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Turing tests in chess: An experiment revealing the role of
human subjectivity

Yke Bauke Eisma , Robin Koerts , Joost de Winter *

Department of Cognitive Robotics, Delft University of Technology, the Netherlands

A B S T R A C T

With the growing capabilities of AI, technology is increasingly able to match or even surpass human performance. In the current study, focused on the game of chess,
we investigated whether chess players could distinguish whether they were playing against a human or a computer, and how they achieved this. A total of 24 chess
players each played eight 5 + 0 Blitz games from different starting positions. They played against (1) a human, (2) Maia, a neural network-based chess engine trained
to play in a human-like manner, (3) Stockfish 16, the best chess engine available, downgraded to play at a lower level, and (4) Stockfish 16 at its maximal level. The
opponent’s move time was fixed at 10 s. During the game, participants verbalized their thoughts, and after each game, they indicated by means of a questionnaire
whether they thought they had played against a human or a machine and if there were particular moves that revealed the nature of the opponent. The results showed
that Stockfish at the highest level was usually correctly identified as an engine, while Maia was often incorrectly identified as a human. The moves of the downgraded
Stockfish were relatively often labeled as ‘strange’ by the participants. In conclusion, the Turing test, as applied here in a domain where computers can perform
superhumanly, is essentially a test of whether the chess computer can devise suboptimal moves that correspond to human moves, and not necessarily a test of
computer intelligence.

1. Introduction

As AI continues to advance and becomes increasingly capable of
closely mimicking human behavior, a pressing question arises: is this a
human or a machine? This question can appear in various contexts, such
as road traffic, where automated driving behavior is becoming almost
indistinguishable from human driving (Lambert, 2024), or in text gen-
eration, where it is often unclear whether content was produced by a
human or in part by a large language model (LLM) (De Winter et al.,
2024; Farazouli et al., 2024). Similar challenges are evident in intel-
lectual pursuits like chess, where concerns about cheating have recently
surged (Solon, 2024; Yue, 2024).

Deciding whether an interacting agent is a human or a machine, to
determine if a machine can mimic human intelligence, is known as a
Turing test. In the original Turing test, a human evaluator asks questions
via a terminal to both a human participant and a machine (Turing,
1950). Themachine passes the Turing test if the human evaluator cannot
reliably determine which of the two is the machine. During a Turing test,
the human evaluator can apply various strategies, such as using
ambiguous language that might be difficult for a computer to under-
stand. Another strategy is to ask the chatbot about recent events or
outside weather that the AI might not have knowledge of (e.g., Jannai
et al., 2023; Jones & Bergen, 2024).

A common criticism of the Turing test is that, while it is often pre-
sented as a test of computer intelligence, computer intelligence is not the
same as human intelligence (French, 1990). When the computer exhibits
behavior that is too intelligent, such as a highly articulate response or a
fast and accurate response to an arithmetic problem, it gives itself away
as a computer and thereby fails the Turing test (Michie, 1993; Turing,
1950). Humans can act unintelligently at times. In a chess game, for
example, a human player will occasionally make a blunder. Similarly, in
a Turing test, the human evaluator will look for signs that the opponent’s
responses lack any mistakes or demonstrate unusually consistent
response times, which are not typical of human behavior (e.g., Ciardo
et al., 2022).

Bazilinskyy et al. (2021) had human observers evaluate the behavior
of a passing self-driving car. Their study revealed that the same be-
haviors of this car were interpreted differently by different observers.
There were certain behaviors, such as hard braking, which some ob-
servers interpreted as human-like (‘a computer will always drive defen-
sively and never brake so aggressively’) or computer-like (‘this looks like an
autonomous car that only recognized the need to brake at a late moment
because of sensor limitations’). The findings of Bazilinskyy et al. indicate
that passing a Turing test is not necessarily about the machine’s
behavior, but may be more indicative of the human evaluator’s expec-
tations concerning typical computer and human abilities. These findings
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are consistent with an earlier study by Warwick and Shah (2015), which
described the thought processes of human evaluators in Turing tests
involving a chatbot. It was found that the judgments were highly sub-
jective and related to the expectations that the person had. For example,
the use of humor by an entity was perceived by some human participants
as a computer-initiated attempt to appear human, rather than as ex-
pected human behavior. These findings relate to the mirror hypothesis
described in an article about the Turing test by Sejnowski (2023). He
argued that current LLM-based chatbots, such as ChatGPT, primarily
reflect the expectations and intelligence of the user. When the user
provides a prompt, the LLM will generate an output that matches the
tone, style, and content of that prompt. This mirroring behavior gives
the impression that the LLM is intelligent, but in fact, the output partly
reflects the quality and intelligence of the human input.

