
 
 

Delft University of Technology

Understandable Test Generation Through Capture/Replay and LLMs

Deljouyi, Amirhossein

DOI
10.1145/3639478.3639789
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)
Deljouyi, A. (2024). Understandable Test Generation Through Capture/Replay and LLMs. In Proceedings -
2024 ACM/IEEE 46th International Conference on Software Engineering: Companion, ICSE-Companion
2024 (pp. 261-263). (Proceedings - International Conference on Software Engineering). IEEE.
https://doi.org/10.1145/3639478.3639789
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3639478.3639789
https://doi.org/10.1145/3639478.3639789


Understandable Test Generation Through Capture/Replay and
LLMs

Amirhossein Deljouyi∗
a.deljouyi@tudelft.nl

Delft University of Technology
Delft, Netherlands

ABSTRACT
Automatic unit test generators, particularly search-based software
testing (SBST) tools such as EvoSuite, efficiently generate unit test
suites with acceptable coverage. Although this removes the burden
of writing unit tests from developers, these generated tests often
pose challenges in terms of comprehension for developers. In my
doctoral research, I aim to investigate strategies to address the issue
of comprehensibility in generated test cases and improve the test
suite in terms of effectiveness. To achieve this, I introduce four
projects leveraging Capture/Replay and Large Language Model
(LLM) techniques.

Capture/Replay carves information from End-to-End (E2E) tests,
enabling the generation of unit tests containing meaningful test
scenarios and actual test data. Moreover, the growing capabilities
of large language models (LLMs) in language analysis and transfor-
mation play a significant role in improving readability in general.
Our proposed approach involves leveraging E2E test scenario ex-
traction alongside an LLM-guided approach to enhance test case
understandability, augment coverage, and establish comprehensive
mock and test oracles.

In this research, we endeavor to conduct both a quantitative
analysis and a user evaluation of the quality of the generated tests
in terms of executability, coverage, and understandability.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Automatic Test Generation, Carving and Replaying, Large Language
Models, Readability, Understandability, Unit Testing

ACM Reference Format:
Amirhossein Deljouyi. 2024. Understandable Test Generation Through Cap-
ture/Replay and LLMs. In 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3639478.3639789

This work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3639789

1 PROBLEM STATEMENT
In today’s software-dominated world, software reliability and accu-
racy hold immense importance [18]. Consequently, software quality
assurance has become an indispensable asset for software engineers.
Automated testing in the form of unit tests has become a crucial
element in ensuring high-quality software [6]. However, despite
the widely acknowledged significance of testing, writing tests is
seen as a tedious and time-consuming task [3, 7]. To alleviate this
burden on developers and testers, the research community has de-
voted considerable effort to developing and evaluating automatic
test generation approaches [1, 5, 12, 16].
Among the notable test generators are Randoop [22] and Evo-
Suite [12]. EvoSuite, for example, is a search-based test generator
that employs genetic algorithms to construct a test suite [15], which
has demonstrated convincing results in terms of coverage [14, 25].
There are, however, limitations in the quality of the test cases gen-
erated based on industrial case studies [2, 4, 13, 17, 23, 24, 28].

These limitations encompass challenges in (1) comprehending
the generated test cases, and (2) generating tests for complex sce-
narios, which need complex test data or specific mock objects [4].
One significant limitation revolves around the understandability
of the generated test cases, which involves various facets such as
meaningful test data, proper assertions, well-defined mock objects,
descriptive identifiers, lucid test names, as well as informative com-
ments and summaries. In addition, the difficulty in following the
scenario depicted in the test case and the ambiguity surrounding
the test data significantly hamper this clarity [2, 8].

While search-based unit test generators achieve reasonable test
coverage, they fall short in generating understandable tests and
struggle with generating tests for complex scenarios.

In this research, my focus is on enhancing the comprehensibility
of the generated unit tests and having effective tests that include
complex scenarios.

2 RESEARCH HYPOTHESIS
Myhypothesis is that the E2E tests can provide a basis for enhancing
the test suite at the unit test level with realistic and domain-specific
test scenarios, and that Large Language Models (LLMs) can make
generated test cases more like human-written tests. In addition,
traditional search-based approaches excel at boosting coverage and
generating highly executable tests.

I aim to leverage the strengths of both approaches, Capture/Replay
and LLMs, in search-based test generators to improve the under-
standability of the generated test cases while achieving high cover-
age all at once.

