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• Propose an LCA-based analysis scheme
for parameter optimization of environ-
mental technologies

• Integration of LCA into optimization
process allows proactive assessment be-
fore parameters are predetermined.

• Key parameters that are likely to cause
contradictory influences on different
objectives can be identified.

• A case study concerning bioaugmenta-
tion of constructed wetland was con-
ducted.

• Total environmental impacts of cultivat-
ing the strain Arthrobacter sp. ZXY-2
was reduced 13% to 50% via eco-design.
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Life cycle assessment (LCA) has proven to be a useful tool in assessing environmental technologies in a retrospec-
tive manner. To fully uncover the environmental improvement potential while advancing technologies under
technical and environmental constraints, this study recommended approaching the LCA proactively to assess
the progress of parameter optimization before determining critical parameters. To that end, the present work in-
troduced a multimethod eight-step (MMES) analysis scheme, which included an integration of LCA with
Plackett-Burman multifactorial design, central composite design, and multi-objective optimization. By creating
a large number of scenarios through experimental design, we jointly optimized technical efficiency and environ-
mental sustainability, which allowed for the identification of critical parameters that likely had contradictory in-
fluences on different objectives. Through a case study concerning the bioaugmentation of constructed wetland
(CW), we applied the MMES scheme to optimize the culture conditions of the strain Arthrobacter sp. ZXY-2 for
enhanced atrazine removal. The results showed that, by reducing the Na2HPO4·12H2O concentration from
6.5 g/L to 6 g/L in the culture condition, we decreased the freshwater ecotoxicity potential and maintained a
high level of atrazine removal. Regarding the production process of microbial inocula, the strain ZXY-2 grown
at the optimized culture reduced the total environmental impact from13% to 50% comparedwith the original cul-
ture and helped the CW exhibit more favorable atrazine-removal performance. Taken together, the case study
demonstrated the effectiveness of using the MMES scheme for parameter optimization of environmental tech-
nologies. For future development, the MMES scheme should extend the application to more fields and refine un-
certainty management.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing requirement for global environmental sustain-
ability, the development of environmental technologies not only should
enhance the capacity of pollutant removal but also avoid problems
shifting from one environmental aspect to others (Golroudbary et al.,
2019). It is necessary and significant to consider both technical efficien-
cies and environmental implications jointly when efforts are made to
optimize the technical parameters for practical application (Flores-
Alsina et al., 2010; Hakanen et al., 2013). Life cycle assessment (LCA),
as a standardized method that strives to capture all of the environmen-
tal flows connected to a product or process, has proven to be a feasible
approach for generating valuable knowledge to advance the environ-
mental optimization of technical parameters (Foulet et al., 2019;
Hauschild et al., 2013; Tsang et al., 2017).

Despite the wide application of LCA, this method has focusedmainly
on evaluation in which most of the critical parameters have been
predetermined. The accomplishment of the parameter optimization
has gone beyond the conventional framework of LCA. As guided by
ISO 14040–14,044 standards (International Organization for
Standardization (ISO, 1997)), a typical application of LCA is to model
and assess the environmental impacts of products or processes that
have been used commercially with sufficient information and data
available from empirical experience (Finnveden et al., 2009; Guinee
et al., 2011). In the environmental impact assessment, the technical di-
mension was not the primary concern, and no specific procedure has
been designed within the LCA framework to facilitate parameter
optimization.

Optimization of the technical parameters will undergo complicated
processes, involving many elements, such as multidimensional objec-
tives and multiple parameters (Rajyalakshmi and Ramaiah, 2013). On
one hand, multidimensional objectives that cover both technical and
environmental dimensions should be considered jointly during the op-
timization process. Because of the specific professional requirement of
environmental technologies for pollutant removal, the technical effi-
ciency ought to be maintained at favorable levels when efforts are
made to decrease the environmental burdens. On the other hand, pa-
rameter optimization needs to deal with a large number of parameters.
Those parameters usually are kept within specific ranges of values
rather than being fixed with absolute values. Interactions exist among
parameters, and the combined effects could be over and above the
sum of parameters acting on individual levels. Complexity can be exac-
erbated when considering that the incorporation of LCA will introduce
more environmental output variables (e.g., resource consumptions
and climate change), although alterations in one parameter may gener-
ate conflicting impacts or unexpected variations in results.

To promote the parameter optimization by considering all of the el-
ements mentioned thus far, one option is to integrate and connect LCA
with other scientific tools. First, trade-offs between multidimensional
objectives are important to determine the optimal parameters, and
the application of multi-objective optimization (MOO) could facilitate
such a process (Coello, 2006). Second, Plackett-Burman (PB)multifacto-
rial design and central composite design (CCD) are efficient approaches
for isolation, investigation, and optimization of the influential factors for
products or processes (Almomani, 2020; Levin et al., 2005). These ap-
proaches could be used to extend the LCA framework to address all of
the parameter-related factors, including relative importance (RI), spe-
cific value ranges, parameter interactions, and combined effects. Signif-
icant effort has been made to deepen and broaden the LCA
methodologies beyond the current ISO framework for extended func-
tions and improved analysis. For instance, Azapagic (1999) proposed a
methodological framework called “life-cycle process design” with the
inclusion of linear programming to capture the Pareto-optimal sets for
optimizing production alternatives.Wernet et al. (2010) applied the ar-
tificial neural network to estimate life-cycle inventory and predict char-
acterization results for LCA impact categories based on the molecular
structure of the target chemicals. Gavankar et al. (2014) introduced a
scheme coupling LCAwith the technology andmanufacturing readiness
levels, which could contextualize a technology's development stage to
overcome the lack of large-scale production data. Bai et al. (2018a) inte-
grated LCA with conjoint analysis (CA) to facilitate the involvement of
stakeholders in the LCA outcome communication and the decision-
making process. To the best of our knowledge, however, no well-
established LCA-based scheme exists for guiding the parameter optimi-
zation when environmental technologies are developed under the con-
straints of both technical efficiency and environmental sustainability. In
this regard, the present work proposed that the integration of LCA with
PB design, CCD, and MOO could enable the establishment of such a
scheme. An effort to integrate the four methods appears to be feasible
because previous studies had shown successful combinations between
PB and CCD (Warda et al., 2016), LCA and MOO (Antipova et al.,
2014), as well as PB and LCA (Bai et al., 2019).