The current paper examines whether human chess players can
determine whether they are playing against a human or against a
computer. The game of chess provides a clearly defined environment
with only a limited number of rules and possible moves at a given time.
Current chess engines can execute superhumanmoves and defeat human
players of any chess skill level (computerchess, 2024; Wired, 2023). To
make the game against a computer interesting, chess computers are
equipped with features that sometimes introduce a bad move, thereby
achieving an overall skill level that corresponds to a typical human
player. Certain chess engines are created to simulate human play or are
trained using human gameplay data, intentionally producing inaccura-
cies and blunders to match human play (Barrish et al., 2024; McIl-
roy-Young et al., 2020; Rosemarin & Rosenfeld, 2019). The current
study has human participants compete against a human opponent and
computer opponents of different strengths and different degrees of
intended human-likeness. The underlying question in the present
Turing-test study is not whether the computer is intelligent enough to

match a human, but rather what level of play and type of moves
convince the participants about the nature of their opponent. The aim is
to gain insights into the predictors of Turing test outcomes, which in
turn may generalize to other applications, such as interactions with AI or
robotics in general.

2. Methods

2.1. Participants

A total of 24 participants took part in the experiment, 23 of whom
were male and one was female.

The participants ranged in age from 14 to 59 years (M = 26.3, SD =

9.5). Based on a questionnaire administered before the experiment,
participants reported playing more chess against human opponents (M
= 5.5, SD= 1.2) than against chess engines (M= 1.5, SD= 0.7), where 1
indicated a few times a year and 7 indicated daily.

Twenty-three out of 24 participants reported their online or over-the-
board chess ratings, which we converted to Lichess-Blitz-equivalent
ratings using online conversion tables (ChessGoals, 2024). If a partici-
pant provided multiple ratings (e.g., Blitz and Rapid), the mean
Lichess-equivalent rating was used. For one participant who did not
report any ratings, a Lichess-Blitz-equivalent rating of 1350 was esti-
mated by applying a quadratic fit, based on the Lichess-Blitz-equivalent
ratings of the other 23 participants and their mean win rate loss per
move (calculated using Stockfish 16.1 with a depth of 20), to the par-
ticipant’s ownwin rate loss per move. Themean Lichess-Blitz-equivalent
rating of the 24 participants was 1564 (SD = 430).

Participants were asked in a questionnaire administered before the
experiment: “How would you try to recognize the difference between an
engine and a human opponent?” The participants’ responses indicated that

Fig. 1. (a) The seating position of the participant, with the voice recorder and the Portable Duo eye-tracker. (b) The participant’s view during the experiment. (c) The
seating position of the experimenter. (d) The view of the experimenter, containing from left to right 1) a monitor displaying the chess GUI (here for condition
StockfishH), 2) a laptop where the experimenter plays chess against the participant, and 3) a laptop provided by SR Research, where the experimenter is able to check
whether the Portable Duo is collecting eye-gaze data.
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an engine can be recognized by unusual mistakes or odd moves, such as
unnecessary sacrifices or highly precise tactics. They also pointed out
that engines use time differently, such as responding quickly to complex
situations, whereas humans take longer to consider their options in
difficult positions. Furthermore, it was reported that humans play with
more intuition, while engines tend to focus on finding the best move,
even if it breaks general principles.

The experiment received approval from the Delft Human Research
Ethics Committee, and each participant provided written informed
consent.

2.2. Apparatus

Fig. 1 shows the experimental setup. The experiment used a 17.3-
inch monitor of the laptop model ROG Zephyrus S17 GX701
GX701LXS-XS78 with a total display area of 383× 215 mm and a screen
resolution of 1920 × 1080 pixels. The root of the screen of the laptop
was placed 71 cm from the edge of the table. The participants’ verbal
utterances were recorded using a digital voice recorder. Eye movements
were recorded using the SR Research EyeLink Portable Duo (SR
Research, 2024). The Portable Duo was placed 65 cm from the table and
captured eye movements at a frequency of 1000 Hz.

2.3. Software

The experiment was conducted using WebLink, a screen recording
software solution which records eye movements, as well as browser
navigation actions, mouse clicks, and mouse positions (SR Research,
2023). Lichess.org (2023a) was chosen because it can be easily config-
ured to start a game from a given chess position. We used Lichess’s ZEN
mode, which removes all non-essential elements on the webpage. To
prevent cheating, Lichess bans the use of chess engines. This is why, for
this experiment, the account ‘TuringTest001’ was set to a BOT status.
This function exists for people playing with the help of engines.

2.4. Experiment task

Participants were told that the proportion of human and engine
opponents might vary. Each chess game was limited to 5 min per player,
with no seconds added to the clock for a move that was played. The
participant could spend their time as they liked. The experimenter,
however, was tasked with playing a move in 10 s. The participants were
neither encouraged nor discouraged from winning.

2.5. Independent variable

The independent variable was the opponent the participant played
against. There were four types of opponents, henceforth called
conditions:

● Human: The same chess player was used in all experiments. His
Chess.com rapid rating was 944, which corresponds to an 1136
Lichess Blitz rating.

