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A B S T R A C T

To date, there is no comprehensive approach available that can explicitly model the complete 
transient waveforms of acoustic emissions (AE) induced by fracture processes in brittle and quasi- 
brittle materials like concrete. The complexity of AE modelling arises from the intricate coupling 
between the local discontinuity of material fracturing and the global continuity of elastic wave 
propagation in solids. Among others, the lattice type models are promising approaches, as they 
are known to be a matured modelling approach to simulate the fracturing process in concrete-like 
materials. Nevertheless, like other discrete element methods (DEM), they are currently limited to 
describing the number and rate of AE events (broken elements) in the fracture process and cannot 
explicitly model wave generation and propagation. In this study, we propose a lattice modeling 
framework to simulate the propagation of complete waveforms of fracture-induced AE signals in 
concrete. A proportional-integral-derivative (PID) control algorithm is incorporated in an explicit 
time integration procedure to reduce dynamic noise from spurious oscillations. Additionally, a 
Rayleigh damping-based calculation method and corresponding calibration procedure are pro-
posed to model the attenuation of AE signals due to material damping. Using the developed 
approach, we systematically investigate the feasibility of lattice models for elastic wave propa-
gation simulation, the dependence of lattice mesh sizes and the choice of numerical damping 
parameters. These results lead to a systematic framework which can be employed in simulating 
wave propagation with attenuation using DEM models in general including lattice models.

1. Introduction

Acoustic emission (AE) monitoring is a promising technique for characterizing the microscopic fracturing phenomena in different 
brittle and quasi-brittle materials like concrete and for health monitoring of in-service concrete structures. The physical nature of the 
monitored AE signals lies in the elastic waves induced by local rapid energy release and propagating through the bulk (possibly 
damaged) concrete of the monitored structures. The sources of AE signals are typically related to local fracturing phenomena, namely 
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Nomenclature

AE acoustic emission
AIC Akaike information criterion
DEM discrete element method
DPC dry-point-contact transducer
FEM finite element method
A wave amplitude
A(effective) effective wave amplitude
A* lattice element cross-sectional area
a1 first tensile softening coefficient
a2 second tensile softening coefficient
a3 third tensile softening coefficient
C damping matrix
c damping
c0 critical damping
d lattice grid size
E Young’s modulus
e PID tracking error
F internal nodal force vector
F nodal force
Fe element force
fc compressive strength
fmax cut-off frequency
fNy Nyquist frequency
fs sampling frequency
ft tensile strength
Gf fracture energy
K stiffness matrix
k stiffness of a wave particle
l lattice element size
M mass matrix
m mass of a wave particle
n number of wave cycles
r distance
Δr relative distance
S acoustic emission sensor
T wave period
t time
tmax total processing time
Δt time step
u displacement vector
u nodal displacement
uc actual calculated nodal displacement
u̇ velocity vector
u̇ nodal velocity
ü acceleration vector
ü nodal acceleration
V wave velocity
Vp pressure wave velocity
VR Rayleigh wave velocity
Vs shear wave velocity
α mass-proportional damping coefficient
β stiffness-proportional damping coefficient
βc a critical value of β
γ attenuation from material damping
γ̃k normalized attenuation of material damping
γlogarithmic logarithmic decrement
ε element strain
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crack nucleation and growth in concrete [1]. As a passive monitoring technique, AE monitoring has distinguished advantages in the 
prompt detection of early cracking and is suitable for real-time monitoring. However, current applications of AE technique are mostly 
limited to the AE source localization [2,3] and source classification [4,5] based on phenomenological observations. It remains a 
challenge to relate the local fracturing phenomena of concrete to the received AE signals after propagation in concrete structures, 
therefore, resulting in a lack of fundamental understanding and physically based explanation for most parameters of measured AE 
signals [6,7]. Signals that are received by AE sensors are not only the direct results of vibrations during the fracturing process of 
concrete, but also the result of the propagation of AE waves and the response of AE sensors. A quantitative relationship between 
received AE signals and corresponding internal cracking process is not trivial [6,7]. The lack of deterministic models for quantitative 
AE source characterization leads to inaccurate or even conflicting interpretation for AE measurements [8,9], thus largely restricting 
reliable AE applications.

In view of the complexity of AE phenomenon, forward modelling is more promising to establish quantitative AE source charac-
terization models than experimental reversal. In numerical modelling, the influence from fracture source, wave propagation and 
sensor response on AE signals can be separately considered. In this regard, accurately modelling the complete transient waveforms of 
fracture-induced AE signals is a prerequisite. Nevertheless, there is currently no available approach that can explicitly model the 
complete transient fracture-induced AE waveforms. The available numerical AE simulation methods are mainly the continuum-based 
finite element methods (FEM) [10–12] and the discrete element methods (DEM) [13,14]. FEM and DEM face the difficulties in 
modelling fracture (AE) sources and the propagation of fracture-induced elastic waves, respectively. In typical FEM simulations of a AE 
process, AE sources are externally introduced by an assumed force/displacement–time function irrelevant to material fracture and 
without clear physical meanings [15]. DEM simulations are suitable for describing the microscopic fracture behaviors but cannot 
accurately simulate fracture-induced elastodynamic response of wave propagation and attenuation in solids [16]. Apart from the 
traditional FEM and DEM models, several other numerical methods have also been employed for AE simulations, such as the elas-
todynamic finite integration technique [17], combined finite-discrete element method [12] and extended finite element method [18]. 
Despite these advancements in numerical methods for AE simulations, modelling the complete AE process remains a formidable 
challenge. This complexity arises from the need to concurrently consider both the local discontinuity of material fracturing (AE source) 
and the global continuity of wave propagation in solids. Current methods do not adequately address the intricate coupling between 
these two aspects.

Among others, lattice type models are one of the most promising methods for modelling the complete transient fracture-induced AE 
waveforms due to the ability to simultaneously describe microscopic discontinuity (for fracture source modelling) and macroscopic 
continuity (for wave propagation modelling) of solids. In lattice modelling, a continuum is represented by a set of distributed nodes 
(lumped masses). The bond interactions between lumped masses are explicitly established by lattice elements that can be truss, spring 
or beam elements [19]. The interaction laws in lattice elements are deduced from classical continuum mechanics and thus the con-
tinuity of solids at macroscopic level can be better described than traditional DEM [20]. The irreversible phenomenon of microscopic 
crack initiation and subsequent growth can be effectively simulated within a lattice framework by incorporating nonlinear constitutive 
laws allowing the breakage of lattice elements upon reaching critical conditions [21]. Due to these advantages of lattice type models, 
they have been used to illuminate the damage mechanisms of different quasi-brittle materials in various aspects [22], such as nonlinear 
repose due to material randomness, brittleness number, fractal dimension and global damage indexes from AE measurements.

Various valuable attempts have been made to explicitly model the complete AE waveforms generated by breaking lattice elements 
using different versions of lattice models [23–25]. Nevertheless, in listed literature, the simulated AE waveforms are largely different 
from the experimentally measured AE signals in both time and frequency domains. To achieve full-waveform simulation of fracture- 
induced AE, it is essential to properly simulate the propagation of elastic waves in lattice modelling. To achieve that, there are several 
difficulties faced by the lattice modelling approach. First, an accurate time integration technique is needed to ensure the computational 
accuracy of motion equations in a dynamic lattice model. As shown in the work of Minozzi et al. [25], the computational errors in 
integration procedure leads to high-amplitude noise signals. Second, although it can better describe the macroscopic continuity of 
solids than traditional DEM, a lattice model is locally inhomogeneous and, strictly speaking, performs differently than isotropic 
materials [26]. The influence of such deviation in simulating AE wave propagation with a lattice model has not yet been investigated in 
literature. Third, it is essential to accurately model the attenuation of elastic wave for properly simulating the complete transient AE 
waveforms. There is however no systematic approach to accurately consider the attenuation of AE waves using a lattice model.