In this study, we proposed a multimethod eight-step analysis
scheme (MMES) by integrating LCA with MOO, PB, and CCD design.
This framework is intended for the parameter optimization of environ-
mental technologies to satisfy multidimensional goals. The following
sections start from the descriptions of typical procedures of the MMES
framework. To demonstrate how to apply the proposed framework, a
case study is conducted concerning the optimization of cultivation pa-
rameters of the strain Arthrobacter sp. ZXY-2, which is a bioaugmenta-
tion candidate for enhanced atrazine removal from wastewater.

2. Methodology

2.1. Assessment framework

Fig. 1 shows the MMES framework consisting of eight steps, which
systemically integrates LCA with multiple scientific methods.

Step 1: Selection of parameters to be tested.

We started by determining the parameters to be tested. A list of pa-
rameters that will affect the design of emerging technologies was re-
quired, with the assigned values having upper and lower limits.
Reasonable ranges of parameters were necessary, but they did not
need to have identical sizes.

Step 2: Experimental design.

We then used these parameters for experimental design to generate
a series of scenarios consisting of parameters (X1, X2, … Xn) and objec-
tives (Y1, Y2,… Ym). Two options applied to environmental design: com-
plete factorial design and fractional factorial design. Implementing a
complete factorial design is a common approach, which would include
all of the possible combinations of selected parameters with upper
and lower limits (Masetto et al., 2001).When the number of parameters
is limited, using such a design can guarantee themaximum information
generated to reveal the main effects of various parameters and the in-
teractions between parameters of all orders. Performing a complete fac-
torial design would be inconvenient when a large number of
parameters exist, however, because an unmanageable number of sce-
narios would be required to conduct the experiments and LCA analysis.
For example, for an experimental design with 10 parameters, a total of
1024 scenarios (210) would be generated if each parameter was
assigned with high and low values, meaning that 1024 sets of experi-
ments should be conducted. Implementation of the same number of
LCA analysis would double the workload, and thus full consideration



Fig. 1. The multi-method eight-step analysis scheme proposed in this study.
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of all scenarios would not be practicable for researchers facedwithmul-
tiple restraints of time, resources, and finance. In this case, the applica-
tion of a fractional factorial design using specific methods, e.g., the
orthogonal test (Gunst and Mason, 2009), would be recommended to
simplify the work.

Step 3: Data acquisition based on LCA and technical measurement.

We next acquired the data. On the basis of the experimental design,
we quantified two types of objectives in each scenario: technical
efficiency-related objectives (YT) and environmental sustainability-
related objectives (YE). Specifically, we determined YT by performing a
series of technical measurements that were closely related to the spe-
cific technology type. Calculation of YE depended on the implementa-
tion of LCA, following the standardized procedures defined by the ISO:
goal and scope definition, inventory analysis, life-cycle impact assess-
ment, and interpretation (Finkbeiner et al., 2006). We compiled an in-
ventory in each scenario through energy consumption, chemical
addition, and environmental emissions from the technical parameters
(X1, X2, … Xn). Quantification of impact-assessment results could use
the process LCA model as follows (Heijungs and Suh, 2013):

YE ¼ Qr ¼ QDA−1 f ; ð1Þ

where YE represents the vector of characterization results for all of the
impact categories; Q is the matrix of characterization factors for each
impact category; and r is the inventory matrix that is calculated by
jointly processingD, A, and f, where A is the technologymatrix showing
inflows and outflows for a certain process,D is the environmental inter-
ventionmatrix that indicates the resource use and emissions associated
with inflows and outflows, and f is a vector of final demands for techno-
logical modules.
Step 4: Identification of influential parameter.

Given each scenario (an assembly of parameters) and the associated
objectives (the obtained data), we used the PB design to investigate the
influence of the parameters on each objective. The PB design, known as
a two-level factorial experimental design, can be used to select themost
important factor from numerous investigative variables through a few
experiments (Vanaja and Shobha Rani, 2007). We recommended that
this step focus on the technical efficiency-related objectives (YT), to de-
termine the parameters that are significant to ensure the fundamental
functions of environmental technologies (e.g., pollutant removal) and
to omit the insignificant parameters for a manageable number of pa-
rameters in the subsequent step.

For the experimental results obtained by employing the PB design,
we defined the impacts of parameters by the first-order polynomial lin-
ear equation as follows:

y ¼ β0 þ
Xk
i¼1

βiXi i ¼ 1;…; kð Þ; ð2Þ

where y is the response (YT); β0 denotes the average of all responses;
and β1-βk represents the coefficients of input parameters Xi calculated
by multiple linear regression.

Step 5: Examination of combined effects of parameters.

For the isolatedparameters, we used the CCD to detect the combined
effects of multiple parameters onmultidimensional objectives, with the
investigation of interrelationships between parameters. To determine
the critical parameters that result in themaximum orminimum output,
we fitted the investigative output using the two-order model according
to the following equation:
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y ¼ β0 þ
Xk
i¼1

βiXi þ
Xk
i¼1

βiiX
2
i þ

Xk
1≤ i≤ j

βijXiX j þ ε i; j ¼ 1;…; kð Þ; ð3Þ

where y is the response (YT or YE); β0 is the constant term; βi, βij, and βii

represent the coefficients of the linear parameters, interaction parame-
ters and quadratic parameters, respectively; Xi and Xj are input param-
eters; and ε is the residual associated to the experiments.

Step 6: Parameter optimization employing MOO.