● Maia: Maia is an adapted version of AlphaZero, developed to predict
human chess moves with high accuracy (McIlroy-Young et al., 2020).
It is trained on actual human chess games rather than self-play
games. Maia employs deep neural networks without using tree
search. It is specifically trained to mimic the moves of players of
different skill levels. Nine models of skill levels have been trained,
each using 12 million games from the open-source chess platform
Lichess. In this experiment, the algorithm Maia1 was chosen to
replicate a skill level similar to that of a human rated around 1100.

● StockfishL: Stockfish 16 was used, a free and open-source chess
engine. At the time of the experiment, Stockfish 16 was the strongest
available chess engine (Stockfish, 2023a). Its estimated ELO rating
was over 3600 (computerchess, 2024), substantially higher than the

highest recorded ELO rating of a human ever (Magnus Carlsen, 2882,
May 2014; 2700chess, 2024). Stockfish has the option to lower its
skill level, which this condition represents. The level of Stockfish was
set to a low value of 4 out of 20, to replicate a more human skill level.

● StockfishH: In this condition, Stockfish was set to its highest level of
20 out of 20.

2.6. Experimental procedures

When the participant arrived, they were welcomed by the experi-
menter and offered an informed consent form. After signing, partici-
pants completed a short questionnaire to gather demographic
information, chess playing frequency, and perceptions of differences
between human and engine play styles in chess. Next, they were given
verbal instructions. It was mentioned that the task was not to win, but to
recognize the nature of the opponent while playing chess. Additionally,
the participant was asked to think aloud in English and was given some
examples of what to talk about: how they are trying to figure out
whether the opponent is an engine or human, which moves they expect
from the opponent, and whichmoves they are considering. Furthermore,
the participant was instructed to sit as still as possible after the eye-
tracker had been calibrated.

In the WebLink environment, instructions similar to the verbal in-
structions were repeated on screen at the start of the experiment:

● Welcome. Today, you will be playing chess from 8 pre-selected positions.
● About the chess game. You will always play with white. It’s move 10 in

the game and the position is rated equal. You and your opponent will both
get 5 minutes on the clock.

● Recognise: Human or Engine. Your opponent will be either a human or
an engine. Your main job will be to recognize if your opponent is human or
an engine.

● Recognise: Human or Engine. To make recognition more difficult, your
opponent will move every ±10 seconds. The order of human & engine
opponents will be random. You should not expect the same proportion of
human & engine opponents, as they might vary.

Before the calibration of the Portable Duo, the participant was asked
to sit comfortably. During the experiment, the participant had to sit in a
certain range for the eye-tracker to register their eye movements on the
screen. During the experiment, the experimenter could check whether
the eye gaze was being registered. If this were not the case, the experi-
menter would ask the participant to move in a specific way; the request
was made in a soft voice to avoid disturbing the voice recording.

After calibration, theWebLink application directed the participant to
the Lichess website, where the participant received a game invitation
from the experimenter. Once the participant accepted the game, the
experimenter activated the voice recorder. The participant began by
verbalizing their thoughts while analyzing the position to get comfort-
able with thinking aloud. After completing their analysis, the participant
made the first move. The game proceeded until checkmate, a time-out
on either side, or the participant’s resignation.

High-level engines occasionally play optimal moves in less than a
second, potentially giving away their nature. To increase difficulty in
recognizing the opponent for the participant, the experimenter made a
chess move every 10 s. To prevent mix-ups by the experimenter, the
three different chess engines were managed through separate interfaces.

When the game was finished, the experimenter deactivated the voice
recorder and made sure the participant was guided towards Google
Forms, where the participant answered six questions about the game just
played (see Dependent variables section).

The order in which the conditions were presented was determined
before the experiment, using a complete counterbalancing method. This
was possible because there were 24 participants and 24 possible com-
binations of the four conditions. Each participant played a total of eight
games, encountering each of the four conditions twice. This was done in
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two blocks of four counterbalanced conditions. After playing four
games, participants took a break. The entire experiment, including in-
structions, calibration, and breaks, took approximately 2 h to complete.

2.7. Positions played from

All positions played from were games played on Lichess by the
highest Rapid-rated player at the time of preparing the experiment,
named GM Drvitman. A PGN (Portable Game Notation) file was down-
loaded containing Rapid games. A PGN file is a plain text format used to
record chess games, including moves and clock data. All games were
evaluated by Stockfish 16 from white’s perspective.

The downloaded games were evaluated after nine moves and filtered
based on the following criteria:

● The position should be rated approximately equal by Stockfish 16.
Any evaluation between − 1.0 and 1.0 was considered sufficiently
equal for this experiment.

● Each side must have moved at least two pawns.
● Each side should have developed at least two of the four minor pieces

(knights and bishops).
● The position had to be positional, not tactical. Thus, positions con-

taining any forced moves were eliminated, providing the participant
with several reasonable options for their first move.

