
Enhancing His-
torical Dutch
OCR Accu-
racy with Post-
Correction &
Synthetic Data
Thomas Eckhardt

Enhancing
Historical Dutch
OCR Accuracy

with
Post-Correction
& Synthetic Data

by

Thomas Eckhardt
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday June 26, 2023 at 10:00 AM.

Student number: 4473302
Project duration: November 14, 2022 – June 26, 2023
Thesis committee: Dr. C. C. S. Liem, TU Delft, supervisor

Dr. C Lofi, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
This paper presents a novel approach to synthetic data generation for OCR post-correction, utilizing
specific background and font variations tailored to specific timeperiods. The goal is to use synthetic
data to enhance text accuracy in digitized historical documents. The proposed three-step process
involves generating synthetic images that emulate the characteristics of historical documents from dif-
ferent years, incorporating year-specific backgrounds and fonts. Using these images, a dataset can be
created. Multiple T5 sequence-to-sequence transformers are then fine-tuned on the generated dataset.
The trained models demonstrate the capabilities of improving the OCR, and aligning them with the
ground-truth text. The effectiveness of the approach is evaluated through various performance met-
rics, highlighting the benefits of using year-specific synthetic data for training. This work contributes to
the field of OCR post-correction by providing a powerful framework for improving the accuracy of OCR
systems in historical OCR text tasks.

iii

Preface
This thesis represents the culmination of a journey that began with my enrollment at TU Delft in 2015.
It signifies the final milestone in my pursuit of a Master’s Degree in Computer Science, specializing in
the field of Data Science & Technology.

First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Cynthia
Liem, from the Multimedia Computing Group. Her unwavering support, expert guidance, and invalu-
able insights have been pivotal in shaping this research. I am deeply appreciative of her continuous
assistance and mentorship throughout this journey.

I would also like to express my appreciation to the individuals at the Koninklijke Bibliotheek, partic-
ularly Mirjam Cuper, for generously providing me with access to their resources and datasets. Their
contribution has played a vital role in the successful execution of this research, and I am truly grateful
for their support. Furthermore, I would like to thank Christoph Lofi for graciously accepting the respon-
sibility of serving as a member of my thesis committee and for devoting his time and expertise to review
my work.

In addition, I would like to acknowledge the unwavering support and encouragement of my family
and friends throughout the past eight years. I am particularly grateful to my father, who selflessly
allowed me to utilize his computer for training the numerous machine learning models required for this
research. All training time combined came to roughly 380 hours, resulting in an energy usage over that
time of around 140 KwH.

Thomas Eckhardt
Delft, June, 2023

v

Contents

1 Introduction 1
1.1 Main problem of OCR . 1
1.2 Research questions . 2
1.3 Koninklijke Bibliotheek and Delpher . 2
1.4 Thesis outline . 3

2 Background 5
2.1 OCR. 5

2.1.1 Examples of bad OCR . 6
2.1.2 Implications of bad OCR . 6

2.2 Transformers . 6
2.2.1 Transfer Learning. 7

3 Related Work 9
3.1 Post-Correction . 9

3.1.1 Manual Approach. 9
3.1.2 (Semi) Automated Approach. 9
3.1.3 Usage in post-correction . 10

3.2 Post-Correction in the historical domain. 10
3.3 Post-Correction in other domains . 11
3.4 Post-Correction for Dutch data. 11
3.5 Synthetic data generation . 11
3.6 Evaluation dataset of ICDAR . 12

4 Overview and Data Preparation 15
4.1 Overview of the system . 15
4.2 Data Pre-Processing . 16

4.2.1 Overview of the datasets . 16
4.2.2 DBNL . 17

4.3 Full Dataset . 20
4.3.1 Evenly spread dataset . 21

5 Synthetic Data Generation 23
5.1 Background creation . 23

5.1.1 Downloading the images . 23
5.1.2 Creating the building blocks . 24

5.2 What typeface to use . 25
5.2.1 Constructing the images . 28
5.2.2 Generating a Dataset. 29
5.2.3 Examples of generated data . 30

6 Sequence-to-Sequence Model 31
6.1 Fine-tuning a model . 31

6.1.1 Full Dataset Models . 32
6.1.2 Further Finetuned Models . 32
6.1.3 Individual Dataset Models . 32

6.2 Evaluations . 33
6.2.1 Metrics for evaluation. 33
6.2.2 Evaluation of full dataset models . 34
6.2.3 Evaluation of individual dataset models . 34

vii

viii Contents

7 Results and Discussion 35
7.1 Evaluation of the full dataset . 35
7.2 Evaluation of the further finetuned models . 37
7.3 Evaluation per individual dataset . 37
7.4 Visual Examples . 38

8 Conclusion 41
8.1 Future work . 42

A Datasets 45
A.1 DBNL . 45
A.2 Historical Newspapers . 46
A.3 IMPACT . 47

B Hyperparameters 49

C Delpher API 51
C.1 Response from Delpher Search API. 51

D Other techniques 53
D.1 Translation approach . 53
D.2 Single sentence approach . 53

E Code 55

List of Figures

1.1 Search results for the query ”wielrennen” in Delpher for the 19th century 3

2.1 The scanned text along with its OCR equivalent . 6
2.2 A diagram containing various tasks included in the original T5 model. Retrieved from [32] 7

3.1 The contents of the file 39.txt contained in the Dutch evaluation set of ICDAR 13

4.1 An overview of the full framework of the application, containing the 3 stages 16
4.2 Two figures containing the amount of words and sentences per year for the DBNL dataset 17
4.3 Two figures containing the amount of words and sentences per year for the Historical

Newspapers dataset . 18
4.4 Two figures containing the amount of words and sentences per year for the IMPACT

dataset . 19
4.5 Two figures containing the amount of words and sentences per year for the Meertens

dataset . 19
4.6 Two figures containing the amount of words and sentences per year for the Statenver-

taling dataset . 20
4.7 Two figures containing the amount of words and sentences per year for the entire dataset 20

5.1 A page from the newspaper Algemeen Dagblad in 02-01-1990 in Rotterdam 24
5.3 A page from the Courante uyt Italien, Duytslandt on 14-06-1618, the earliest newspaper

available on Delpher, accompanied by zoomed in sections of the newspapers. 25
5.5 A page from the Courante uyt Italien, Duytslandt on 14-06-1618, the earliest newspaper

available on Delpher, accompanied by zoomed in sections of the newspapers. This time
the InRange function as described in Section 5.1.2 has been applied. 26

5.6 All the building blocks that were used for creating the background for the newspapers . 27
5.7 An image containing the fonts from old to new BreitkopfFraktur (Blackletter), Textur

(Blackletter), Jenson, Bodoni, Caslon, Baskerville, Helvetica and Univers 28
5.8 A figure containing the fonts that are used for creating the period dependent images, in

the synthetic data generation step . 29
5.9 An example of a final image, but now also containing a visual representation of where

the sentences will be cropped . 29
5.10 An image created with a subset of the data for the year 1629 30
5.11 An image created with a subset of the data for the year 1937 30
5.12 Example of generated data, with on the left the ground-truth and on the right data as it

comes out of the framework . 30

6.1 Example text, aiding in explaining how to calculate the Word Error Rate (WER) and
Jaccard similarity . 33

6.2 Example text, aiding in explaining how to calculate the Character Error Rate (CER) . . . 33

7.1 The amount of words for the ground truth, OCR and post-correction 36
7.2 Examples for the OCR, post-correction and ground-truth text 40

D.1 A single sentence on a background, as used in of the earlier versions of the application 53

ix

List of Tables

7.1 A table depicting the results retrieved from the experiments, on the full dataset, for a
variation of training sizes and base models . 36

7.2 A table depicting the results of the accuracies of further fine-tuning the T5-Flan model
trained on 100,000 sentences. 37

7.3 A table depicting the results retrieved from the experiments, conducted on the T5-Flan
as base model . 38

7.4 A table depicting the results retrieved from the experiments, conducted on the T5-Base-
Dutch as base model . 39

A.1 A table containing the years in which the newspapers were retrieved for the Historical
Newspapers dataset, as retrieved from this website . 46

B.1 The hyperparameters used during fine-tuning and validation 49

xi

Nomenclature
𝐶𝐸𝑅 Character Error Rate

𝐷𝐵𝑁𝐿 Digitale Bibliotheek voor de Nederlandse Letteren (Digital Library for Dutch Literature)

𝐼𝐶𝐷𝐴𝑅 International Conference on Document Analysis and Recognition

𝑂𝐶𝑅 Optical Character Recognition

𝑇5 Text-to-Text Transfer Transformer

𝑊𝐸𝑅 Word Error Rate

xiii

1
Introduction

Writing has been an integral part of human communication for thousands of years. The earliest evi-
dence of writing dates back to the Upper Palaeolithic era in Europe, around 42,000 BP [1]. While the
symbols used at that time were likely used for practical purposes such as counting animals or mark-
ing the passage of time, over time, writing became a way to record information and pass on ideas to
future generations. Writing is essential for research as it enables us to build upon the work of others,
advancing our understanding of the world and improving upon existing knowledge. In this way, writing
and research are vital tools for the evolution of society and the betterment of humankind.

The invention of the printing press in 1436 by Johannes Gutenberg [27], was a significant milestone
in the history of writing. The ability to quickly create copies of books and documents allowed for the
more rapid spread of knowledge than was possible before. This invention led to the first book printed at
scale called the Gutenberg bible. Or in other words the 42-line bible, related to the amount of lines per
page [23]. The printing press also helped to standardize the way information was presented. Prior to
the printing press, the spelling and grammar of written languages varied widely from region to region.
With the advent of movable type and standardized printing techniques, however, it became possible to
establish more consistent rules for spelling and grammar, which helped to make written communication
more clear and accessible.

1.1. Main problem of OCR
When it comes to archiving large amounts of data, there can be significant challenges, particularly when
the aim is to preserve history in its most pristine form. One of the main challenges is the transcription
of text from printed documents into digital format. While scanning printed articles manually is one task,
transcribing the text from an image is a different matter entirely. As a solution, software has been
developed that enables the easy extraction of text from images. This technology is known as Optical
Character Recognition (OCR), which allows the input image to be quickly converted into editable text.

Despite the advancements in OCR technology, errors can still occur in the transcription process,
particularly when the scanned images are of low quality. To mitigate this issue, post-correction tech-
niques are employed to clean the OCR output and rectify any inaccuracies. While human intervention
has been utilized to aid in this process, it can be time-consuming and expensive, particularly when
dealing with large amounts of data. In addition, human correctors require a deep understanding of the
text domain and must be trained to use the correction tools effectively. Moreover, humans are prone
to making mistakes when identifying similar characters that may cause confusion during the correction
process [11].

In this thesis, the objective is to establish a framework that allows for the synthetic generation of
OCR data utilizing ground-truth data. This generated data can then be utilized to train a sequence-to-
sequence correction model, which can produce corrected texts based on the original OCR data. This
framework is not limited to historical data and can be conveniently adapted to modern data as well. The
proposed framework has the potential to streamline the transcription process significantly and provide
a more accurate and efficient way of preserving historical documents.

1

2 1. Introduction

1.2. Research questions
This section outlines the research questions that have guided the study and motivated the investigation
into the effectiveness of various approaches for improving OCR accuracy and quality.

RQ1. How effective can synthetic data be generated, as closely resembling images from a given timepe-
riod?

RQ2. How effective are machine learning-based OCR post-correction methods trained on synthetic
data in improving the accuracy and quality of OCR output?

RQ3. How much of an effect does a model pre-trained on Dutch data have on the performance of a
fine-tuned model?

RQ4. How does the performance of a transformer model trained on one dataset compare when evalu-
ated on a different dataset?

The first research question (RQ1) focuses on exploring the effectiveness of generating synthetic
data that closely resembling images from a given timeperiod. By employing such synthetic images,
datasets can be created that closely resemble the OCR output when compared to the ground-truth
data. The aim is to assess the efficacy of this approach and its potential in training models specifically
designed for post-processing OCR output. The models will be evaluated based on their capacity to
enhance the accuracy and quality of OCR results. Furthermore, the impact of synthetic data on the
performance of post-correction methods will be investigated to determine their effectiveness in refining
OCR output.

Moving on to RQ2, it centers around evaluating machine learning-based OCR post-correction meth-
ods trained on synthetic data. Building upon the synthetic data generated in response to RQ1, the goal
is to train models tailored for post-processing OCR output. These models will be evaluated to measure
their effectiveness in improving the accuracy and quality of OCR results. The impact of synthetic data
on the performance of these post-correction methods will be analyzed, thereby determining their value
in refining OCR output.

RQ3 explores the influence of pre-training models on Dutch data in the context of fine-tuning for
OCR post-correction. The extent to which incorporating pre-trainedmodels specifically trained onDutch
data affects the performance of fine-tuned models will be investigated. By comparing the performance
of models with and without Dutch pre-training, insights into the impact of transfer learning and the
additional benefits of utilizing domain-specific pre-training in OCR post-correction tasks will be gained.

Finally, RQ4 focuses on evaluating the performance of a transformer model trained on one dataset
when evaluated on a different dataset. This investigation aims to assess the generalization capabilities
of the model and its ability to adapt to different OCR datasets. By comparing the model’s performance
across multiple datasets, valuable insights into its robustness and versatility in handling diverse OCR
scenarios will be obtained.

1.3. Koninklijke Bibliotheek and Delpher
The Koninklijke Bibliotheek (KB) is the National Library of the Netherlands. The KB plays a crucial
role in digitizing and preserving the country’s cultural and historical publications. In order to provide
the public access the vast quantities of historical data, they developed an application called Delpher,
which is a digital platform for accessing and exploring mainly dutch historical newspapers, books, and
other printed materials. It offers a vast collection of digitized resources, making it a valuable resource
for researchers, historians, and the general public interested in exploring of the dutch cultural heritage.
The full list of the amount of records is as follows:

• 2,094,960 Newspapers1

• 192,692 Books2

1http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=
DDD_krantnr&query=*&maximumRecords=1&startRecord=1

2http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=
BOEKEN_boek&query=*&maximumRecords=1&startRecord=1

http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=DDD_krantnr&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=DDD_krantnr&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=BOEKEN_boek&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=BOEKEN_boek&query=*&maximumRecords=1&startRecord=1

1.4. Thesis outline 3

• 458,576 Magazines 3

• 1,474,359 Radio Bulletins4

The system incorporates a user-friendly web interface that grants users unrestricted access to an
extensive pool of data. With a few simple steps, users can input keywords of interest and effortlessly
retrieve relevant results. To enhance the search experience further, the web interface offers additional
customization options. Users have the freedom to narrow down their searches such as selecting spe-
cific time periods and types of articles. This feature ensures, specific timeperiod can be investigated.

For instance, let’s consider an illustrative example depicted in Figure 1.1. Imagine a user wants to
explore the history of cycle racing in the Netherlands. They input the keyword ”wielrennen”, the Dutch
term for cycle racing, into the search bar. By utilizing the interface’s filtering capabilities, the user can
refine their results to exclusively display articles from the 19th century. This filtering option allows them
to delve specifically into historical perspectives and gain insights into the development and significance
of cycle racing during that period. The search functionality in this application relies on the OCR text
output obtained from the scanned images. By improving the accuracy of OCR by post-correction,
the performance of keyword-based searches can be enhanced. This highlights the significance of
enhancing OCR quality, as it directly translates into improved search results when seeking specific
keywords or terms.

Figure 1.1: Search results for the query ”wielrennen” in Delpher for the 19th century

1.4. Thesis outline
Chapter 2 serves as an introduction, delving into modern OCR (Optical Character Recognition) tech-
niques and discussing the implications of low quality OCR. Additionally, it covers the functioning of
transformers and their potential for fine-tuning. Moving forward, Chapter 3 presents a review of related
work carried out in the field of post-correction, focusing on previous research related to synthetic data
generation. Chapter 4 offers an overview of the pipeline that has been created for post-correction, and
analyzes the datasets used throughout the thesis, providing valuable insights. Chapter 5 highlights the
efforts made to synthetically generate datasets for post-correction using year dependant background
and fonts. In Chapter 6, the focus shifts to the fine-tuning of a transformer model for the task of post-
correction, showcasing the methods and techniques employed. Chapter 7 presents the experimental
3http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=
DTS_document&query=*&maximumRecords=1&startRecord=1

4http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=
ANP&query=*&maximumRecords=1&startRecord=1

http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=DTS_document&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=DTS_document&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=ANP&query=*&maximumRecords=1&startRecord=1
http://jsru.kb.nl/sru?operation=searchRetrieve&version=1.1&recordSchema=dcx&x-collection=ANP&query=*&maximumRecords=1&startRecord=1

4 1. Introduction

results obtained during the course of this research, shedding light on the performance and effective-
ness of various machine learning models used in the study, in combination with training on the synthetic
data. Lastly, Chapter 8 concludes the thesis, summarizing the key findings and drawing conclusions.
Furthermore, it offers valuable insights and suggestions for potential directions for future research in
this domain.