This paper studies in detail the feasibility and limitation of using lattice modelling to simulate elastic wave propagation in concrete 

εcr cracking strain
η material damping factor
η0 wave geometric spreading loss variable
ηR material damping of Rayleigh wave
λp pressure wavelength
λp Ny Nyquist pressure wavelength
ξ damping ratio
ρ density
υ dynamic Poisson’s ratio
ω wave angular frequency
φ wave phase angle
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by considering the above three identified challenges. Based on that, a systematic framework is proposed to accurately simulate the 
propagation of AE wave signals including wave attenuation by lattice modelling. The proposed approach includes: 

• A proportional-integral-derivative (PID) control algorithm to control the dynamic noises other than fracture-induced response (i.e., 
fracture-induced AE signals) in an explicit time integration procedure.

• A Rayleigh damping-based theoretical method which has been experimentally validated to model the attenuation of AE signals.
• A relationship between lattice grid size and the frequency resolution of simulated AE signals.

By adapting the proposed modelling framework, the propagation with attenuation of elastic waves induced by material fracture can 
be accurately simulated by DEM models in general including different versions of dynamic lattice models, offering modelling 
guidelines to achieve full-waveform simulation of AE signals induced in the fracture process of concrete-like materials. The developed 
modelling approach contributes to a deeper understanding on AE-related fracture mechanisms and thus more reliable and practical 
applications of AE technique on the monitoring of in-service concrete structures. The findings and proposed methods can be also of 
interest for other numerical methods, and for other brittle and quasi-brittle materials (e.g., rocks).

This paper focuses on demonstrating the proposed lattice modelling framework in simulating AE wave propagation and attenu-
ation, analyzing only the elastodynamic response induced by a single broken lattice element. Due to space constraints, the simulation 
of multiple acoustic emission waveforms induced in real concrete progressive fracture process by implementing the proposed lattice 
modelling approach will be reported in a following-up study. This paper is organized as follows. Section 2 describes the basic concept 
of lattice modelling and the new techniques implemented in this study. Section 3 verifies the feasibility of proposed method against 
theoretical solutions for simulating undamped elastic wave propagation using a simple externally inputted wave source function. 
Section 4 investigates the undamped numerical elastodynamic response of wave propagation induced by the breakage of a lattice 
element (namely fracture-induced AE signals). Section 5 introduces a systematic test-based calibration procedure for simulating the 
attenuation of fracture-induced AE signals. Section 6 discusses the choices of representing an AE signal in numerical modelling and the 
limitations of proposed method.

2. Methodology

This section introduces the proposed lattice modelling framework. Section 2.1 briefly describes the adopted version of lattice 
model. Section 2.2 and Section 2.3 show two new implemented techniques to incorporate wave propagation and attenuation simu-
lation in lattice modelling, including a proportional-integral-derivative (PID) control algorithm in an explicit time integration scheme 
for numerical noise reduction and a Rayleigh damping-bases theoretical method for AE wave attenuation simulation.

2.1. Description of adopted lattice model

This study uses a two-dimensional truss-based lattice model. The adopted version of the lattice model was initially developed by 
Aydin et al. [27], which has been extended in order to simulate the fracturing behavior of plain concrete structures subject to tension 
[27] and compression [28] and the structural response of different reinforced concrete members [29–31].

In the adopted lattice model, a continuum is represented by a set of uniformly distributed nodes (lumped masses) interconnected by 
unidimensional truss elements. A two-dimensional squared lattice network is used in this study, corresponding to the classical lattice 
geometry proposed by Hrennikoff [32]. A basic unit of the adopted lattice network is shown in Fig. 1. The minimum spacing between 
two neighboring nodes is called grid size, denoted as d. The total mass of an area with the size of d × d (in 2D case) around a node is 
lumped into a dimensionless mass at the node. The lumped mass of each node is calculated as d2wρ, where w and ρ denote the specimen 
thickness and material density, respectively. The values of lumped masses at boundary and corner nodes are adjusted into d2wρ/2 and 
d2wρ/4, respectively, to match their actual representing areas. Two types of elements are employed at grid level, including the 

Fig. 1. A basic unit of the two-dimensional truss-based lattice network.

Y. Zhou et al.                                                                                                                                                                                                           Engineering Fracture Mechanics 312 (2024) 110589 

4 



orthogonal elements with size l = d and diagonal elements with size l =
̅̅̅
2

√
d. It should be mentioned that the lattice models cannot 

precisely represent a locally isotropic continuum. Unlike an isotropic continuum, the lateral deformation of a lattice network is 
dependent on the lattice geometry with respect to the loading direction. The inherent Poisson’s ratio of the adopted truss-based lattice 
model varies from 0.26 (in orthogonal directions) to 0.42 (in diagonal directions) depending on the loading direction, resulting an 
average value at around 0.3 [28]. An introduction on different lattice geometries and resultant Poisson’s ratio values of represented 
continuum is detailed in the work of Rinaldi et al. [26].

The force-strain constitutive law of the truss elements is shown in Fig. 2. The elastic stiffness of truss elements is taken constant as 
EA*(d), where E and A*(d) are concrete modulus of elasticity and effective cross-sectional area of the truss elements, respectively, in 
which the latter is a function of the lattice grid size d. A*(d) acts as a bridge linking the elastic properties of discrete lattice elements to 
those of represented continuum. Specifically, the EA*(d) value can be viewed as the slope of the linear range of constitutive force-strain 
diagram (Fig. 2) and is determined by equaling the total elastic energy of a continuum to that of the equivalent lattice model under a 
uniform strain field. Appendix A provides more details about the relationship between A*(d) and the elastic properties of represented 
continuum. The compressive force in the truss elements is assumed to be linear elastic. The tensile force in the truss elements is 
assumed to be linear until the critical tensile strain εcr is reached, followed by a tri-linear softening curve. The value of εcr is taken as a 
material property and determined as εcr =

ft
E, where ft is concrete tensile strength. The tensile softening curve is defined by three 

parameters, namely a1, a2 and a3, see Fig. 2. They are determined through a calibration procedure with the purpose of matching the 
lattice simulation with the uniaxial stress–average displacement response of a tension test. A more detailed description for the cali-
bration procedure of the softening parameters can be found in the previous study [28].

Fig. 3 shows the solution flowchart of the adopted lattice model. In each time step, the equations of motion are obtained from 
equilibrium conditions of all the forces acting on the nodal masses: 

Mü(t)+Cu̇(t)+ F(t) − P(t) = 0 (1) 

where ü(t) and u̇(t) are the acceleration and velocity vectors, respectively. M and C are the diagonal mass and damping matrices. F(t)
and P(t) are the internal and external force vectors. In this study, the damping matrix C is approximated by the Rayleigh damping [33]: 

C = αM+ βK (2) 

where K is the stiffness matrix. α and β are the mass-proportional and stiffness-proportional Rayleigh damping coefficients, respec-
tively. The explicit time integration method proposed by Chung & Lee [34] is adopted to solve the equations of motion. A more detailed 
description of the solutions strategy adapted by the lattice model is discussed in previous works of the authors [27,30].

