
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Making phylogenetic
networks orchard
Algorithms to determine if a phylogenetic network is or-
chard and to transform non-orchard to orchard networks

Bachelor End Project by
Merel Susanna

Making phylogenetic networks
orchard

Algorithms to determine if a phylogenetic network
is orchard and to transform non-orchard to orchard

networks

by

Merel Susanna

Student Name Student Number

Merel Susanna 4907299

Supervisors: Dr. ir. L.J.J. van Iersel & Dr. Y. Murakami
Thesis committee: Dr. ir. L.J.J. van Iersel

Dr. Y. Murakami
Dr. J.W. van der Woude

Institution: Delft University of Technology
Project Duration: April, 2022 - June, 2022
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Preface

While making the decision about the subject of my bachelor end project, I came across a
project about phylogenetic networks. I never heard of phylogenetic networks, however the
fact that is was an application of mathematics in the direction of discrete mathematics and
optimization really interested me. It was great to see the application of the information ob-
tained in the bachelor program of Applied Mathematics. The way I got to write algorithms and
prove certain new theorems was great to see all the theoretical information applied in a project.

I would really like to thank my supervisors Leo van Iersel and Yuki Murakami for guiding me
through the process of research. It was the first experience with doing research and proving
new statements on my own, and they were of great help for doing this task in a good way.
During the time I worked on this project, the weekly meetings with my supervisors helped to
stay on track. The feedback I received during this project was really helpful for continuing and
finishing this project.

Merel Susanna
Delft, July 2022

i

Abstract

Phylogenetic networks are used to represent evolutionary histories of a set of taxa. In this the-
sis, we look at a certain network class, called orchard networks. In the beginning of this thesis,
definitions concerning phylogenetic networks and specifically orchard networks are introduced.
This happens in Chapter 2. The characterization of orchard networks involves time-labelling
of the vertices.
In Chapter 3 an algorithm is given to see if a given network is orchard. The last section of
Chapter 3, explores a non-recursive labelling of a given network. How to label a network is
given in a different paper [5], however there is not an explicit algorithm for this. An algorithm
for the labelling is given in Section 3.3. We give the pseudo-code for finding such labels.
Chapter 4 is about non-orchard networks. It contains multiple actions that can be performed
on the non-orchard networks in order to transform the non-orchard networks into orchard net-
works.

ii

Contents

Preface i

Abstract ii

1 Introduction 1

2 Definitions 2

3 Is a given network orchard? 4
3.1 Useful theorems . 4
3.2 Algorithm to check if a network is orchard . 5
3.3 Labelling . 7

4 From a non-orchard network to an orchard network 9
4.1 Adding leaves to a network . 9
4.2 Deleting edges from a network . 10
4.3 Comparison between adding leaves and deleting edges 11
4.4 Comparison between deleting edges and linking arcs 14

5 Conclusion 16

6 Discussion 17

References 18

iii

1
Introduction

At first sight, viruses seem to occur out of nowhere. One day people live their lives as they know
it; in the next, a new virus hits and creates a pandemic. A great example of such events, was
caused recently by the coronavirus (COVID). However, COVID was not ‘born’ out of nowhere.
Viruses that we know can mutate into new viruses. Even if some small part of the RNA of
a virus is different, a new virus can occur with whole new or different symptoms. This is an
interesting process and can be represented by mathematical graphs [8].

The evolution from ape to human, a family tree or the evolution of viruses as described
above are all examples of processes that can be visualized with phylogenetic networks. Net-
works are even capable of dealing with complex evolutionary scenarios, such as genetic re-
combination, hybridization and horizontal gene transfer. Vertices in a phylogenetic network
represent evolutionary events, but they can also represent ancestral species. Besides the ac-
tions of splitting and combining properties, the information on the length between evolutionary
scenarios can also be stored in phylogenetic networks, by means of edge lengths.

In this thesis, some properties of these kind of networks are studied. Before doing this,
useful definitions are introduced in Chapter 2. In Chapter 3, we introduce orchard networks,
which are networks that can be reduced to the common ancestor of all taxa in this network, by
means of cherry reduction (explained is Chapter 2). Orchard network were first introduced for
the computational benefits, however in a recent paper a biological motivation is found. This
motivation has everything to do with vertex labelling [5]. Algorithms are stated in order to see
if a given network is orchard and if so, a labeling can be applied that represents the length
of an evolution. These algorithms fill a gap in the literature about vertex labelling. In the last
chapter, networks that are not orchard are considered. Using some actions, like adding taxa
or deleting some arcs of the network, the network can be transformed into an orchard network.
The connection between the amount of taxa that are known and the amount of deletions that
needs to happen is investigated.

1

2
Definitions

All the figures included in this thesis are created using Graph Online [2].

Definition 2.1 (Directed phylogenetic network) A directed binary phylogenetic network N
is a directed graph on a set of taxa X containing the following categories of vertices and
properties:
Categories:

• A root: a vertex with indegree-0 and outdegree-1.
• A tree vertex: a vertex with indegree-1 and outdegree-2.
• A reticulation: a vertex with indegree-2 and outdegree-1.
• A leaf: a vertex with indegree-1 and outdegree-0.