Additionally, the report includes several sections accompanied by corresponding appendices. Ap-
pendix A provides additional information on some of the provided datasets. Appendix B presents the
hyperparameters used during training. Appendix C contains additional data related to the Delpher
Search API. Appendix D describes alternative approaches that have been explored to increase OCR
accuracy. It should be noted that abbreviations will be written in full the first time they are mentioned in
the report, and thereafter, the nomenclature can be referred to for further clarification. Lastly, Appendix
E provides the link to my Github repository, containing all the code for this thesis.

2
Background

In this thesis, a comprehensive framework is introduced for post-correction of optical character recog-
nition (OCR) using synthetic data. Before delving into the framework’s details, it is crucial to establish
a solid understanding of the concepts utilized throughout this thesis. This chapter serves the purpose
of fulfilling that requirement by providing essential background knowledge. The key topics covered in
this chapter are OCR and transformers, fundamental concepts that form the bedrock of this research.

2.1. OCR
Let’s start by explaining the core concept of this thesis, and giving it some knowledge of it’s origins.
OCR is a technology that has become increasingly important in many industries. It refers to the process
of converting an image of printed or handwritten text into a format that can be read by computers. OCR
software analyzes the image, identifies the text patterns, and then converts them into a digital format
that can be easily edited and searched.

The earliest OCR systems were mechanical rather than computer guided. They were mechanical
devices that used photoelectric cells to detect characters on a page. The first of this type was called
GISMO and was developed by M. Sheppard [20]. It could read musical notations as well as words
character by character. These mechanical type systems were slow and cumbersome, and their accu-
racy was limited. In the 1950s, computer-based OCR systems were developed that used digital image
processing techniques to recognize characters. These systems were faster and more accurate than
their mechanical counterparts, and they formed the basis of modern OCR technology.

The first computer-based OCR system was developed in the early 1960s by IBM. It was designed
to read printed text and could recognize a limited set of characters. Over the next few decades, OCR
technology continued to improve, and by the 1980s, OCR systems had become more accurate and
could recognize a wider range of characters, including handwritten text. In the early 1990s, OCR tech-
nology underwent a revolution with the advent of neural network-based OCR systems. These systems
were able to learn from examples and could recognize characters with a high degree of accuracy. This
led to the development of OCR systems that could recognize a wide range of fonts and handwriting
styles.

OCR has become a critical tool for archiving historical documents. By converting physical copies
of books, newspapers, and other printed materials into digital formats, historians, scholars, and re-
searchers can access information that might otherwise have been lost or inaccessible. This is particu-
larly valuable for preserving and sharing cultural heritage and historical knowledge. But this technology
is not only limited to historical documents, but can be used for modern purposes such as with medical
data. The hard part for this type of data is that is does not conform to a general structure, but is a
collection of patient documents [22].

Numerous modern OCR tools are available today, including ABBYY Finereader1, Adobe Acrobat
Pro DC2, and Tesseract 3, to name a few. However, since the first two operate on a subscription basis,
1https://pdf.abbyy.com/
2https://www.adobe.com/acrobat/acrobat-pro.html
3https://github.com/tesseract-ocr/tesseract

5

https://pdf.abbyy.com/
https://www.adobe.com/acrobat/acrobat-pro.html
https://github.com/tesseract-ocr/tesseract

6 2. Background

(a) De Amsterdammer - 25-10-1896 (b) Text retrieved from the figure on the left using OCR

Figure 2.1: The scanned text along with its OCR equivalent

they are not ideal for use in this thesis. On the other hand, Tesseract is an open-source OCR engine
initially developed by Hewlett-Packard but now maintained by Google. The program is predominantly
written in C++, making it incredibly fast to use. Additionally, Tesseract is available as a python-package,
making it simple to implement.

2.1.1. Examples of bad OCR
Despite significant advancements in OCR technology, it remains far from perfect. Extensive research
has been conducted to address various factors that can compromise OCR accuracy, such as the thin-
ness of paper, discoloration, imprecisions during printing, and more [31]. These issues can be es-
pecially problematic for older fonts or when scans of documents are of lower quality, reflecting the
evolution of printing methods over time. It’s important to note that the process of archiving historical
data is an ongoing one that has been taking place for several decades. Earlier versions of scans used
outdated OCR software, which has since been improved upon. Consequently, earlier scans may have
higher error rates compared to modern OCR systems, which have benefited from significant advance-
ments in technology over the years.

To illustrate the limitations of OCR technology, we can take a closer look at Figures 2.1a and 2.1b.
Figure 2.1a displays a specific article from the Amsterdammer newspaper, dating back to 1986. In Fig-
ure 2.1b, we see the output provided by OCR software when this article was digitized. As we examine
the text in Figure 2.1b, it becomes evident that it contains various imperfections, which can significantly
impact its accuracy and reliability. For instance, the word ”wielrydirs” is incorrectly transcribed instead
of ”wielrijders”, and ”rytuigen” instead of ”rijtuigen”. Such errors are not uncommon when using OCR
technology, and they can significantly hinder the ability of researchers to extract accurate information
from historical documents.

2.1.2. Implications of bad OCR
Errors in OCR data of historical archives can have several implications. First and foremost, it can make
it difficult for researchers and historians to accurately interpret the content of the documents. Even a
single error can change the meaning of a sentence or paragraph, which can have a significant impact
on historical analysis and research. Previous research has shown, that in part-of-speech tagging, in
which words in a text are categorized, the error rate of the tagger increases linearly with that of the OCR
output [30] Furthermore, errors in OCR data can also impact the ability to perform searches and queries
on digitized archives. If the OCR engine does not accurately recognize certain words or phrases, then
they will not be included in search results. This can make it more difficult to locate relevant documents
and information within large archives [15].

Finally, errors in OCR data can also affect the preservation of historical documents. If the OCR
output is used as the primary means of accessing and interpreting the content of a document, then
errors in the OCR data may result in inaccurate or incomplete preservation of the original document.
Therefore, it’s important to ensure that OCR data is as accurate as possible to preserve the integrity and
authenticity of historical documents. In Section 6.2.1 it is explained how this quality can be quantified.

2.2. Transformers
A transformer is a neural network that processes sequential data, such as text or speech. It was
introduced in a seminar paper by Vaswani et al. [40]. This paper proposed a new type of neural network
architecture called the transformer, which uses self-attention mechanisms to process sequences of

2.2. Transformers 7

input data. Before the input data can be processed it should first be split into smaller units called tokens,
which can be individual words, subwords, or even characters. This process is called tokenization,
and transformers relies on it to convert the input data into a format that can be processed by the
neural network. Tokenization in transformers typically involves two steps: first, the input text is split into
individual tokens, and second, each token is mapped to a unique integer ID. The tokenization process
can vary depending on the specific transformer model being used and the task at hand. These tokens
allow the transformer to fully capture complex patterns and relationships between tokens, which are an
essential feature for many NLP tasks.

Using these tokens, the transformer can utilise a mechanism called self-attention, which is a mech-
anism that enables the network to weigh the importance of each input token based on its relevance to
other tokens in the sequence. This allows the network to focus on the most relevant information and ig-
nore irrelevant or noisy data. The transformer architecture is composed of an encoder and a decoder.
The encoder processes the input sequence using multiple layers of self-attention and feed-forward
neural networks to produce a sequence of hidden representations. The decoder then uses the same
self-attention and feed-forward layers to generate an output sequence from the hidden representations.

The transformer architecture has several advantages over previous neural network architectures,
such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). One major
advantage is that the transformer can process sequential data in parallel, which makes it much faster
than RNNs [21]. Additionally, the self-attention mechanism allows the network to capture long-range
dependencies, which is difficult for RNNs and CNNs.

Figure 2.2: A diagram containing various tasks included in the original T5 model. Retrieved from [32]

2.2.1. Transfer Learning
Transfer learning is a powerful technique used in machine learning that involves leveraging knowledge
acquired in one task to improve performance in a related but different task. In the context of transform-
ers, transfer learning refers to the practice of taking a pre-trained transformer model and fine-tuning
it for a specific downstream task. The pre-training phase of a transformer model involves training the
model on a large corpus of text data using a self-supervised learning approach. During this phase, the
model learns to understand the structure of language and to generate meaningful representations of
words and sentences.

In the context of OCR post-correction, transfer learning can be used to fine-tune a pre-trained trans-
formermodel for the specific task of correcting errors in OCR-generated text. The pre-trainedmodel can
be trained on a large corpus of text data, such as the Common Crawl dataset, using a self-supervised
learning approach. This pre-trained model can be further fine-tuned on a smaller dataset of OCR-
generated text, with the objective of improving the accuracy of the text correction process.

3
Related Work

While the previous chapter focused on providing a preliminary grasp of the fundamental concepts, the
purpose of this chapter is to delve deeper into specific concepts relevant to this thesis. Additionally, it
explores previous research conducted in the respective fields, aiming to support the chosen direction
for this research. Within this chapter, the concepts of Post-Correction will be thoroughly explained,
encompassing both manual and (semi) automated approaches. Furthermore, specific examples of the
latter will be discussed. Additionally, the contexts in which post-correction is typically employed will be
examined, such as the historical context. The final sections of this chapter will focus on the utilization
of synthetic data generation for the purpose of post-correction.

3.1. Post-Correction
OCR post-correction is a rapidly growing field of research that aims to improve the accuracy and effi-
ciency of OCR systems. As mentioned earlier, OCR systems are not perfect and often produce errors
due to various factors such as the quality of the input document, the complexity of the font, and the
variability of the language. OCR post-correction aims to correct these errors and improve the accuracy
of OCR output.

In the field of post-correction, there are different approaches available to achieve the desired objec-
tive. In this particular study, we classify these approaches into two main types: the manual approach
and the (semi)automated approach, as defined by Nguyen et al. [30]. The next subsection will explain
these concepts into more details, and give concrete examples.

3.1.1. Manual Approach
The manual approach involves human intervention for carrying out the post-correction process. How-
ever, this approach has a significant drawback as it requires considerable labor and often incurs high
costs. One method to accomplish this is by utilizing crowdsourcing platforms like Amazon’s Mechan-
ical Turk [37]. While some projects attempt to involve volunteers in assisting with the post-correction
of large datasets, it is important to note that this can still be a challenging task. An example illustrat-
ing this approach can be found in the work of Chrons, Sundell, and Bulevardi [5]. They proposed a
strategy to crowdsource the error correction process through gamification. They created a game called
digitalkoot, derived from the Finnish word talkoot, which refers to a group of people engaging in unpaid
work. Through this game, they were able to enlist the efforts of volunteers, resulting in the completion
of over 2.5 million tasks after investing a total of 2740 hours of work.

3.1.2. (Semi) Automated Approach
For post-correction the (semi) automated approach often involves a specific type of transformer, namely
the sequence-to-sequence (often referred to as Seq2Seq) transformer. This type of transformer has
been developed to transform one sequence of data into another sequence. The basic idea behind
sequence-to-sequence transformers is to use two separate transformers: an encoder and a decoder.
The encoder processes the input sequence, typically a sentence or a paragraph, into a fixed-length
representation called a context vector, which captures the important information contained in the input

9

10 3. Related Work

sequence. The decoder then takes the context vector as input and generates an output sequence,
which can be another sentence or a translation of the input sequence, depending on the task at hand.
An example of this is would be a transformer used for translation, in which you give as input a piece
of text in one language, and then it’s translated into another piece of text in another language. For
post-correction the goal is to train a model that as input text that contains errors, and returns the text
in which these errors are removed.

Over the last decade, several variations of sequence-to-sequence transformers have been devel-
oped, including BART [8], GPT-3 [3], and T5 [32]. BART, short for ”Bidirectional Auto-Regressive
Transformers” is a transformer-based language model that was designed for pre-training on large cor-
pora of text to improve the performance of various natural language processing (NLP) tasks, such as
text classification, question answering, and language generation. GPT-3, on the other hand, is a more
recent and powerful language model that uses a massive neural network with billions of parameters to
generate human-like text.

T5, which stands for ”Text-to-Text Transfer Transformer,” is another type of transformer-based lan-
guage model that was specifically designed for solving a wide range of NLP tasks using a single model
architecture. The T5 model is unique in that it can perform various NLP tasks, including translation,
summarization, question answering, and text completion, all using the same architecture. In Figure 2.2,
you can see the original diagram of the T5 model as created by the developers at Google. The figure
depicts four different types of actions, including translation and summarization, which the T5 model can
perform. The original T5 model was trained using a massive dataset called Colossal Clean Crawled
Corpus, which was created by the developers themselves.

Overall, while BART and T5 are both powerful transformer-based sequence-to-sequence models,
T5’s ability to perform multiple NLP tasks using a single architecture makes it a promising choice for a
wide range of NLP applications, including post-correction.

3.1.3. Usage in post-correction
Recently, many researchers have chosen to utilizemachine learning based techniques for post-correction
tasks, where a model is trained on a specific ground-truth dataset. In 2017, Saluja and colleagues [36]
employed an LSTM approach for post-correction in Indic languages, which are a group of languages
primarily spoken in South Asian countries such as Hindi, Bengali, and Punjabi. They found that an
LSTM was most suitable for correcting Out of Vocabulary (OOV) words.

Over the past few years, other machine learning methods have been explored, such as BERT
[29] and BART [24], which is similar to BERT but incorporates an autoregressive-decoder. BART is a
sequence-to-sequence model, which means it can be trained to generate output sequences of varying
lengths from input sequences. This makes it ideal for post-correction, as it enables the correction of
errors. Variations of BERT include RoBERTa [22], an extended version of BERT that uses a larger and
more diverse training corpus and a modified training methodology to achieve better natural language
processing performance. RoBERTa has a larger model size and was trained for more steps than BERT.

Another approach involves using a T5 transformer [25, 31]. T5 is similar to BART in that it is a
transformer-based architecture that consists of a stack of transformer encoder-decoder layers capable
of processing both input and output sequences. However, T5 includes a pre-processing step that
converts input and output tasks into a unified text-to-text format, which allows for training and fine-
tuning on a wide range of tasks using a single architecture and training process. This makes T5 an
ideal approach for post-correction in OCR, as it can be easily fine-tuned.

3.2. Post-Correction in the historical domain
In Section 2, it was discussed how Optical Character Recognition (OCR) can be a valuable tool for
archiving historical documents, and post-correction can further enhance the quality of the OCR results.
However, one of the primary challenges encountered is that modern OCR technology is often ill-suited
for handling historical documents. To address this, Martínek, Lenc, and Král [26] proposed a technique
that utilizes a small amount of annotated data to effectively segment different parts of the text.

Several researchers have also explored post-correction methods specifically tailored to historical
documents. For instance, Drobac et al. [12] conducted experiments on historical Finnish data, achiev-
ing an accuracy of 95.21% using the best OCR and post-processing models. They employed the

3.3. Post-Correction in other domains 11

Ocropy OCR software1 and utilized the DIGI and NATLIB datasets, which are part of a larger corpus of
historical newspapers and magazines created by the Library of Finland. Each item in these datasets
consists of image files containing individual lines of printed text, as well as the corresponding plain text
contents. The alignment problem was one of the challenges they addressed during their research.

The archival process of historical documents has been ongoing for several decades, and various
OCR applications have been employed during this time, each producing outputs of varying quality.
Post-correction applications are often trained on specific OCR software but are expected to be applied
to documents acquired using different software. Dannélls and Persson [7] proposed a post-correction
method that utilizes three OCR systems: ABBYY Finereader, Tesseract, and Ocropus. They conducted
their research on historical Swedish data from the Project Runberg OCR project, which covers the 17th
and 19th centuries, as well as the Swedberg dataset, which covers the 18th century. It is worth noting
that their post-correction was performed at the word level rather than the sentence level.

3.3. Post-Correction in other domains
Despite the focus of this thesis being in that of historical documents, OCR can play a role in many
other fields. One in particular is the medical domain. Medical data often lacks a standardized structure
and exists primarily in the form of unstructured, digitally generated, or scanned paper documents that
are stored as part of a patient’s medical records. To make this unstructured data accessible, Optical
Character Recognition (OCR) technology is used to digitize it [22]. However, OCR accuracy can be a
culprit when the quality is too low. This is especially true when dealing with scanned or handwritten
documents, where text may be skewed, obscured, or illegible. Moreover, medical terminology used in
the processed text is highly specialized and may not be part of general language lexicons, adding to
the complexity of the OCR process.

The field of social media is another critical area where OCR technology has become increasingly
important. With vast amounts of data being processed in this domain, human intervention is often
not feasible due to the sheer volume of information being uploaded and shared on these platforms.
Unfortunately, this large quantity of data also makes social media platforms vulnerable to malicious
content, particularly when it comes to images. As noted in a recent study [17], many images uploaded
to social media platforms may contain embedded text that contains malicious content, such as spam
or phishing messages.