2.2. PID control for noise signal reduction

In the lattice modeling approach, the fracture-induced AE signals are assumed to be the elastodynamic response of concrete 
induced by breakage of elements locally. This effect can be simulated directly in lattice models by solving the motion equations (Eq. 
(1)) using an explicit time integration scheme. This scheme, however, also introduces dynamic noises, called spurious oscillations [35]. 
The spurious oscillations are largely amplified in case of unstable external loading [36]. In a direct solver, external loading bias is 
inevitable, and it amplifies the spurious oscillations into high-amplitude dynamic noise in the system (see also Section 4.1). This can be 
suppressed by controlling the external loading bias. In this paper, we propose to minimize noise signals caused by external loading bias 
by implementing a proportional-integral-derivative (PID) control scheme in the lattice model. The PID algorithm serves as a feedback 
loop controller and can be mathematically describe as follows: 

Fig. 2. Adopted force-strain constitutive law for the truss elements (b1 = 0.6 and b2 = 0.2) [27].
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Ṗ(t) = Kpe(t)+Ki

∫ t

0
e(t)dt+Kd

de
dt

(3) 

where Ṗ(t) and e(t) are the external loading rate and tracking error, respectively. Kp, Ki and Kd are three coefficients controlling the 
proportional gain, integral gain and derivative gain of e(t), respectively. Consider an arbitrary system (Fig. 4), the loading rate function 
Ṗ(t) can be controlled in multiple ways by controlling the displacement rate at Point A, relative displacement rate between Points A and 
B, crack width opening rate at Point C, or stress/strain rate at Point D. Assuming that the targeted control variable is the displacement 
of loading point u(t) and the actual calculated displacement is uc(t), the tracking error is calculated as e(t) = u(t) − uc(t). The rate of 
external load Ṗ(t) defined by the integro-differential equation (Eq. (3)) is solved to update the value of P(t) as feedback in each 
calculation step (Eq. (1)). The bias in nodal velocity or acceleration induced by external loading P(t) (i.e., noise signals) can be suf-
ficiently reduced by keeping the values of error function at a low level. Values of PID constants used in this study are chosen according 
to the recommendation from Ziegler and Nichols [37]. Integrating PID control within the explicit time integration methodology avoid 
additional dynamic effects from external loading bias. Effect of the implemented PID control will be demonstrated in Section 4.1.

Fig. 3. Solution flowchart of the adopted lattice model [27].

Fig. 4. An arbitrary system with PID control.
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2.3. A Rayleigh damping based method for AE signal attenuation

To properly simulate the propagation of elastic waves in concrete, it is essential that the modelling approach can consider the 
attenuation of AE signals. The attenuation of AE signals (elastic waves) in concrete is caused by many factors [38]. Among others, two 
main factors can be distinguished, namely, geometric spreading loss (or called geometric attenuation) and material damping [39]. The 
geometric spreading loss is the loss of wave amplitude due to the radiation of a wave front departing from a point source into all 
directions [38]. The material damping (also referred to as viscous damping [40] or absorbing damping [41]) describes the energy 
stored in a wave that is dissipated due to viscoelastic material behavior, which further includes the intrinsic damping and scattering 
damping [39]. The intrinsic damping is associated with the internal friction between particles [42], while the scattering damping is 
associated with the fact that wave with certain wavelength scatters in the media when it travels through scatters of comparable sizes (e. 
g., aggregates or pores in concrete) [43].

The wave attenuation due to spreading loss has been inherently considered in the adopted lattice model (this will be demonstrated 
in Section 3.2), as the system energy conservation is accurately considered in the establishment of force equilibrium (Eq. (1)). A 
Rayleigh damping-based method is proposed in this paper to consider the wave attenuation due to material damping. Derivation of the 
proposed method is described in the following.

As the intrinsic damping and scattering damping are hard to be distinguished from each other, they are often described together by 
a frequency-dependent material damping factor [44], herein denoted as η(ω). η(ω) depends on the frequency and the type of a wave: a 
wave of higher frequency attenuates faster because the wave involves more cycles of particle movements during the same travel time 
[45]; shear and Rayleigh waves attenuate more than pressure wave owing to more friction between motion particles in shear 
deformation [46]. For a single-frequency and single-mode wave with angular frequency ω, the ratio between two wave peak ampli-
tudes, Ai(ω) and Aj(ω), received at two different locations i and j, respectively, with distances of ri and rj to the wave source is described 
as [40]: 

Ai(ω)
Aj(ω)

=

(
rj

ri

)η0

exp[− η(ω)(ri − rj)] (4) 

where 
(

rj
ri

)η0 

is the wave attenuation considering geometric spreading loss and η0 is a controlling variable with η0 = 0 for plane 

wavefront, η0 = 0.5 for cylindrical and circular wavefronts and η0 = 1.0 for spherical wavefronts propagating in isotropic and ho-
mogeneous media [40]. Exp[ − η(ω)(ri − rj)] represents the wave attenuation due to material damping. Based on Eq. (4), the frequency- 
dependent material damping factor η(ω) can be expressed as: 

η(ω) =
1

ri − rj

(

ln
Aj(ω)
Ai(ω)

− η0ln
ri

rj

)

(5) 

According to Eq. (5), the attenuation of wave amplitudes excluding the geometric spreading loss between locations i and j, denoted 
as γ(ω), can be expressed as: 

γ(ω) = ln
Aj(ω)
Ai(ω)

− η0ln
ri

rj
= (ri − rj)η(ω) = Δrη(ω) (6) 

where Δr = ri − rj is the distance between two receiving locations i and j. If V(ω) is the velocity of the considered single-mode wave, the 
arrival time difference of waves received at locations i and j, denoted as Δt = ti − tj, can be expressed as: 

Δt = ti − tj =
ri − rj

V(ω) =
Δr

V(ω)
(7) 

Assuming the two locations i and j are chosen in such a way that Δt can be expressed as the product of the number of wave cycles n and 
the wave period T = 2π

ω , Eq. (7) can be further expressed as [38]: 

Δt =
Δr

V(ω)
= nT =

2πn
ω (8) 

By substituting Eq. (8) into Eq. (6), γ(ω) is then expressed as: 

γ(ω) =
2πn
ω V(ω)η(ω) (9) 

Alternatively, consider the motion of a wave particle involved in the single-frequency and single-mode wave. The vibration 
amplitude of the wave particles attenuates in the time domain following a logarithmic decrement law. The logarithmic decrement, 
denoted as γlogarithmic(ω), is given by the following equation [47]: 

γlogarithmic(ω) = ln
A1

An
=

2nπξ(ω)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ(ω)2
√ (10) 
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where A1 and An are the vibration amplitudes of the wave particle at first cycle and after n cycles, respectively. ξ(ω) is damping ratio. In 
a low-damping system, ξ(ω) ≪ 1, Eq. (10) can be approximated to: 

γlogarithmic(ω) = ln
A1

An
≈ 2nπξ(ω) (11) 

The damping ratio ξ(ω) can be expressed in the form of Rayleigh damping c = αm+βk as proposed by Caughey [33]: 

ξ(ω) = c
c0

=
αm + βk
2
̅̅̅̅̅̅̅
km

√ =
1
2

(

α
̅̅̅̅
m
k

√

+ β
̅̅̅̅
k
m

√ )

=
1
2
(
α
ω + βω) (12) 

where m, k and ω =

̅̅̅
k
m

√

are mass, stiffness and natural angular frequency of the wave particle. c0 = 2
̅̅̅̅̅̅̅
km

√
is the critical damping. 