Properties:

• N can not contain any cycles.
• N can not contain nodes with indegree-1 and outdegree-1.
• N contains one root.
• All the leaves of N are labelled with an element of X. A node that is not a leaf/root is
called a internal node.

• Every element of X is exactly one leaf.

From now on only binary phylogenetic networks are considered. This means that a vertex can
only have maximal degree-3. [3] [9]

Definition 2.2 (Phylogenetic Tree) A phylogenetic network without reticulations is a phylo-
genetic tree. [3]

Definition 2.3 ((Reticulated) cherry) Let x and y be two leaves inN . If x and y have a parent
in common (x, y) is called a cherry.
Let px denote a parent of x. If px is a reticulation and px and y have a parent in common,
then (x, y) is a reticulated cherry and the incoming arcs of a reticulation are reticulation arcs.
A cherry or a reticulated cherry is also called a reducible pair. [5]

A tree edge is an edge in a network such that it is not a reticulation edge.

2

3

Figure 2.1: (A,B) is a cherry Figure 2.2: (C,D) is a reticulated cherry

Definition 2.4 (Cherry picking/reducing) Let (x, y) be a pair of leaves, px and py be the
parents of x and y respectively. Cherry picking or reducing is an action of deleting nodes/arcs
and in a network N using the following method:

• (x, y) is a cherry: delete node x and if px is a node with one incoming arc and one
outgoing arc, then suppress px. Suppressing a node is the action of deleting the node
and adding an arc from its in-neighbour to its out-neighbour.

• (x, y) is a reticulated cherry: delete the arc between py and px and suppress the nodes
with one incoming- and one outgoing arc.

• (x, y) is not a cherry/reticulated cherry: do not do anything.

[5]

Definition 2.5 (Orchard network) A network N is called orchard if N can be reduced, ac-
cording to a sequence of ordered pairs S, to a tree with one leaf. This sequence of ordered
pairs denote the order in which the pair is picked and is called a cherry picking sequence.
NS represents the network as a result of applying S to the networkN . Therefore,N is orchard
if there exists a sequence S such that NS is a tree with one leaf.

An property of networks is that they can be isomorphic. Two networks are isomorphic if
there exists a bijective function f between the nodes such that there is an arc between node
x and y if and only if there is an arc between f(x) and f(y). [5]

Example 2.1 (Cherry picking) Network N is an orchard network (the leftmost network in fig-
ure 2.3). This can be verified using cherry picking. First cherry (B,A) is reduced and so leaf
B is deleted. Secondly reticulated cherry (C,A) is reduced by deleting the arc between the
parent of A and the parent of C and suppress the nodes with one incoming and one outgoing
arc. Then cherry (C,D) is reduced, followed by cherry (D,A). This process results in a tree
with one leaf, A. Therefore N is an orchard network. This process is visualised in figure 2.3.

Figure 2.3: N is orchard and can be reduced by sequence S=(B,A)(C,A)(C,D)(D,A)

From now on, a binary phylogenetic network is denoted by binary network or just network.

3
Is a given network orchard?

In this chapter, an algorithm is constructed in order to check whether a network N is orchard
or not. Before doing this, the knowledge of some theorems is necessary. These are stated in
the beginning of this chapter.

3.1. Useful theorems
In order to get the following theorem, Theorem 3.1, some notation should be explained. CPN
stands for cherry-picking network, which is the same as saying that the network is orchard.
This is a network that can be reduced by some sequence consisting of pairs of leaves of the
network that can be picked. Such sequences, which we call cherry-picking sequences, will be
denoted by CPS in the next theorem. A partial CPS is a sequence of leaf pairs. It is a partial
since it may not reduce some CPN .

Theorem 3.1 Let N be a binary CPN , and S a partial CPS. If in each step of the reduction
of N by S, the network is changed, then there exists a minimal CPS S′ starting with S that
reduces N .

Theorem 3.1 says that the order in which cherries are picked does not matter. [6]

Theorem 3.2 Let N be a phylogenetic network on a set of taxa X.Then N is orchard if and
only if N(x, y) is orchard for all (x, y) ∈ X2.

Proof. Let (x, y) ∈ X2 and suppose that N(x, y) is an orchard network. By the definition
of orchard networks, there exists a sequence S consisting of pairs of leaves such that a pair
in S forms a cherry or a reticulated cherry in N(x, y). Therefore N(x, y)S is a tree with one
leaf. Since N(x, y) is an orchard network, there are two possible cases:

• (x, y) is a cherry or a reticulated cherry. In this case, the pair (x, y) can first be added
to N(x, y) to get the network N . As a result of this, N can be reduced by the sequence
(x, y)S and therefore N is orchard.

• (x, y) is not a cherry nor a reticulated cherry. Then N(x, y) = N and since S exists by
assumption, S also reduces N , so N is orchard.