All selected positions were recreated in Lichess Studies (see Fig. 2 for
an example of a starting position). In total, 240 positions were selected
to supply games for a maximum of 30 participants playing 8 games each.
The reason all starting positions were different was to ensure that the
human opponent always encountered a new starting position. This
prevented him from memorizing previous positions or learning from
past mistakes.

2.8. Dependent variables

After the experiment, the evaluation of each encountered position,
recreated from the PGN files, was calculated using Stockfish 16.1 with a
depth of 20. The engine’s evaluation is presented in the form of a score
that can range from minus infinity (winning for black) to plus infinity

(winning for white). For easier interpretation, this score was converted
to a win rate percentage as follows (Lichess.org, 2023b):

Win rate=50+ 50
(

2
1+ e− 0.00368208⋅Evaluation − 1

)

Accordingly, the win rate describes the position evaluation, as
calculated by Stockfish, on a bounded scale from 0 to 100%. This win
rate has been calibrated based on Stockfish analyses of games played by
strong players (2300+ Elo) in Rapid time control but is a simplification
and does not account for draw probabilities. Since most participants had
a rating lower than 2300, the win rate should not be interpreted literally
as the probability of winning but rather as a value that indicates how
favorable the position was for the participant.

The following dependent variables were subsequently extracted per
participant per game:

A) Number of half-moves. The number of half-moves played in the
game. For example, if the participant had played 10 moves and
the opponent also had played 10 moves in a given game, the
number of half-moves was 20.

B) Participant’s result. The result of the participant, where 0 stands
for a loss, 0.5 for a draw, and 1 for a win.

C) Participant’s win rate, end of game. The win rate of the
participant according to the engine, when the game had ended.
Note that this win rate does not necessarily correspond to the
game result. For example, it may be that for the opponent
(playing with black), a checkmate combination was available,
putting black in a winning position (the participant’s win rate
will then be 0% for this game), but black lost on time because the
experimenter adopted a thinking time of 10 s.

D) Win rate loss, participant’s move. This variable indicates how
much the participant’s (i.e., white player’s) win rate decreased
due to the participant’s move compared to the best move as
identified by Stockfish 16.1. This score was then averaged over all
the participant’s moves in the game.

E) Win rate loss, opponent’s move. This variable indicates how
much the opponent’s (i.e., black player’s) win rate decreased
compared to the best move as identified by Stockfish 16.1. This
score was then averaged over all the opponent’s moves in the
game.

F) Participant’s move time. The average time per move (i.e.,
thinking time) for the participant. The move time was extracted
from the clock times in the saved PGN files and was available in
whole seconds.

In addition to the above-mentioned performance-related measures,
six self-reported variables were extracted from the questionnaire that
was completed after each game and the transcribed think-aloud
statements.

A) Q1. Human-likeness. The participant’s response to the question:
How human-like were the moves of your opponent? (1: computer, 7:
human).

B) Q2. Engine or Human. The participant’s response to the ques-
tion: Do you believe your opponent was a human or an engine?
(coded as: 0: engine, 1: human).

C) Q3. Confidence. The participant’s response to the question: How
would you rate your confidence in identifying the nature of your
opponent? (1: not confident at all, 7: extremely confident).

D) Q4. Opponent strength. The participant’s response to the
question: How strong did you feel like your opponent played? (1:
weak, 7: strong).

E) The number of words spoken. This was determined by auto-
matically transcribing the recorded think-aloud results using
OpenAI’s Whisper large-v2 model (OpenAI, 2024; transcription

Fig. 2. An example of a starting position.
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performed in May 2024). Audio recordings were not available for
4 out of 8 games for 1 of 24 participants, and for 1 out of 8 games
of 3 participants.

F) Surprise keyword count. This was determined by automatically
extracting the number of surprise-related keywords from the
transcripts. The following keywords were defined for this pur-
pose: strange, weird, odd, unnatural, unusual, dubious, awkward,
unorthodox, questionable, random, puzzling, not logical, illog-
ical, bizarre, unconventional, unexpected, peculiar, seems off,
not a typical, did not expect, surprising, and surprise. The

underlying reason for doing this analysis is that Maia is pro-
grammed to exhibit human-like inaccurate moves, while Stock-
fishL sometimes makes an artificially bad move that is not
necessarily human-like, and thus can be perceived as strange by a
human.

The above variables were determined per game per participant and
then averaged over the 2 games per condition. Thus, for each dependent
variable, a 24 participants × 4 matrix with scores was obtained per
dependent variable. The variables were plotted in bar plots with 95%

Fig. 3. Means and 95% confidence intervals of chess performance-related variables across the four conditions. All values are determined per game and then averaged
over the 2 games per participant per condition. The means and confidence intervals are thus calculated over 24 data points corresponding to the 24 participants.