Furthermore, it is assumed that in the case of a single-frequency and single-mode wave propagating in isotropic and homogeneous 
media, the attenuation of the motion of an involved wave particle in time domain, γlogarithmic(ω), is equivalent to the spatial attenuation 
of the wave excluding geometric spreading loss, γ(ω), both caused by the material damping which is dependent on the wave frequency 
[38,41,48]. Accordingly, Eq. (9) is equal to Eq. (11), as follows: 

γ(ω) =
2πn
ω V(ω)η(ω) = γlogarithmic(ω) = 2nπξ(ω) (13) 

By substituting Eq. (12) into Eq. (13), the relationship between the material damping factor η(ω) and Rayleigh damping coefficients α 
and β is established as: 

η(ω) =
2πfξ(ω)

V(ω)
=

ω
2V(ω)

(α
ω+ βω

)
=

1
2V(ω)

(
α+ βω2) (14) 

Eq. (14) is derived based on the assumption of a single-mode wave. We assume that the attenuation an AE signal attenuates in the 
same way. The damping factor of an AE signal in an interested frequency range (ω1,ω2) can then be described by one set of suitable 
Rayleigh damping coefficients using Eq. (14). Specifically, by substituting the low- and high-bound frequency ω1 and ω2, corre-
sponding material damping factors η(ω1) and η(ω2), and wave velocities V(ω1) and V(ω2) of a dominating wave mode into Eq. (14), we 
get the following equation set: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η(ω1) =
1

2V(ω1)

(
α + βω1

2)

η(ω2) =
1

2V(ω2)

(
α + βω2

2)
(15) 

By solving Eq. (15), average Rayleigh damping coefficients covering an interested frequency range (ω1,ω2) of an AE signal with certain 
dominating wave mode, denoted as α(ω1,ω2) and β(ω1,ω2), can be determined as: 

α(ω1,ω2) =
2[V(ω2)η(ω2)ω1

2 − V(ω1)η(ω1)ω2
2]

ω12 − ω22 (16) 

β(ω1,ω2) =
2[V(ω1)η(ω1) − V(ω2)η(ω2)]

ω1
2 − ω2

2 (17) 

3. Verification of undamped elastic wave propagation in lattice model

In this section, the proposed lattice model is verified using four simplified cases of two different signal source forms, namely, plane 
waves and point-source waves. In the verification cases, the models assume undamped elastic wave propagation, so that one may 

Fig. 5. Numerical model for the simulations of undamped elastic wave propagation (unit: mm).
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compare the simulated results with classical theoretical solutions. A concrete beam specimen with dimensions of 550 × 150 × 40 
(length × width × thickness) mm3 is modelled with 1-mm lattice grid size (d = 1mm). For a clear discussion, a Cartesian frame is 
defined with the coordinate origin located at the bottom left corner of the numerical model, see Fig. 5. The adopted material properties 
are listed in Table 1.

A nodal displacement ui(t) is defined as the wave source function at the corresponding source location. The adopted wave source 
function ui(t) was initially proposed in Bruna & Riera [49] as a typical numerical representation of hypocenters: 

ui(t) = u0sin(ω0)sin(π
t − ta
ta − tb

), ta < t < tb (18) 

where the subscript i = x, y of ui(t) denotes the nodal displacement directions in x or y directions. u0 = 2.5 × 10− 6 mm, ta = 0, tb =

0.01ms and ω0 = 2π× 200kHz. These parameters result in a Gaussian pulse with a central frequency 200kHz and a duration of 0.01ms.
A time step of 2 × 10− 4ms (5 MHz sampling rate) and zero numerical damping (α = β = 0) are used in the explicit integration 

procedure when solved the model.

3.1. Plane waves

The propagation of the plane pressure (P) and shear (S) waves is examined in this sub-section through two simulation cases. The 
plane waves are considered propagating from left (x = 0mm) to right plane (x = 550mm) in x direction. The applied boundary 
conditions are summarized in Table 2, where Case 1 and Case 2 correspond to the simulation of P wave and S wave, respectively. The 
source displacements ui(t) are applied to all the nodes at plane x = 0mm in the x and y directions for P wave and S wave, respectively. 
The symmetric or antisymmetric boundary conditions are introduced at planes y = 0mm and y = 150mm to simulate an infinite space 
in y direction that allows the unrestricted propagation of plane waves without altering the waveforms [50]. In addition, a nonreflexive 
boundary is implemented on the right edge to avoid wave reflection. Various methods can be used to create such a nonreflexive 
boundary, as discussed in [51]. Herein, a simple method was implemented by providing nodes from x = 540mm to x = 550mm with 
smoothly increased viscous dampers, with their stiffness proportional damping coefficients β linearly increasing from 0 (nodes at x =

540mm) to a critical value βc (nodes at x = 550mm). βc is determined by the central angular frequency ω0 of simulated source wave as 
[52]: 

βc =
2

ω0
(19) 

For Case 1, a typical x direction displacement field at simulation time t = 0.1ms is illustrated in Fig. 6a. Fig. 6b shows the evolution 
of displacements in x direction of the two recorded nodes at (x = 0,y = 75mm) and (x = 100mm,y = 75mm). The P-wave velocity in 
the lattice model can be estimated using the distance and arrival time difference of two recorded nodes. The arrival time of P-wave at 
x = 100mm is 22.7 μs and accordingly the numerical P-wave velocity is estimated as Vp(numerical) = 100mm

22.7μs = 4405m/s.
For Case 2, a typical y direction displacement field at simulation time t = 0.1ms is illustrated in Fig. 7a. Fig. 7b shows the evolution 

of displacements in y direction of the two recorded nodes at (x = 0,y = 75mm) and (x = 100mm,y = 75mm). The arrival time of S- 
wave at x = 100mm is 41.8 μs and accordingly the numerical S-wave velocity is estimated as Vs(numerical) = 100mm

41.8μs = 2395m/s.
For isotropic and homogeneous solids, the theoretical P- and S-wave velocities are calculated by [53]: 

Vp(theoretical) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − υ)E

(1 + υ)(1 − 2υ)ρ

√

(20) 

Vs(theoretical) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

2(1 + υ)ρ

√

(21) 

Using the material properties listed in Table 1, the theoretical P- and S-wave velocities are calculated as 4238 and 2479 m/s, 
respectively. The differences between theoretical and numerical wave velocities are 4.2 % and 3.4 % for P- and S-waves, respectively.

3.2. Point-source waves

As the sources of acoustic emission signals can be regarded as point excitations considering the much smaller fracture scale than 
that of concrete structures, two additional simulation cases are conducted to investigate the propagation of body wave and Rayleigh 

Table 1 
Concrete material properties.

Properties 
(unit)

Density ρ 
(kg/m3)

Elastic modulus E 
(GPa)

Compressive strength fc 
(MPa)

Tensile strength ft 
(MPa)

Fracture 
energy Gf 

(N/m)

Dynamic Poisson’s ratio υ 
(− )

Values 2310 35.20 33.95 3.15 58.82 0.24
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wave (R-wave) induced by a point source. The applied boundary conditions are summarized in Table 3. A source displacement uy(t)
(Eq. (17)) is applied in y direction on a single node at (x = 275mm, y = 75mm) and at (x = 275mm, y = 150mm), respectively. Case 3 
simulates the propagation of a point-source body wave while Case 4 simulates a point source R-wave. The boundary conditions defined 
at the four edges of both models are given in Table 3.