261

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3639478.3639789
https://doi.org/10.1145/3639478.3639789
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3639789&domain=pdf&date_stamp=2024-05-23


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Amirhossein Deljouyi

A. Capture/Replay
The test suite includes a variety of types of tests besides unit test-
ing, including End-to-End (E2E) testing [30]. The capture/replay
approach captures fine-grained execution information during End-
to-End (E2E) testing such as the order of method calls and the actual
inputs, and subsequently replays them [11, 33]. Capture/Replay
technique has been used to capture dynamic information for gen-
erating tests for regression testing [11] or reproduce a crash [10].
However, they have not been used in purpose of enhancing the
understandability of generated tests. It is my hypothesis that this
approach holds considerable potential to be used in the test genera-
tion process to have meaningful test scenarios, containing real and
complex test data and effective mock objects.
B. Large Language Models (LLMs)
The realm of Natural Language Processing (NLP) offers a variety
of techniques for test generation and optimization. These include
traditional NLP methods [34], Deep Learning approaches [26], and
the increasingly popular use of Large Language Models (LLMs).
These methods are particularly adept at handling text-based tasks,
with significant success in tasks like generating identifier names
and crafting informative comments and summaries [21, 26]. Recent
advancements in this domain have notably leaned towards deploy-
ing contemporary techniques, particularly focusing on LLMs [20,
21, 27, 31, 32]. These approaches involve fine-tuning pre-existing
models, specifically tailored for test generation. Additionally, LLMs
can enhance coverage when combined with Search-based algo-
rithms [19]. It is my hypothesis that when we combine LLMs with
search-based algorithms, we will be able to not only improve the
code coverage, but we can also improve the understandability of
the generated test cases.

3 THE EXPECTED CONTRIBUTIONS
My Ph.D. research centers around enhancing automated test case
generation by integrating capture/replay and LLMs with search-
based algorithms. The primary objective is to generate test cases
that are not only executable and cover a wide range of corner cases
but are also easily understandable by developers. Specifically, my
investigation is steered by the following research questions:
RQ1 Feasibility: Can the proposed approaches successfully gen-

erate executable unit tests?
RQ2 Understandability Evaluation: How do the tests gener-

ated by the proposed approaches compare to state-of-the-art
test generators in terms of understandability?

RQ3 Coverage Evaluation: How do the proposed approaches
perform in terms of test coverage compared to the current
leading test generators?

RQ4 Developers’ Perspectives: How do developers perceive
the understandability of generated tests compared to those
written manually?

In order to address these questions, I have outlined four key
research projects:
𝑹𝑷1 Generating understandable unit tests through E2E tests.
𝑹𝑷2 Generating understandable unit tests with high-coverage

through a combination of Search-Based algorithms and LLMs.
𝑹𝑷3 Seeding 𝑅𝑃2 with E2E Tests Scenario Carving.

𝑹𝑷4 An empirical study on test comprehension and a comparison
of different approaches from the developer’s perspective.

I started with 𝑹𝑷1, where we introduced the MicroTestCover
approach that generates unit tests starting from manual or scripted
end-to-end tests. This led to test cases containing meaningful test
scenarios and containing actual test data. The results of this study
have been published in the following paper [9]:

Generating Understandable Unit Tests through End-to-
End Test Scenario Carving
Amirhossein Deljouyi, Andy Zaidman. In Proceedings of the
23rd IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2023), pp. 107-118.

In 𝑹𝑷2, our next step, I aim to expand my inquiry by integrat-
ing LLMs with a search-based test generator, EvoSuite, striving
to achieve a higher level of comprehensibility and coverage. Pro-
gressing to 𝑹𝑷3, we plan to combine dynamic information and the
carved tests from E2E testing and the approach outlined in 𝑅𝑃2. My
hypothesis is that providing Search-Based algorithms and LLMs
with realistic and domain-specific test scenarios will lead to the
creation of more contextually relevant and understandable tests.

Finally, in 𝑹𝑷4, I aim to gather insights from developers/testers
about the understandability of the generated test cases by the pro-
posed approaches. Conducting an empirical human study, which
is a notable gap, is crucial to determining comprehension of the
generated tests by state-of-the-art approaches from the point of
view of developers.

Research Impact, Who-What-How [29]: Software engineers
and the research community will benefit from this research, partic-
ularly through tools for generating understandable unit tests and
providing critical insights into the impact of various automated test
generation approaches on test case comprehension. For instance,
consider a common scenario in software development where a
system is rapidly evolving and primarily relies on E2E tests. Soft-
ware engineers can generate understandable unit tests with the
innovations in this research, enabling faster and more precise fault
localization. In addition to speeding up testing, understandable tests
are easier to modify, update, and reuse.

4 EVALUATION PLAN
In 𝑹𝑷1, we conducted an exploratory case study involving four
software systems to assess the feasibility of MicroTestCarver. Ad-
ditionally, a user study with 20 participants was carried out to
compare the understandability of MicroTestCarver-generated tests
with EvoSuite-generated and manually-written test cases.

For 𝑹𝑷2 and 𝑹𝑷3, our focus lies in evaluating the proposed ap-
proaches through both case studies and human studies. The case
studywill measure the approaches in terms of coverage, performance-
efficiency/cost, and mutation score. Simultaneously, the human
study aims to gauge the understandability of these approaches.

𝑹𝑷4 entails a comprehensive human study to grasp developers’
perspectives regarding the generated test cases.

ACKNOWLEDGMENTS
This research is done at Delft University of Technology under the
supervison of Professor Andy Zaidman.

262



Understandable Test Generation Through Capture/Replay and LLMs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-

Walawege. 2010. A Systematic Review of the Application and Empirical Inves-
tigation of Search-Based Test Case Generation. IEEE Trans. Software Eng. 36, 6
(2010), 742–762.

