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ABSTRACT
Automatic unit test generators, particularly search-based software
testing (SBST) tools such as EvoSuite, efficiently generate unit test
suites with acceptable coverage. Although this removes the burden
of writing unit tests from developers, these generated tests often
pose challenges in terms of comprehension for developers. In my
doctoral research, I aim to investigate strategies to address the issue
of comprehensibility in generated test cases and improve the test
suite in terms of effectiveness. To achieve this, I introduce four
projects leveraging Capture/Replay and Large Language Model
(LLM) techniques.

Capture/Replay carves information from End-to-End (E2E) tests,
enabling the generation of unit tests containing meaningful test
scenarios and actual test data. Moreover, the growing capabilities
of large language models (LLMs) in language analysis and transfor-
mation play a significant role in improving readability in general.
Our proposed approach involves leveraging E2E test scenario ex-
traction alongside an LLM-guided approach to enhance test case
understandability, augment coverage, and establish comprehensive
mock and test oracles.

In this research, we endeavor to conduct both a quantitative
analysis and a user evaluation of the quality of the generated tests
in terms of executability, coverage, and understandability.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
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1 PROBLEM STATEMENT
In today’s software-dominated world, software reliability and accu-
racy hold immense importance [18]. Consequently, software quality
assurance has become an indispensable asset for software engineers.
Automated testing in the form of unit tests has become a crucial
element in ensuring high-quality software [6]. However, despite
the widely acknowledged significance of testing, writing tests is
seen as a tedious and time-consuming task [3, 7]. To alleviate this
burden on developers and testers, the research community has de-
voted considerable effort to developing and evaluating automatic
test generation approaches [1, 5, 12, 16].
Among the notable test generators are Randoop [22] and Evo-
Suite [12]. EvoSuite, for example, is a search-based test generator
that employs genetic algorithms to construct a test suite [15], which
has demonstrated convincing results in terms of coverage [14, 25].
There are, however, limitations in the quality of the test cases gen-
erated based on industrial case studies [2, 4, 13, 17, 23, 24, 28].

These limitations encompass challenges in (1) comprehending
the generated test cases, and (2) generating tests for complex sce-
narios, which need complex test data or specific mock objects [4].
One significant limitation revolves around the understandability
of the generated test cases, which involves various facets such as
meaningful test data, proper assertions, well-defined mock objects,
descriptive identifiers, lucid test names, as well as informative com-
ments and summaries. In addition, the difficulty in following the
scenario depicted in the test case and the ambiguity surrounding
the test data significantly hamper this clarity [2, 8].

While search-based unit test generators achieve reasonable test
coverage, they fall short in generating understandable tests and
struggle with generating tests for complex scenarios.

In this research, my focus is on enhancing the comprehensibility
of the generated unit tests and having effective tests that include
complex scenarios.

2 RESEARCH HYPOTHESIS
Myhypothesis is that the E2E tests can provide a basis for enhancing
the test suite at the unit test level with realistic and domain-specific
test scenarios, and that Large Language Models (LLMs) can make
generated test cases more like human-written tests. In addition,
traditional search-based approaches excel at boosting coverage and
generating highly executable tests.

I aim to leverage the strengths of both approaches, Capture/Replay
and LLMs, in search-based test generators to improve the under-
standability of the generated test cases while achieving high cover-
age all at once.
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A. Capture/Replay
The test suite includes a variety of types of tests besides unit test-
ing, including End-to-End (E2E) testing [30]. The capture/replay
approach captures fine-grained execution information during End-
to-End (E2E) testing such as the order of method calls and the actual
inputs, and subsequently replays them [11, 33]. Capture/Replay
technique has been used to capture dynamic information for gen-
erating tests for regression testing [11] or reproduce a crash [10].
However, they have not been used in purpose of enhancing the
understandability of generated tests. It is my hypothesis that this
approach holds considerable potential to be used in the test genera-
tion process to have meaningful test scenarios, containing real and
complex test data and effective mock objects.
B. Large Language Models (LLMs)
The realm of Natural Language Processing (NLP) offers a variety
of techniques for test generation and optimization. These include
traditional NLP methods [34], Deep Learning approaches [26], and
the increasingly popular use of Large Language Models (LLMs).
These methods are particularly adept at handling text-based tasks,
with significant success in tasks like generating identifier names
and crafting informative comments and summaries [21, 26]. Recent
advancements in this domain have notably leaned towards deploy-
ing contemporary techniques, particularly focusing on LLMs [20,
21, 27, 31, 32]. These approaches involve fine-tuning pre-existing
models, specifically tailored for test generation. Additionally, LLMs
can enhance coverage when combined with Search-based algo-
rithms [19]. It is my hypothesis that when we combine LLMs with
search-based algorithms, we will be able to not only improve the
code coverage, but we can also improve the understandability of
the generated test cases.