For Case 3, a typical y direction displacement field at simulation time t = 0.02ms is illustrated in Fig. 8a. Due to the directivity of 
the applied wave source (applied in y direction), the intensity of the wave front is biased in different propagation directions. The P- and 
S-waves are dominant in y and x directions, respectively. Fig. 8b shows the evolution of displacements in y direction of two recorded 
nodes at (x = 275mm,y = 75mm) and (x = 375mm,y = 75mm). It can be seen that the amplitudes of point-source wave decrease with 
increasing the wave travel distance due to geometric spreading loss (or wave radiation) [38]. Moreover, the waveform is slightly 
altered due to the directional dependency of Poisson’s ratio in the lattice model. A more detailed discussion about the influence of 
material anisotropy on the waveform alternation can be found in the study of Iturrioz and Riera [50].

For Case 4, a typical y direction displacement field at simulation time t = 0.04ms is illustrated in Fig. 9a. P-, S- and R-waves coexist 
in this case with the intensity of R-wave being dominant. Fig. 9b shows the evolution of displacements in y direction of two recorded 
nodes at (x = 275mm, y = 150mm) and (x = 375mm, y = 150mm). The attenuation of the undamped R-waves is modelled by 

Table 2 
Boundary conditions used for plane wave simulation.

Case number Wave type Plane at 
x = 0

Planes at 
y = 0, y = 150mm

Planes at 
x = 540 ∼ 550mm

Plane at 
x = 550mm

1 Pressure wave ux(t) Symmetry plane Nonreflexive boundary ux = 0
2 Shear wave uy(t) Anti-symmetry plane Nonreflexive boundary ux = uy = 0

Fig. 6. Simulation results for plane P-wave: (a) a typical x direction displacement filed at simulation time t = 0.1ms (unit: mm); (b) evolution of x 
direction displacements of two recorded nodes at (x = 0, y = 75mm) and (x = 100mm, y = 75mm).

Fig. 7. Simulation results for plane S-wave: (a) a typical y-direction displacement filed at simulation time t = 0.1ms (unit: mm); (b) evolution of y- 
direction displacements of two recorded nodes at (x = 0, y = 75mm) and (x = 100mm, y = 75mm).

Table 3 
Boundary conditions used for point-source wave simulation.

Case 
number

Wave type Node at 
(x = 275mm, y =

75mm)

Node at 
(x = 275mm, y =

150mm)

Planes at 
x = 0 ∼ 10mm,  
x = 540 ∼ 550mm, y =

0 ∼ 10mm

Planes at 
y = 140 ∼ 150mm

Plane 
at 
y = 0

3 Body wave uy(t) − Nonreflexive boundary Nonreflexive 
boundary

uy = 0

4 Rayleigh 
wave

− uy(t) Nonreflexive boundary − uy = 0
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substituting η0 = 0.5 and η(ω) = 0 into Eq. (4), the ratio between two peak amplitudes, Ai(ω) and Aj(ω), obtained at locations i and j 
with distances of ri and rj from the source is described as: 

Ai(ω)
Aj(ω)

=

̅̅̅
rj

ri

√

(22) 

Fig. 9c shows the numerical results in comparison with the prediction given by Eq. (22), where the peak amplitudes are normalized 
with respect to that of a reference node at (x = 300mm, y = 150mm). It can be found that the numerical results fit well the theoretical 
curve given by Eq. (22).

Despite the consistency with the theoretical solutions in terms of peak amplitude, similar to Case 3, due to the variation of Poisson’s 
ratio values in the adopted two-dimensional lattice model, the simulated wave velocities are slightly different in different propagation 
directions. As can be observed in Fig. 8a and Fig. 9a, the simulated wave fronts are distorted circles, especially for the S-waves.

Fig. 8. Simulation results for point-source body wave: (a) a typical y direction displacement filed at simulation time t = 0.02ms (unit: mm); (b) 
evolution of y direction displacements of two recorded nodes at (x = 275mm, y = 75mm) and (x = 375mm, y = 75mm).

Fig. 9. Simulation results for point-source Rayleigh wave: (a) a typical y direction displacement filed at simulation time t = 0.04ms (unit: mm); (b) 
evolution of y direction displacements of two recorded nodes at (x = 275mm, y = 150mm) and (x = 375mm, y = 150mm); (c) a comparison of 
geometric spreading loss of Rayleigh waves between theoretical calculations and numerical results with zero damping (α = β = 0).
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4. Influence factors on simulating undamped fracture-induced AE signals

This section considers the propagation of undamped AE waves generated by the breakage of a lattice element. The effect of the 
implemented PID control algorithm and the influence of lattice grid sizes on the simulated undamped AE waveforms are investigated. 
Limited by the size of this paper, a detailed analysis on the relationship between the breakage of a lattice element and the fracturing 
process of concrete cannot be discussed in detail. Readers are referred to our previous study [27].

The studied numerical model and its boundary conditions are given in Fig. 10 and is named as simulation Case 5. An additional 1- 
mm vertical element is placed at location (x = 50mm, y = 150mm) as the fracture source (l(source) = 1mm). The material properties 
listed in Table 1 are adopted as inputs for the numerical model. Three tensile softening parameters a1, a2 and a3 (Fig. 2) are calibrated 
as 5.5, 120 and 620. A positive y direction displacement uy(t) in terms of a constant velocity of 1 × 10− 3 mm/s (duy(t)

dt = 1× 10− 3mm/s) 
is applied at the upper node of the fracture source element to induce tensile fracturing of the element. Tensile cracking at fracturing 
process zone (crack tip) and friction along existing cracking surfaces are two main AE sources involved in the fracturing processes of 
concrete-like quasi-brittle materials [4]. Only the tensile fracture-induced AE signals is considered herein, as this paper focuses on 
demonstrating wave propagation simulations of the proposed modelling framework. The modelling of AE signals of various source 
types generated in concrete fracturing processes will be reported in a following-up study.

The PID control algorithm is implemented in the simulations. The controlling variable is the velocity of the loading node (upper 
node of the fracture source element) to minimize the loading bias. The node located at (x = 130mm, y = 150mm) is considered as a 
virtual AE sensor (marked as S1 in Fig. 10). The other virtual sensors marked in Fig. 10 (S2-S6) will be used in the simulation cases in 
later sections. The vertical (y direction) accelerations recorded at S1 are used to mimic the received AE signals, as received AE signals 
in reality are the stress waves perpendicular to AE sensor surface [54]. A more detailed discussion about the numerical representation 
of AE signals is given in Section 6.1. The adopted time step and numerical damping coefficients are 5 × 10− 5ms (20 MHz sampling rate) 
and zero (α = β = 0), respectively.

4.1. Effect of implemented PID control algorithm

Two simulation cases with and without the PID control are performed to illustrate the effect of the implemented PID algorithm. The 
grid size is selected as 1mm (d = 1mm in Fig. 10). The evolution of vertical accelerations of virtual AE sensor S1 in the two simulation 
cases are shown in Fig. 11, where the presented period is from the beginning of the loading process to a moment before fracturing of the 
source element. It can be found that by introducing the PID algorithm a stable loading process is observed and the dynamic noise in 
nodal accelerations is effectively suppressed (Fig. 11b) comparing to the simulation case without PID control in which the nodal 
accelerations have a bias induced by the external loading, with non-vanishing noise signals of high amplitudes existing even in the 
absence of a lattice element fracture (Fig. 11a). Similar phenomenon was also reported in the work of Minozzi et al. [25], where a 2D 
lattice model without PID control was used to simulate the dynamic fracture of quasi-brittle materials. The dynamic noises influence 
the computational accuracy of targeted dynamic response due to a fracturing lattice element; it also leads to the difficulty in identifying 
the fracture-induced AE signals with relatively low amplitudes, which is mixed by the non-vanishing noises.