[2] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-
felds. 2017. An Industrial Evaluation of Unit Test Generation: Finding Real
Faults in a Financial Application. In Int’l Conf. on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). IEEE, 263–272.

[3] Maurício Finavaro Aniche, Christoph Treude, and Andy Zaidman. 2022. How
Developers Engineer Test Cases: An Observational Study. IEEE Trans. Software
Eng. 48, 12 (2022), 4925–4946.

[4] Andrea Arcuri. 2018. An experience report on applying software testing academic
results in industry: we need usable automated test generation. Empirical Software
Engineering 23, 4 (2018), 1959–1981.

[5] Luciano Baresi andMatteoMiraz. 2010. TestFul: automatic unit-test generation for
Java classes. In 32nd IEEE/ACM International Conference on Software Engineering
(ICSE). ACM, 281–284.

[6] Kent L. Beck. 2003. Test-Driven Development - By Example. Addison-Wesley.
[7] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven

Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Trans. Software Eng. 45, 3 (2019), 261–284.

[8] Carolin E. Brandt and Andy Zaidman. 2022. Developer-centric test amplification.
Empir. Softw. Eng. 27, 4 (2022), 96.

[9] ADeljouyi and AE Zaidman. 2023. Generating Understandable Unit Tests through
End-to-End Test Scenario Carving. In Proceedings of the 23rd IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM). 107–118.

[10] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and Arie
van Deursen. 2020. Search-based crash reproduction using behavioural model
seeding. Softw. Test. Verification Reliab. 30, 3 (2020).

[11] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.
2006. Carving Differential Unit Test Cases from System Test Cases. In Proc. Int’l
Symposium on Foundations of Software Engineering (FSE). ACM, 253–264.

[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proc. Joint Meeting Symp. Foundations
of Software Engineering and the European Softw. Eng. Conf. (ESEC/FSE). ACM,
416–419.

[13] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite: On the Challenges of Test Case
Generation in the Real World. In International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 362–369.

[14] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[15] Gordon Fraser and Andrea Arcuri. 2015. Achieving scalable mutation-based
generation of whole test suites. Empirical Software Engineering 20, 3 (2015),
783–812.

[16] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2015. Does Automated Unit Test Generation Really Help Software Testers?
A Controlled Empirical Study. ACM Trans. Softw. Eng. Methodol. 24, 4 (2015),
23:1–23:49.

[17] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C.
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019),
312–327.

[18] Amy J. Ko, Bryan Dosono, and Neeraja Duriseti. 2014. Thirty years of software
problems in the news. In Proc. Int’l Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE). ACM, 32–39.

[19] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 919–931.

[20] Vadim Liventsev, Anastasiia Grishina, Aki Härmä, and Leon Moonen. 2023. Fully
Autonomous Programming with Large Language Models. In Proceedings of the
Genetic and Evolutionary Computation Conference. ACM.

[21] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshyvanyk, R. Oliveto,
and G. Bavota. 2021. Studying the usage of text-to-text transfer transformer
to support code-related tasks. 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE) (2021).

[22] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-Directed Ran-
dom Testing for Java. In Conf. on Object-Oriented Programming Systems and
Applications (OOPSLA-Companion). ACM, 815–816.

[23] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the Diffusion of Test Smells in Automatically Generated
Test Code: An Empirical Study. In 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST). 5–14.

[24] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic Test Case Generation: What If Test Code Quality
Matters?. In Proceedings of the 25th International Symposium on Software Testing

and Analysis (ISSTA). ACM, 130–141.
[25] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-

mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Trans. Software Eng. 44 (2018), 122–158.

[26] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-
Enhancer: Improving the readability of automatically generated tests. In Proc.
Int’l Conf. on Automated Software Engineering (ASE). 287–298.

[27] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Generation.
arXiv:2302.06527 [cs.SE]

[28] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In International Conference
on Automated Software Engineering (ASE). IEEE, 201—-211.

[29] Margaret-Anne Storey, Neil A Ernst, CourtneyWilliams, and Eirini Kalliamvakou.
2020. The who, what, how of software engineering research: a socio-technical
framework. Empirical Software Engineering 25 (2020), 4097–4129.

[30] Ham Vocke. 2018. The Practical Test Pyramid. https://martinfowler.com/articles/
practical-test-pyramid.html

[31] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software Testing with Large Language Model: Survey, Landscape,
and Vision. arXiv:2307.07221 [cs.SE]

[32] Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen.
2023. LLM for Test Script Generation and Migration: Challenges, Capabilities,
and Opportunities. arXiv:2309.13574 [cs.SE]

[33] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. The Fuzzing Book. CISPAHelmholtz Center for Information Security.

[34] Benwen Zhang, Emily Hill, and James Clause. 2016. Towards Automatically
Generating Descriptive Names for Unit Tests. In Proc. Int’l Conf. on Automated
Software Engineering (ASE). ACM, 625–636.

263

https://arxiv.org/abs/2302.06527
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://arxiv.org/abs/2307.07221
https://arxiv.org/abs/2309.13574

