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Flight test of Quadcopter Guidance with Vision-Based
Reinforcement Learning

Manan Siddiquee∗, Jaime Junell† and Erik-Jan van Kampen‡

Reinforcement Learning (RL) has been applied to teach quadcopters guidance tasks. Most applications
rely on position information from an absolute reference system such as Global Positioning System (GPS).
The dependence on “absolute position” information is a general limitation in the autonomous flight of Un-
manned Aerial Vehicles (UAVs). Environments that have weak or no GPS signals are difficult to traverse
for them. Instead of using absolute position, it is possible to sense the environment and the information
contained within it in order to come up with a “relative” description of the UAV’s position. This paper
presents the design of an RL agent with relative vision-based states and rewards for the teaching of a guid-
ance task to a quadcopter. The agent is taught the task of turning towards a red marker and approaching
it in simulation and in flight tests. A more complex task of travelling between a blue and a red marker
is trained in simulation. This work shows that relative vision-based states and rewards can be used with
RL to teach quadcopters simple guidance tasks. The performance of the trained agent is inconsistent in
simulation and flight test due to the inherent partial observability in the relative description of the state.

Nomenclature

IMU Inertial Measurement Unit UAV Unmanned Aerial Vehicle
GPS Global Positioning System MAV Micro Aerial Vehicle
UAS Unmanned Aerial System RL Reinforcement Learning
UDP User Datagram Protocol MDP Markov Decision Process
HTTP Hypertext Transfer Protocol INDI Incremental Non-linear Dynamic Inversion
RGB Red Green Blue YUV

I. Introduction

APPLICATIONS such as urban search and rescue, surveillance and infrastructure monitoring require Unmanned
Aerial Systems (UAS) which can safely and autonomously fly in unknown environments without position

information from the Global Positioning System (GPS). For these types of applications the Unmanned Aerial
Vehicle (UAV) must perceive the environment to get an idea of where it is, identify where it needs to go and
guide itself to its goal. Perception uses vision, distance sensors and other on-board sensors to come up with a
relative description of the position and attitude of the UAV. These approaches are either computationally expen-
sive or they require heavy hardware (for example laser distance sensors or stereo-vision setups) which can be
challenging for Micro Aerial Vehicles (MAVs) with limited payloads. Furthermore, if the UAV is limited to using
pre-programmed flight plans and routines for autonomous behavior, it cannot adapt to changing environments or
mission requirements without human supervision. The limitations of current methods and lack of methods which
enable higher levels of autonomy constrain their use in the aforementioned applications.

Presently, there are three main approaches to guidance in GPS denied environments. The earliest and simplest
approach is dead reckoning. Estimates for the acceleration is obtained from the IMU, but it can also be obtained
using novel methods such as visual odometry [1]. Using dead reckoning alone is problematic for UAVs due
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†PhD. Student, Department of Control & Simulation, Faculty of Aerospace Engneering, TU Delft
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to sensor noise and drift. Therefore, it is often fused with other localizing systems in order to improve their
accuracy [2–5]. Another approach is replacing GPS with some other local integrated positioning system [5,6]. The
problem with this method is the requirement of an external system. The final approach is using a laser rangefinder
or a camera to create a map of the environment and localize the UAV within the generated map. This approach
is called Simultaneous Localization and Mapping (SLAM) [7]. The drawback of this method is its computational
cost which makes real-time applications challenging. Research into this method has yielded numerous guidance
and navigation systems which use some form of speeded up SLAM, enabling GPS free navigation [8–10]. An
example of a map generated using SLAM is shown in Fig. 1.

Figure 1: Maps of the first floor of MIT’s Stata Center as presented in [8]. The left image shows the map created by
the autonomously flying UAV developed in [8] using laser range finders. The right image shows the architectural floor
plan.