Fig. 4. Means and 95% confidence intervals for within-subject designs of variables derived from the post-game questionnaire and think-aloud data across the four
conditions. All values are determined per game and then averaged over the 2 games per participant per condition. The means and confidence intervals are thus
calculated over 24 data points corresponding to the 24 participants.

Y.B. Eisma et al. Computers in Human Behavior Reports 16 (2024) 100496 

5 



confidence intervals. For the six performance-related variables, the 95%
confidence interval was determined for each condition separately; this
was done due to the nonhomogeneous variances between conditions (for
example, StockfishH resulted in a win rate for the participant of almost
0%, a clear floor effect). For the self-report variables, a confidence in-
terval for within-subject designs was determined according to Morey
(2008).

The final part of the questionnaire completed after each game con-
sisted of the following two questions: Q5 “Was there one or more moves of
your opponent that made you realize the nature of your opponent?”
(Response options: Yes; No, more a general feeling; Other), with a
follow-up question: Q6 “If yes, when? What made it recognisable?“. The
responses to Q6 were analyzed using OpenAI’s GPT-4o (model: gpt-4o-
2024-05-13). We chose to use a large language model because we aimed
to summarize the text results without the current researchers potentially
introducing bias (Tabone & De Winter, 2023). Although large language
models can also introduce bias due to the data on which they were
trained and the way the models have been fine-tuned, using GPT seemed
like a suitable approach to summarize the responses in a reproducible
manner, where the model remained blind to the experimental condition
under which the data was collected.

The following prompt was used: “Summarize the participants’ state-
ments below in 1 sentence, focusing on why the respondents believe their chess
opponent was an engine. Do not mention individual statement numbers.”
Here, we submitted the text responses when the participant thought the
opponent was an engine, based on Q2. The same process was repeated
with the prompt “Summarize the participants’ statements below in 1 sen-
tence, focusing on why the respondents believe their chess opponent was a
human. Do not mention individual statement numbers.” for comments
where the participant indicated in Q2 that they thought the opponent
was a human.

Finally, we determined correlation coefficients between the Lichess-
Blitz-equivalent rating and the responses to Q2 and Q4, as well as the
average move time. This was done to investigate whether stronger
players were better able to recognize the nature of the opponent and
adjust their chess strategy accordingly. A Pearson product-moment
correlation coefficient was chosen, which for Q2, a question with
dichotomous response options, is equivalent to the so-called point-
biserial correlation coefficient.

3. Results

Fig. 3 provides an overview of the chess-performance-related results
for each of the four conditions. It can be seen that participants mainly
lost or were in a losing position at the end of the game when they played
against StockfishH, and to a lesser extent when they played against
StockfishL, while they mostly won against the human and Maia oppo-
nents (Fig. 3B & C). The superhuman playing strength of StockfishH
explains why the games in this condition ended in fewer moves
compared to the other conditions (Fig. 3A). When participants played
against StockfishH, they generally thought longer (Fig. 3F) and made
slightly better moves compared to the other conditions (Fig. 3D).

Fig. 4 shows the means and 95% confidence intervals obtained from
the questionnaire completed after each game (Fig. 4A–D) and the think-
aloud analysis (Fig. 4E & F). A clear trend is evident that participants
perceived StockfishH, and to a lesser extent StockfishL, as stronger op-
ponents than the human experimenter and Maia (Fig. 4C). Accordingly,
participants believed that StockfishL and StockfishH played like a
computer (Fig. 4A) and that these were chess engines (Fig. 4D). The
confidence in this judgment was equivalent across the different condi-
tions, with a slight tendency to judge StockfishH with more certainty as
being either human or computer (Fig. 4B). When playing against
StockfishH, slightly fewer words were spoken compared to the other
conditions (Fig. 4E), which might be explained by the fact that these
games were shorter in duration (see Fig. 3A). Finally, it is evident that
surprise-related keywords were spoken more frequently when playing
against StockfishL than in the other conditions.

Table 1 provides an overview of the characteristics of the given
reasons that led participants to realize the nature of the opponent.
Participants correctly identified the human as human due to observed
mistakes, blunders, and inaccuracies. The same applies to Maia, which
was often perceived as a human due to blunders and other mistakes, or
short-sighted thinking. StockfishH was often correctly recognized as an
engine because it operated with high precision and calculation in a
manner that did not seem human. StockfishL was identified as a com-
puter due to its ‘cold calculation’ and strange moves that did not appear
to serve an immediate purpose.

Regarding the incorrect assessments in Table 1, where participants
thought the human opponent was a computer, the given reasons
included that simple mistakes were made; participants thought it was a

Table 1
GPT-4o-based summaries of questionnaire responses for the question: “Was there one or more moves of your opponent that made you realize the nature of your
opponent? If yes, when? What made it recognisable?”

Participant thinks opponent is Engine Participant thinks opponent is Human

Human 14 (9 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was an engine due to a
combination of unusual or suboptimal moves, such as waiting moves, simple
mistakes, and decisions that felt more characteristic of a computer’s logic rather
than human intuition.