The problem is compounded by the fact that most social media systems rely heavily on automated
processes to analyze and moderate content, with little human intervention. This means that malicious
content can easily slip through the cracks and go undetected, posing a significant risk to users.

3.4. Post-Correction for Dutch data
Research has been done into the field of post-correction specifically for Dutch data. For instance, in
the International Conference on Document Analysis and Recognition (ICDAR), which is a conference
in which post-correction is addressed, besides other parts, a dutch dataset is included for training and
evaluation [35].

One of the leading researchers into the field of post-correction for dutch literature, is Reynaert. In
2008 he proposed a system called ”Text-Induced Corpus Clean-up” (TICCL) to reduce the level of OCR-
induced typographical variation in large text collections [34]. The system focuses on high-frequency
words and gathers all typographical variants that are within a predefined Levenshtein distance. Sim-
ple filtering techniques are used to retain true positives and discard false positives. The system was
evaluated on a contemporary OCR-ed Dutch text corpus and a corpus of historical newspaper articles
with lower OCR-quality and an older Dutch spelling. The results show that the system can effectively
remove most OCR-induced typographical variation automatically up to a Levenshtein distance of 2.
The paper also discusses the adaptation of the correction mechanism to OCR-error resolution.

3.5. Synthetic data generation
The generation of synthetic training data is not a novel concept and has been previously employed.
Breuel et al. [2] utilized a tool called ocropus-linegen to artificially generate synthetic data images. An-
other instance can be found in the paper authored by Imam, Vassilakis, and Kolovos [18], where a
1https://github.com/ocropus/ocropy

https://github.com/ocropus/ocropy

12 3. Related Work

synthetic data generator2 was utilized to detect images containing malicious content. In this approach,
individual sentences were placed on separate white images, and various OCR applications were em-
ployed to extract the text.

Expanding beyond the use of images to create data, Duong, Hämäläinen, and Hengchen [13] in-
troduced a method to incorporate OCR-like errors into their dataset. They deliberately manipulated
the dataset by deleting, adding, and replacing characters up to a predetermined ratio. The objective
was to create a dataset that closely resembles real OCR errors. Similarly, Dong and Smith [9] uni-
formly introduced insertions, deletions, and substitutions to mimic authentic OCR errors. Furthermore,
a sequence-to-sequencemodel was trained using the synthetic data, resulting in improved performance
in terms of CER and WER scores on the validation dataset.

Determining the appropriate error ratios for generating OCR errors can be challenging, particularly
when dealing with historical data. Historical articles, especially in the early 17th century, often employed
gothic-style fonts, which can be more difficult to interpret, and older OCR software was used to read
those texts. In contrast, newer articles are typically easier to read and interpreted by more modern
OCR software, consequently increasing the quality of the output.

3.6. Evaluation dataset of ICDAR
ICDAR, the International Conference on Document Analysis and Recognition, is a renowned event
that focuses on analyzing and recognizing documents. The contents of the conference is two-fold.
Participants enter with models for either error detection or correction in OCR. One of the main areas
of evaluation at the conference involves assessing models’ capabilities in detecting and correcting
errors in OCR (Optical Character Recognition) content [35]. In order to validate the results obtained
by these models, different datasets were employed, including a Dutch subset of the IMPACT dataset.
Their datasets are often used for evaluation purposes, aiding in comparing different machine learning
models. However the evaluation datasets differ per individual language. This section aids to explain,
why the choice was made to not use the ICDAR dataset for evaluation.

The validation files in the dataset comprised three lines: the OCR_toInput line, which represented
the output generated by the OCR model, and the OCR_aligned and GS_aligned lines, which repre-
sented aligned versions of the OCR output and the corresponding gold standard text, respectively.
Alignment was achieved by using @ symbols to match up the sentences in the two lines.

However, it is important to note that the dataset suffered from inconsistent data quality, as demon-
strated by the extreme case of file 39.txt. In this instance, the gold standard text consisted of only a few
words, while the OCR output consisted of multiple sentences. Such inconsistencies pose additional
challenges for post-correction models. Post-correction itself is already a demanding task, and it be-
comes even more difficult when dealing with inconsistent data. The presence of such inconsistencies
highlights the importance of carefully considering the quality and characteristics of the datasets used
for evaluation. In the case of post-correction models, having reliable and consistent data is crucial to
ensure accurate assessments of the models’ performance.

It is worth emphasizing that ICDAR places its primary focus on techniques pertaining to error detec-
tion and error correction, rather than the data generation process. Participants in the conference are
provided with a designated training dataset and are expected to train their models using this dataset,
instead of collecting or creating their own data. This standardized approach ensures a level playing
field for evaluating and comparing different models. Attempting to compare a model trained on different
data sources would introduce confounding variables and compromise the reliability of the results.

Furthermore, it is important to note that the IMPACT dataset, which serves as the primary dataset
for the ICDAR conference, is limited in its temporal scope, encompassing data exclusively from the
years 1777 to 1878, as indicated earlier in the section. Consequently, this dataset fails to encompass
substantial portions of data that are included in the dataset utilized in our research work. Given this
disparity in the data sources, taking into consideration the specific context and characteristics of our
model, it was deemed inappropriate to employ the evaluation set of ICDAR for assessing the perfor-
mance of our model.

By not using the evaluation set of ICDAR, we ensure that our model’s performance is evaluated
within the appropriate context and against datasets that encompass a more comprehensive represen-
tation of the target domain. This approach allows for a more accurate assessment of the model’s
2https://github.com/Belval/TextRecognitionDataGenerator

https://github.com/Belval/TextRecognitionDataGenerator

3.6. Evaluation dataset of ICDAR 13

[OCR_aligned] @XII VOORREDEN. badist in geen kwaden zin meende, dagt ik te mo gen
hopen, dat alle verftandigen denzelven nu •,voorts wel eenvoudig zouden willen aanzien
als de benaming van een zeker Leerftelfel, bij ons onder dien mam bekend•, en dat, zon-
der dien Naam, niet anders, dan telkens door eene zeer breede omfchrijving zou kunnen
worden aangeduid. Meer bedoelde ik hier in niet; en nademaal het modig was, dat ik dien
Naam in den tegenwoor- digen Brief wederom meenigemalen gebruikte, ver zoek ik elk, die
goedvinden zal den zelven te le zen , dat hij dien in dezen, en in geenen ande ren zin gelieve
te verf aan. Want de Naam La- badist is bij mij alzoo weinig een fcheldnaam, als die van
Vitringist, Lampeaan of Honertiaan; wel ken men immers noemen kan, zonder iemand te
beledigen? vfangezien zij niets anders aanduiden dan zekere denkwijzen, die allen, even
als het Labadismus, tot het Cocceanismus behoor en, of daar van onderdeelen uitmaken.
hierom heb ik ook niet dan met leetwezen gezien, dat de Heer Alethophilus van zig heeft
kunnen verkrijgen, bl. 6. te fchrijven, dat de meefle leden onzer Kerke door mij voor Laba-
disten uicgekreten worden; en dan bl. 106 weer anders om; dat ik met labadie zand in de
oogen geworpen heb. Hoe beide deze dingen uit dezelfde Pen hebben kunnen vloeijen,
weet ik niet j maar
[GS_aligned] XII VOORREDEN. badist HIEROM maar

Figure 3.1: The contents of the file 39.txt contained in the Dutch evaluation set of ICDAR

capabilities.

4
Overview and Data Preparation

The objective of this thesis is to leverage ground-truth data in order to train a model capable of auto-
matically rectifying OCR errors. However, prior to utilizing the data to achieve this goal, it must undergo
acquisition, analysis, and pre-processing. This chapter offers a detailed explanation of the steps in-
volved in acquiring the data, conducting analysis, and performing necessary pre-processing procedures
to adequately prepare the data for training the OCR error correction model. These steps play a critical
role in ensuring the data is suitably prepared. Furthermore, in addition to the approaches discussed in
this chapter, various other techniques were explored but deemed unsuitable or not effective enough.
For a comprehensive overview of these techniques, please consult Appendix D.

This chapter will first provide an initial overview of the various parts of the framework, followed
by how each of the datasets is pre-processed. Then an overview of the used datasets is presented,
along with a more in depth look into what is contained in each one of them. Finally, all datasets are
combined, and the total datasets is also examined. This section also contains a part about creating an
evenly distributed dataset, which is a dataset containing equal amounts of information for each of the
publication years.

In this chapter, an introductory overview of the different components of the framework is presented.
Following that, we will delve into the pre-processing procedures applied to each of the datasets. Subse-
quently, an overview of the utilized datasets will be presented, accompanied by a detailed examination
of the contents within each dataset. Finally, all the datasets are combined and the contents of the
dataset as a whole is examined. This section will also address the creation of an evenly distributed
dataset, which involves curating a dataset with equal amounts of information for each publication year.
This last part is used in the next chapter to train the sequence-to-sequence models.

4.1. Overview of the system
In Figure 4.1, a visual representation of the pipeline of the system can be found. This explains the 3
steps that are performed in this thesis.

The initial component is the data pre-processing stage. Here, all the various datasets are loaded
into the system along with accompanying information, such as the publication year, which plays an
important role in the next steps. Furthermore, irrelevant data is removed, ensuring that the remaining
dataset is in a suitable state for training purposes.

In the second step in the pipeline, we encounter the synthetic data generation phase. This stage
leverages the data loaded in the previous step to create images that incorporate year-dependent back-
grounds and fonts. With the help of OCR software, sentences displayed on the images can be accu-
rately extracted and consolidated into a dataframe. This dataframe contains both the ground-truth and
sentence after going through the OCR software, as well as the publication year.

Lastly, the final step revolves around training a sequence-to-sequence model. By utilizing the syn-
thetically generated data from the second step, a sequence-to-sequence model can be trained for the
goal of post-correction.

15

16 4. Overview and Data Preparation

Train a T5
transformer on the

synthetic data

Use the T5
transformer to post-

correct ocr text

Choose background
block based on year

of publication

Choose font based on
year of publication

Use background and
font type to generate
the image including

text

Synthetic data generation

Sequence-to-sequence model

Data pre-processing

DBNL

Hisorical
Newspapers

IMPACT

Meertens

Statenvertaling

Data cleaningLoad datasets

Figure 4.1: An overview of the full framework of the application, containing the 3 stages

4.2. Data Pre-Processing
Starting of with the first step, the data pre-processing stage. Before the actual datasets themselves are
discussed, first the steps of data-cleaning will be discussed. The reason why this is explained first, is
that in the next sections figures are displayed containing the amount of words after data-cleaning. Data
cleaning involves identifying and rectifying any errors or inaccuracies, while pre-processing involves
transforming the data into a suitable format for the model.

To begin with, the dataframes used in the system should consist of two columns: the ”target” column
and the ”year” column. The ”target” column contains the ground-truth or target text that the model aims
to generate. The ”year” column indicates the publication year of a specific article, which is helpful in
the subsequent step of synthetic data creation. Data pre-processing specifically focuses on the ”target”
column.

In the Python code, the initial step involved ensuring that both the ”year” and ”target” columns con-
tain only string values. This step aims to maintain consistency across all rows in the dataframe. Next,
regular expressions (regex) were employed to filter out any characters that do not meet the specified
criteria. The criteria typically include allowing only alphabetic letters, numbers, and standard punctu-
ation marks such as commas (,), periods (.), colons (:), and semicolons (;). Additionally, consecutive
whitespaces were removed from the dataset. These pre-processing steps ensure that the data contains
only relevant characters for the model while eliminating unwanted information.

In addition to cleaning and pre-processing, the function incorporates a filtering step based on sen-
tence length. Initially, all sentences are split using semicolons (commonly used in 17th-century texts to
separate sentences) and dots as delimiters. Subsequently, sentences that are deemed too short (less
than 5 words) or too long (more than 50 words) are excluded from the dataset. This filtering ensures
that the model is trained on high-quality data containing sufficient information for effective learning.

Furthermore, unwanted values are identified and removes rows where the target column contains
NaN, None, or ’None’ values. These occurrences may arise due to errors or inconsistencies in the data.
By eliminating such rows, the model is trained on more accurate and reliable data. Duplicate lines are
also unwanted, and are therefore removed. These might occur when having overlapping datasets,
especially with shorter sentences.

4.2.1. Overview of the datasets
The complete dataset comprises five distinct ground-truth datasets, which will be referred to as DBNL,
Historical Newspapers, IMPACT, Meertens and Statenvertaling. Each of these datasets is de-
scribed in detail in the following sections, along with a corresponding figure that shows their contents.
It is worth noting that these figures are generated after the pre-processing step, as described in the
previous section. Therefore, they represent the actual usable size of the dataset that is relevant for our
analysis.

4.2. Data Pre-Processing 17

4.2.2. DBNL
DBNL is a dataset digitised by the ’Digitale Bibliotheek voor de Nederlandse Letteren’ or ’Digital Library
for Dutch Literature’ in English. It contains a digitized version of 220 Dutch books, ranging from 1776
to 1878 written primarily in Dutch. It contains the original OCR version in a .txt format, and a manually
corrected version in TEI-Lite1 format. The full list of books can be found in Appendix A.1.

Figure 4.2 provides a visualization of this dataset and shows the number of words and sentences
per year. The figures indicate that the dataset covers the period from 1776 to 1878. One interesting
observation is that there is a significant peak in both the number of words and sentences in the year
1862. This could be due to a number of factors, such as an increase in the production of Dutch literature
during that period or the publication of a particularly significant work. Further analysis would be needed
to determine the cause of this peak. Another notable feature of the dataset is that there are several
missing years, specifically 1780, 1801, and 1811. It is unclear why data for these years is missing, but
it is possible that there was a lack of available literature during those periods or that the data has been
completely removed during the data pre-processing procedure.

1,775 1,800 1,825 1,850 1,875
0

0.4
0.8
1.2
1.6
2

2.4
2.8
3.2

⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,775 1,800 1,825 1,850 1,875
0

4,000

8,000

Year

O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.2: Two figures containing the amount of words and sentences per year for the DBNL dataset

Historical Newspapers
Historical Newspapers is a dataset developed by Wilms, Nijssen, and Koster [41] for a research
project. They manually correct 20002 pages of newspapers ranging from 1700 to 1995. The pages
were correct to 99.95 percent accuracy for paper newspapers, and to 99.5 for newspapers digitised
from microfilm. The data was rekeyed using the software Aletheia3. The set consists of 2000 images in
JP2 format, accompanied by the original OCR files in ALTO format, and 2000 manually corrected OCR
ground-truth files in ALTO format. The JP2 (JPEG 2000) image format is a highly compressed image
format that uses wavelet technology to produce high-quality images with smaller file sizes than other
image formats [16]. This style of image compression is used throughout the entire image database of
the Koninklijke Bibliotheek. In addition to the image files and OCR files, there is an excel file included,
which holds all the identifiers for each of the images, as well as other information such as the year of
publication.

The provided figure, which can be seen in Figure 4.2, is a visual representation of this dataset,
showing the number of words and sentences per year. The dataset spans a period of time from 1698
to 1995, covering a vast range of historical events, societal changes, and cultural shifts that occurred
over nearly three centuries. The data indicates that there was a noticeable increase in the number
of sentences and words in the dataset from around the year 1875 onward. This increase could be
attributed to a number of factors, such as advances in printing technology, a greater demand for news
and information, and an overall growth in the size and complexity of the media landscape during that
1https://tei-c.org/Vault/P4/
2https://lab.kb.nl/dataset/historical-newspapers-ocr-ground-truth
3https://www.primaresearch.org/tools/Aletheia

https://tei-c.org/Vault/P4/
https://lab.kb.nl/dataset/historical-newspapers-ocr-ground-truth
https://www.primaresearch.org/tools/Aletheia

18 4. Overview and Data Preparation

time period. However, there is also a noticeable drop in the number of sentences and words during
the period of the second world war, from 1940 to 1945. This is to be expected, given the widespread
disruptions and upheavals that occurred during that time, including censorship, shortages of paper and
other materials, and the overall chaos of wartime conditions. One other observation that can be made
from the figure is that there seem to be some gaps or missing years, particularly before the year 1750.
This could be due to a variety of factors, such as the loss or destruction of historical records, the lack
of available data in certain regions or areas, or the limitations of the data pre-processing procedures
used to compile the dataset.