When jointly considering the efficiency dimension (YT) and environ-
ment dimension (YE) for the development of environmental technolo-
gies, we identified the optimum parameters to meet the requirement
of one dimension without destroying another dimension's need. The
use of the MOO satisfied multiple goals simultaneously. Typically, the
idea of Pareto optimality is introduced to describe the solutions for
MOO problems (Chankong and Haimes, 1993). The general MOO prob-
lem is proposed as follows:

Minimize : Y xð Þ ¼ Y1 xð Þ;Y2 xð Þ;…; Yk xð Þ½ �T ; and

subject to : φ j xð Þ≤0; j ¼ 1;2;…m;
ð4Þ

where k is the number of objective functions; m is the number of in-
equality constraints; x ∈ En is a vector of design variables; and Y
(x) ∈ Ek is a vector of objective functions Yi(x) : En → E1.

Step 7: Determination of the optimum parameters.

We obtained a group of Pareto optimal solutions using MOO. To de-
termine a single suitable solution, we selectively assigned weights for
various objectives using the MMES scheme.

(a) Weighted summethod

This method entailed selecting weights wi and minimizing the fol-
lowing composite objective function (Marler and Arora, 2010):

U ¼ ∑i¼1
kwiYi xð Þ; and ∑k

i¼1wi ¼ 1: ð5Þ

In this way, we artificially assigned the weights of each target, with
the sum of all of the targets' weights adding up to 1% or 100%. With a
weight matrix that consisted of different sets of weight values, we
formed a solution matrix by obtaining various sets of optimal parame-
ters. This optimal parameter matrix can serve as an information pool,
whichwill be helpful for: (1) investigating how the changes of objective
importance affect the determination of optimal parameters, and (2) in-
cluding stakeholders to decide the optimal solution to use for future
efforts.

(b) Stakeholder involvement

Incorporating environmental sustainability when performing pa-
rameter optimization indicates the integration of new stakeholders
(e.g., LCA experts) into the design team of environmental technologies.
In this regard, we included CA in the MMES analysis scheme to support
the practice of integrating stakeholder's viewpoints into the identifica-
tion of optimum parameters. Employing CA first required the definition
of attributes, levels, and product profiles (Alriksson andÖberg, 2008). In
the presentwork, we divided the attributes of any emerging technology
into two classes: technical efficiency and environmental sustainability,
which were represented by YT and YE, respectively. For each attribute,
we determined the levels according to the quantitative outcome ob-
tained from either the experimental process or the LCA analysis. On
the basis of combinations of attributes and levels, we constructed prod-
uct profiles to build a bundle of hypothesized alternatives that
represented a set of hypothesized decision situations. In these situa-
tions, stakeholders could be invited to demonstrate preferences by
ranking the hypothesized alternatives.

After collecting preference data from all of the stakeholders in-
volved, the RI of each attribute can be derived using the following statis-
tical analyses:

ξp ¼
max
q

ξpq
� �

− min
q

ξpq
� �

∑p max
q

ξpq
� �

− min
q

ξpq
� �� � ð6Þ

where ξp represents the RI value of the p-th attribute, and ξpq is the util-
ity estimate of the q-th level for the p-th attribute. Detailed processes
about the calculation of ξpq have been presented in our previous studies
(Bai et al., 2018a; Bai et al., 2018b). The RI values, to a certain extent, are
equated with the intrinsic viewpoints of stakeholders concerning the
trade-offs between different objectives. Hence, using the RI values in
Eq. (6) helped determine a single Pareto optimal solution for an MOO
problem defined as Eq. (5).

Step 8: Application test.

The last step focused on investigating the application performance of
optimum parameters, and we preferred a comprehensive analysis cov-
ering environment, efficiency, and economy. Application of the opti-
mum parameters at a pilot or industrial scale tests is recommended
but not mandatory because designing large-scale experiments may be
not available to all environmental technologies.

2.2. Case study: eco-design of bioaugmentation for atrazine removal

To demonstrate how to apply the MMES analysis scheme, we ex-
plored an illustrative case of enhanced wastewater treatment through
bioaugmentation. This case study focused on the optimization of culti-
vation conditions of strain Arthrobacter sp. ZXY-2, a potential candidate
for bioaugmentation in constructed wetland (CW).

2.2.1. Background and objective
In recent years, increased demand for clean aquatic environment has

driven rapid development of emerging technologies for wastewater
treatment (Ahmed et al., 2017; Grady Jr et al., 2011; Zhou et al., 2018).
Bioaugmentation has been intensively investigated to enhance biodeg-
radation and the removal of targeted pollutants with the addition of
specialized microbial strains (Liu et al., 2018; Nguyen et al., 2019;
Stephenson and Stephenson, 1992; Zang et al., 2020).

In general, determination of the optimum cultivation conditions for
making efficientmicrobial inocula is key to successful application of bio-
augmentation. This process commonly takes place in the laboratory,
expecting the cultivation conditions with the highest pollutant removal
(Zhao et al., 2016; Zhao et al., 2019).When certain microbial strains are
employed, the cultural conditions normally serve as predetermined pa-
rameters, receiving limited attention in subsequent application. An LCA
analysis, however, has revealed that processing and producing micro-
bial strains could occupy a large proportion of negative environmental
burdens along with the life cycle of bioaugmentation, accounting for
33.3% and 32.5% in fossil consumptions and global warming, respec-
tively (Zhao et al., 2017). Once such unfavorable environmental influ-
ences are formed, they are often difficult to avoid or reduce, because
the environmental improvement potential has been locked in the labo-
ratory stage. Thus, the ability to develop sustainable cultivation condi-
tions is both legitimate and necessary to improve the environmental
performance along the whole chain of bioaugmentation.