For proving the statement in the other direction, assume N is orchard and let (x, y) ∈ X2.
(x, y) can be a cherry or reticulated cherry, but it can also be neither. Therefore, two cases
need to be considered.

4

3.2. Algorithm to check if a network is orchard 5

• (x, y) is not a cherry nor a reticulated cherry. In this case N is equal to N(x, y) since
(x, y) does not have any influence on the network N . Since N is orchard, it follows
automatically that N(x, y) = N is also orchard.

• (x, y) is a cherry or a reticulated cherry. Since N is orchard, it can be reduced to a
tree with one leaf by a sequence S. The order of picking the cherries does not matter
(Theorem 3.1) and therefore it can be chosen that the sequence S starts with the pair
(x, y), which can be written as S = (x, y)A for some partial CPSA. So NS = N(x, y)A.
As a consequence of this, it can be seen that A reduces N(x, y) and from that it can be
concluded that N(x, y) is orchard.

Therefore, N(x, y) is orchard in both cases. �

Theorem 3.3 If N is orchard and contains at least two leaves, then N contains a cherry or a
reticulated cherry.

Proof. Let N be an orchard network. By definition, there exists a sequence S such that
NS is a tree with one leaf. Suppose that every element in S reduces N in some way. Then
the length of S is minimal. In that case, the first pair in this sequence should be a cherry or a
reticulated cherry in N . It follows that each orchard network contains a cherry or a reticulated
cherry. �

The trivial case is an exception to Theorem 3.3. The trivial case is the tree with one leaf.
Such a network does not contain a cherry or a reticulated cherry, however we define a tree
with one leaf to be an orchard network. The empty sequence S trivially reduces the network
to a tree with one leaf.

3.2. Algorithm to check if a network is orchard
Given a network N , it is important to check whether this network is orchard or not, since an
orchard network has multiple mathematical properties.

Let N be a given network.

Firstly, N could be the trivial case. This means that N is a tree with one leaf, and is there-
fore orchard.

Otherwise, the second step is to check whether the given network N contains a cherry or
a reticulated cherry. This can be done by looking at the parents of the leaf nodes. Let (x, y)
be an arbitrary ordered pair of two distinct leaves of N . The pair (x, y) is a cherry if leaf x and
leaf y have a parent in common. If this is the case, then by definition, N contains a cherry.
In case of a reticulated cherry, it should be that the parent px of x is a reticulation and that this
parent and py are connected, such that py is a parent of px. Checking this will verify whether
there exists a reticulated cherry or not.

If it is verified that there does not exist a cherry nor a reticulated cherry, it follows from The-
orem 3.3 that N is not an orchard network. Otherwise, there exists a cherry or a reticulated
cherry. As a result of this, the existing cherry or reticulated cherry can be picked as described
in Definition 2.3.

3.2. Algorithm to check if a network is orchard 6

Now we have a network N with (x, y) picked. In particular, the order in which the cherries
are picked does not matter due to Theorem 3.1. To see if N is orchard, these steps above
need to be repeated until either the reduced network ends up in the trivial case (so N is an
orchard network) or it can not be reduced anymore and it can be concluded that N is not or-
chard. This works since Theorem 3.2 is proven in the previous section. Namely, the reducing
step creates a new network N(x, y). Repeating the steps on N(x, y) checks whether N(x, y)
is orchard. From this recursion, it can be observed that N is orchard if and only if the output
network at the end of the algorithm is a tree with one leaf. So the last step is proving that NS
is orchard for some sequence S. But from that it follows by the exception after Theorem 3.3
that N is orchard as well.

This process is written in two algorithms below. Algorithm 1 returns a cherry or reticulated
cherry if there exists one in N otherwise it returns ‘None’ and Algorithm 2 checks if a given
network is orchard.

Algorithm 1: FindCherriesOfNetwork(N)
Data: A network N on a set of taxa X
Result: A cherry or reticulated cherry in N if there exists one, otherwise ‘None’
for A leaf x in N do

if px, the parent of x, is a tree vertex then
if There exists a leaf child y, unequal to x, of px then

return (x, y)
end
else if There is a tree vertex parent py of px, where py has a leaf child y then

return (x, y)
end

end
end
return ‘None’

Algorithm 2: ReduceNetwork(N)
Data: A network N
Result: A sequence S that reduces N to a tree with one leaf if N is orchard,

otherwise return ’No’ and sequence S that reduces N until there are no
(reticulated) cherries left.

S = ()
(x, y) = FindCherriesOfNetwork(N)
while (x, y) is not ‘None’ do

N = N(x, y)
S = S(x, y)
(x, y) = FindCherriesOfNetwork(N)

end
if N is a tree with one leaf then

return S
else

return ‘No’ and S
end

3.3. Labelling 7

3.3. Labelling
Networks usually have labels, from which the branch length can be worked out. For a phylo-
genetic network that indicates the evolutionary history of species, the branch length indicates
how long this evolution takes. In Section 3.2, an algorithm is given on determining if a network
is orchard. If it is determined that a network is orchard, the network can be labelled.