1,7001,7501,8001,8501,9001,9502,000
0

0.2
0.4
0.6
0.8
1

1.2
⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,7001,7501,8001,8501,9001,9502,000
0

1,000

2,000

3,000

4,000

Year
O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.3: Two figures containing the amount of words and sentences per year for the Historical Newspapers dataset

IMPACT
The dataset known as IMPACT [19] was acquired as part of the IMPACT project4, a European initiative
headed by the Koninklijke Bibliotheek (KB) aimed at promoting progress in OCR and language tech-
nologies. It comprises a selection of book pages, newspaper pages, parliamentary proceedings, and
typewritten radio bulletins. Each category of text is accompanied by TIF image files and XML files con-
taining the page content. The dataset also includes a spreadsheet that provides additional information,
such as the publication year, enabling the linkage between the TIF and XML files. The text files are
manually corrected to an accuracy of 99.95 percent. The full source for the dataset can be found in
Appendix A.3

The dataset consists of historical data spanning from 1776 to 1878, and Figure 4.4 visually repre-
sents this data. In comparison to other datasets, the distribution of the data in IMPACT appears to be
more uniformly spread out, with the only noticeable peak occurring in the year 1858. This observation
could suggest that there were no major events or changes that occurred during this time period, or the
dataset may have been intentionally configured to have a smoother distribution. Despite this, there are
still a few gaps in the data, specifically in the years 1801 and 1811, which suggest that there might have
been some missing data, which can either be related to the data itself or the data cleaning process.

Meertens
The Meertens dataset5 contains a transcription of 6000 newspapers from the 17th century. The data
has been transcribed via a crowdsourcing project, volunteers would manually type out the text, and
then another correction step was performed. It was an effort that took 200 volunteers, 5 years to
complete. The project was a cooperation between the Koninklijke Bibliotheek, Nationale Bibliotheek
van Nederland and the Meertens Instituut. The dataset is focused on the data between 1618 and
1700, since that is the period in which Gothic and Roman fonts were used, which were difficult for OCR
software to recognize.

4https://cordis.europa.eu/project/id/215064
5https://meertens.knaw.nl/2020/05/18/crowdsourcing-maakt-zeventiende-eeuwse-kranten-op-delpher-beter-doorzoekbaar/

https://cordis.europa.eu/project/id/215064
https://meertens.knaw.nl/2020/05/18/crowdsourcing-maakt-zeventiende-eeuwse-kranten-op-delpher-beter-doorzoekbaar/

4.2. Data Pre-Processing 19

1,775 1,800 1,825 1,850 1,875
0

0.4
0.8
1.2
1.6
2

2.4
2.8
3.2

⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,775 1,800 1,825 1,850 1,875
0

4,000

8,000

Year

O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.4: Two figures containing the amount of words and sentences per year for the IMPACT dataset

The Meertens dataset, as illustrated in Figure 4.5, encompasses data spanning from the 17th cen-
tury, specifically from 1618 to 1700. The dataset shows an increasing trend in size as the years
progress, with the year 1692 marking a peak. Unlike the previous datasets, there appear to be no
missing years within the Meertens dataset.

1,625 1,650 1,675 1,700
00.2

0.40.6
0.81
1.21.4
1.61.8
22.2

2.42.6
2.83
3.23.4

⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,625 1,650 1,675 1,700
0

0.4
0.8
1.2
1.6
2

2.4
2.8

⋅104

Year

O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.5: Two figures containing the amount of words and sentences per year for the Meertens dataset

Statenvertaling
The Synode van Dordrecht was a gathering of the Dutch Reformed Church that took place in 1618-
1619. During this Synod, it was decided that a new translation of the Bible from its original languages
of Hebrew and Greek was needed [39]. The result of this decision was the Statenvertaling, a Dutch
translation of the Bible that was completed in 1637. The Statenvertaling became an important cultural
and literary work, helping to establish a common literary language for the Dutch Republic and shaping
the Dutch language as we know it today [28].

Over time, numerous other translations of the Bible have beenmade, including modern and easy-to-
read versions such as the Basisbijbel. Despite this, the Statenvertaling remains an important historical
text, with its thorough transcription over the years providing valuable data for scholars interested in
studying the language and culture of the 17th century.

Figure 4.6 displays the figures for the dataset6 associated with the Statenvertaling. As expected,
this dataset is not as extensive as others, as it only consists of one book published in the year 1637.
6https://viaveritasvita.info/SV_downloadables/DutSV.ont

https://viaveritasvita.info/SV_downloadables/DutSV.ont

20 4. Overview and Data Preparation

Nonetheless, this dataset can still provide insights into the language and culture of the Dutch Republic
during this time period, making it a valuable resource for this research.

1,637

2 ⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,637
0

1

2

3
⋅104

Year

O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.6: Two figures containing the amount of words and sentences per year for the Statenvertaling dataset

4.3. Full Dataset
The mentioned datasets have been concatenated into a single dataset, which will be utilized to train
our sequence-to-sequence models. Details regarding the word and sentence counts can be found in
Figures 4.7a and 4.7b. Upon examining these figures, it becomes apparent that there is a noticeable
data gap between the years 1700 and 1775. Although the Historical Newspapers dataset includes
some data from this period, the density of information is comparatively low when contrasted with other
time periods.

Another significant observation is the significant increase in data for the year 1637, which can be
attributed to the publication of the Statenvertaling. The combination of this dataset with the Meertens
dataset has resulted in an extensive amount of data for that particular year. Additionally, an examination
of the sentence count leading up to the year 1700 reveals a substantial number of sentences, corre-
sponding to the word count for that period. Despite the presence of overlapping datasets, particularly
between 1778 and 1878, this overlap is not clearly depicted in the figure.

Overall, the distribution of words appears to be relatively uniform across different time periods, with
a slight decline as we approach the year 2000. In our workflow, all the datasets are merged into a
single pandas dataframe, which is prepared for the subsequent step of synthetic data generation.

1,600 1,700 1,800 1,900 2,000
0

0.4
0.8
1.2
1.6
2

2.4
2.8
3.2
3.6

⋅104

Year

O
cc
ur
re
nc
es

(a) Amount of words per year

1,600 1,700 1,800 1,900 2,000
0

0.4
0.8
1.2
1.6
2

2.4
2.8

⋅104

Year

O
cc
ur
re
nc
es

(b) Amount of sentences per year

Figure 4.7: Two figures containing the amount of words and sentences per year for the entire dataset

4.3. Full Dataset 21

4.3.1. Evenly spread dataset
Another crucial consideration is the creation of a single model capable of working effectively across
various time periods. To achieve this objective, a specific dataset has been constructed, ensuring an
even distribution of data points across different years of publication. Suppose we require a training
dataset of 50.000 sentences. In such a scenario, sentences are selected based on their availability.
If there is an insufficient number of sentences from a particular year, the remaining sentences are
distributed among other years. This approach guarantees that it gives an equal representation of
sentences for each year, thereby preventing over or under-representation of specific time periods. This
hopes to ensure that the resulting models performance is evenly balanced over the different publication
years.

5
Synthetic Data Generation

The main challenge in training post-correction models is the availability of sufficient training data. As
discussed earlier, manual approaches to correcting texts can be labor-intensive and expensive. Ad-
ditionally, matching each OCR text to its corresponding ground-truth text can be difficult, further in-
creasing the problem of data availability. To overcome this challenge, it is possible to create a custom
OCR dataset from ground-truth data. The general idea behind this approach is to create a background
image and then overlay text onto the image. Finally, OCR software is applied to the image to generate
the desired OCR output. With this approach the aim is to answer RQ1 of the research questions.

This approach offers several advantages, including its versatility across diverse fields. In Chapter
3.3, we examined its potential applicability to various domains, such as social media platforms. By
employing synthetic data generation in such scenarios, where a continuous flow of textual data ex-
ists, the collection of ground-truth data becomes virtually cost-free. Utilizing synthetic data generation
alongside the abundance of input data presents an opportunity to access an extensive pool of potential
training data.

Moreover, this approach circumvents the need to address the alignment problem, not having to solve
the requirement for matching the text before and after OCR. In the subsequent sections, we will delve
into the details of the synthetic data generation framework. The initial stage entails creating a suitable
background for text placement, which involves downloading images from Delpher and create building
blocks out of those papers. These building blocks consist of square images with diverse backgrounds,
serving as the foundation for constructing the background on which the text will be placed.

Considering the historical nature of the articles, which often exhibit variations in font styles, we will
utilize multiple types of fonts. We will explain the process of selecting appropriate fonts for different time
periods to ensure historical accuracy. In the final step, optical character recognition (OCR) is employed
to convert the images containing the text into an actual text format, allowing for the creation of a full
training dataframe.

5.1. Background creation
To generate artificial training data, the initial step involves crafting a canvas for the text. Given the
evolution of paper over the last few decades, the type of paper used to display the text can significantly
impact the OCR application’s performance [31]. Consequently, the objective was to design a canvas
that corresponds to the time period when a dataset was published. To achieve this, thousands of
article images from 1618 to 1995 were downloaded using the Delpher search API1. With these images,
building blocks for the canvas were created for each decade, covering the time periods from 1610-
1620, 1620-1630, and so on. These building blocks each had a fixed width and height which was set
to 80 pixels.

5.1.1. Downloading the images
Using the Delpher API, a function can be created to download a set of images from 1610 to 1995, for
which we have data to create ground-truth datasets. The images are downloaded for every 10-year
1https://www.kb.nl/en/research-find/datasets/delpher-newspapers

23

https://www.kb.nl/en/research-find/datasets/delpher-newspapers

24 5. Synthetic Data Generation

time period, resulting in a set of downloaded images that are ready for the next step of the process. For
every of the 10-year periods the maximum amount of images would be set to 1000. Examples of these
images are shown in figures 5.1 and 5.3. The first image is a page from the newspaper Algemeen
Dagblad from 02-01-1990, while the second figure is the oldest image on Delpher, the Courante uyt
Italien, Duytslandt from 14-06-1618,

Figure 5.1: A page from the newspaper Algemeen Dagblad in 02-01-1990 in Rotterdam

5.1.2. Creating the building blocks
After obtaining the downloaded images of the newspaper pages as mentioned in the previous section,
we can generate what are referred to as building blocks. These building blocks are used to compose
the background of the synthetically generated images. The main challenge in creating these building
blocks was finding clean areas that did not contain any text. To solve this problem, an algorithm was
developed, as depicted in Algorithm 1. The algorithm takes an image that has been processed using the
InRange function of OpenCV as input. By defining a range of colors in the HSV color space (16,30,30
to 150,255,255), the algorithm turns pixels outside of the desired range black, while turning those inside
the range white. This effectively blocks out colors close to black and white, which are the dominant
colors of the text and paper edges. The results of this algorithm can be observed in Figures 5.3 and
5.5. Text itself will become black, as well as the edges. The borders of the pages on the other hand
will be almost completely white of colour. This property can now be used to identify where parts of the
image are located, so that it can be used as a background.

The primary challenge encountered in creating these building blocks was identifying clean areas not
containing any text. To overcome this hurdle, an algorithm was developed, as illustrated in Algorithm
1. This algorithm takes as input an image processed using OpenCV’s InRange function. By defining
a specific range of colors in the HSV color space (from 16,30,30 to 150,255,255), the algorithm sets
pixels outside the desired range to black and those within the range to white. Consequently, colors
close to black (representing text) and white (representing paper edges) are effectively suppressed.
The outcomes of this algorithm can be observed in Figures 5.3 and 5.5. The text itself, as well as the
edges, appear black, while the page borders exhibit nearly pure white color. This property enables the
identification of the image’s background areas, which can be subsequently utilized as backgrounds for
further processing.

5.2. What typeface to use 25

(a) (b)

Figure 5.3: A page from the Courante uyt Italien, Duytslandt on 14-06-1618, the earliest
newspaper available on Delpher, accompanied by zoomed in sections of the newspapers.

The algorithm for creating artificial training data employs a method for finding the cleanest 80 by 80
square in the image. This square has the highest sum of pixels and thus contains the least number of
artifacts. Once this square is identified, it is saved for later processing and serves as a building block for
constructing the background for the text. Since the quality of these building blocks can vary depending
on the image, a subset of 20 images is selected for each decade, based on the highest sum using the
inRange function. This means that for every 10-year period, there are 10 images that can serve as the
background for the text. When selecting a building block, one is chosen at random from its’ specific
time period and used to create the entire background. The building blocks are not mixed, ensuring that
the background remains consistent throughout the entire image. This process helps to create a more
diverse set of training data, as each background is unique and corresponds to the time period in which
the dataset was published.

Figure 5.6 provides an overview of the entire collection of building blocks. Notably, this image not
only presents the assortment of building blocks but also provides insights into the evolution of paper
over the past few decades. A transformation can be observed, particularly in the 17th century, where
paper appeared much lighter in color, accompanied by a more pronounced bleeding of colors onto
the page. The scans of early 1800s newspapers also exhibit a darker hue compared to more modern
articles. Approaching the late 1800s and extending into the mid-1900s, the paper takes on a distinct,
dark yellowish tone. Moreover, the margins of newspapers from the end of the 1900s progressively
narrow, resulting in the appearance of sudden black bars within these eras.

By placing all these images into one large composition, we can visualise the evolution of paper
types across the centuries. These variations serve as indicators of print and scan quality, which can
significantly impact the final results of our analysis. Consequently, the importance of the decision to
create images based on their respective publication dates becomes clear. These observations under-
score the significance of considering the historical context, the characteristics of the paper used, and
the potential implications on the OCR process.

5.2. What typeface to use
An important part of the visual representation of text on an image, is defined by the choice of typeface of
the text. A typeface encompasses various elements, including the shape, weight, and style of the char-
acters. These elements determine the overall look and feel of the typeface. Typeface families typically

26 5. Synthetic Data Generation

(a) (b)

Figure 5.5: A page from the Courante uyt Italien, Duytslandt on 14-06-1618, the earliest
newspaper available on Delpher, accompanied by zoomed in sections of the newspapers.
This time the InRange function as described in Section 5.1.2 has been applied.

Algorithm 1 Finding White Square
1: procedure FindWhiteSquare(frame_ threshed, image_ size)
2: ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑣𝑎𝑙𝑢𝑒 ← 0
3: 𝑥𝑚𝑖𝑛 ← 0
4: 𝑥𝑚𝑎𝑥 ← 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
5: 𝑦𝑚𝑖𝑛 ← 0
6: 𝑦𝑚𝑎𝑥 ← 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
7: for 𝑥 in range(0, 𝑙𝑒𝑛(𝑓𝑟𝑎𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑒𝑑), 𝑖𝑛𝑡(𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒)) do
8: for 𝑦 in range(0, 𝑙𝑒𝑛(𝑓𝑟𝑎𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑒𝑑[𝑥]), 𝑖𝑛𝑡(𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒)) do
9: if 𝑥 − 𝑙𝑒𝑛(𝑓𝑟𝑎𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑒𝑑) > 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 and 𝑦 − 𝑙𝑒𝑛(𝑓𝑟𝑎𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑒𝑑[𝑥]) >
𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 then

10: 𝑠𝑢𝑚_𝑣𝑎𝑙𝑢𝑒 ← 𝑠𝑢𝑚(𝑓𝑟𝑎𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑒𝑑[𝑥 ∶ (𝑥 + 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒), 𝑦 ∶ (𝑦 + 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒)])
11: if 𝑠𝑢𝑚_𝑣𝑎𝑙𝑢𝑒 > ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑣𝑎𝑙𝑢𝑒 then
12: ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒
13: 𝑥𝑚𝑖𝑛 ← 𝑥
14: 𝑥𝑚𝑎𝑥 ← 𝑥 + 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
15: 𝑦𝑚𝑖𝑛 ← 𝑦
16: 𝑦𝑚𝑎𝑥 ← 𝑦 + 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
17: return 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥

5.2. What typeface to use 27

Figure 5.6: All the building blocks that were used for creating the background for the newspapers

consist of multiple variations, such as regular, bold, italic, and condensed, which offer different visual
styles and weights within the same design. The words font and typeface are often used interchange-
ably although they are slightly different. A typeface is the broader design concept that encompasses
the overall style, while a font refers to a specific variation or style within that typeface. Typefaces are
like families, and fonts are the individual members within that family.

The choice of typeface can greatly impact the performance of an OCR application [31]. For the goal
of synthetic image creation based on the year of publication, choosing the right typeface is crucial in
giving a perspective as close to reality as possible. In order to discover which datasets were used in
specific periods, we need to delve into the history of typefaces. As our dataset is only comprised of
data from the year 1618 onward, we will only be discussing typeface that were used during that period.

During the early 17th century, Blackletter typefaces, especially the Fraktur font, dominated the ty-
pography landscape. These typefaces were characterized by their distinct Gothic appearance and or-
nate, calligraphic letterforms. Widely used in western Europe, Blackletter fonts remained popular until
the late 17th century [10]. An early example of this typeface can be observed in Figure 5.3, which show-
cases the earliest available instance on Delpher. Amidst the prevalence of Blackletter fonts, another
noteworthy typeface emerged, known as the Jenson roman typeface. Although it had been invented
centuries earlier, its timeless design continued to be embraced during the 17th century.

Around the year 1720, a significant contribution to typography came from William Caslon, who
introduced the Caslon typeface [14]. This typeface quickly gained recognition and prominence during
that era, influencing the typography landscape for years to come.