4.2. Lattice model grid size & AE signal frequency resolution

As a discrete modelling approach, the grid size has a clear influence of the propagation of AE signals. To demonstrate this, several 
simulations are performed with varied grid sizes (d = 1 10mm). The AE signal source is controlled by keeping the size of the fracture 
source element constant (l(source) = 1mm). Fig. 12 shows typical simulated AE signals from models with grid sizes of 1 and 2.5 mm. The 
starting time zero of AE signal presented in Fig. 12 is not the actual simulation time but has been normalized to represent a typical pre- 
trigger time of 256 us [1]. It can be observed that, the obtained AE signals are largely influenced by the grid sizes. In models with 

Fig. 10. Numerical model and boundary conditions in Case 5 for simulating the AE signals induced by a fractured lattice element (unit: mm).
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smaller grid sizes higher frequency components of an AE signal are observed. A theoretical explanation of this observation is given 
below.

The highest frequency that a lattice model with a given grid size can simulate is herein defined as the cut-off frequency, denoted as 
fmax. The corresponding minimum P- wavelength is then denoted as λp(min). In Fig. 12, it should be noted that the signal amplitudes 
corresponding to frequencies higher than around half of the cut-off frequencies fmax are sharply decreased. According to the Nyquist 
criteria [55], the frequency components higher than half of the maximum frequency that can be produced by a given temporal or 
spatial sampling rate will lose their information. This phenomenon is called the aliasing [56]. The highest frequency without signal 
aliasing, herein called Nyquist frequency and denoted as fNy, is equal to half of the cut-off frequency fmax: 

fNy = 0.5fmax (23) 

The minimum P- wavelength without signal aliasing, herein called Nyquist pressure wavelength and is denoted as λp Ny, is then 
calculated by: 

λp Ny =
Vp

fNy
=

Vp

0.5fmax
= 2λp(min) (24) 

Physically, the adopted truss elements have constant axial deformations (without bending moment), resulting in linear variation of 
displacement only at their nodes. Therefore, as shown in Fig. 13a, at least four element (5 nodes) are needed to approximate (or 
spatially sample) a minimum pressure sine wave with wavelength λp(min). Accordingly, as shown in Fig. 13b, at least eight element (9 
nodes) are needed to approximate the Nyquist pressure wavelength λp Ny: 

λp Ny = 2λp(min) = 8d (25) 

By substituting Eq. (24) into Eq. (25), a relationship between the Nyquist frequency fNy and lattice grid size d can be established as: 

fNy =
Vp

8d
(26) 

The relationship between the lattice grid sizes d and the Nyquist frequency fNy obtained from both Eq. (26) and from lattice simulations 
are compared in Fig. 14. The value of fNy is calculated as half of fmax (Eq. (23)). The values of fmax from the lattice simulations are 

Fig. 11. Vertical accelerations of the virtual AE sensor S1 before fracture occurring for two simulation cases: (a) without PID control and (b) with 
PID control.

Fig. 12. Simulated AE signals received at virtual sensor S1 for simulation cases with: (a) 1-mm and (b) 2.5-mm grid sizes d and a fixed 1-mm 
fracture source element size l(source).
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selected as the frequency in the upper frequency range with an amplitude equal to 0.1 % of the peak amplitude, as shown in Fig. 12. It 
can be found that the proposed function fits well the simulation data. The requirement defined by Eq. (26) can be a recommendation of 
lattice grid size: an appropriate lattice grid size d should be selected according to the maximum targeted maximum AE signal fre-
quency, denoted as fmax targeted, or the minimum targeted pressure wave length, denoted as λp(min targeted), as follows: 

d ≤
Vp

8fmax targeted
or d ≤

λp(min targeted)

8
(27) 

5. Rayleigh damping calibration procedure for attenuation of fracture-induced AE signals

This section is dedicated to introducing a systematic test-based calibration procedure for incorporating numerical damping in the 
lattice modelling approach. The Rayleigh damping calculation method proposed in Section 2.3 is demonstrated through an experi-
ment. The Rayleigh damping coefficients α and β are determined by the experimentally obtained material damping factor η(ω) and the 
wave velocity V(ω) (Eq. (16)–(17)). Experimental procedure for evaluating these two parameters is described in the following.

The measurement setup and the calibration specimen are given in Fig. 15. The specimen has the same dimensions of the numerical 
model discussed in the previous sections (Fig. 10), namely 550 × 150 × 40 mm3. Different from the simplified model, a notch of 5-mm 
width and 30-mm depth is present at mid-length of the specimen. A three-point bending test will be applied on the specimen and the 
results of the test will be reported in a separate paper. The material properties of the specimen are the same with those used in the 
simulations (Table 1). The concrete has a maximum aggregate size of 8 mm and a designed strength class of C35. The key material 
parameters of the specimen such as compressive strength fc, mass density ρ, modulus of elasticity E were obtained by dedicated tests on 
concrete cubes. The tensile strength ft and tensile fracture energy Gf are calculated based on the measured value of compressive 
strength fc according to fib Model Code 2010 (MC2010) [57]. The dynamic Poisson’s ratio value of 0.24 is selected based the mea-
surement for C35-class concrete [58].

The measurement setup consists of a transducer (marked as T0) as signal source and six R15α AE sensors with operating frequency 
range of 50–400 kHz [59] (marked as S1-S6) as receivers. The signal source T0 is placed at the location (x = 50 mm, y = 150mm) and 
connected to a Pundit-200 wave generator [60]. Two types of transducers with different wavebands are used to generate source signals 

Fig. 13. Physical interpretation for the relationships between: (a) lattice grid size d and the minimum pressure wavelength λp(min) and (b) lattice grid 
size d and the Nyquist pressure wavelength λp Ny.

Fig. 14. Relationship between lattice grid size d and Nyquist frequency fNy of the simulated AE signals.
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of different frequencies, including a dry-point-contact (DPC) S1803 transducer (10–160 kHz band width) [61] and a DPC S1820 
transducer (150–400 kHz band width) [62]. The receivers are installed on the top surface of the specimen with a spacing of 80 mm and 
are connected to a AE acquisition system (Micro-II Express Digital AE [63]). Steel holders and silicone grease coupling agent are used 
for AE sensor installation to assure tight coupling between sensor and specimen. The positions of the DPC transducer and the six AE 
sensors on the specimen are consistent with those of the fracture source element and virtual AE sensors in the lattice model shown in 
Fig. 10.

To calibrate suitable Rayleigh damping coefficients that cover the operating frequency range of used R15α AE sensors (50–400 
kHz), wave attenuation characteristics of lower- and upper-bound frequencies (namely 50 and 400 kHz) are tested. Specifically, 
squared waves of two different central frequency, namely 50 kHz and 400 kHz, were generated by the wave generator. The signals are 
received by the AE sensors and recorded by the AE acquisition system.

According to the simulation case 4 in Section 3.2 (Fig. 9), the AE signals received in experiments are dominated by R-waves. Its 
wave velocity VR(ω) and material damping factor ηR(ω) are used to calculate the Rayleigh damping coefficients α and β in Eq. (16)- 
(17). The values of VR(ω) and ηR(ω) are evaluated based on the received AE signals. The evaluation procedure is given in the following.