We applied the MMES analysis scheme to a case study concerning
the bioaugmentation of CW for enhanced atrazine removal.We selected
an atrazine-degrading strain Arthrobacter sp. ZXY-2, which has been
identified as a potential candidate for bioaugmentation in CW (Zhao
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et al., 2018), as the research object. This case study first focused on the
isolation, evaluation, and optimization of the culture conditions. Then,
we built a group of pilot-scale CWs, whichwere operated in continuous
flow with the addition of Arthrobacter sp. We implemented a compre-
hensive technical, environmental, and economic analysis to test
whether the optimum culture conditions could contribute to improving
the sustainability of bioaugmentation using strain ZXY-2.

2.2.2. Parameter list
Following the MMES analysis scheme, we selected 15 parameters to

cultivate ZXY-2, with the value ranges determined according to the
basic cultural condition to enrich the medium. The parameters tested
included temperature (20 °C–40 °C), pH (5–9), shaking speed
(100–200 r/min), inoculum size (1–10%(v/v)), and concentrations of
glucose (0–2 g/L), sucrose (0–2 g/L), sodium citrate (0–2 g/L), KNO3

(0–0.5 g/L), NH4Cl (0–0.5 g/L), isopropylamine (0–5 mL/L), KH2PO4

(1–1.5 g/L), Na2HPO4·12H2O (2–12 g/L), FeSO4·7H2O (0–0.02 g/L),
MgSO4·7H2O (0–0.2 g/L), and atrazine (50–150 mg/L).

2.2.3. First experimental design
We first conducted experimental design to screen the parameters

that significantly affected atrazine removal of ZXY-2. We formed a
total of 54 scenarios using the fractional factorial design. Coded values
for each scenario were given to the independent variables, with +1,
−1, and 0 as upper limit, lower limit, and center level, respectively.

2.2.4. First data acquisition: laboratory experiments
Weperformed only laboratory experiments for all of the scenarios in

this phase. We assessed each scenario after 8 h of incubation and tested
each in triplicate, using average atrazine-removal percentage (ARP; %)
as the response. To assess the ARP, we extracted it with dichlorometh-
ane and then filtered it using a sterile filter (Sartorius Stedim, Göttingen,
Germany) with a 0.22-μm pore size. We performed the analysis using
high-performance liquid chromatography (Shimadzu, Kyoto, Japan)
equipped with a C18 column (length 25 cm, internal diameter
4.6 mm, Varian) and an ultraviolet detector at 220 nm wavelength.
The mobile phase consisted of acetonitrile/water (6/4, v/v) at a flow
rate of 1.0 mL/min. We injected samples with an injection volume of
20 μL.We calculated atrazine concentration by comparison with a stan-
dard curve (Li et al., 2008).

2.2.5. PB analysis for significance testing
With the use of PB analysis,we examined theRI of each parameter to

screen the factors that could exert significant effects on the response
variables. Considering that the fundamental function of the strain
ZXY-2 is to remove atrazine, we thus selected the ARP as the single re-
sponse (technical efficiency-related variable) for the PB design. We
employed a Minitab 17.1 (Minitab Inc., State College, PA, USA) to con-
duct the statistical analysis. We considered parameters that showed a
significant effect (p b .01) in the regression analysis as the significant
factors, which we evaluated in the following investigations.

2.2.6. Second experimental design
We then conducted an experimental design for CCD analysis and pa-

rameter optimization. Depending on how many parameters were con-
sidered to be significant in the previous phase, we generated a certain
number of scenarios using the fractional factorial design. Coded values
for each scenario were given to the independent variables, with +1,
−1, and 0 as upper limit, lower limit, and center level, respectively.

2.2.7. Second data acquisition: laboratory experiments and environmental
impact assessment

We considered both the technical efficiency and environmental sus-
tainability as the response variables.We tested the ARP as the represen-
tative of technical output, and the examination of the ARP followed the
same experimental processes as described earlier.
For the environmental impact assessment (LCA), we selected global
warming, abiotic depletion of fossil fuels, acidification, human toxicity,
and freshwater aquatic ecotoxicity as impact categories. The parameters
with specific values could be seen as the life-cycle inventory. We de-
fined the functional unit as 1000 Lwastewater containing 50mg/L of at-
razine. System boundaries covered all of the energy requirements,
substance consumption, and environmental emissions associated with
these parameters. By connecting the inventory data with the ecoinvent
Database (version 3.5), we performed an impact assessment for each
scenario according to the CML method (developed by Leiden Univer-
sity). Both of these indicators have been characterized inside the LCA
framework with an integral calculation framework using the openLCA
software.

2.2.8. CCD analysis for examining parameter influence
We implemented CCD analysis in this phase to explain the interac-

tive effects between factors on atrazine removal and environmental sus-
tainability. We used Minitab 17.1 for graphic analyses of the interactive
effects and to establish regressions between the responses and the
parameters.

2.2.9. Determination of optimum cultivation conditions for strain ZXY-2
We implemented an MOO, based on the nondominated sorting ge-

netic algorithm II (Deb et al., 2000), with the simultaneous consider-
ation for the multiple objectives to determine the Pareto solutions. We
included three objectives: maximization of ARP, minimization of FAET,
and minimization of ADF. We used the weighted summethod to assign
weight value to each objective, with a higher value indicating higher RI.
The sum of the weight values for the three objectives was 100%.
Through trade-offs between objectives (increasing atrazine removal
percentage and decreasing environmental burdens as far as possible),
we identified a series of optimized cultural conditions, forming a solu-
tion matrix.