As the 19th century unfolded, typography witnessed further evolution. One of the prevalent type-
faces during this period was Didone, known for its elegant and high-contrast letterforms. Therefore, our
application will utilize the Didone typeface to accurately represent the typography of the 19th century
[38]. Additionally, the Baskerville font began to gain popularity during this time, reflecting a shift to-
wards more refined and sophisticated typefaces. Towards the end of the 19th century, the typographic
scene witnessed the emergence of crisp alternatives, such as the Bodoni typeface, which featured
sharp serifs and geometric shapes.

The 20th century brought about a radical transformation in typography, driven by various artistic
movements. The Art Nouveau movement, spanning the late 19th and early 20th centuries, introduced
highly decorative and intricate typefaces inspired by organic forms and flowing lines. However, the
most significant revolution occurred with the advent of the Bauhaus movement and the subsequent
emergence of Swiss design in the mid-20th century. Renowned designers like Jan Tschichold and
Max Miedinger championed a new approach to typography, emphasizing functionalism, simplicity, and
geometric forms. It was during this period that iconic typefaces like Helvetica and Univers came into
being, representing the pinnacle of minimalist yet impactful typography [38].

Throughout these historical periods, the evolution of typefaces mirrors not only changing aesthetics
but also cultural and artistic influences. By understanding the significance of each typeface and its
respective era, the application aims to faithfully represent the diverse typographic landscape across
different time periods.

Although beyond the scope of our dataset, it is important to acknowledge the digital revolution of
the late 20th century, which resulted in a diverse landscape of font types. Nowadays, there exists a
vast array of typefaces, ranging from traditional and classic designs to more contemporary alternatives
like Comic Sans. However, for the purpose of our application, we will primarily focus on the historical

28 5. Synthetic Data Generation

and commonly used typefaces representative of specific periods.
Figure 5.7 visually presents examples of these selected fonts, showing the differences between

each of the fonts. As mentioned earlier, our list of fonts includes two types of blackletter fonts. This
decision was driven by the significant variations observed among blackletter fonts, making it essential
to include multiple font types to capture the nuances of the era. The BreitkopfFraktur tends to have
heavier strokes and more intricate letter forms, whereas the textur font is somewhat lighter, and little
more refined in comparison. While the list of fonts is not exhaustive, it encompasses the most prevalent
typefaces of the respective periods and is deemed suitable for our use case.

Figure 5.7: An image containing the fonts from old to new BreitkopfFraktur (Blackletter), Textur (Blackletter), Jenson, Bodoni,
Caslon, Baskerville, Helvetica and Univers

Now that we have established the fonts to be used, the next step is to determine the appropriate
periods for each font. However, achieving precise accuracy in this regard is impractical due to the
extensive amount of data available. To address this challenge, a division table has been devised, as
illustrated in Figure 5.8. This table allows us to navigate the overlaps between fonts during specific
time periods. When overlapping occurs, a font is chosen randomly from the available options. Once
a font is selected, the corresponding image is created exclusively using that particular font. Since
images are generated for each individual year, all the relevant data from that year will be utilized with
the corresponding font.

By employing this methodology, the aim is to create an application that accurately represents the
typographic evolution across different periods, even though an exhaustive analysis of every single data
point is not feasible.

5.2.1. Constructing the images
Now that enough building blocks have been created for the background, and the type of font for every
timeperiod has been defined, it’s time to put it all together and create images that can be used to
gather data. The first step in the process of image creation is determining what the year is in which
the data has been published. Now given this information, a building block corresponding to that period
can be obtained from the results found in the previous section. Now the width of the image should be
determined, as this allows for creating a horizontal image with the corresponding width. As the building
blocks are of a fixed size of 80 by 80 pixels, the width of the horizontal image will also be rounded by
80. Now that a horizontal image is obtained, the goal is to obtain the vertical image size is needed to fit
all the sentences. In this process, the font size and the distances between lines should also be taken
into account, as this is an important point for separating these sentences later on in the process. In the
case of a sentence that is longer than the page is wide, the sentence should be wrapped and proceed
on the next line. Figure 5.9 shows a final example, but still containing the lines in which the sentences
will be cropped when processing them individually.

5.2. What typeface to use 29

BreitkopfFraktur
Texur

Jenson
Caslon
Baskerville

Didone
Bodoni

Helvetica
Univers

1600 1650 1700 1750 1800 1850 1900 1950 2000

Figure 5.8: A figure containing the fonts that are used for creating the period dependent images, in the synthetic data generation
step

Figure 5.9: An example of a final image, but now also containing a visual representation of where the sentences will be cropped

Examples of the final images can be viewed in figures 5.10 and 5.11. These examples are taken of
subsets of the dataset for the years 1629 and 1937 and are just meant to display what the final results
would look like. What now also becomes visible is that the amount of data may vary according to year
of the corresponding data. As discussed in Section 4.3, some years have a lot more data than the
other ones, meaning that the images representing those years, will vary greatly in dimensions.

Another observation is that the sentences are positioned at the center of the page, as opposed
to being aligned to the left side. This deliberate choice aims to replicate the appearance of authentic
newspapers, where sentences frequently deviate from the left margin. By implementing this, coupled
with the variation in sentence starting points across the background page, the goal is to create a more
diverse dataset.

5.2.2. Generating a Dataset
With regards to this objective, the outcome produced by OCR is denoted as the source since it serves
as the input for a post-correction model. Conversely, the ground-truth data is referred to as the target
as it represents the expected output of a model. Building upon the approach described in the preceding
sections, sentences can be extracted by cropping the text according to the predefined coordinates.

As explained in Section 2, our chosen program for obtaining OCR output from the images is tesser-
act. By applying this program to the list of images, we can generate the OCR output for each image.
This procedure is repeated for every year since each year’s dataset is contained in a separate image.
Once we have the source output list, it can be merged with the sentences used to generate the im-
ages from the target column. Consequently, we obtain a unified dataframe that is ready to be used for
training various models.

30 5. Synthetic Data Generation

Figure 5.10: An image created with a subset of the data for the
year 1629

Figure 5.11: An image created with a subset of the data for the
year 1937

5.2.3. Examples of generated data
To provide an illustration of the data generated using this method, refer to Figure 5.12. On the left, you
can observe the original sentences as the ground-truth, while on the right, you can see the sentences
after undergoing the synthetic data generation process. It is evident that after passing a sentence
through the framework, it becomes somewhat jumbled compared to the original version. The sentence
deliberately incorporates errors, mimicking text and it’s OCR equivalent.

t welck de handelingh van Vrede vry te rugh stelt,
alsoo men hoope heeft gehad, die noch eenmael
in haer Logement sou hervat werden

t irelck de hamdelingh ban rede Gry te cagh stelt,
also men hooge heeft geqab, die mock eenmuel
im haere Logement sou hersat terder

Figure 5.12: Example of generated data, with on the left the ground-truth and on the right data as it comes out of the framework

6
Sequence-to-Sequence Model

This chapter primarily focuses on the procedures involved in fine-tuning and evaluating models. It be-
gins by providing an overview of the trained models, followed by a description of the evaluation process.
The evaluation process includes a discussion of the various metrics employed. In the subsequent sec-
tions, three types of models are trained: models trained on an evenly distributed subsection of the
datasets, as outlined in section 4.3.1. Furthermore the impact of further fine-tuning an existing model
is explored, and the performance of models trained on one dataset is investigated when applied to
another dataset. The results of these experiments can be found in Chapter 7.

6.1. Fine-tuning a model
Fine-tuning is a technique in machine learning that allows us to enhance the performance of pre-trained
models. It involves taking a pre-existing model that has been trained on a large dataset and adapting it
to a specific task or domain. Instead of starting the training process from scratch, which would require an
extensive amount of data and computational resources, fine-tuning builds upon the knowledge already
captured by the pre-trained model. This process not only saves time and resources but also enables us
to leverage the learned features and patterns from the initial training, empowering the model to excel
in new, specialized tasks.

During the fine-tuning process of a machine learning model, there are several hyperparameters that
can be adjusted to optimize the performance of the final model. These hyperparameters play a crucial
role in determining how the model learns and performs. Examples of such hyperparameters include
the number of training epochs, the learning rate, and the choice of optimizer.

In machine learning, training epochs refer to the number of times the learning algorithm iteratively
processes the entire training dataset during the training phase. Each epoch consists of one complete
pass through the training data, where the model makes predictions, computes the loss, and updates
its parameters based on the optimizer’s rules. The goal of multiple epochs is to allow the model to
gradually learn and refine its representations and predictions by exposing it to different instances and
patterns in the data.

The learning rate, on the other hand, is a hyperparameter that determines the step size at which
the model’s parameters are updated during each of the epochs. It controls the magnitude of parameter
adjustments made by the optimizer. A higher learning rate results in larger updates, allowing the model
to converge faster, but it may risk overshooting the optimal solution. Conversely, a lower learning
rate leads to smaller updates, which can result in slower convergence but potentially more precise
parameter estimation. Finding an appropriate learning rate is essential for effective and stable training.

The choice of learning rate, along with the type of optimizer used, influences how quickly or slowly
the model learns from the training data and in what manner. Different optimizers, such as gradient
descent, stochastic gradient descent (SGD), or adaptive optimizers like Adam, incorporate various
strategies to update the parameters and adjust the learning rate dynamically. Optimizers can include
momentum, which helps smooth the updates and accelerate convergence, or adaptive techniques that
adapt the learning rate based on the gradients or historical updates.

31

32 6. Sequence-to-Sequence Model

By controlling the learning rate and selecting an appropriate optimizer, machine learning practi-
tioners can influence the training process. A high learning rate with momentum may lead to faster
convergence, especially in the presence of noisy or sparse gradients. Adaptive optimizers can auto-
matically adjust the learning rate to different parameters, improving convergence and handling different
types of data. However, selecting the right optimizer and fine-tuning its hyperparameters is a critical
step in achieving optimal model performance.

In summary, training epochs determine how many times the model is exposed to the entire training
dataset, allowing it to learn and improve its predictions. The learning rate, in combination with the
chosen optimizer, determines the step size and update strategy for the model’s parameters during
each epoch. Finding the right balance between the number of epochs, learning rate, and optimizer
type is essential for effective and efficient training of machine learning models.

6.1.1. Full Dataset Models
For training a model on a subset of the full dataset, an evenly spread dataset was used as discussed
in Section 4.3.1. To study the effects of varying sizes of training data, models were trained with this
approach for dataset sizes of 50.000, 100.000 and 200.000 sentences.

To study the effects of what effect the trained data has on the final model in case of transfer learning,
models should be compared against each other, with 1 trained on dutch data, and the other on non-
dutch data. For this the models T5-Base1 [33] and T5-Base Dutch have been chosen. The T5-Base
model has only been trained on a dataset containing the languages English, French, Romanian and
German. The T5-Base-Dutch model, has the original T5 architecture, but is fine-tuned on a cleaned
version of the dutch part of the C4 multilingual dataset (mC4)2

In recent times, an apparently notable enhancement to the T5-Base model has emerged, known
as T5-Flan. This improved version of the model aims to address certain limitations and further refine
its capabilities [6]. The T5-Flan model, which can be found in the Hugging Face3 model repository,
incorporates advancements to augment its performance in various natural language processing tasks.

The purpose of comparing Dutch and non-Dutch containing base models is to investigate the ef-
fects of transfer learning, specifically to address the research question RQ3. This comparison helps in
understanding the impact of transferring knowledge from one task to another. On the other hand, the
comparison between all these models serves to answer research question RQ2, which aims to explore
the performance disparities among the different models.

6.1.2. Further Finetuned Models
Furthermore, we will investigate the impact of additional finetuning. The most successful model among
the previously selected models will undergo further training using additional data segments. This anal-
ysis aims to assess how further finetuning affects the model’s performance and its ability to adapt to
new information. By exposing the model to a broader range of data, we can evaluate improvements in
accuracy, robustness, and predictive capabilities.

To summarize the steps outlined above, three base models are utilized for further finetuning: T5-
Base, T5-Base-Dutch, and T5-Flan. In this evaluation phase, these base models are finetuned on
datasets containing 50,000, 100,000, and 200,000 samples. The model that achieves the best perfor-
mance will undergo additional finetuning to investigate its effects on overall performance. This process
is also relevant to the concept of transfer learning and contributes to answering research question RQ3.

6.1.3. Individual Dataset Models
On top of that other models were trained on the individual datasets. To assess the performance of how
a model trained on 1 dataset performs on another, models have to be trained on specific datasets. In
our case this was done for each of the 5 datasets: DBNL, Historical Newspapers, IMPACT, Meertens
and the Statenvertaling. For each of them a set of 50,000 sentences were randomly sampled out of
the entire dataset. These sentences were then used to train each of the 5 models.

1https://huggingface.co/t5-base
2https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned
3https://huggingface.co/google/flan-t5-base

https://huggingface.co/t5-base
https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned
https://huggingface.co/google/flan-t5-base

6.2. Evaluations 33

6.2. Evaluations
This section focuses on evaluating all the models described in the preceding sections. Initially, it is
important to establish the metrics employed and their interpretation. Moreover, the evaluation process
itself is outlined, including the specific evaluation dataset utilized.

6.2.1. Metrics for evaluation
To evaluate the performance of a trained sequence-to-sequence model, it is necessary to conduct
an assessment. Understanding the model’s performance enables effective comparisons with other
models. Evaluating the quality of OCR output involves utilizing various metrics, with Word Error Rate
(WER) and Character Error Rate (CER) being the most commonly employed metrics, as highlighted by
Carrasco [4]. WER and CER are error rate measures that gauge the disparity between the OCR output
and the ground-truth. Additionally, the evaluation process incorporates the Jaccard similarity metric.
Together, these metrics provide valuable insights into the post-correction application’s performance.

WER is a measure of the percentage of errors in the transcription of spoken language compared
to a reference transcription. The reference transcription in the instance of OCR, is the ground-truth
text, which has already been manually revised. WER is calculated by dividing the number of errors
(substitutions, deletions, and insertions) by the total number of words in the reference transcription.
In the equation below can be seen how WER can be calculated. Here 𝑛𝑤 is the number of words in
the reference text, 𝑠𝑤 is the number of words substituted, 𝑑𝑤 the number of words deleted and 𝑖𝑤 the
number of words inserted required to transform the output text into the target.

𝑊𝐸𝑅 = 𝑖𝑤 + 𝑠𝑤 + 𝑑𝑤
𝑛𝑤

(6.1)

In Figure 6.1, an example of the Word Error Rate (WER) is presented. The reference sentence is
displayed on the left, while the sentence containing errors is shown on the right. In this example, there
are 4 substitutions (slowy, ober, hotizon, gouden), 1 insertion (a), and 1 deletion (tranquil). These errors
account for a total of 15 words, resulting in an error rate of 4+1+115 = 0.4 or 40 percent. It is important to
note that during a post-correction process, this score is expected to decrease, indicating a reduction in
errors.

The sun slowly set over the horizon, casting a
golden glow across the tranquil beach.

The sun slowy set ober the hotizon, casting a
gouden glow across the tranquil beach.

Figure 6.1: Example text, aiding in explaining how to calculate the Word Error Rate (WER) and Jaccard similarity

In a similar vein, the Character Error Rate (CER) serves as a metric to quantify the percentage
of errors in the written text transcription when compared to the ground-truth, focusing specifically on
character-level errors. CER is computed by dividing the total number of errors (including substitutions,
deletions, and insertions) by the number of characters in the reference transcription. In this context, let
𝑛 represent the character count in the reference text, 𝑠 denote the number of substituted characters,
𝑑 indicate the count of deleted characters, and 𝑖 reflect the number of inserted characters required to
transform the output text into the target.

𝐶𝐸𝑅 = 𝑖 + 𝑠 + 𝑑
𝑛 (6.2)

The example for calculating the character error rate can be found in Figure 6.2. In the example 4
substitutions,1 insertion and 1 deletion can be found, all on a total of 85 characters, this comes to a
score of 4+1+185 = 0.071 or 7.1%. The score of the CER can actually rise over a score, when there are
a lot more characters in the new sentence than the original one. As the same for the WER, this score
is also meant to go down in a post-correction process.

The sun slowly set over the horizon, casting a
golden glow across the tranquil beach.

The sun slowly set ober the hotizon, casting aa
gouden glow across tranquyl the beach.

Figure 6.2: Example text, aiding in explaining how to calculate the Character Error Rate (CER)

34 6. Sequence-to-Sequence Model

The final metric that will be used for evaluation is the Jaccard similarity. This metric measures the
amount of words 2 sentences have in common. It does this by dividing the amount of words in common
by the total amount of words in both sentences. For this we take the same example as for the WER
in Figure 6.1. In this example the total intersection is of size 10, and the total union is of size 19. This
results in a Jaccard similarity of 1019 = 0.526. This will output a score between 0 and 1, with a score of 1
meaning that the sentences are the same. In our post-correction process, the goal is thus to increase
this score.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| (6.3)

Now given these metrics the evaluation of a model can easily be performed. First the baseline score
of the metrics have to be calculated given the ground-truth sentence and the sentence after OCR. Then
after applying the post-correction process, this score can be calculated again. For the WER and CER
a lower score, indicates a better performance. the goal is the decrease this score, whereas the score
for Jaccard similarity should go up.