3 THE EXPECTED CONTRIBUTIONS
My Ph.D. research centers around enhancing automated test case
generation by integrating capture/replay and LLMs with search-
based algorithms. The primary objective is to generate test cases
that are not only executable and cover a wide range of corner cases
but are also easily understandable by developers. Specifically, my
investigation is steered by the following research questions:
RQ1 Feasibility: Can the proposed approaches successfully gen-

erate executable unit tests?
RQ2 Understandability Evaluation: How do the tests gener-

ated by the proposed approaches compare to state-of-the-art
test generators in terms of understandability?

RQ3 Coverage Evaluation: How do the proposed approaches
perform in terms of test coverage compared to the current
leading test generators?

RQ4 Developers’ Perspectives: How do developers perceive
the understandability of generated tests compared to those
written manually?

In order to address these questions, I have outlined four key
research projects:
𝑹𝑷1 Generating understandable unit tests through E2E tests.
𝑹𝑷2 Generating understandable unit tests with high-coverage

through a combination of Search-Based algorithms and LLMs.
𝑹𝑷3 Seeding 𝑅𝑃2 with E2E Tests Scenario Carving.

𝑹𝑷4 An empirical study on test comprehension and a comparison
of different approaches from the developer’s perspective.

I started with 𝑹𝑷1, where we introduced the MicroTestCover
approach that generates unit tests starting from manual or scripted
end-to-end tests. This led to test cases containing meaningful test
scenarios and containing actual test data. The results of this study
have been published in the following paper [9]:

Generating Understandable Unit Tests through End-to-
End Test Scenario Carving
Amirhossein Deljouyi, Andy Zaidman. In Proceedings of the
23rd IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2023), pp. 107-118.

In 𝑹𝑷2, our next step, I aim to expand my inquiry by integrat-
ing LLMs with a search-based test generator, EvoSuite, striving
to achieve a higher level of comprehensibility and coverage. Pro-
gressing to 𝑹𝑷3, we plan to combine dynamic information and the
carved tests from E2E testing and the approach outlined in 𝑅𝑃2. My
hypothesis is that providing Search-Based algorithms and LLMs
with realistic and domain-specific test scenarios will lead to the
creation of more contextually relevant and understandable tests.

Finally, in 𝑹𝑷4, I aim to gather insights from developers/testers
about the understandability of the generated test cases by the pro-
posed approaches. Conducting an empirical human study, which
is a notable gap, is crucial to determining comprehension of the
generated tests by state-of-the-art approaches from the point of
view of developers.

Research Impact, Who-What-How [29]: Software engineers
and the research community will benefit from this research, partic-
ularly through tools for generating understandable unit tests and
providing critical insights into the impact of various automated test
generation approaches on test case comprehension. For instance,
consider a common scenario in software development where a
system is rapidly evolving and primarily relies on E2E tests. Soft-
ware engineers can generate understandable unit tests with the
innovations in this research, enabling faster and more precise fault
localization. In addition to speeding up testing, understandable tests
are easier to modify, update, and reuse.

4 EVALUATION PLAN
In 𝑹𝑷1, we conducted an exploratory case study involving four
software systems to assess the feasibility of MicroTestCarver. Ad-
ditionally, a user study with 20 participants was carried out to
compare the understandability of MicroTestCarver-generated tests
with EvoSuite-generated and manually-written test cases.

For 𝑹𝑷2 and 𝑹𝑷3, our focus lies in evaluating the proposed ap-
proaches through both case studies and human studies. The case
studywill measure the approaches in terms of coverage, performance-
efficiency/cost, and mutation score. Simultaneously, the human
study aims to gauge the understandability of these approaches.

𝑹𝑷4 entails a comprehensive human study to grasp developers’
perspectives regarding the generated test cases.
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