A typical AE signal with 50 kHz central frequency received by AE sensor S1 is given in Fig. 16. Two parameters can be directly 
obtained from the received AE signals, including the first arrival time and signal peak amplitude. The first arrival time of the signal 
corresponding to P-wave components is picked using the Akaike information criterion (AIC) method [64]. The P-wave velocity Vp(ω) is 
then estimated by a linear regression between the picked first arrival time and the distances from AE sensor to source (Eq. (7)). To 
reduce the picking error of AE signal peak amplitude, the amplitudes of the original signals are transformed into effective amplitudes 
using the average energy concept [65]. The effective amplitude at time ti, denoted as A(effective)

ti (ω), is calculated as the average squared 
root energy of the original amplitudes Atj (ω) in the time interval tj∈ [ti − Δt

2 , ti +
Δt
2 ] [65]: 

A(effective)
ti (ω) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑tj=ti+

Δt
2

tj=ti −
Δt
2

[
Atj (ω)

]2

fsΔt

√
√
√
√
√

(28) 

Fig. 15. Experimental setup for AE signal attenuation tests (unit: mm).

Fig. 16. A typical 50-kHz AE signal received by AE sensor S1.
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where fs is the sampling rate. Δt is the length of predefined time interval, which is selected as twice the wave period in this study [65]. 
The effective peak amplitude of an AE signal received by an AE sensor Sk (k = 1 6), denoted as A(effective)

k (ω), is then picked as the 
maximum amplitude.

Wave velocity VR(ω) and material damping factor ηR(ω) of dominating R-waves are then indirectly evaluated using the experi-
mentally obtained P-wave velocity Vp(ω) and the effective peak amplitudes A(effective)

k (ω). Since the Rayleigh wave velocity VR(ω)
cannot be accurately determined from experiments, it is estimated by Eq. (29)–(30) [53] based on the measured Vp(ω). The VR(ω) are 
estimated as: VR(ω1) = 2285 m/s for ω1 = 2π × 50kHz and VR(ω2) = 2349 m/s for ω2 = 2π× 400kHz. 

Vs = Vp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2υ

2(1 − υ)

√

(29) 

VR =
0.87 + 1.12υ

1 + υ Vs (30) 

The frequency-dependent material damping factor of Rayleigh waves ηR(ω) is calibrated using Eq. (5). Specifically, by selecting AE 
sensor S1 as a reference, the relative drop of peak amplitude due to material damping received by an AE sensor Sk (k = 1 6), denoted 
as ̃γk(ω), is normalized in Nepers (Np) as: 

γ̃k(ω) = ln

[
A(effective)

1 (ω)

A(effective)
k (ω)

]

− 0.5ln
rk

r1
(31) 

In Fig. 17, the total peak amplitude drop measured in experiments (first term in Eq. (31)) and theoretical values of the peak amplitude 
drop due to geometric spreading losses (second term in Eq. (31)) are plot in cross and triangle markers, respectively. The values of 
γ̃k(ω) as their differences are marked as circle symbols in Fig. 17. The value of ηR(ω) is then estimated by finding the best fitted line 
between the ̃γk(ω) values and the distances from sensor Sk to reference S1, Δrk = rk − r1. The ηR(ω) values are estimated as: ηR(ω1) =

1.05Np/m for ω1 = 2π × 50kHz and ηR(ω2) = 4.03Np/m for ω2 = 2π× 400kHz. Substituting the estimated values of VR(ω1), VR(ω2), 
ηR(ω1) and ηR(ω2) into Eq. (16)–(17), the Rayleigh damping coefficients covering a interested frequency range of (ω1 = 2π × 50kHz,
ω2 = 2π × 400kHz) are calculated as: α(ω1,ω2) = 4574.1rad/s and β(ω1,ω2) = 2.28× 10− 9 s/rad.

A simulation is performed adopting the Rayleigh damping coefficients obtained from the calibration process described above. The 
configurations of the model are similar to that of Case 5 (see Fig. 10). The only difference is that a notch of 5-mm width and 30-mm 
depth is created at mid-length in the numerical model to be consistent with the physical notched beam specimen. Fig. 18a shows 
typical simulated AE signals received at virtual sensor S1 to demonstrate the effectiveness of proposed method in modelling the 
temporal attenuation of AE waves. In frequency domain, the energy of the wave is mostly located in the frequency range of 37–446 kHz 
that is close to the targeted frequency range of 50–400 kHz. The effectiveness of the proposed method in modelling the spatial 
attenuation of AE waveforms is further examined by examining the attenuation of narrow banded wave components at 50 and 400 kHz 
respectively. The two wave components with 50 and 400 kHz as their central frequencies are extracted using the second-order But-
terworth bandpass filter [66] with a 10-kHz bandwidth, as shown in Fig. 18b. The peak amplitudes of these two extracted waves are 
marked in dashed line in Fig. 17a and 17b. With the damping coefficients calibrated from experiments, the spatial attenuation of 
simulated AE signal turns out to be comparable to experimental results.

6. Discussion

Currently, modelling the complete AE waveforms induced in concrete fracturing process is a pending problem. This complexity 
arises from the intricate coupling between the local discontinuity of material fracturing and the global continuity of elastic wave 

Fig. 17. Normalized amplitude drops versus sensor distances to reference S1: (a) 50 kHz central frequency AE signals and (b) 400 kHz central 
frequency AE signals.
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propagation in solids. Continuum theory-based models like FEM simulate the effect of microscopic fracture over a smeared material 
volume and thus inherently cannot consider the dynamics of microscopic crack nucleation and growth (AE sources), although they are 
suitable for solving linear wave propagation problems in elastic and viscoelastic solids. The DEM models including lattice models can 
explicitly consider the dynamics of microscopic crack nucleation and growth though bond breakage between discrete elements; 
nevertheless, to date, they cannot accurately simulate the elastodynamic response of wave propagation induced by the bond breakage. 
This study provides general solutions to the difficulties in simulating wave propagation with attenuation using DEM models in general 
including lattice models, offering modelling guidelines to achieve full-waveform simulations of fracture-induced AE signals in different 
brittle and quasi-brittle materials. In the following, we discuss the numerical representation choices of an AE signal and the limitation 
of current study.

6.1. Numerical representation of acoustic emission signals: displacement, velocity or acceleration?

There is no consensus in literature on how to represent an AE signal in numerical modelling. Nodal displacement [67], velocity [12]
and acceleration [24] were all used to numerically represent an AE signal in literature. Fig. 19 shows the displacements, velocities and 
accelerations of virtual AE sensor S1 in simulation case 5 adopting a 1-mm grid size d (see Fig. 10). It can be observed that the nodal 
acceleration of the same signal contains more high-frequency components than the nodal velocity response, and the displacement 
response has the least. A similar phenomenon was observed in literature that high-frequency vibration signals cannot be obtained 
when using displacement or velocity to represent a fracture-induced AE signal [24,25]. Different explanations were proposed for this 
phenomenon, e.g., attributing to the low fracture velocity of the adopted model [12] or the large numerical damping values used in the 
simulation [25]. A more reasonable explanation is given in the following. Consider a dynamic displacement u(t) defined as a simple 
sine function of time t: 

u(t) = Asin(ωt+φ) (32) 

where A, ω and φ are the amplitude, angular frequency and initial phase angle. The velocity u̇(t) and acceleration ü(t) are expressed as: 

u̇(t) = Aωsin(ωt + φ +
π
2
) (33) 

ü(t) = Aω2sin(ωt + φ + π) (34) 

As can be seen in Eq. (32)–(34), when the frequency of the signal increases, the amplitudes of the velocity and acceleration are 
proportional to ω and ω2 times of those of the displacement, respectively. In an AE signal with multiple frequency components, it 
means that an acceleration signal is more sensitive to the higher frequency components than a displacement signal. Moreover, AE 
sensors, whether wideband- or resonant-type, are made from piezoelectric ceramic or crystal which charges electrically in response to 
applied mechanical force (stress) [54]. Physically, the electrical signals measured by an AE sensor are directly linked to the surface 
acceleration. It is, therefore, a logical choice to use acceleration to represent AE signals in numerical simulations.