To determine the final solution, we established a decision group
consisting of 10 stakeholders whowere familiar with the bioaugmenta-
tion techniques. We employed CA to derive the RI value for each objec-
tive. The attributes included all of the objectives considered. For each
attribute, we specified three levels based on the maximum, minimum,
and medium values of experimental results (ARP) and LCA outcome
(ADF and FAET). By combining attributes and levels, we formed a bun-
dle of 22 hypothesized decision alternatives for stakeholders to make
selections and demonstrate preference. We asked stakeholders to rank
the decision alternatives quantitatively with the higher-ranking data
representing the more preferred alternatives. After collecting the rank-
ing results from all stakeholders, we used statistical analysis to explore
these preference data. Because all of the stakeholders could participate
in the process of data collection, no sampling error existed, meaning
that the results obtained were statistically representative. On the basis
of the utility estimate for each level and each attribute, we determined
the RI values of each objective. By associating the RI values with the
assigned weights of all objectives in the solution matrix, a final solution
(the optimized cultural condition) emerged, which we used for further
eco-design analysis to test whether and to what extent the optimized
culture could contribute to the eco-design of bioaugmentation. Given
that stakeholders may have different or conflicting perspectives about
the development directions of novel technologies (Tyl et al., 2015),
the process of calculating RI values could be seen as a process in
which different perspectives are addressed simultaneously to identify
the best compromise.

2.2.10. Bioaugmentation tests with technical and environmental analysis
In this phase, we established and operated a series of microcosm

CWs, which were enhanced by the strain ZXY-2 cultivated at the origi-
nal condition and the optimum condition. The microcosm CWs were
in a subsurface flow design using polyvinylchloride columns (25 cm
high × 20–30 cm in diameter). Soil samples in CWs were 15 cm deep,



Table 1
Effects of the six influential factors on each response (obtained from CCD analysis).

Parameters Coefficient values

ARP FAET ADF

Temperature 0.88 −0.35 2.59
pH 5.71 −1.51 0.20
Inoculum size 16.64 −5.02 0.07
Sucrose 4.64 −1.26 0.66
Na2HPO4·12H2O 1.17 19.23 197.80
Atrazine −20.12 −3.947 0.5
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whichwe collected from the topsoil of an atrazine-polluted factory. The
calami were approximately 0.66 m in height and were transplanted
with a biomass of 1.04 kg fresh weight per/m2. We used microcosm
CWs to treat atrazine wastewater for the average concentration of
5 mg/L. We set up and operated three parallel microcosm CWs under
the same conditions as the 5 mg/L atrazine wastewater.

Microcosm (a) was the control group without adding microbial in-
ocula, and microcosm (b) and (c) were dosed with the strain ZXY-2
being cultivated at the original condition and the optimized condition,
respectively. We pumped atrazine wastewater into three microcosms
under a hydraulic retention time of 4 d during the operation period.
When all microcosms reached a steady state, we dosed the strain ZXY-
2 to microcosm (b) and (c) to enhance pollutants removal. We tested
and compared the ARP for all of the microcosm CWs.

To analyze environmental sustainability, we performed LCA focusing
on the cultivation process of strain ZXY-2, with a comparison of envi-
ronmental impacts between the original condition and optimized con-
dition. System boundaries included the input of chemical substance,
cultural medium, and energy consumption, and the output of substance
emissions. The analysis of inventory included the nutrient requirement
for cultural medium, the chemical substance used to adjust alkalinity of
cultural medium, and electricity consumption tomaintain cultural tem-
perature. The electricity consumption involved fossil fuel consumption
and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2). For
the LCA impact assessment, we selected global warming, abiotic deple-
tion of fossil fuels, acidification, human toxicity, and freshwater aquatic
ecotoxicity as impact categories.We used CMLmethodology, developed
by the Institute of Environmental Sciences at theUniversity of Leiden, to
conduct the LCA, and the specific process followed theHandbook on Life
Cycle Assessment (Guinée, 2002).

For comparison purpose, we obtained a single LCA value that repre-
sented total environmental impact using normalization factors and
weighting approaches to aggregate the category results. Due to the
lack of the appropriate weighting factors designed specifically for bio-
augmentation context, all the impact categories are assumed to have
the same relative importance with the same weights assigned. This
weighting manner in comparison with other weighting approaches, al-
though can result in a different absolute value for one alternative, but
will have little influences on comparisons between alternatives (Bai
et al., 2017a; Bai et al., 2017b).

3. Results

3.1. Identifying the significant parameters for cultivating strain ZXY-2

On the basis of the first experimental design for the 15 selected pa-
rameters (Table S1), we obtained the ARP for all 54 scenarios from lab-
oratory experiments. The ARP ranged from 5% to 98% (Table S2),
indicating that those parameters had a significant impact on atrazine re-
moval. Bymeans of PB design,we established a good fit between the ob-
served ARP and model-predicted ARP, with high values of R2 (0.961)
and adjusted R2 (0.944). According to the p value (p b .0001) and a con-
fidence level of 99% set for screening,we identified six parameters as the
most influential factors to the growth of strain ZXY-2: temperature, pH,
inoculum size, and concentrations of sucrose, atrazine concentration,
and Na2HPO4·12H2O. Among them, temperature and pH had positive
effects with higher temperature and pH value resulting in higher ARP
within the experimental design region. Relative higher temperature
and pH might be beneficial for microorganisms' growth, thus leading
to a higher ARP.

3.2. Examining the effect of cultivation factors

On the basis of a further experimental design for the six influential
factors (Table S3), we generated another 54 scenarios for the laboratory
experiment (obtaining ARP) and the LCA analysis. For the
environmental impact assessment (LCA), the chosen responses
included freshwater aquatic ecotoxicity (FAET; kg 1,4-DCB eq.) and abi-
otic depletion of fossil fuels (ADF; MJ). In this study, ADF represented
the typical environmental burden that would be caused by all of the
tested parameters. In contrast, selection of FAET represented situations
in which environmental impacts were determined by two opposite
forces. Reduction of the atrazine could reduce the FAET, whereas the
life cycle of chemical production or electricity generation along the cul-
tivation of ZXY-2 could increase the FAET. The observed ARP (%) varied
from 19.62 to 73.21; the FAET (kg 1,4-DCB eq.) ranged from −3.85 to
32.30; and we obtained the ADF (MJ) between 203.40 and 404.73.