6.2.2. Evaluation of full dataset models
The evaluation for this section will be performed on the 9 models described in Section 6.1.1. These
models have undergone training and have learned to perform specific tasks based on a diverse dataset.
To assess their performance, a set of 250 sentences has been randomly sampled from the full dataset.
These sentences represent a representative subset of the overall data and will be used to evaluate
how well the models handle various sentences. To quantify the models’ performance in comparison to
the original, a set of metrics, as outlined in Section 6.2.1, will be employed.

When performing post-correction on a dataset, the aim is to lower the amount of distinct words. To
illustrate this, let’s consider the Dutch word ”wielrennen” as an example. After undergoing OCR, this
word can take various forms such as ”Wylrenne,” ”Wylrennen,” ”weilrennen,” or ”wielrenen.” All these
variations should be corrected to the same word, but currently, they are counted as different words.
Therefore, during post-correction, multiple words will be corrected into the same word, resulting in a
reduction in the number of distinct words in the dataset. Therefore a graph will be created on a subset
of the full dataset, such that the amount of words in the ground-truth of the subset, contain roughly 2000
words for each timeperiod. This method was performed on a subset, as it was unfeasible to perform it
on the full dataset. AS explained the amount of distinct words should be lower after performing post-
correction, eliminating words containing errors. Now given that the amount of words the ground-truth,
OCR and post-correction texts will be displayed in a single figure, it allows for easy comparison of the
three.

In addition to the evaluation mentioned earlier, a visual comparison will be conducted using the
top-performing model. This comparison will focus on examining sentences both before and after the
post-correction process. The intention behind this visual analysis is to showcase concrete examples
that demonstrate the capabilities of the model.

6.2.3. Evaluation of individual dataset models
Given that models that were previously trained for the individual datasets as mentioned in Section 6.1.3,
an evaluation can be performed on each of these models. This evaluation aims to provide answers to
RQ4 of the research questions. For this task a set of 250 randomly sampled sentences were extracted
from the original datasets. Important to note is that these sentences were not included in the set used
to train each of the models. The models will thus each evaluated on each of these datasets and will
be accompanied by a baseline score, which indicates what the comparison metrics were, before any
post-correction was performed on them.

7
Results and Discussion

This chapter presents the evaluation results along with a discussion of their implications and reasons
behind the observed outcomes. It provides an overview of the evaluation results for the models de-
scribed in sections 6.1.1, 6.1.2, and 6.1.3. The evaluation process itself is described in sections 6.2.2
and 6.2.3. It also provides a visual example of one of the results.

7.1. Evaluation of the full dataset
The results presented in this section are summarized in Table 7.1, which includes a table showcasing
the performance metrics. Upon analyzing these results, several observations can be made. Firstly,
when considering training set sizes of 50,000 and 100,000, both T5-Base and T5-Base-Dutch exhibit
relatively similar performance. However, for a training set size of 200,000, the T5-Base model notice-
ably underperforms compared to the T5-Base-Dutch model. This difference suggests that the Dutch-
specific training data used in T5-Base-Dutch plays a noteworthy role in enhancing its performance,
highlighting the benefits of transfer learning in the context of post-correction.

Another interesting finding is that the T5-Flan model consistently outperforms the other models
across all tested scenarios. This implies that the improvements implemented in this particular model
effectively contribute to its improved performance, even within the field post-correction. These results
emphasize the success of the enhancements made in T5-Flan and reinforce its position as the top-
performing model in this study.

Surprisingly, the model trained on a smaller corpus of 100,000 sentences outperformed its counter-
part trained on a larger corpus of 200,000 sentences. This suggests that simply increasing the number
of sentences does not guarantee better performance. This observation raises questions about the fac-
tors that contribute to model effectiveness. It implies that factors other than the sheer volume of training
data, such as data quality, diversity, or the specific characteristics of the sentences, might play a role
in determining the model’s performance, but further exploration would be required to fully comprehend.

The findings of the experiment, detailed in Section 6.2.2, are presented in Figure 7.1. Upon an-
alyzing the figure, several observations can be made. Firstly, it is evident that the number of words
identified by the OCR system is generally higher compared to the ground-truth text. This outcome was
anticipated due to the inherent variability in OCR-generated words. Additionally, the figure illustrates
that the post-corrected version exhibits a significantly closer resemblance to the ground-truth text in
terms of word count. This outcome aligns with expectations since a significant portion of word varia-
tions are intended to be eliminated through the post-correction process. These insights shed light on the
behavior and performance of the OCR system and the effectiveness of the post-correction mechanism
in aligning the OCR-generated text with the ground-truth text.

The number of errors in the OCR exhibits a declining trend, which can be attributed to the approach
employed in our application, as this is related to the fact of year dependent font and background cre-
ation. As a result, the quantity of errors is initially higher during the early 17th century and gradually
decreases as time progresses. This correlation between the decreasing error rate and the temporal
context of the data demonstrates the effectiveness of our method in capturing and OCR errors over
different historical periods.

35

36 7. Results and Discussion

The base models used
Baseline T5-Base T5-Base-

Dutch
T5-Flan

Baseline WER: 0.281
CER: 0.077
Jaccard: 0.612

50.000 WER: 0.175
CER: 0.065
Jaccard:
0.793

WER: 0.177
CER: 0.102
Jaccard:
0.775

WER: 0.139
CER: 0.05
Jaccard:
0.81

100.000 WER: 0.155
CER: 0.064
Jaccard:
0.799

WER: 0.159
CER: 0.067
Jaccard:
0.815

WER: 0.125
CER: 0.046
Jaccard:
0.829

Th
e
da
ta
se
ts
iz
e
us
ed

fo
rt
ra
in
in
g

200.000 WER: 0.165
CER: 0.074
Jaccard:
0.797

WER: 0.142
CER: 0.077
Jaccard:
0.827

WER: 0.158
CER: 0.077
Jaccard:
0.846

Table 7.1: A table depicting the results retrieved from the experiments, on the full dataset, for a variation of training sizes and
base models

16
10
-1
61
9

16
20
-1
62
9

16
30
-1
63
9

16
40
-1
64
9

16
50
-1
65
9

16
60
-1
66
9

16
70
-1
67
9

16
80
-1
68
9

16
90
-1
69
9

17
00
-1
70
9

17
10
-1
71
9

17
20
-1
72
9

17
30
-1
73
9

17
40
-1
74
9

17
50
-1
75
9

17
60
-1
76
9

17
70
-1
77
9

17
80
-1
78
9

17
90
-1
79
9

18
00
-1
80
9

18
10
-1
81
9

18
20
-1
82
9

18
30
-1
83
9

18
40
-1
84
9

18
50
-1
85
9

18
60
-1
86
9

18
70
-1
87
9

18
80
-1
88
9

18
90
-1
89
9

19
00
-1
90
9

19
10
-1
91
9

19
20
-1
92
9

19
30
-1
93
9

19
40
-1
94
9

19
50
-1
95
9

19
60
-1
96
9

19
70
-1
97
9

19
80
-1
98
9

19
90
-1
99
90

500

1,000

1,500

2,000

2,500

3,000

10-year buckets

O
cc
ur
re
nc
es

Ground Truth
OCR

Post-correction

Figure 7.1: The amount of words for the ground truth, OCR and post-correction

7.2. Evaluation of the further finetuned models 37

Baseline T5-Flan T5-Flan 1st
further fine-
tuning

T5-Flan 2nd
further fine-
tuning

WER: 0.266
CER: 0.075
Jaccard: 0.631

WER: 0.125
CER: 0.046
Jaccard:
0.829

WER: 0.098
CER: 0.043
Jaccard:
0.863

WER: 0.108
CER: 0.054
Jaccard:
0.853

Table 7.2: A table depicting the results of the accuracies of further fine-tuning the T5-Flan model trained on 100,000 sentences.

7.2. Evaluation of the further finetuned models
As discussed in Section 6.1.1, the impact of further finetuning on performance is explored. To achieve
this, the highest-performingmodel from Table 7.1 has been selected, which is the T5-Flanmodel trained
on 100,000 sentences. Subsequently, we further finetune this model twice using separate portions of
the dataset, each containing 100,000 sentences. The results of these further finetuned models are
presented in Table 7.2.

Analyzing the aforementioned table, we can conclude that further finetuning contributes to per-
formance improvement. For both the first as the second session of further finetuning, all the metrics
indicate that However, it is worth noting that the second session does not outperform the initial session.

As discussed in Section 6.1.1 it will also be investigated what effects retraining has on the per-
formance. For this goal, the best performing model was chosen from Table 7.1, namely the T5-Flan
model trained on 100.000 sentences. This model was now retrained using other parts of the dataset,
also containing 100.000 sentences each, twice. The results of these models are displayed in Table 7.2.
From this table, the conclusion can be drawn retraining helped improving the performance, although
after the second retraining is not performing better than the first one.

7.3. Evaluation per individual dataset
Based on the previous findings indicating the superior performance of models pre-trained on Dutch
data, it has become clear that these models outperform their counterparts that lack Dutch pre-training
in most instances. Therefore, for the purpose of fair comparison, the focus of this study will be solely
on models that have been trained using pre-trained models specifically tailored to Dutch data.

The evaluation results for the individual dataset can be found in figures 7.3 and 7.4, with the first
having T5-Flan as base model and the second one T5-Base-Dutch. In this figure the row indicates on
which the model has been trained on, and the column on which data the model is evaluated on. The
top row indicates the baseline, which are the values before any post-correction was performed on the
data. Each column contains the word error rate (WER), character error rate (CER) and the Jaccard
similarity as explained in Section 6.2.1.

There are several observations that can be derived from the information presented in this table. Let
us begin with the most apparent finding, which is that the T5-Flan clearly outperforms the T5-Base-
Dutch model, which is comparable behaviour as in the evaluation of the full models from the previous
section. With this, it comes to the same conclusion that the T5-Flan model is better suited for post-
correction than the T5-Base-Dutch model.

Upon closer examination of the results, it becomes evident that a model trained on a specific dataset
consistently outperforms other models when evaluated on the same dataset, even when it incorporates
additional data that was not utilized during the training process. However, it is important to note that
the presence of overlapping sections within the timespans of the varying datasets does not always
guarantee success.

Another intriguing observation is related to the Meertens model, which exclusively relies on data
from the 17th century. Surprisingly, it consistently ranks as the second worst performing model in the
list, often falling behind the baseline and often worsening the quality of the OCR instead of improving
it. The only exception to this trend is when evaluating the model on the Statenvertaling, where some
improvement is observed, likely attributable to the utilization of 17th-century data in both cases.

On the other hand, the poorest performing model overall is the one trained on the Statenvertaling
dataset. Apart from cases where the evaluation is conducted on the Statenvertaling dataset itself, this

38 7. Results and Discussion

The datasets used for Evaluation
DBNL Historical

Newspa-
pers

IMPACT Meertens Statenvertaling

Baseline WER: 0.278
CER: 0.071
Jaccard:
0.618

WER: 0.19
CER: 0.058
Jaccard:
0.734

WER: 0.302
CER: 0.077
Jaccard:
0.586

WER: 0.461
CER: 0.113
Jaccard:
0.379

WER: 0.503
CER: 0.143
Jaccard: 0.346

DBNL WER: 0.153
CER: 0.043
Jaccard:
0.785

WER: 0.084
CER: 0.04
Jaccard:
0.894

WER: 0.172
CER: 0.051
Jaccard:
0.752

WER: 0.31
CER: 0.085
Jaccard:
0.532

WER: 0.3
CER: 0.111
Jaccard: 0.585

Historical
Newspapers

WER: 0.208
CER: 0.065
Jaccard:
0.719

WER: 0.066
CER: 0.036
Jaccard:
0.915

WER: 0.21
CER: 0.065
Jaccard:
0.714

WER: 0.395
CER: 0.111
Jaccard:
0.449

WER: 0.417
CER: 0.132
Jaccard: 0.427

IMPACT WER: 0.195
CER: 0.063
Jaccard:
0.722

WER: 0.102
CER: 0.057
Jaccard:
0.883

WER: 0.199
CER: 0.109
Jaccard:
0.794

WER: 0.21
CER: 0.059
Jaccard:
0.665

WER: 0.254
CER: 0.087
Jaccard: 0.61

Th
e
da
ta
se
ts
us
ed

fo
rt
ra
in
in
g

Meertens WER: 0.347
CER: 0.133
Jaccard:
0.538

WER: 0.22
CER: 0.093
Jaccard:
0.69

WER: 0.252
CER: 0.091
Jaccard:
0.644

WER: 0.099
CER: 0.032
Jaccard:
0.835

WER: 0.331
CER: 0.114
Jaccard: 0.522

Statenvertaling WER: 0.364
CER: 0.145
Jaccard:
0.525

WER: 0.247
CER: 0.12
Jaccard:
0.665

WER: 0.346
CER: 0.153
Jaccard:
0.562

WER: 0.446
CER: 0.179
Jaccard:
0.406

WER: 0.076
CER: 0.03
Jaccard: 0.875

Table 7.3: A table depicting the results retrieved from the experiments, conducted on the T5-Flan as base model

model consistently ranks lower than any of the other models. This could be attributed to the limited
language usage and vocabulary present in a religious text such as the Bible.

Now let us shift our focus to the better performing models. When using T5-Flan as the base model,
the model trained on the DBNL dataset demonstrates superior performance compared to the IMPACT
dataset when evaluated on both the Historical Newspapers and the IMPACT dataset. The only ex-
ception to this pattern occurs with the Meertens and Statenvertaling datasets, where the rankings are
reversed. However, when T5-Base-Dutch serves as the base model, the IMPACT dataset outper-
forms DBNL in all instances. This difference highlights the effect various base models have on the final
results, even when the same training dataset is employed.

Themost balanced performance can be observed fo themodel trained on theHistorical Newspapers
dataset in comparison to the other models, particularly when T5-Base-Dutch is employed as the base
model.

7.4. Visual Examples
To provide an illustration of the application’s final output, we can refer to Figure 7.2, which presents an
example. The figure showcases three distinct forms of the same sentence: the OCR version, the post-
corrected version, and the ground-truth sentence. Upon observing the results after the post-correction
process, several observations can be made. Firstly, the model accurately identified the letter f in the
word ”verfcheide,” which was historically pronounced as s and can be found in articles dating back to
the 17th century. However, the model chose to correct the word ”wy” to ”wij,” a spelling commonly used
in more modern versions of Dutch. The same can be observed for the words ”proeve” and ”proef,” with
the latter being a more recent variation.

7.4. Visual Examples 39

The datasets used for Evaluation
DBNL Historical

Newspa-
pers

IMPACT Meertens Statenvertaling

Baseline WER: 0.278
CER: 0.071
Jaccard:
0.618

WER: 0.19
CER: 0.058
Jaccard:
0.734

WER: 0.302
CER: 0.077
Jaccard:
0.586

WER: 0.461
CER: 0.113
Jaccard:
0.379

WER: 0.503
CER: 0.143
Jaccard: 0.346

DBNL WER: 0.199
CER: 0.074
Jaccard:
0.741

WER: 0.231
CER: 0.11
Jaccard:
0.829

WER: 0.251
CER: 0.101
Jaccard:
0.704

WER: 0.355
CER: 0.12
Jaccard:
0.501

WER: 0.318
CER: 0.125
Jaccard: 0.568

Historical WER: 0.328
CER: 0.192
Jaccard:
0.647

WER: 0.08
CER: 0.056
Jaccard:
0.905

WER: 0.286
CER: 0.15
Jaccard:
0.666

WER: 0.477
CER: 0.221
Jaccard:
0.407

WER: 0.521
CER: 0.275
Jaccard: 0.415

IMPACT WER: 0.268
CER: 0.124
Jaccard:
0.669

WER: 0.114
CER: 0.075
Jaccard:
0.868

WER: 0.153
CER: 0.074
Jaccard:
0.805

WER: 0.238
CER: 0.098
Jaccard:
0.646

WER: 0.313
CER: 0.166
Jaccard: 0.59

Th
e
da
ta
se
ts
us
ed

fo
rt
ra
in
in
g

Meertens WER: 0.416
CER: 0.246
Jaccard:
0.514

WER: 0.345
CER: 0.267
Jaccard:
0.622

WER: 0.484
CER: 0.344
Jaccard:
0.533

WER: 0.304
CER: 0.246
Jaccard:
0.645

WER: 0.461
CER: 0.294
Jaccard: 0.435

Statenvertaling WER: 0.401
CER: 0.215
Jaccard:
0.504

WER: 0.251
CER: 0.146
Jaccard:
0.706

WER: 0.384
CER: 0.215
Jaccard:
0.553

WER: 0.504
CER: 0.255
Jaccard:
0.361

WER: 0.075
CER: 0.04
Jaccard: 0.885

Table 7.4: A table depicting the results retrieved from the experiments, conducted on the T5-Base-Dutch as base model

40 7. Results and Discussion

‘uit de vericheide tretfende -
Laterecien Kiezen wy het vol-
gende ter procve.

uit de verfcheide treffende Lat-
ereren kiezen wij het volgende
ter proef

uit de verfcheide treffende
Tafereelen kiezen wy het
volgende ter proeve

Figure 7.2: Examples for the OCR, post-correction and ground-truth text

8
Conclusion

This work introduces a method for generating synthetic data specifically designed for post-correction
on OCR. The results demonstrate that the model produces usable data, which can be effectively em-
ployed to train different post-correction methods. Multiple T5 models have been trained using this data,
showcasing a substantial improvement in data quality. It is important to note that the approach pro-
posed in this thesis should not be considered as a replacement for existing synthetic data generation
procedures, but rather as a complementary approach that offers a distinct advantage. The generated
data can be utilized to train other state-of-the-art models, contributing to the advancement of the field.