A type of labelling that we use in this section is HGT-consistent labelling.

Definition 3.1 (HGT-consistent labelling) Let N be a binary network on a set of taxa X.
HGT-consistent labelling is a function t : X −→ R with the following properties:

• t(x) ≤ t(y) for all arcs from x to y and equality is only allowed if y is a reticulation.
• For each internal node x, there is a child y of x such that t(x) < t(y).
• For each reticulation r with parents x and y, exactly one of t(x) = t(r) and t(y) = t(r)
holds. [5]

HGT stands for horizontal gene transfer and it shows that orchard networks are trees with
horizontal arcs added to them. An arc uv is called horizontal with respect to the HGT-consistent
labelling if t(u) = t(v). Since in this section it is assumed that N is orchard, the following
theorem, Theorem 3.4, states that an HGT-consistent labelling can be used.

Theorem 3.4 A binary networkN is orchard if and only if it admits an HGT-consistent labelling.
[5]

To find an HGT-consistent labelling for an orchard network N , a sequence that reduces N
is used. The labelling for N is obtained by constructing the network back from the sequence.
Constructing a network works as follows.
There is a picking sequence S = (x1, y1)(x2, y2) . . . (xm, ym) for the network N , since N is
assumed to be orchard. Reconstructing starts with a one-leaf tree with leaf ym (by definition
of cherry picking). The first step is adding the pair (xm, ym) to this tree. This is done by adding
a node on the arc between the root and ym and connecting this new node to a new leaf xm.
Then for adding the pair (xm−1, ym−1) first is checked if xm−1 is already a leaf. If this is the
case, then two nodes are added, pxm−1 between xm−1 and its parent and pym−1 between ym−1

and his parent. Between these two new nodes, an arc (pym−1 , pxm−1) is added. This arc forms
a reticulation arc. If xm−1 is not already an existing leaf, the action of adding (xm, ym) is mir-
rored. If this is done for the complete sequence S, the network is finished. This process is
visualized in Figure 3.1.

Figure 3.1: N is constructed by repeatedly adding pairs from the sequence S=(B,A)(C,A)(C,D)(D,A)
backwards.

With the following definition and theorem, Definition 3.2 and Theorem 3.5, it can be con-
cluded that the network that is constructed is unique.

3.3. Labelling 8

Definition 3.2 (Reconstructible) A subset of orchard networks is called reconstructible if for
any two networks N , N ′ in this subset, with a common minimal CPS, we have that N and N ′

are isomorphic. [6]

Theorem 3.5 A binary network is reconstructible. [6]

Only binary networks are considered and those are reconstructible by Theorem 3.5. From
Definition 3.2, it can be concluded that networks reconstructed from the same S are isomor-
phic and therefore the same. Now the reconstructing part is done, the labelling of a network
can be introduced.

Let S = (x1, y1)(x2, y2) . . . (xm, ym) be a sequence that reduces an orchard network N .
Now the algorithm for finding an HGT-consistent labelling for an orchard network is given.
First label the root node r with t(r) = 0, followed by labelling the leaves lj with t(lj) = m + 1.
This makes sure that all the leaves have the same label. Leaves do not necessarily have to
have the same label, however in this paper it is chosen to label them the same. The label
is m + 1 since the leaves need to have higher labelling than any other nodes in the network.
Then the internal nodes are left to label. This is done in the following way. Reattaching pair
(xi, yi) gives label t(xi) = m+ 1− i. This is indeed HGT-consistent labelled proven in [5]

This is formulated in the following pseudo code, Algorithm 3. In this algorithm a new nota-
tion is used for adding a pair (x, y) to a network, this is denoted by N = N + (x, y)

Algorithm 3: HGTLabellingOfN(S)
Data: A sequence of ordered pairs S = (x1, y1)...(xm, ym) of length m
Result: Network N that can be reduced by S with HGT-consistent labelling and return

the labelling t
Let N be a tree with one leaf ym.
Let pym be the parent of ym.
Set t(pym) = 0
t(ym) = m+ 1
i = m
while 1 ≤ i ≤ m do

N = N + (xi, yi)
Let pxi and pyi be the parent of xi and yi respectively.
if xi is an existing leaf then

t(pxi) = m+ 1− i and t(pyi) = m+ 1− i
else

t(xi) = m+ 1 and t(pxi) = m+ 1− i
end
i = i− 1

end
return N and t

4
From a non-orchard network to an

orchard network

Until now, networks that are not orchard are not discussed. Reducing a non-orchard network
seems impossible at first. However, the actions of adding leaf nodes or deleting arcs are
possible solutions to this problem. In this chapter we explain how these actions can transform
a non-orchard network into an orchard network, making use of a couple of techniques that can
be performed on non-orchard networks.