We then employed CCD analysis to investigate how these factors
(independently or synthetically) would affect the atrazine degradation
and the associated environmental implications. By applyingmultiple re-
gression analysis, wefitted a predictive quadraticmodelwith the exper-
imental results or LCA outcome. We established a regression
relationship between the six influential factors and each response
(ARP, FAET, and ADF), with the determination coefficient R2 = 0.9738,
0.9647, and 0.9512, respectively.

Effects of the six influential factors on each response are shown in
Table 1. In terms of ARP, we obtained higher coefficient values with
16.65 and−20.12 for the inoculum size and atrazine concentration, in-
dicating a higher significant effect on the atrazine degradation com-
pared with other factors. Of note, Na2HPO4·12H2O exerted an
insignificant influence on ARP, with the coefficient value being 1.18.
For both FAET andADF, however, Na2HPO4·12H2Owas the determinant
for the generation of environmental burdens, with the highest coeffi-
cient values of 19.24 and 20.78.

Interactive effects between Na2HPO4·12H2O and other parameters
on ARP, FAET, and ADF are shown in Fig. 2. The interactive effects indi-
cated that the variance of Na2HPO4·12H2O concentration could not
drive the change of ARP but dominated the alteration of FAET and
ADF. Taking the pair-wise interaction of Na2HPO4·12H2O and pH as an
example, the ARP remained 45–50% at 8 (pH) regardless of the fluctua-
tion of Na2HPO4·12H2O, and only an increase in the pH (to 9) further
enhanced the ARP to 50–55%. Increasing the pH from 8 to 9, however,
showed little influence on the ADF and FAET, both of which could be
raised obviously by a slight increase of Na2HPO4·12H2O concentration.

Overall, the different sensitivities of ARP, FAET, and ADF to the
Na2HPO4·12H2O indicated that decreasing the Na2HPO4·12H2O con-
centration in cultivation conditions could reduce the environmental
burdens generated during the production of the strain ZXY-2 while si-
multaneously keeping the atrazine degradation stable.
3.3. Obtaining cultivation conditions under different objective weights

We derived different optimal cultivation conditions from the multi-
ple objective optimization that assigned diverseweights to the technical
efficiency (ARP) and environmental sustainability (ADF, FAET), as
shown in Table 2. As a control group, we also performed response sur-
facemethodology (RSM) alongwith the optimization of single objective
(ARP). According to the optimal solution obtained from RSM, ARP had
an RI of 100%. We obtained the highest atrazine removal rate with the



Fig. 2. Interactive effects between Na2HPO4·12H2O and other parameters on the ARP, FAET and ADF.
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ARP of 76.36% using RSM. Under MOO, however, ARP was only a bit
lower, remaining around 75% when it had an RI between 60% and 80%.
As the weight of ARP decreased further, the atrazine removal rate re-
duced accordingly, but it still could be maintained at N60% even at the
lowest RI (1%). In addition, ADFwas similar under all of the optimal con-
ditions, ranging from 204 MJ to 206 MJ.

Use of RSM produced the highest FAET of 6.87 kg 1,4-DCB eq., al-
though we obtained lower values (from −3.85 to −1.85) using the
MOO. When the values of FAET were negative, a net environmental
benefit could be obtained in terms of the freshwater ecotoxicity. With
special regard to theweight sets that FAET only had a 1% RI,we obtained
−3.82 kg 1,4-DCB eq., which was obviously lower than the result using
RSM. By comparing the two optimal cultivation conditions, we found
that only Na2HPO4·12H2O concentration (g/L) changed from 6.5
(RSM) to 6 (1% weight for FAET). Of note, the ARP remained unchanged
between these two conditions. Taken together, we concluded that,
other cultivation parameters being equal, the decreased
Na2HPO4·12H2O concentration (from 6.5 g/L to 6 g/L) reduced the



Table 2
Optimized cultivation conditions under different objective weights.

Optimization
methods

Single objective optimization
cultivation conditions

Environmental impact Technical
efficiency

RSM Temperature
°C

pH inoculum size%
(v/v)

sucrose
g/L

Na2HPO4·12H2O
g/L

Atrazine
mg/L

ADF
(MJ)

FAET kg 1,4-DCB eq. ARP (%)

34.00 9 10 2.21 6.5 50 204.94 6.87 76.36

Weight values of objectives Multiple objective optimization
cultivation conditions

Environmental impact Technical
efficiency

Weights of
ADF

Weights of
FAET

Weights of
ARP

Temperature
°C

pH Inoculum size%
(v/v)

Sucrose
g/L

Na2HPO4·12H2O
g/L

Atrazine
mg/L

ADF
(MJ)

FAET kg 1,4-DCB
eq.

ARP (%)

49.00%
50.00% 1.00% 34.00 9 10 2.47 6 50 204.16 −1.85 63.91

45.00%
45.00% 10.00% 34.24 9 10 2.58 6 50 205.30 −2.86 67.64

40.00%
40.00% 20.00% 34.85 9 10 2.60 6 50 205.46 −2.91 67.78

35.00%
35.00% 30.00% 35.15 9 10 2.58 6 50 205.53 −2.92 67.81

30.00%
30.00% 40.00% 35.15 9 10 2.60 6 50 205.54 −2.92 67.81

25.00%
25.00% 50.00% 35.25 9 10 2.59 6 50 205.56 −2.92 67.81

20.00%
20.00% 60.00% 34.54 9 10 2.05 6 50 204.94 −3.85 75.01

15.00%
15.00% 70.00% 34.04 9 10 2.05 6 50 204.94 −3.85 75.01

10.00%
10.00% 80.00% 33.54 9 10 2.05 6 50 204.94 −3.85 75.01

1.00%
1.00% 98.00% 33.98 9 10 2.18 6 50 204.95 −3.82 75.02
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freshwater ecotoxicity along the life cycle of cultivating the strain ZXY-
2, but it maintained the relative higher level of atrazine removal
(around 75%). This observation was consistent with our previous find-
ings, and it also indicated that when the decision situation shifted
from single objective to multiple objectives, Na2HPO4·12H2O concen-
tration could be identified as the factor most likely to be improved,
even if the environmental dimension (FAET) was given only a small
RI (1%).
3.4. Involvement of stakeholders in determining the final optimized cultural
condition

Stakeholder's participation was involved by employing CA to decide
the final optimized solution.With the collected preference data serving
as input data (Tables S4 and S5), we conducted an estimation to obtain
the utility estimate for each attribute's level. In general, a higher estima-
tion value of utility represents a greater extent of respondent's
preference.
Table 3
Estimation of utility and relative importance for each attribute in conjoint analysis.