This chapter aims to answer the research questions for this thesis, along with summarizing the main
findings. It also provides a section on potential work for future research directions.

RQ1: How effective can synthetic data be generated, as closely resembling im-
ages from a given timeperiod?
With the process as described in Chapter 5, a procedure was outlined to facilitate the creation of images
with attention to historical details. These images encompassed not only background elements but also
specific characteristics of the typeface used. By incorporating both these factors, it became possible to
generate images that closely resemble the time period during which the original texts were published.
This approach ensures that the created images capture the essence and visual attributes associated
with the respective historical era.

RQ2: How effective are machine learning-based OCR post-correction methods
trained on synthetic data in improving the accuracy and quality of OCR output?
The results presented in Section 7 show that the models trained on synthetic data, can show great
performance in when correcting OCR. Notably, when these models undergo additional fine-tuning, as
shown in Table 7.2, further improvements are observed. Given that these datasets can be created,
whenever ground-truth data is present, it can become of great importance, also outside of the field of
historical data. One of the surprising conclusion that can be drawn from the data, is that having more
sentences does not always mean it will output a better performing model. In our tests the one trained on
100.000 sentences outperformed the one trained in 200.000 sentences. Potentially, this was done due
to overfitting on the training set, but further research would need to be done to figure out why exactly
this was the case.

RQ3: How much of an effect does a model pre-trained on Dutch data have on
the performance of a fine-tuned model?
The answer to this question is presented in Table 7.1, which demonstrates that the performance of T5-
Base and T5-Base-Dutch is comparable. However, when considering T5-Flan, it exhibits noticeable
improvements over the other two models. It is worth mentioning that T5-Flan is a newer and more
advanced model.

Furthermore, Table 7.2 presents the outcomes of models that underwent further fine-tuning using
supplementary data. These models were initially trained on a base model and subsequently subjected

41

42 8. Conclusion

to the fine-tuning process once again. During this process, the first revision demonstrated a notable
improvement in performance. However, it appears that the second revision led to a decline in perfor-
mance, possibly indicating overfitting.

RQ4: How does the performance of a transformer model trained on one dataset
compare when evaluated on a different dataset?
This question is related to the generalizability of the models, and the corresponding results can be ob-
served in Table 7.3 and Table 7.4. These tables reveal that the models do not exhibit equal performance
across different datasets. They demonstrate that datasets containing data from more diverse time pe-
riods generally yield better overall performance. However, it is evident that most models encounter
difficulties when they have not been trained on data from a specific period. This is likely attributed to
the evolution of language over time.

8.1. Future work
Other Machine Learning Models
This study utilized a T5 sequence-to-sequence model trained on synthetic data. It is worth noting that
the methodology discussed in section 3 can be extended to other machine learning models, potentially
enhancing their performance. Additionally, the base models examined in this thesis, also are available
in versions trained on larger data sizes, presenting an opportunity to explore the described approach
with larger variations of these models and compare their performance. Unfortunately, this was not
feasible due to hardware limitations.

Models by timeperiod
In future work, it is recommended to train models specifically on distinct time periods to investigate the
performance tradeoffs associated with using them. This approach would involve training models exclu-
sively on datasets from the 16th, 20th, and 21st centuries, for example. By comparing the performance
of these models on evaluation data from different time periods, it would provide valuable insights into
the impact of language progression over time. It is hypothesized that a model trained on 16th cen-
tury data would likely perform worse on 21st century evaluation data compared to a model trained on
20th century data. Further exploration in this direction would contribute to a deeper understanding of
language evolution and its implications for language models.

Modern Data Acquisition
In the case of this application, gold standard data is required. For this thesis data was used, that had
to be manually corrected. Fortunately, there are now numerous sources from which this data can be
obtained, including online news media and other websites that contain text. These texts are of sufficient
quality to be used for creating a dataset.

Automatic typeface recognition
Choosing the right typeface for the image creation step can have a significant impact on performance.
Throughout the ages, many different types of typefaces have been used. In this work, a study was
performed to research when certain typefaces were most dominant in time. This included delving into
the field of typography research. It was also observed that, especially in more modern works, often
more than one typeface was used on a single page. An additional enhancement that could be made is
automatic typeface recognition, where a set of scanned images can be inputted, and a list of typefaces
with corresponding publication dates would be generated as output. This would further diversify the
dataset in comparison, making it a valuable addition to the current setup.

Differentiation in typeface models
In our approach, we assigned the typeface based on the specific year of publication, recognizing the
potential influence of typographical changes over time. However, an alternative avenue for exploration
is to investigate the effects of machine learning models trained exclusively on a dataset using a single
typeface and subsequently evaluated on the same dataset but created with an alternative typeface.
This approach would enable us to examine how much of an impact the choice of typeface has on
the performance of the models. Such research will allow us to gain insights into the robustness and
generalizability of machine learning models across various typographic styles.

8.1. Future work 43

Stable Diffusion
In future research, an alternative approach that can be explored is the manner in which images are
generated. In this thesis, Stable diffusion models like DallE and Midjourney were briefly examined,
but they were not considered suitable for the intended application because they were not dependable
enough to display text on images. As a result, other diffusion models that allow for simple image
creation based on input could be developed. For instance, an input could be ”Can you add the text:
”Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua.” on a paper from 1678?” While this aspect was not thoroughly investigated
during this thesis due to time constraints, it has the potential to enhance the image generation process.

Other OCR Software
The goal of this thesis was to explore methods for artificially creating data, with a particular focus on
the Tesseract OCR software. Tesseract was chosen due to its ease of use, in contrast to subscription-
based options like ABBYY or Adobe Acrobat Pro DC. However, it would be worthwhile to investigate the
performance of other OCR software packages, including those that excel in recognizing handwritten
text like Loghi1, and compare their results to Tesseract.

1https://www.nationaalarchief.nl/beleven/nieuws/unieke-transcriptie-software-nu-open-source-beschikbaar

https://www.nationaalarchief.nl/beleven/nieuws/unieke-transcriptie-software-nu-open-source-beschikbaar

A
Datasets

A.1. DBNL
The DBNL datasets contains digitized versions of the books:

• Al de volksdichten
• Algemeen Nederduitsch en Friesch Dialecticon
• Algemeen wijsgeerig, geschiedkundig en biographisch woordenboek voor vrijmetselaren
• Alle de werken
• Avondschemering
• Beatrijs en Carel ende Elegast
• Beginsels der woordvorsching
• Bijdragen en Mededeelingen van het Historisch Genootschap
• Biographisch woordenboek der Nederlanden
• De dichtwerken van Bilderdijk
• De dichtwerken van vrouwe Katharina Wilhelmina Bilderdijk
• De gierigaard
• De Hollandsche natie
• De nachtegaal en het lijstertje
• De Nederlandsche kerkgeschiedschrijver Geeraardt Brandt
• De taal- en letterbode
• De Taalgids
• De Tijdspiegel
• Der leken spieghel
• Die Dietsce Catoen
• Dietsche Warande
• Familie en kennissen
• Gezamenlijke dichtwerken
• Gideon Florensz. Deel 1
• Handleiding tot de kennis van onze vaderlandsche spreekwoorden en spreekwoordelijke zegswi-
jzen, bijzonder aan de scheepvaart en het scheepsleven, het dierenrijk en het landleven ontleend

• Het land, in brieven
• Het leven en de uitgelezen verzen van Elizabeth Wolff-Bekker

45

46 A. Datasets

• Histoire de la littérature flamande
• Huibert en Klaartje
• Kunstwoordenboek
• Leçons élémentaires et pratiques de langue flamande. Lecture, grammaire, lexicologie
• Lenteloveren
• Letterkundige schetsen
• Leyden ontzet, in 1574
• Los en vast. Jaargang 1870
• Madelieven
• Nieuwe winde-kelken
• Ongeloof en revolutie
• Oude Vlaemsche liederen
• Over kinderpoëzy
• Parthonopeus van Bloys
• Proeve van Bredaasch taal-eigen
• Roman van Cassamus
• Roman van Karel den Grooten en zijne XII pairs
• Roman van Moriaen
• Romantische werken
• Snippers van de schrijftafel
• Spieghel historiael
• Tooneelspelers
• Torec
• Uit het leven voor het leven
• Vaderlandsche letteroefeningen
• Van enen manne die gherne cnollen vercoopt ene goede boerde
• Van vrouwen ende van minne
• Vanden vos Reinaerde
• Verspreide en nagelaten gedichten
• Zeemans-woordenboek

A.2. Historical Newspapers
This dataset consists of a set of newspapers that has been

Years of publication/software ABBYY 8.1 ABBYY 9.0 ABBYY 10.0 Total
1700-1882 237 0 37 275

1883-1947 (minus 1940-1945) 652 21 494 1166
1948-1995 436 11 112 559

Total 1325 32 643 2000

Table A.1: A table containing the years in which the newspapers were retrieved for the Historical Newspapers dataset, as
retrieved from this website

https://lab.kb.nl/dataset/historical-newspapers-ocr-ground-truth

A.3. IMPACT 47

A.3. IMPACT
The dataset consists of:

• 2055 book pages, ranging from 1630 until 1796 from Early Dutch Books Online1 and Digitale
Topstukken2

• 1024 newspaper pages, ranging from 1618 until 1885 from Delpher

• 1179 parliamentary proceedings, ranging from 1814 until 1945 from Staten Generaal Digitaal

• 205 typewritten radio bulletins from 1937, from Delpher

1https://www.delpher.nl/nl/boeken/results?query=digitizationProject+any+%22dpo%22&coll=boeken
2https://www.kb.nl/zoeken/content?f%5B0%5D=categorie%3A99

https://www.delpher.nl/nl/boeken/results?query=digitizationProject+any+%22dpo%22&coll=boeken
https://www.kb.nl/zoeken/content?f%5B0%5D=categorie%3A99

B
Hyperparameters

Training batch size 4
Validation batch size 4
Training epochs 5
Learning rate 0.00005
Random seed 42

Source max length 256
Target max length 256

Table B.1: The hyperparameters used during fine-tuning and validation

49

C
Delpher API

C.1. Response from Delpher Search API
Listing C.1: The output for the Delpher

1 <srw:searchRetr ieveResponse xmlns:srw= ” h t t p : / /www. loc . gov / z ing / srw / ” xm lns : t e l = ” h t t p : / /
k r a i t . kb . n l / coop / t e l / handbook / t e l t e rms . html ” xm lns :xs i= ” h t t p : / /www.w3 . org /2001/
XMLSchema− ins tance ” xmlns:ddd= ” h t t p : / /www. kb . n l / ddd ” xmlns:dc= ” h t t p : / / pu r l . org / dc /
elements / 1 . 1 / ” xmlns:dcx= ” h t t p : / / k r a i t . kb . n l / coop / t e l / handbook / t e l t e rms . html ”
xmlns : face ts= ” i n f o : s rw / extens ion / 4 / f ace ts ”>

2 <srw:ve rs ion>1.2< / s rw :ve rs ion>
3 <s rw : t o t a lM i l l i Seconds>8< / s rw : t o t a lM i l l i Seconds>
4 <srw:searchEngineMi l l iSeconds>6< / srw:searchEngineMi l l iSeconds>
5 <srw:kbmdoMil l iSeconds>−1< / srw:kbmdoMil l iSeconds>
6 <srw:numberOfRecords>122< / srw:numberOfRecords>
7 <srw: records>
8 <srw: record>
9 <srw:recordPacking>xml< / srw:recordPacking>
10 <srw:recordSchema> h t t p : / /www. kb . n l / ddd< / srw:recordSchema>
11 <srw:recordData>
12 <ddd:paperur l> h t t p : / / r eso l ve r . kb . n l / reso lve?urn=ddd:010633666:mpeg21< / ddd:paperur l>
13 <ddd:access ib le>1< / ddd:access ib le>
14 <ddd : yea r sd i g i t i z ed>1629−166X< / ddd : yea r sd i g i t i z ed>
15 <ddd:metadataKey>ddd:010633666:mpeg21:a0001< / ddd:metadataKey>
16 <ddd : pape r t i t l e >ĳTdinghe uyt verscheyde qua r t i e ren< / ddd : p ape r t i t l e >
17 <ddd :ed i t i on>Dag< / ddd :ed i t i on>
18 <dc:source>Kungl . B i b l i o t e k e t Stockholm< / dc:source>
19 < d c : t i t l e >Wt Romen den 12 , A p r i l . < / d c : t i t l e >
20 <dc : type> a r t i k e l < / dc : type>
21 <ddd : spa t i a lC rea t i on>Amsterdam< / ddd : spa t i a lC rea t i on>
22 <ddd: fo re runner>Uut Romen< / ddd: fo re runner>
23 <ddd:pageur l>ddd:010633666:mpeg21:p001< / ddd:pageur l>
24 <ddd : spa t i a l >Lande l i j k < / ddd : spa t i a l >
25 <ddd: issued>1629−< / ddd: issued>
26 < d c : i d e n t i f i e r > h t t p : / / r eso l ve r . kb . n l / reso lve?urn=ddd:010633666:mpeg21:a0001:ocr< /

d c : i d e n t i f i e r >
27 <dc:date>1620/05/02 00 :00:00< / dc:date>
28 <dcx :De lpherPub l ica t ionDate>Wed Nov 20 01 :00:00 CET 2013< / dcx :De lpherPub l ica t ionDate>
29 <zones> [{ ” x ” :252 , ” y ” :51 , ”w” :580 , ” h ” :60 , ” image ” : ” DDD_010633666_001_access . jp2 ” } , { ” x ” :235

, ” y ” :125 , ”w” :759 , ” h ” :202 , ” image ” : ” DDD_010633666_001_access . jp2 ” } , { ” x ” :53 , ” y ” :335 , ”w
” :931 , ” h ” :166 , ” image ” : ” DDD_010633666_001_access . jp2 ” } , { ” x ” :60 , ” y ” :136 , ”w” :167 , ” h ”
:191 , ” image ” : ” DDD_010633666_001_access . jp2 ” } , { }] < / zones>

30 <ddd:ppn>832688312< / ddd:ppn>
31 <ddd :pub l i she r>s . n . < / ddd :pub l i she r>
32 <ddd:page>1< / ddd:page>
33 < / srw:recordData>
34 <s rw : reco rdPos i t i on>1< / s rw : reco rdPos i t i on>
35 < / s rw: record>
36 < / srw: records>
37 <srw:extraResponseData>
38 <facets : facetedSearchParameter>

51

52 C. Delpher API

39 < face ts : i ndexes / >
40 < f a ce t s : e x c l u dedF i l t e r s / >
41 < f a c e t s : s o r t > index< / f a c e t s : s o r t >
42 < / facets : facetedSearchParameter>
43 < face ts : face tedSearchResu l t>
44 < f a c e t s : f a c e t >
45 <facets:name>per iode< / facets:name>
46 < face t s : va l ues>
47 < face t s : va l ue frequency= ” 122 ”>0/17e_eeuw / < / f a ce t s : va l ue>
48 < / f ace t s : va l ues>
49 < / f a c e t s : f a c e t >
50 < f a c e t s : f a c e t >
51 <facets:name>type< / facets:name>
52 < face t s : va l ues>
53 < face t s : va l ue frequency= ” 1 ”>adve r t en t i e< / f a ce t s : va l ue>
54 < face t s : va l ue frequency= ” 121 ”> a r t i k e l < / f a ce t s : va l ue>
55 < / f ace t s : va l ues>
56 < / f a c e t s : f a c e t >
57 < f a c e t s : f a c e t >
58 <facets:name> spa t i a l < / facets:name>
59 < face t s : va l ues>
60 < face t s : va l ue frequency= ” 122 ”>Lande l i j k < / f a ce t s : va l ue>
61 < / f ace t s : va l ues>
62 < / f a c e t s : f a c e t >
63 < / face ts : face tedSearchResu l t>
64 < / srw:extraResponseData>
65 <srw:echoedSearchRetrieveRequest>
66 <srw:ve rs ion>1.2< / s rw :ve rs ion>
67 <srw:query> (date w i t h i n ” 01−01−1610 31−12−1620 ”)< / srw:query>
68 <srw:s ta r tRecord>1< / s rw:s ta r tRecord>
69 <srw:maximumRecords>1< / srw:maximumRecords>
70 <srw:recordSchema>ddd< / srw:recordSchema>
71 <srw: resu l tSetTTL>300< / s rw: resu l tSetTTL>
72 <srw:extraRequestData>
73 < f i e l d s >zones< / f i e l d s >
74 <facets : facetedSearchParameter>
75 < face ts : i ndexes / >
76 < f a ce t s : e x c l u dedF i l t e r s / >
77 < f a c e t s : s o r t > index< / f a c e t s : s o r t >
78 < / facets : facetedSearchParameter>
79 < c o l l e c t i o n >DDD_art ikel< / c o l l e c t i o n >
80 < / srw:extraRequestData>
81 < / srw:echoedSearchRetrieveRequest>
82 < / srw:searchRetr ieveResponse>

D
Other techniques

In addition to the techniques explored in this thesis, several alternative approaches were investigated
but ultimately not incorporated into the final work. This section aims to explore these alternative ap-
proaches, highlighting the range of research conducted and providing insights into why they were not
successful as originally intended.