34 (19 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was a human due to the
presence of mistakes, missed tactics, and natural but imperfect play that an engine
would likely avoid.

Maia 15 (10 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was an engine due to a
combination of highly strategic and unnatural moves, minimal mistakes, and
sudden shifts in play quality that are characteristic of computer algorithms rather
than human intuition.

33 (24 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was a human due to
various blunders, missed opportunities, and strategic errors that are
uncharacteristic of chess engines, such as giving away pieces, missing checkmates,
and making moves that seemed to lack deeper calculation or clear purpose.

StockfishL 30 (20 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was an engine due to a
combination of highly calculated, cold, and unnatural moves, missed obvious
checkmates, strange blunders, and random or illogical piece movements that are
atypical for human players.

18 (13 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was a human due to
various mistakes and suboptimal decisions, such as missing checkmate
opportunities, making imprecise moves, and not capturing pieces when possible,
which they think a computer would not make.

StockfishH 36 (23 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was an engine due to the
execution of highly sophisticated, non-human-like moves, such as avoiding
obvious captures, making complex tactical decisions, and demonstrating deep
positional understanding and consistency.

12 (6 available responses analyzed)
GPT-4o: The respondents believe their chess opponent was a human due to the
opponent’s unpredictable and less optimal moves, adherence to predicted
strategies, and natural, intuitive play that deviated from the precise and structured
approach typical of a chess engine.

Note. The number in each cell indicates how many times the participant indicated that the opponent was an engine (left column) or a human (right column), cor-
responding to Fig. 4D, with the number of comments provided and analyzed shown in parentheses. The maximum number is 48 (24 participants × 2 games per
participant per condition).
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low-level engine (equivalent to why participants correctly identified
StockfishL as an engine). Additionally, participants incorrectly identi-
fied StockfishL as human due to the mistakes made by the engine or its
passive play.

Finally, we investigated whether the overall playing strength of the
participant, operationalized by their Lichess-equivalent Blitz rating, was
predictive of whether they could distinguish between a human and a
machine (Q2) and how strong they perceived their opponent to be (Q4).
For this, the correlation coefficient was used between the player’s rating
and their response to the questions, as shown in Table 2. Additionally,
the correlation between the rating and the participant’s average move
time is shown.

Although the correlations are, in many cases, not statistically
significantly different from zero, there appears to be a divergence, where
stronger players more frequently correctly identified StockfishH as an
engine and incorrectly identified Maia as a human (Q2). Furthermore,
stronger players perceived StockfishH as playing stronger, and both the
human experimenter and Maia as playing weaker (Q4). Additionally, it
seems that stronger players used their time differently by playing faster
against the human (whom they could defeat) while taking more time per
move when playing against StockfishH, an engine that defeats them.

Additionally, the Lichess-Blitz-equivalent rating criterion demon-
strated criterion validity, as it was predictive of the participant’s win
rate at the end of the game (depicted in Fig. 3C) averaged over the four
conditions and the average win rate loss (depicted in Fig. 3D), with r =
0.70 (p< 0.001, n= 24) and r= − 0.81 (p< 0.001, n= 24), respectively.

4. Discussion

In this study, 24 chess players each played eight Blitz games against
an unknown opponent. The opponents included a human player in two
games, Stockfish at a low level in two games, Stockfish at its maximum
superhuman level in two games, and Maia, a chess engine designed to
play in a human-like manner in the remaining two games. The order of
these conditions was counterbalanced.

The original Turing Test, as described by Turing (1950), has been
interpreted by some as a measure of computer intelligence. When a chess
computer first defeated a world champion, this achievement was seen by
some as an instance of passing the Turing Test (Krol, 1999). However, it
can be argued that Turing did not intend his test to be taken so literally,
but rather to provoke thought and challenge the views of philosophers,
mathematicians, and scientists who were skeptical of the cognitive po-
tential of computers (Gonçalves, 2023).

With the increasing capabilities of computing and neural networks,
the Turing Test remains relevant today. However, in certain domains,
including chess, computers now perform at levels far beyond human
abilities. As we demonstrated, when a computer exhibits superhuman
chess skills, it actually fails the Turing Test, even when its time per move
is forced to 10 s. In 75% of the games, participants accurately identified
StockfishH as a computer. Stronger players were more capable in this
task, likely due to their deeper understanding of the game. Alternatively,
this could also be attributed to more pragmatic factors, namely, that it is

unlikely for a human to outperform a top-level human player. A thought
experiment can illustrate this point: Suppose the participant is an
extremely strong player, such as the current world chess champion. In
this scenario, the participant would find it highly unlikely that his
opponent is human, simply because there are no human players stronger
than him.

