissatisfaction should be
carefully considered and is sensitive to operator preference in instances with tight time windows and congested
traffic conditions.

There are limitations in the studied problem and can be extended in future research: (1) The experiment
results show that staying longer at charging stations has the potential to enhance punctuality. But intra-route
charging operations are expensive and overcharging is unnecessary for completing the delivery tour. The ap-
plication of the Vehicle-2-Grid technique could be considered which allows EVs to utilize idle time at charging
stations and sell excess electricity to the grid. Adopting a charging/discharging policy at charging stations can
be an interesting direction for future study, which shows the potential to reduce charging costs and raise extra
revenues. (2) The energy consumption used in this assignment is assumed to follow a linear function, which
neglects the influence of vehicle speed, travel distance, traffic conditions and so on. Since the uncertainty of
travel times is also related to these factors, applying a more realistic energy consumption function and asso-
ciating travel time uncertainty with energy consumption uncertainty can be an interesting direction for future
study. (3) In practice, travel times are time-dependent throughout the day. Travel speeds in peak hours have
huge variances due to traffic congestion. Combining travel times stochasticity with time-dependent property
can be also considered in future studies.
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