Attributes Utility estimates Relative
importance

Levels Units Utility
values

Std.
error

ARP 64% Atrazine-removal 0.750 0.023 72%
71% Atrazine-removal 1.500 0.13
77% Atrazine-removal 2.250 0.21

FAET −1.8 kg 1,4-DCB eq. −0.182 0.014 17%
2.6 kg 1,4-DCB eq. −0.093 0.016
7 kg 1,4-DCB eq. −0.072 0.003

ADF 204 MJ 0.821 0.034 11%
205 MJ 0.024 0.002
206 MJ 0.011 0.004
From Table 3, we observed a positive relationship between the ARP
and its utility, with the highest atrazine-removal percentage (77%) cor-
responding to the highest utility estimate (2.250). This indicated that
the stakeholders demonstrated increasing preference toward the
choices involving the enhanced levels of atrazine degradation.

In contrast, an inverse relationship between FAET and its utility was
identified, indicating the decreasing preferences of stakeholders toward
the increased levels of freshwater ecotoxicity potential. Significant dif-
ferences were observed in the utility estimates between positive levels
and negative levels of the FAET attribute. We obtained estimation re-
sults of 0.024 and 0.011 for the levels of 2.6 and 7.0 (kg 1,4-DCB eq.),
whereas the utility was increased by tens of times for the level of
−1.8 (kg 1,4-DCB eq.) with the result of 0.82. This meant that the stake-
holders demonstrated a higher preference for the level that represented
the scenario achieving a net environmental benefit. For the ADF attri-
bute, we also obtained an inverse relationship between levels and its
utility, although the difference in utility estimates between different
levels was not substantial, which indicated that current levels of fossil
fuel consumption did not affect the determination of stakeholders.

We further converted results of utility estimates into themeasure of
RI for each attribute. The extent of RI values represented how important
each attribute was to the overall preferences of stakeholders. Attributes
with a higher RI value played a more significant role than those with a
lower RI value. As shown in Table 3, the ARP presented the highest RI
value (68.8%), implying that the highest priority was atrazine removal
for stakeholders to determine the cultural condition. Although FAET
and ADF might not be as important as ARP, the aggregated RI values
were 31.2%, meaning that the environmental impacts of cultivating
the strain ZXY-2 should not be neglected. By associating the RI values
with the solution matrix (Table 2), we were able to determine the
final optimized cultural condition from theweighting sets that assigned
RIs of 70%, 15%, and 15% to ARP, FAET, andADF. This optimized condition
to some extent represented that the solution that could keep a high
level of atrazine removal with reduced environmental implications
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could be used for further bioaugmentation test and eco-design analysis
(Fig. 3).
3.5. Bioaugmentation test on the enhanced atrazine removal from con-
structed wetland

We analyzed atrazine removal during the 65 days' experimental pe-
riod. As shown in Fig. 4(1), all threemicrocosm CWs generated the fluc-
tuating removal efficiencies of atrazine (represented by ARP) between
19.6% and 79.3% during the first 25 days' operation. During days
26–35, APR remained stable around 68.2% in each system. We inocu-
lated the strain ZXY-2 into CWs for enhanced removal of atrazine begin-
ning at day 36, with the original and optimized cultivation conditions
being adopted for the microcosm (b) and (c), respectively.

Both microcosm (b) and (c) exhibited the increased ARP, indicating
that strain ZXY-2 played a role in bioaugmentation. As time passed, the
strain and indigenous bacteria might become increasingly competitive
for organic matter with the decreased ARP compared with microcosm
(a). Additionally, the loss of dosed microbial inocula as a result of
being washed out existed for both systems, meaning that reinoculation
was necessary to continue the enhanced atrazine removal.We observed
similar time periods between inoculations (as one bioaugmentation
cycle) for the two systems. As for microcosm (b) and (c), after the sec-
ond inoculation, ARP resumed rising and gradually increased to 92.1%
and 82.9%. We observed the same tread for ARP after the third
inoculation.

The microcosm (c), however, achieved more favorable bioaugmen-
tation performance for ARP compared with microcosm (b). The aver-
aged ARP was 88.3% of microcosm (c) in each cycle, which was higher
than themicrocosm (b)with that of 75.6%. The ARP for each inoculation
of microcosm (c) was significantly higher (p b .01) than for microcosm
(b), which verified that the use of the optimized condition to produce
the microbial inocula was applicable to bioaugment atrazine removal
in CWmicrocosm. For themicrocosm (a), ARPmarked a steady removal
of 71.6% showing no enhanced atrazine removal capacity during the en-
tire steady and bioaugmented period.
Fig. 3. Scheme diagram of bioaugmentation test and enviro
3.6. Bioaugmentation test: comparisons between optimized condition and
original condition

According to this analysis, application of the strain ZXY-2 cultivating
at the optimized condition outperformed the original condition in terms
of the enhanced atrazine removal from CWs. To further examine
whether the optimized condition could contribute to improving envi-
ronmental sustainability of bioaugmentation, we conducted LCA to in-
vestigate the total environmental impacts. When implementing the
optimized condition in comparison with the original condition, the en-
vironmental impact could be increased because of the pH adjustment
from 7 to 9, which could be reduced because of the decreasing utiliza-
tion of Na2HPO4·12H2O, sucrose, and other elements. As shown in
Fig. 4(2), we observed a reduction of total environmental impacts for
the optimized condition, indicating that the adoption of the proposed
MMES analysis scheme indeed helped the eco-design of bioaugmenta-
tion in this case. Although uncertainty resulting from the choice of
LCA methodologies was introduced for the contribution analysis of im-
pact categories, little influence was engaged about the comparisons of
total environmental impacts, with the optimized condition being
13–50% lower than the original condition.
4. Discussion