A relatively simple way to make a computer play chess at a lower
level, thereby giving humans a greater chance of winning, is to have the
computer play at a lower level, or as pointed out by Shannon (1950, p.
272), “the strength of the play can be easily adjusted by changing the depth of
calculation and by omitting or adding terms to the evaluation function”. The
method applied in StockfishL is to occasionally make a lower-ranked
move (Stockfish, 2023b), resulting in the engine displaying a mix of
superhuman skills with occasional illogical inaccuracies. This comes
across as somewhat human-like, as shown by our results (Fig. 4A & D),
but human players are still able to recognize that it is not a human
because the suboptimal moves made often do not correspond to typical
human mistakes. During the experiment, participants remarked that the
moves of StockfishL were sometimes strange and inexplicable.

Maia is a neural network-based chess engine trained on a large
number of human games to replicate the move choices of players,
including typical human decisions and mistakes (McIlroy-Young et al.,
2020). This approach represents a fundamentally different way of
making mistakes compared to StockfishL. Our participants generally
believed that Maia was a human player (Fig. 4D). Moreover, stronger
players were more likely to hold this belief (see Table 2), which means
that stronger players were more often incorrect. Previous research shows
that chess experts distinguish themselves from beginners by their ability
to quickly recognize and analyze complex positions due to
well-organized knowledge, also referred to as chunks and templates (e.
g., Chase & Simon, 1973; Gobet & Jansen, 2006). Analogously, experts
should also be able to recognize unusual, i.e., non-human, moves more
easily. A plausible explanation for the stronger players’ judgments of
Maia is that these participants were better at recognizing human-like
chess moves, yet did not realize that an engine could also play chess
like a human.

In summary, this study yields some interesting observations. A su-
perhuman level of performance is often correctly recognized by partic-
ipants as non-human, while players often incorrectly identify Maia, a
computer agent that has been trained to perform in a human-like
manner, as human. This means that Maia succeeds in deceiving
players, a finding that resembles studies on ChatGPT, a chatbot trained
on human text that appears to (almost) pass a Turing test (Buz et al.,
2024; Jones & Bergen, 2024; Kovács, 2024). Furthermore, we showed
that an unusual move or blunder can be characterized by different
participants as either a human error or an attempt by a computer to play
at a human-like level. This finding corresponds to the studies by Bazi-
linskyy et al. (2021) and Warwick and Shah (2015), who showed, in the
contexts of automated driving and chatbots, respectively, that human
judgments in Turing tests are not necessarily dependent on the agent’s
output or behavior but rather on people’s expectations regarding human
or computer-based performance.

Table 2
Pearson product-moment correlation coefficients between Lichess-equivalent ratings and responses to selected questions as well as participants’ mean move times (n=

24).

Human Maia StockfishL StockfishH

Q2. Engine (0) or Human (1) − 0.12 0.38 0.09 − 0.37
Q4. Opponent strength (1: weak, 7: strong) − 0.43a − 0.54b 0.00 0.35
Participant’s mean move time (s) − 0.41a − 0.22 − 0.26 0.27

Note. The correlation between the rating (a continuous variable) and the response to Q2 (a dichotomous variable) is also known as a point-biserial correlation
coefficient.

a p < 0.05.
b p < 0.01.
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The game of chess provides a delimited domain to test the implica-
tions of superhuman intelligence, as there is only a limited number of
moves possible at any given moment, thereby restricting the degree of
information transfer. When we extrapolate the current findings to
broader applications of AI, such as chatbots or humanoid robots, several
thoughts arise. If these AI systems want to pass as human, they must
avoid giving themselves away by displaying their superhuman abilities,
and they must also refrain from conspicuously failing or stumbling. To
be perceived as human, AI agents must exhibit human-like behaviors,
which can be achieved by training their neural networks to replicate
typical human actions and responses. Additionally, human expectations
play a role, making it more likely for a person to perceive an AI system as
a human when the AI’s imperfections are not interpreted as a stereo-
typical computer gimmick. In a future era of superhuman AI, passing the
Turing test, as explained, is no longer a test of computer intelligence, but
primarily a test of whether a computer with superhuman intelligence
can adapt itself in such a way that it mimics human behavior.

A follow-up question that can be asked is whether AI should actually
behave in a human-like manner or rather in a superhuman manner. The
answer to this question will depend on the user’s objectives. For
example, humans might want to rely on superhuman intelligence for the
evaluation or preparation of games, in order to improve their skill
(Gaessler & Piezunka, 2023; Shin et al., 2023). However, humans may
want to play against a human-like AI when the goal is to learn to exploit
human mistakes. This question is also relevant for other domains, such
as automated driving. Current automated vehicles are trained to drive in
a human-like manner to meet the expectations of passengers and other
road users. However, such an approach is not necessarily time-optimal;
it might be more efficient to remove all traffic lights and let cars coor-
dinate among themselves which gaps in the traffic they accept (Tonguz,
2018). In short, whether it is desirable for a computer to pass the Turing
test, i.e., to mimic human behavior, is a subject of further discussion. It
should also be noted that human players prefer to play against each
other rather than against an engine due to the psychological dimension
involved (Kulikov, 2020).