4.1. Adding leaves to a network
Consider a network that is not reducible to a tree with one leaf with just picking cherries and
reticulated cherries. This means that at one point, after cherry-picking, the resulting network
(which is not a trivial tree) does not contain any cherries or reticulated cherries. It would be
very useful to still reduce this network completely. A possible choice of doing this, is by adding
leaves to the network to construct reticulated cherries. In order to create a reticulated cherry
that can be picked, a leaf should be added to the network. The action of adding a leaf l to
a network can be described as follows: first, find a leaf of the network with a reticulation as
parent. Such a leaf must exist by considering a lowest reticulation vertex in a network, which
can be two things, either a parent of a leaf or there is a cherry below it. The network that is
considered has no cherries, so it must be the former. This reticulated parent is denoted by r.
Then, pick one of the incoming edges incident to r and name this edge e = uv. Subdivide e
with a node x by deleting edge uv and adding ux and xv. Then finally, the the new leaf l can
be added and connected to x with edge uv.

Figure 4.1 shows the process of adding a leaf to a non-orchard network. Now the network
on the right can be reduced by the sequence S = (B,C)(A,B)(A,C)(B,C).

However, if a leaf is added to a bottom most tree edge of the network, a cherry is cre-
ated instead of a reticulated cherry. In this case, if that particular cherry is picked, there is no
progress since the same network as before is obtained. This can be explained by Theorem 4.1.

9

4.2. Deleting edges from a network 10

Figure 4.1: The blue leaf is added to a non-orchard network (the network on the left is non-orchard since there
are two leaves, but no (reticulated) cherries), such that there is now a reticulated cherry (B,C) that can be

picked.

Theorem 4.1 A network N is orchard if and only if the network obtained by adding a leaf to a
tree edge of N is orchard.

Proof. Assume a network N is an orchard network. This means, by Definition 2.5, that
there exists a sequence S = (x1, y1)(x2, y2)...(xn, yn) such that NS is a tree with one leaf.
Let l be the leaf that is added to a tree edge and call this new network Nl. The parent of l
is x, so pl = x. Since N is an orchard network, all the nodes below x can be reduced. Let
T = (x1, y1)...(xi, yi) be the sequence that reduces all nodes below x. Since x is a parent of
two leaves l and yi in the network NT , with yi being a leaf of N , it follows that NT contains
a cherry (l, yi). This cherry can be picked. After this, we can continue reducing the resulting
network according to sequence S. So Nl can be reduced to a tree with one leaf by sequence
S = (x1, y1)(x2, y2)...(l, yi)...(xn, yn) and it is therefore orchard.

Assume N is a network. Let Nl be an orchard network such that Nl is the network N
with leaf l added to a tree edge. Since Nl is an orchard network, there exists a sequence S
that reduces Nl to a tree with one leaf. S contains a pair containing leaf l. This is a normal
cherry and not a reticulated cherry since l is added to a tree edge instead of a reticulation edge.
Choose S to be a sequence that deletes the cherry involving l with l as the first coordinate, the
first time l appears. Reduce the network N according to S until the cherry with leaf l occurs.
Since network N does not contain leaf l, picking the cherry in Nl containing l makes sure that
l is deleted. N already does not contain leaf l, from that point on N can be reduced according
to S again. Therefore, N can be reduced by the sequence S without the pair containing l, so
N is orchard.

�

From Theorem 4.1 we can say that adding leaves to tree edges in non-orchard networks
results in non-orchard networks. Therefore, leaves should be added to reticulation edges in
order to reduce non-orchard networks with cherry reduction and leaf additions.

4.2. Deleting edges from a network
Now the action of deleting edges is explained. Deleting an edge is not so straightforward as it
might seem. In particular, we wish to define edge deletions so that the resulting graph remains
a network. There are a few cases that should be considered.
First, an incoming arc of a tree node cannot be deleted. If this would be possible, there are
two cases that can occur that are not possible in a network. One option is that the network

4.3. Comparison between adding leaves and deleting edges 11

is divided into two separate components. The other option is that there arises a node with
indegree-0 and outdegree-2 and that is not the root node. Since it is only possible that the
root node has no incoming arcs, this option would not work as well.
The second kind of arc that cannot be deleted exists because of a similar consequence seen
in the first case. A reticulation node has indegree-2 and outdegree-1 since only binary net-
works are considered. So if the outgoing arc of a reticulation is deleted, a node is created with
indegree-2 but outdegree-0. The only possibility for a node to have outdegree-0 is for leaves,
however there cannot be any leaves created through the process of deleting arcs. Therefore,
the outgoing arc of a reticulation cannot be deleted.
Lastly, the incoming arc of a leaf and the outgoing arc of the root cannot be deleted.

These are the cases in which an edge cannot be deleted, so now we state the situation in
which an arc can be deleted.
An arc uv (with u and v being nodes in a network) can be deleted from a network only if
the outdegree of u is equal to two and v is a reticulation. After deleting an edge, nodes with
indegree-1 and outdegree-1 are suppressed. If it occurs that there are parallel edges, deleting
one of those counts as deleting an edge, so it does not count as suppressing and edge [7].