To facilitate the parameter optimization when developing environ-
mental technologies under multidimensional objectives, this study de-
veloped an MMES analysis scheme by integrating multiple scientific
methods systemically. In this scheme, we integrated LCA into the opti-
mization process as a primary tool for dealing with environmental di-
mensions. This scheme also allowed for the LCA to be performed
before technical parameters were determined. Such proactive assess-
ment distinguishes the present work from other studies in which LCA
could be applied only retrospectively to assess the data derived from
the finished experiments (Chong et al., 2018; Lardon et al., 2009;
Zhang et al., 2019).

Through experimental design, the use of the MMES scheme created
a large number of scenarios to investigate how the change of
nmental impact analysis for the optimized condition.



Fig. 4.Atrazine removal of constructedwetland (CW) for bioaugmentation test (1) and comparison of total environmental impacts betweenoriginal condition and optimized condition for
environmental performance analysis (2). *Uncertainty due to the methodological choices was considered in the eco-design analysis, as shown in panel (2)-(b). Different groups of LCA
characterization methods (CML, EDIP, ILCD 2016, ReCiPe 2016, and TRACI) were investigated.
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parameters would affect both the technical efficiency and environmen-
tal sustainability. With consideration of meeting one objective without
destroying another's need, we uncovered key parameters that likely
caused contradictory influences on different objectives, which contrib-
uted to fully revealing the environmental improvement potential by ex-
amining the interactive effects between parameters.

By means of a case study concerning the culture optimization of the
strain Arthrobacter sp. ZXY-2, the MMES analysis scheme proved to be
effective for eco-design of bioaugmentation. Indeed, we could extend
application of this scheme to a wide range of fields, as long as it is nec-
essary to determine areas where environmental improvement can be
made even at low technology readiness levels. Those fields may cover
materials production, drug synthesis, and chemical engineering (Galli
et al., 2018; Negny et al., 2012). In performingMOO, this MMES analysis
scheme could form optimal solutions when diverse weights were
assigned to different objectives. Compilation of these optimal solutions
created an information pool, whichwould be helpful if stakeholders are
involved in deciding which solution to use for future efforts.

As for future application of theMMES analysis scheme, reducing un-
certainty could increase the credibility of evaluation and optimization
results. In the existing scheme, two parts caused uncertainty. First, var-
iations in the value ranges assigned to parameters in the use of statisti-
cal methods (PB design or CCD) probably contributed to the changed
rankings of parameter effects (Bai et al., 2019; Vander Heyden et al.,
1995). These variations may have shifted the focus of subsequent opti-
mization from one parameter to another, resulting in different opti-
mized results. Thus, a clarification of reasons, assumptions, and
possible changing ranges in the initial value assignment would reduce
uncertainty. Second, associated with the integration of LCA into param-
eter optimization, the conversion of technical parameters into the LCA
inventory may have triggered uncertainty. Establishment of an inven-
tory required the compilation of energy flow, material flow, and envi-
ronmental emissions involved in the technical parameters. Although
the required inventory data could be obtained directly from laboratory
experiments, data quality was limited when predicting future scale-up
events. As a result, the technology scale-up would have different de-
grees of influence on the flow of input and output. This variable influ-
ence could lead to nonlinear scale-up of inventory data. To reduce this
uncertainty, future efforts should incorporate the scale-up frameworks
of LCA inventory into the analysis scheme to improve the accuracy of
predicting environmental performance at industrial scales based on
the available laboratory experiment data. Some scale-up frameworks
have been proposed, most of which focus on the field of chemical engi-
neering (Piccinno et al., 2016; Piccinno et al., 2018; Simon et al., 2016).
Considering that each environmental technology has distinct character-
istics, the ability to build a uniform scale-up framework for all technol-
ogies is unlikely. Thus, we had to determine which scale-up framework
could be integrated into the analysis scheme according to the character-
istics of the evaluated technology. Consideration of expert knowledge or
estimates on how the technology would behave at a larger scale also
would be important.
5. Conclusions

This study presented anMMES analysis scheme in support of the pa-
rameter optimization of environmental technologies to satisfy multidi-
mensional goals. By incorporating environmental indicators as the
objectives considered during the design and development of technolo-
gies, optimization of technical parameters was allowed by balancing
the factors that may have caused competing influences on the technical
efficiency and environmental sustainability. This proactive optimization
contributed to fully uncovering the environmental improvement poten-
tial before critical technical parameterswere locked for future investiga-
tion.Wewere able to obtain multiple optimal solutions from theMMES
scheme, which identified how changing the RI of objectives affected the
determination of an optimal solution. An opportunity thus was opened
for compromising the ideological profiles of different stakeholders to re-
veal a final solution. In a demonstrative case study, we optimized the
cultivation conditions of the strain Arthrobacter sp. ZXY-2 for sustain-
able enhancement of atrazine removal from CWs. Compared with the
original condition, we obtained a reduction in total environmental im-
pacts of 13% to 50% with the optimized condition, mainly as a result of
the reduced utilization of Na2HPO4·12H2O, sucrose, as well as other
chemical elements throughout the production process of microbial in-
ocula. Combined with the higher atrazine-removal performance on
CW tests, the MMES scheme proved its effectiveness for improving
the environmental sustainability of bioaugmentation. Further applica-
tion and development of the MMES scheme will cover additional
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research fields and refine the uncertainty management to increase the
credibility of evaluation and optimization results.
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