6.2. Limitations of current study and recommendations for future study

The model developed in this study is based on a 2D truss-based square lattice network. This lattice network has inherent Poisson’s 
ratios varying from 0.26 to 0.42 depending on loading directions, resulting in unequal velocities of elastic waves in different prop-
agation directions (Fig. 9). Many alternative lattice configurations have been proposed to address the constraints associated with 
Poisson’s ratio, by using additional shear springs [68], beam elements [69], spring birth [70], Kirkwood–Keating springs [71] and the 
artificial force concepts [72]. As shown by Gerstle [73], it is feasible to achieve an arbitrary Poisson’s ratios using a hexagonal mesh. 

Fig. 18. Simulated AE signals received at virtual sensor S1 with calibrated Raleigh damping coefficients: (a) original signals and (b) filtered signals 
(50-kHz and 400-kHz central frequency components are marked in red and black lines, respectively). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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An example of wave propagation simulation using hexagonal lattice mesh can be found in [74]. In a future study, these advanced 
lattice networks can be adopted to better simulate the propagation of fracture-induced AE waves in the fracture process of concrete.

Additionally, this study adopts a 2D version of lattice model that cannot well simulate the wave propagation in real 3D concrete 
structures. In a future study, the proposed modelling framework can be adapted into a 3D lattice model (such as those developed in the 
work of Kosteski [21] and of Yue et al. [75]) to better simulate the 3D wave propagation induced by concrete fracture process. 
Moreover, this study only considers the AE source type of concrete tensile cracking. The coupling between tensile cracking and friction 
along existing cracking surfaces should be further investigated to simulate different AE source types involved in concrete mix-mode 
fracturing processes [76–78].

7. Conclusions

Developing deterministic models for quantitative acoustic emission (AE) source characterization relies upon accurately modelling 
the whole AE process, including the fracture sources and the induced elastic waves. Nevertheless, there is currently no available 
method that can simulate the complete transient waveforms of fracture-induced AE signals including their propagation. In this study, a 
lattice modelling approach is proposed to fill this research gap with a focus on simulating the wave propagation and attenuation. The 
noise signals in time integration procedure of dynamic lattice modelling are minimized by implementing a novel proportional-integral- 
derivative (PID) control algorithm. A Rayleigh damping-based calculation and calibration method is proposed to accurately model the 
AE wave attenuation. The proposed modelling framework can be of interest to different versions of lattice models (or even other 
discrete element methods) for a full-waveform simulation of fracture-induced AE signals in concrete and other brittle or quasi-brittle 
materials. The principal findings are synthesized as follows: 

1. Feasibility of the lattice model for simulating elastic wave propagation is examined. The simulated pressure and shear wave ve-
locities agree well with theoretical results. The geometric spreading loss of point-source wave can be accurately captured by the 
lattice model. Limitation of the adopted lattice model is that the simulated wave velocities are unequal in different propagation 
directions due to the variation of Poisson’s ratio in the adopted two-dimensional squared lattice network.

2. Effect of the implemented proportional-integral-derivative (PID) control algorithm has been demonstrated. Without the PID 
control, non-vanishing noise signals of high amplitudes persistently exist even in the absence of a lattice element fracturing. The 
PID control algorithm effectively reduces the noise signals due to external loading bias in nodal accelerations.

3. A relationship is established between the lattice grid size and the frequency resolution of simulated AE signals: an appropriate 
lattice grid size should be no more than one eighth of the minimum targeted pressure wavelength to avoid signal aliasing.

4. A theoretical method and corresponding experimental calibration procedure are proposed to determine the Rayleigh damping 
coefficients for modelling the attenuation of AE signals due to material damping. The proposed method has been demonstrated by 

Fig. 19. Different representation choices for AE signals: (a) displacements, (b) velocities and (c) accelerations of virtual AE sensor S1 in simulation 
Case 5.
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an experiment; a comparison between the numerical and experimental results shows that the proposed method is able to capture 
the spatial and temporal attenuation of AE waveforms. The proposed method has the potential to be used in other numerical 
methods besides lattice model (e.g., finite element methods) for modelling the attenuation of AE signals generated by various 
sources besides fracture (e.g., stick-sliding friction along crack surfaces) in different materials besides concrete (e.g., rocks, com-
posites or metals).
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Appendix 

Derivative process of effective cross-sectional area of truss elements A*(d) in adopted 2D square lattice network

The effective cross-sectional area of a lattice element in the adopted two-dimensional truss-based lattice model, A*(d), acts as a 
bridge that links the elastic properties of discrete lattice elements to those of represented continuum. A*(d) is a function of the lattice 
grid size d and is expressed as: 

A*(d) =
3

2(1 +
̅̅̅
2

√
)
dw (A.1) 

where w is the specimen thickness. The close-form derivative process of Eq. (A.1) is given in the following. Consider a 2D isotropic 
continuum subjected to equally uniformed biaxial strain fields as: 

εx = εy = ε (A.2) 

where εx and εy are strains in x and y directions, respectively. ε is a strain value. According to the Hook’s law, the strains are further 
expressed as: 

εx = εy = ε = σ(1 − ν
E

) (A.3) 

where σ represents stress. ν and E are the Poisson’s ratio and Young’s modulus, respectively. The elastic strain energy stored in the 
considered continuum, denoted as W, is then derived as: 

W =
1
2

∫
(
σxεx + σyεy

)
dϕ =

∫

σεdϕ = σεwA = ε2
(

E
1 − ν

)

wA (A.4) 

where σx and σy are stresses in x and y directions, respectively. ϕ and A represents the volume and area of the considered 2D con-
tinuum, with ϕ =wA. We then use the 2D square truss lattice network to discretize the considered 2D continuum (see Fig. 1). Assuming 
all elements (orthogonal and diagonal elements with different lengths) involved in each lattice grid size level d have same effective 
cross-sectional area A*(d), the total strain energy stored in the equivalent lattice representation, denoted as W*, is then calculated as: 

W* =
1
2
∑n

i=1

(Fi
e)

2li
EA*(d)

=
EA*(d)ε2

2
∑n

i=1
li (A.5) 

where Fi
e and Li are the axial force and length of i-th lattice element. The total strain energy stored in the considered 2D continuum 

must equal that in the corresponding discrete lattice elements as: 

W = ε2(
E

1 − ν)wA = W* =
EA*(d)ε2

2
∑n

i=1
li (A.6) 

The effective cross-sectional area A*(d) is then derived as: 
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A*(d) =
2wA

(1 − ν)
∑n

i=1li
(A.7) 

Selecting a basic unit area of area A = d2 in the adopted 2D square truss lattice network (see Fig. 1) for analyses, a total of eight 
elements of half element length (namely n = 8) are involved in the basic unit area consisted of four orthogonal elements of length l =
d/2 and four diagonal elements of length l =

̅̅̅
2

√
d/2. Eq. (A.7) is further expressed as: 

A*(d) =
2wd2

(1 − ν)
∑8

i=1li
=

2wd2

(1 − ν)(2d + 2
̅̅̅
2

√
d)

=
1

(1 +
̅̅̅
2

√
)(1 − ν)

wd (A.8) 

According to the work of Hrennikoff [32], the average value of inherent Poisson’s ratio of the adopted square truss-based lattice 
model equal to 1/3. By substituting ν = 1/3 into Eq. (A.8), we derive the expression of A*(d) as given in Eq. (A.1).

Data availability

Data will be made available on request. 
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