Figure 4.2: Some of the arcs that cannot be deleted in this network are: ab (b will be a node with indegree-0) and
dC (d will be a node with outdegree-0 and c will be totally separate of the network). An example of an edge that

can be deleted is cd.

4.3. Comparison between adding leaves and deleting edges
Let L denote the minimal number of leaves that need to be added to a non-orchard network
to make it orchard and let E be the minimal number of edges that need to be deleted from a
non-orchard network to make it orchard. At first instinct it seemed reasonable for L and E to
be the same. Since adding a leaf ensures that the reticulation number of a network decreases
by at least one, it looks the same as just deleting the reticulation edge. However, the leaves
that are added to the network in the process can possibly be used later on to pick a new cherry
or reticulated cherry. To see this, an example is shown in Figure 4.3.

First, since there does not exist a cherry or reticulated cherry in the leftmost graph, it is
a non-orchard network. We add a leaf C to arc uv. We then reduce the reticulated cherry
(A,C). The result (the middle graph) is still a non-orchard network and therefore we add a
new leaf D to the edge wu. Now, it can be seen that after adding D, the resulting network
(the rightmost graph) can be picked and is therefore orchard. So L = 2. Now it is shown that
L = 2 is an upper-bound for the amount of leaves to add. However, this is also the lowest
amount. L cannot be equal to zero since the starting network is non-orchard. Then it should
be investigated that L = 1 is also not possible. Since this network is symmetric, adding the
leaf to the other edge incident to v would not make a difference.

4.3. Comparison between adding leaves and deleting edges 12

Figure 4.3: The left graph is a non-orchard network. After adding leaf C to edge uv and picking (A,C) the
middle network is the network that is left. After adding leaf D to edge wu and picking (C,D) the graph on the

right occurs and is orchard. So L ≤ 2

In Figure 4.4 the process of arc deletion is shown for the same graph as in Figure 4.3.
After the action of first deleting wx, followed by yu, a graph is left with a pair of parallel edges.
One of these edges should be deleted in order to create an orchard network (right in Figure
4.4). Therefore, E ≤ 3. Here E ≤ 3 is found as an upper-bound, however is it also the low-
est amount? Again, E ̸= 0, since the network in non-orchard. Deleting one edge is also not
enough since the network obtained by deleting wx is also non-orchard. Deleting any other
edge will not result in an orchard network. In any case, there will be a parallel set of edges
and one of those should always be deleted.

Figure 4.4: The left graph is the same non-orchard network as in Figure 4.3. First, the edge wx is deleted. After
that, yu is deleted. At last, one of the two parallel edges is deleted. The resulting network on the right is orchard.

Another network class that has been considered in literature is the class of tree-based net-
works. The definition of a tree-based network is given by:

A binary network N is tree-based with base tree T in N can be obtained from T in the
following steps [5]:

1. Replace some arcs of T by paths, whose internal nodes are called attachment points;
each attachment point is of degree-1 and outdegree-1.

2. Place arcs between attachment points, called linking arcs, so that the network remains
binary and acyclic.

3. Suppress all attachment points not incident to any linking arcs.

4.3. Comparison between adding leaves and deleting edges 13

It is true that all orchard networks are tree-based [4] and a tree-based network can have
multiple different base trees. [1].

In Figure 4.5, the same network is shown twice. The right network however has blue nodes
and edges. These blue parts of the network form a tree containing all nodes in the network.
The grey arcs are called the linking arcs.

Figure 4.5: On the left a non-orchard network. The blue nodes and edges in the right network form a tree that
contains all nodes.

The left network in Figure 4.3 is not tree-based since there is no possible tree that contains
all the nodes. So Figures 4.3 and 4.4 show that L ̸= E for networks that are not tree-based.
The claim L = E is also not true for networks that are tree-based. For this, a counterexample
is given in in Figures 4.6 and 4.7.

Figure 4.6: The graph on the left in this figure is tree-based and non-orchard. By adding one leaf C to the edge
uv and picking (A,C), the network is transformed into an orchard network (on the right). For this network it holds

that L = 1.

Figure 4.6 shows again the action of adding leaves, but now to a tree-based network
(shown in the left in the figure). A new leaf C is added to the edge uv since adding that
leaf creates a reticulated cherry (A,C). This reticulated cherry can be picked, creating the
network on the right in the figure. This resulting network is an orchard network. Therefore
L = 1.

4.4. Comparison between deleting edges and linking arcs 14

Figure 4.7: The graph on the left in this figure is the same tree-based non-orchard network as in Figure 4.6. In
order to make this network orchard, edge xu is deleted. After this, one of the parallel edges is deleted. So E ≤ 2.

To see if L and E are not the same, Figure 4.7 displays the action of edge deletion. Edge
xu is deleted first. The middle network in the Figure 4.7 shows the result of this edge deletion.
This network contains again parallel edges, from which one should be deleted. It follows that
E ≤ 2. Is it possible that E = 1? This is not possible, since the only other possible edge that
can be removed is the incoming arc of v (not the one coming from u). However, if this edge
is removed, there exist again a parallel set of edges. On of these parallel edges should be
removed, so E = 2.