D.1. Translation approach
One of the researched approaches involved translating a given text into a more contemporary version
and then translating it back. The idea behind this approach was to filter out OCR errors by comparing
the translated version with the original text. However, this approach faced a significant drawback due
to the unavailability of the required dataset. The closest available dataset was the Statenvertaling
bible, which had a more modern version called the basisbijbel. The basisbijbel was a user-friendly and
modernized translation of an earlier bible version. Unfortunately, the limited vocabulary of the bible
made it challenging to apply this approach to other types of texts. As a result, this approach was not
utilized in the final work.

D.2. Single sentence approach
An alternative approach for the synthetic data generation step involved placing each sentence on a
separate image instead of creating a single image containing all sentences. Figure D.1 illustrates an
example of this approach. The construction of these images followed a similar process as described
in section 5.2.1. The images were resized proportionally to accommodate the length of the sentences,
meaning longer sentences resulted in longer images.

However, this approach was not pursued for a couple of reasons. Firstly, it posed scalability chal-
lenges when dealing with larger datasets containing a substantial number of sentences. Secondly, all
the generated images exhibited a similar appearance, leading to a less diverse dataset. As a result,
this approach was not chosen for implementation in the final work.

Figure D.1: A single sentence on a background, as used in of the earlier versions of the application

53

E
Code

All code belonging to this project can be found in my Github repository.

55

https://github.com/MrAlphaking/Thesis

Bibliography
[1] Bennett Bacon et al. “An Upper Palaeolithic Proto-writing System and Phenological Calendar”.

In: Cambridge Archaeological Journal (2023), pp. 1–19. doi: 10.1017/S0959774322000415.
[2] Thomas M. Breuel et al. “High-Performance OCR for Printed English and Fraktur Using LSTM

Networks”. In: 2013 12th International Conference on Document Analysis and Recognition. 2013,
pp. 683–687. doi: 10.1109/ICDAR.2013.140.

[3] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: CoRR abs/2005.14165
(2020). arXiv: 2005.14165. url: https://arxiv.org/abs/2005.14165.

[4] Rafael C. Carrasco. “An Open-Source OCR Evaluation Tool”. In: Proceedings of the First In-
ternational Conference on Digital Access to Textual Cultural Heritage. DATeCH ’14. Madrid,
Spain: Association for Computing Machinery, 2014, pp. 179–184. isbn: 9781450325882. doi:
10.1145/2595188.2595221. url: https://doi-org.tudelft.idm.oclc.org/10.
1145/2595188.2595221.

[5] Otto Chrons, Sami Sundell, andMicrotask Bulevardi.Digitalkoot: MakingOld Archives Accessible
Using Crowdsourcing. Digitalkoot: Making Old Archives Accessible Using Crowdsourcing. Tech.
rep. 2011. url: https://www.researchgate.net/publication/221604727.

[6] HyungWon Chung et al. Scaling Instruction-Finetuned LanguageModels. 2022. doi: 10.48550/
ARXIV.2210.11416. url: https://arxiv.org/abs/2210.11416.

[7] Dana Dannélls and Simon Persson. Supervised OCR Post-Correction of Historical Swedish
Texts: What Role Does the OCR System Play? Tech. rep. 2020. url: https://github.com/
tesseract-ocr/.

[8] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. Tech. rep. url: https://github.com/tensorflow/tensor2tensor.

[9] Rui Dong and David Smith. “Multi-Input Attention for Unsupervised OCRCorrection”. In: Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics, July 2018, pp. 2363–
2372. doi: 10.18653/v1/P18-1220. url: https://aclanthology.org/P18-1220.

[10] G Dowding. An introduction to the history of printing types: An illustrated summary of main stages
in the development of type design from 1440 up to the present day: an aid to type face identifi-
cation. Clerkenwell: Wace, 1962.

[11] Senka Drobac and Krister Lindén. “Optical character recognition with neural networks and post-
correction with finite state methods”. In: International Journal on Document Analysis and Recog-
nition 23.4 (Dec. 2020), pp. 279–295. issn: 14332825. doi: 10.1007/s10032-020-00359-9.

[12] Senka Drobac et al. OCR and post-correction of historical Finnish texts. Tech. rep. 131. 2017,
pp. 23–24.

[13] Quan Duong, Mika Hämäläinen, and Simon Hengchen. “An Unsupervised method for OCR Post-
Correction and Spelling Normalisation for Finnish”. In: CoRR abs/2011.03502 (2020). arXiv:
2011.03502. url: https://arxiv.org/abs/2011.03502.

[14] Craig Eliason. ““Transitional” Typefaces: The History of a Typefounding Classification”. In:Design
Issues 31.4 (Oct. 2015), pp. 30–43. issn: 0747-9360. doi: 10.1162/DESI_a_00349. eprint:
https://direct.mit.edu/desi/article- pdf/31/4/30/1715512/desi_a\
_00349.pdf. url: https://doi.org/10.1162/DESI%5C_a%5C_00349.

[15] Guilherme T. B. et al.Advances in Information Retrieval. Tech. rep. 2020, pp. 102–109. url: http:
//www.springer.com/series/7409.

57

https://doi.org/10.1017/S0959774322000415
https://doi.org/10.1109/ICDAR.2013.140
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2595188.2595221
https://doi-org.tudelft.idm.oclc.org/10.1145/2595188.2595221
https://doi-org.tudelft.idm.oclc.org/10.1145/2595188.2595221
https://www.researchgate.net/publication/221604727
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2210.11416
https://github.com/tesseract-ocr/
https://github.com/tesseract-ocr/
https://github.com/tensorflow/tensor2tensor
https://doi.org/10.18653/v1/P18-1220
https://aclanthology.org/P18-1220
https://doi.org/10.1007/s10032-020-00359-9
https://arxiv.org/abs/2011.03502
https://arxiv.org/abs/2011.03502
https://doi.org/10.1162/DESI_a_00349
https://direct.mit.edu/desi/article-pdf/31/4/30/1715512/desi_a_00349.pdf
https://direct.mit.edu/desi/article-pdf/31/4/30/1715512/desi_a_00349.pdf
https://doi.org/10.1162/DESI%5C_a%5C_00349
http://www.springer.com/series/7409
http://www.springer.com/series/7409

58 Bibliography

[16] Henrik Helin et al. “Optimized JPEG 2000 Compression for Efficient Storage of Histopathological
Whole-Slide Images”. In: Journal of Pathology Informatics 9.1 (2018), p. 20. issn: 2153-3539.
doi: https://doi.org/10.4103/jpi.jpi_69_17. url: https://www.sciencedirect.
com/science/article/pii/S2153353922003339.

[17] Niddal H. Imam, Vassilios G. Vassilakis, and Dimitris Kolovos. “OCR post-correction for detecting
adversarial text images”. In: Journal of Information Security and Applications 66 (May 2022). issn:
22142126. doi: 10.1016/j.jisa.2022.103170.

[18] Niddal H. Imam, Vassilios G. Vassilakis, and Dimitris Kolovos. “OCR post-correction for detect-
ing adversarial text images”. In: Journal of Information Security and Applications 66 (2022),
p. 103170. issn: 2214-2126. doi: https://doi.org/10.1016/j.jisa.2022.103170.
url: https://www.sciencedirect.com/science/article/pii/S2214212622000552.

[19] IMPACT Project. MPACT KB Ground-truth. url: http://lab.kb.nl/dataset/ground-
truth-impact-project.

[20] Noman Islam, Zeeshan Islam, and Nazia Noor. A Survey on Optical Character Recognition Sys-
tem. Tech. rep. 2. 2016.

[21] Shigeki Karita et al. “A Comparative Study on Transformer vs RNN in Speech Applications”. In:
2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Pro-
ceedings. Institute of Electrical and Electronics Engineers Inc., Dec. 2019, pp. 449–456. isbn:
9781728103068. doi: 10.1109/ASRU46091.2019.9003750.

[22] Srinidhi Karthikeyan et al. “An OCR Post-Correction Approach Using Deep Learning for Process-
ing Medical Reports”. In: IEEE Transactions on Circuits and Systems for Video Technology 32.5
(May 2022), pp. 2574–2581. issn: 15582205. doi: 10.1109/TCSVT.2021.3087641.

[23] Bruce H. Kusko et al. “Proton milliprobe analyses of the Gutenberg Bible”. In: Nuclear Instru-
ments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
3.1 (1984), pp. 689–694. issn: 0168-583X. doi: https : / / doi . org / 10 . 1016 / 0168 -
583X(84)90464-6. url: https://www.sciencedirect.com/science/article/pii/
0168583X84904646.

[24] Mike Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association for Computational Linguis-
tics, July 2020, pp. 7871–7880. doi: 10.18653/v1/2020.acl- main.703. url: https:
//aclanthology.org/2020.acl-main.703.

[25] Ayush Maheshwari et al. “A Benchmark and Dataset for Post-OCR text correction in Sanskrit”.
In: (Nov. 2022). url: http://arxiv.org/abs/2211.07980.

[26] Jiří Martínek, Ladislav Lenc, and Pavel Král. “Building an efficient OCR system for historical
documents with little training data”. In: Neural Computing and Applications 32 (Dec. 2020). doi:
10.1007/s00521-020-04910-x.

[27] Philip B Meggs and Alston W Purvis. ”Meggs” history of graphic design. 6th ed. May 2016.
[28] Nauta D. et al. “De Statenvertaling 350 jaar”. In: (2005).
[29] Thi Tuyet Hai Nguyen et al. “Neural machine translation with bert for post-ocr error detection and

correction”. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. Institute of
Electrical and Electronics Engineers Inc., Aug. 2020, pp. 333–336. isbn: 9781450375856. doi:
10.1145/3383583.3398605.

[30] Thi Tuyet Hai Nguyen et al. Survey of Post-OCR Processing Approaches. July 2021. doi: 10.
1145/3453476.

[31] Maciej Ogrodniczuk. “Fine-Tuning OCR Error Detection and Correction in a Polish Corpus of
Scientific Abstracts”. In: Communications in Computer and Information Science. Vol. 1716 CCIS.
Springer Science and BusinessMedia DeutschlandGmbH, 2022, pp. 450–461. isbn: 9789811982330.
doi: 10.1007/978-981-19-8234-7{_}35.

[32] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former”. In: (Oct. 2019). url: http://arxiv.org/abs/1910.10683.

https://doi.org/https://doi.org/10.4103/jpi.jpi_69_17
https://www.sciencedirect.com/science/article/pii/S2153353922003339
https://www.sciencedirect.com/science/article/pii/S2153353922003339
https://doi.org/10.1016/j.jisa.2022.103170
https://doi.org/https://doi.org/10.1016/j.jisa.2022.103170
https://www.sciencedirect.com/science/article/pii/S2214212622000552
http://lab.kb.nl/dataset/ground-truth-impact-project
http://lab.kb.nl/dataset/ground-truth-impact-project
https://doi.org/10.1109/ASRU46091.2019.9003750
https://doi.org/10.1109/TCSVT.2021.3087641
https://doi.org/https://doi.org/10.1016/0168-583X(84)90464-6
https://doi.org/https://doi.org/10.1016/0168-583X(84)90464-6
https://www.sciencedirect.com/science/article/pii/0168583X84904646
https://www.sciencedirect.com/science/article/pii/0168583X84904646
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
http://arxiv.org/abs/2211.07980
https://doi.org/10.1007/s00521-020-04910-x
https://doi.org/10.1145/3383583.3398605
https://doi.org/10.1145/3453476
https://doi.org/10.1145/3453476
https://doi.org/10.1007/978-981-19-8234-7{_}35
http://arxiv.org/abs/1910.10683

Bibliography 59

[33] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former”. In: Journal of Machine Learning Research 21.140 (2020), pp. 1–67. url: http://jmlr.
org/papers/v21/20-074.html.

[34] Martin Reynaert. “Non-interactive OCR post-correction for giga-scale digitization projects”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Vol. 4919 LNCS. 2008, pp. 617–630. isbn: 354078134X.
doi: 10.1007/978-3-540-78135-6{_}53.

[35] Christophe Rigaud et al. “ICDAR 2019 competition on post-OCR text correction”. In: Proceedings
of the International Conference on Document Analysis and Recognition, ICDAR. IEEE Computer
Society, Sept. 2019, pp. 1588–1593. isbn: 9781728128610. doi: 10.1109/ICDAR.2019.
00255.

[36] Rohit Saluja et al. “Error Detection and Corrections in Indic OCR Using LSTMs”. In: Proceedings
of the International Conference on Document Analysis and Recognition, ICDAR. Vol. 1. IEEE
Computer Society, July 2017, pp. 17–22. isbn: 9781538635865. doi: 10.1109/ICDAR.2017.
13.

[37] Omri Suissa, Avshalom Elmalech, andMaayan Zhitomirsky-Geffet. “Toward the optimized crowd-
sourcing strategy for OCR post-correction”. In: Aslib Journal of Information Management 72.2
(Apr. 2020), pp. 179–197. issn: 20503814. doi: 10.1108/AJIM-07-2019-0189.

[38] J. Tselentis et al. Typography, Referenced: A Comprehensive Visual Guide to the Language, His-
tory, and Practice of Typography. Rockport Publishers, 2012. isbn: 9781610582056. url: https:
//books.google.nl/books?id=2-W4vxVM-8gC.

[39] Robartus Johannes van der Spek. “De Statenvertaling van de Bijbel en het Oude Nabije Oosten”.
Dutch. In: Phoenix 65.2 (Dec. 2019), pp. 3–5. issn: 0031-8329.

[40] Ashish Vaswani et al. “Attention Is All You Need”. In: (June 2017). url: http://arxiv.org/
abs/1706.03762.

[41] L. Wilms, R. Nijssen, and T. Koster. Historical newspaper OCR ground-truth data set. KB Lab:
The Hague. 2020.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-3-540-78135-6{_}53
https://doi.org/10.1109/ICDAR.2019.00255
https://doi.org/10.1109/ICDAR.2019.00255
https://doi.org/10.1109/ICDAR.2017.13
https://doi.org/10.1109/ICDAR.2017.13
https://doi.org/10.1108/AJIM-07-2019-0189
https://books.google.nl/books?id=2-W4vxVM-8gC
https://books.google.nl/books?id=2-W4vxVM-8gC
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

	Introduction
	Main problem of OCR
	Research questions
	Koninklijke Bibliotheek and Delpher
	Thesis outline

	Background
	OCR
	Examples of bad OCR
	Implications of bad OCR

	Transformers
	Transfer Learning

	Related Work
	Post-Correction
	Manual Approach
	(Semi) Automated Approach
	Usage in post-correction

	Post-Correction in the historical domain
	Post-Correction in other domains
	Post-Correction for Dutch data
	Synthetic data generation
	Evaluation dataset of ICDAR

	Overview and Data Preparation
	Overview of the system
	Data Pre-Processing
	Overview of the datasets
	DBNL

	Full Dataset
	Evenly spread dataset

	Synthetic Data Generation
	Background creation
	Downloading the images
	Creating the building blocks

	What typeface to use
	Constructing the images
	Generating a Dataset
	Examples of generated data

	Sequence-to-Sequence Model
	Fine-tuning a model
	Full Dataset Models
	Further Finetuned Models
	Individual Dataset Models

	Evaluations
	Metrics for evaluation
	Evaluation of full dataset models
	Evaluation of individual dataset models

	Results and Discussion
	Evaluation of the full dataset
	Evaluation of the further finetuned models
	Evaluation per individual dataset
	Visual Examples

	Conclusion
	Future work

	Datasets
	DBNL
	Historical Newspapers
	IMPACT

	Hyperparameters
	Delpher API
	Response from Delpher Search API

	Other techniques
	Translation approach
	Single sentence approach

	Code