4.1. Limitations and recommendations

One limitation of the current study is the small sample size of 24 chess
players. Another limitation is the disparity in skill levels among the par-
ticipants (mean rating of 1564), the human opponent (rating of 1136),
Maia (trained on games of players rated around 1100), StockfishL (rated
slightly higher than the human participants), and StockfishH (playing at a
level surpassing the human world champion). These skill differences may
have led participants to identify stronger opponents as machines and
weaker opponents as humans. While the varying skill levels produced
interesting results, they also made it difficult to statistically distinguish
between human-like playing styles and skill levels. Future research could
perform Turing tests in amore controlled condition, by using participants,
experimenters, and engines with comparable Elo ratings.

In the past, chess engines primarily relied on brute force tree
searching algorithms (minimax algorithm, alpha-beta pruning), com-
bined with handcrafted evaluations (e.g., Kasparov, 2017). This has
changed in recent years with the integration of neural networks into
Stockfish, allowing for better evaluation of candidate moves. Chess en-
gines such as Leela Chess Zero (Lc0; e.g., Jenner et al., 2024) and Maia
fully utilize neural networks to evaluate positions, with the latter being
trained on human games, including typical human errors. An interesting
topic for further research could be to investigate, from a psychological
perspective, what typical human mistakes are and why players of vary-
ing strengths make these mistakes. Additionally, it would be interesting
to explore the limits of Maia: in what cases does Maia, despite being
trained on human games, make a different prediction than a human
player would? This difference might be related to the player’s person-
ality or current state (e.g., nervousness, limited time on the clock). To
address such questions, game positions could be extracted from online
databases where Maia, Stockfish, and humans made different moves,
and these positions could be presented to human chess players for
in-depth reflection.

Another limitation of the current study is that we devoted consid-
erable attention to collecting eye-tracking data to gain insight into the

Fig. 5. Average pupil diameter change as a function of elapsed time, relative to the moment the move was made, for moves by the participant (left) and by the
opponent (right), split into the four experimental conditions. This figure is based on 21 of the 24 participants (for 3 of the 24 participants, the eye-tracking data could
not be unambiguously linked to the move data). The figure is based on a total of 6303 moves; for 1087 moves of the 21 participants, no pupil diameter data was
available (these counts are combined for all conditions, and both participant and opponent moves).

Y.B. Eisma et al. Computers in Human Behavior Reports 16 (2024) 100496 

8 



visual-cognitive mechanisms underlying the execution of Turing tests.
However, when facing a stronger opponent (such as StockfishH), par-
ticipants often found themselves inmore losing positions and spent more
time thinking about their moves. These differences made it challenging
to compare eye movements between the four conditions. Furthermore,
we employed an eye-tracker in a configuration without a stabilizing
head support, which negatively affected eye-data availability and ac-
curacy. Nevertheless, upon exploring the data, we identified an inter-
esting phenomenon in pupil diameter. It appears that directly after the
opponent made a move, the participant’s pupil dilated (Fig. 5, right
panel). This pattern matches the increased pupil diameter observed
when participants are confronted with cognitive tasks such as multi-
plication problems (De Winter et al., 2021). Further research on pupil
diameter changes in chess is recommended to better understand fluc-
tuations in cognitive load during play.

4.2. Conclusion

This study found that participants could correctly identify StockfishH
(the most powerful chess engine available) as a computer opponent in
75% of the games. This was likely because of its sophisticated moves,
which seemed non-human, along with the fact that participants typically
lost the game. More skilled players were better at recognizing StockfishH
as a computer, likely due to their ability to detect high-level play.
StockfishL, a weaker version of Stockfish, was also often identified as a
computer due to its combination of logical and sometimes illogical
moves. On the other hand, Maia, a neural network-based chess engine
designed to imitate human-like mistakes, was often mistaken for a
human opponent, particularly by stronger players. In short, when AI
plays at a level that includes human-like errors, it can trick expert
players into thinking it is human.

In conclusion, the Turing test in chess relies not just on how well an
AI plays but also on how convincingly it mimics human errors. A ma-
chine that displays superhuman ability too clearly is easy to recognize as
non-human. The experiment also showed that participants’ judgments
are shaped by their expectations of human versus machine behavior. For
example, a certain mistake could be deemed computer-like (because the
player thinks only a computer would be programmed to make it) or
human-like (because the player believes computers do not usually make
mistakes). In other words, passing a Turing test is not just about AI in-
telligence; it is also about how we perceive intelligence.

These findings could apply to areas beyond chess. For example, in the
development of chatbots or robots, AI may need to display human-like
flaws to be perceived as a human. The experiment also raised the
question of whether AI should aim to mimic human behavior or use its
superhuman potential.
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