From these counterexamples it can be concluded that the amount of leaves that should be
added to a non-orchard network in order to make it orchard is not the same or an upper bound
for the amount of edges that should be deleted to make the network orchard.

4.4. Comparison between deleting edges and linking arcs
In the previous section, Section 4.3, it is shown that there is not an obvious connection between
the action of adding arcs to a non-orchard network and the action of deleting edges from a
non-orchard network in order to make the orchard. In this section the comparison between the
amount of edges to delete and the amount of linking arcs that a non-orchard network contains
is considered.

For this section, tree-based networks are considered. As stated in Section 4.3, a network
is tree-based if there exists a spanning tree in the network, whose leaves coincide with the
leaves of the network.

Besides the fact that a network is orchard if there exists a sequence S such that NS is a
tree with one leaf, there is another characteristic of a network such that it is orchard. A network
is orchard if it is tree based and that the linking arcs are horizontal.

Since another definition of orchard networks is given and linking arcs are introduced, the
following theorem can be proved. This theorem shows a comparison between the minimum
edges that needs to be deleted and the forward-in-time linking arcs that a network contains.
This linking arcs should be forward in time and non-horizontal.

Theorem 4.2 LetN be a tree-based network such that it is not orchard. The minimum amount
of edges to delete to make N orchard is less than or equal to the minimum number of non-
horizontal linking arcs, forward in time, existing in N .

4.4. Comparison between deleting edges and linking arcs 15

Before proving Theorem 4.2, a new kind of labelling is introduced. Let N be a tree-based
network. Label the nodes as follows:
Label the root node with label zero. Let v be a node in the network, that is not the root node.
Now label v with the length of a longest path from the root to this node v. That is, label v with
the maximal number of arcs that need to be used to go from the root to v. Repeat this for every
non-root vertex. This labelling makes sure that no arc is going back in time and no arcs are
horizontal. To visualize this labelling, an example is given in Figure 4.8. The figure shows a
tree-based network. The digits inside the nodes represent the label that they have. The figure
shows a arc that looks horizontally, however by the labelling can be seen that it is forward in
time.

Figure 4.8: This tree-based network has the labelling based on path lengths. One linking looks horizontal, but
the labelling shows that it is in fact non-horizontal.

Now that the labelling based on path length is shown, we can find labellings of tree-based
networks where most arcs go forward in time and some are horizontal. Now for Theorem
4.2, the minimum number of non-horizontal linking arcs are searched over all such labellings.
Theorem 4.2 can now be proved:

Theorem 4.2 LetN be a tree-based network such that it is not orchard. The minimum amount
of edges to delete to make N orchard is less than or equal to the minimum number of non-
horizontal linking arcs, forward in time, existing in N .

Proof. Let N be a tree-based network such that it is not orchard. The labelling based on
path length shows that there exists a network with non-horizontal linking arcs forward in time.
Now it is showed that such networks exists, let N be a network with k non-horizontal linking
arcs forward in time, such that this is the minimal over all possible labels. It is known that a net-
work is orchard if all the linking arcs are horizontal. Therefore, deleting all the non-horizontal
arcs from a tree-based non-orchard network makes sure that the resulting network is orchard.
Here we use Theorem 3.4. So k is an upper bound for the amount of edges that needs to
be deleted in order to make N orchard. Therefore, The minimum amount of edges to delete
to make N orchard ≤ the minimum number of non-horizontal linking arcs, forward in time,
existing in N .

�

5
Conclusion

In this thesis, algorithms are stated in order to check if a given network is orchard or not and
for finding a time-labelling for the orchard networks. Besides considering orchard networks,
non-orchard networks are also considered. For these non-orchard networks, three measures
are considered about transforming non-orchard networks into orchard networks.

In order to create an algorithm that returns if a network is orchard or not, another algorithm
is necessary. It is necessary to create an algorithm that returns a cherry contained in a certain
network. If such cherry exists, it is used to see if a network is orchard. If the algorithm to find
cherries does not return a cherry, it can be concluded that the network is not orchard. The only
exception on this statement is the trivial tree, which does not contain a cherry, but is orchard.

If a network is orchard, HGT-consistent labelling is a type of labelling that would always
work. To get this type of labelling for a given network, an algorithm in pseudo-code is found,
using the sequence that reduces the network to a tree with one leaf. It is used that the root
node has label 0 and that all the leaves have the same label.

Non-orchard networks cannot be reduced to a tree with one leaf immediately. Some ac-
tions are required for that. The action of adding a leaf to a network is used to create a reticu-
lated cherry that can be picked such that the network can be reduced easier. For this action it
is shown that the addition of leaves to a tree edge is not use full for transforming non-orchard
networks to orchard networks. Therefore the leaves should be added to reticulation edges.
Deleting edges is another action that can help in reducing non-orchard networks. There are
some restrictions on the edges that can be deleted in order for the network to remain valid.

In the last part of the thesis, a prove is given for the following statement: the minimum
amount of edges to delete to make N orchard is less than or equal to the minimum number of
non-horizontal linking arcs, forward in time, existing in N .

16

6
Discussion

Since the time was limited for this thesis, further research into the subject of this thesis, or-
chard and non-orchard networks, can be useful. There are a couple of things that are not
investigated due to time limitations, but that are interesting to look at for further research.

The algorithms stated in Sections 3.2 and 3.3 are not optimized. So it is possible that the
algorithms stated in this thesis are not the most optimal concerning the running time. This a
point that would be worth to further investigate.

Another thing that is good to point out is the fact that there is not an upper bound found
for the number of leaves that should be added to make a non-orchard network orchard. The
same holds for the number of edges that need to be deleted in comparison to the action of
adding leaves. However, maybe there exists a clear connection between them.

Lastly, further investigation into the structures of the networks could be useful. During
the action of deleting edges, some restrictions were introduced in order to maintain a correct
network. However, maybe it is possible to set other restrictions such that it is more effective.
The same holds for adding leaves. Adding leaves to non-orchard networks can have as a
result that a certain structure in the non-orchard network is deleted. Maybe some of these
kinds of structures can be forbidden in case of orchard networks.

17

References

[1] A. Francis and M. Steel. “Which phylogenetic networks are merely trees with additional
arcs?” In: Systematic Biology 64.5 (2015), pp. 768–777. URL: https://academic.oup.
com/sysbio/article/64/5/768/1686032.

[2] Graph Online. URL: https://graphonline.ru/en/.
[3] L. van Iersel. “Hoe zijn ze verwant?” In: (2015). URL: http://www.nieuwarchief.nl/

serie5/pdf/naw5-2015-16-3-174.pdf.
[4] L. van Iersel et al. “A unifying characterization of tree-based networks and orchard net-

works using cherry covers”. In: Advances in Applied Mathematics 129 (2021). URL: htt
ps://www.sciencedirect.com/science/article/pii/S0196885821000609.

[5] L. van Iersel et al. “Orchard Networks are Trees with Additional Horizontal Arcs”. In:
Bulletin of Mathematical Biology 84.76 (2022). URL: https://link.springer.com/
article/10.1007/s11538-022-01037-z#citeas.

[6] R. Janssen and Y. Murakami. “On cherry-picking and network containment”. In: Theoret-
ical Computer Science 856 (2021), pp. 121–150. URL: https://repository.tudelft.
nl/islandora/object/uuid%3A6fdc6897-0883-4fc1-b3c3-f62477324d49.

[7] S. Kong et al. “Classes of explicit phylogenetic networks and their biological and math-
ematical significance”. In: Journal of Mathematical Biology 84.47 (2022). URL: https:
//link.springer.com/article/10.1007/s00285-022-01746-y.

[8] R. Wallin et al. “Applicability of several rooted phylogenetic network algorithms for repre-
senting the evolutionary history of SARS-CoV-2”. In: BMC Ecology and Evolution 21.220
(2021). URL: https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-
021-01946-y.

[9] S. Willson. “Properties of Normal Phylogenetic Networks”. In: Bulletin of Mathematical
Biology 72 (2009), pp. 340–358. URL: https : / / link . springer . com / article / 10 .
1007/s11538-009-9449-z?utm_source=getftr&utm_medium=getftr&utm_campaign=
getftr_pilot.

18

https://academic.oup.com/sysbio/article/64/5/768/1686032
https://academic.oup.com/sysbio/article/64/5/768/1686032
https://graphonline.ru/en/
http://www.nieuwarchief.nl/serie5/pdf/naw5-2015-16-3-174.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2015-16-3-174.pdf
https://www.sciencedirect.com/science/article/pii/S0196885821000609
https://www.sciencedirect.com/science/article/pii/S0196885821000609
https://link.springer.com/article/10.1007/s11538-022-01037-z#citeas
https://link.springer.com/article/10.1007/s11538-022-01037-z#citeas
https://repository.tudelft.nl/islandora/object/uuid%3A6fdc6897-0883-4fc1-b3c3-f62477324d49
https://repository.tudelft.nl/islandora/object/uuid%3A6fdc6897-0883-4fc1-b3c3-f62477324d49
https://link.springer.com/article/10.1007/s00285-022-01746-y
https://link.springer.com/article/10.1007/s00285-022-01746-y
https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-021-01946-y
https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-021-01946-y
https://link.springer.com/article/10.1007/s11538-009-9449-z?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot
https://link.springer.com/article/10.1007/s11538-009-9449-z?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot
https://link.springer.com/article/10.1007/s11538-009-9449-z?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot

	Preface
	Abstract
	Introduction
	Definitions
	Is a given network orchard?
	Useful theorems
	Algorithm to check if a network is orchard
	Labelling

	From a non-orchard network to an orchard network
	Adding leaves to a network
	Deleting edges from a network
	Comparison between adding leaves and deleting edges
	Comparison between deleting edges and linking arcs

	Conclusion
	Discussion
	References