Vision is often a key element in many of these non-GPS localizing methods. The volume of information in
vision and the lightweight nature of most cameras make it a desirable source of information required for guidance
and navigation [5, 9, 11–13]. Bipin, Duggal and Krishna [14] used supervised learning to train depth estimates
from visual data which is later used for trajectory planning. Purely vision-based SLAM is not very common. Weiss
et al. [9] and Shen et al. [15] use purely vision-based SLAM for the autonomous navigation of MAVs. Research
efforts to incorporate vision into the autonomy of UAVs has focused on specific tasks [9] such as landing [16,17],
hovering [18], corridor following and obstacle avoidance [19]. Some of these methods calculate optic flow [20]
to estimate the attitude of the UAV and generate control actions. The accessibility of visual data and the relatively
smaller amount of work carried out on the guidance of UAVs using vision-based reinforcement learning (RL)
motivates its use in this study.

The core characteristic of autonomous systems is their ability to perform tasks with limited or no human
interaction. Many of the work on the autonomous flight of UAVs in the previous decade used hard-coded software
that has little or no learning capacity [13]; this limits their autonomy. In this regard, techniques from the field of
Artificial Intelligence (AI) and robotics have been applied in UAS to incorporate learning and adaptation into its
flight. Out of the machine learning methods available, RL promises the distinct advantage of being able to learn
without supervision [21].

The increase in sensing and acting potential of UAVs brought on by improved electronics has encouraged the
application of RL in its guidance and control [22–25]. Abbeel, et al. [26] demonstrated autonomous aerobatic
maneuvers by a helicopter using inverse RL. It has been used to train optimal shapes for a morphing UAV at
different flight conditions by Valasek et al. [27]. Valasek et al. [28] has also used RL to teach a simulated fixed
wing UAV to track a target for surveillance using vision feedback; the path taken by one of their trained controller
is presented in Fig. 2b. The performance of a non-linear autopilot is compared to a controller learned using RL
in [29]. The study found that the designed non-linear controller slightly outperformed the RL taught controller.
It has been used by Sharma [30] to train a UAV autopilot using a method called Fuzzy Q-learning and by Junell
et al. [31] to tune the gains of a quadcopter using policy gradient RL. Further, it has been used for exploring an
unknown environment and find paths to defined goals in [32] (see Fig. 2a). The ideas of RL have been used
in [33] and [34] to come up with methods that enable UAV guidance and navigation in unknown environments
with obstacles in the former study and cooperatively plan paths to avoid threats in the latter study.

A broader use of RL in UAVs is restricted due to several challenges with its implementation. Issues such as
dealing with partial observability, the intractable state-action space for complex tasks and the trade-off between
exploration and exploitation lead to problems in robotics applications [35]. Specifically for UAVs, RL implemen-
tations that aim to carry out on-line learning needs to ensure safe exploration [36] and fast convergence. This
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factor discourages learning in flight tests with such systems.

(a) Representation of the guidance problem that
was solved using RL in [32]. The agent is posi-
tioned in a 6x6 gridworld with the goal of find-
ing an optimum route to photograph the ruins
all the while accounting for available memory.

(b) Simulation results from [28]. Here an RL
agent controlling a fixed wing UAV (blue) learns
to give the right bank angle commands in order
to keep a tracked target (red) in its view. This
plot shows the trained agent tracking an errati-
cally moving target.

Figure 2: Application of RL to UAV guidance

UAV guidance and vision-based RL have been researched as separate topic. However, there has been relatively
little work on the application of vision-based RL for UAV guidance. This work aims to contribute to the filling
of this “knowledge-gap” by implementing a vision-based RL guidance system in an AR Drone 2. First an RL
agent learning a guidance task using vision-based states and rewards is simulated. Following this the agent is
implemented in an AR Drone 2 and real life tests carried out. The differences between the simulation and practical
tests (i.e. the “reality gap”) is studied. The developed RL agent uses a vision-based state, thus there is no need for
absolute position information. Furthermore, the UAV explores the environment by itself in order to find “good”
paths to perform the navigation task. This makes the system more autonomous than one with a pre-programmed
flight plan. The proposed method abstracts the mapping and localization by using relative vision-based states.

Simulation of the guidance tasks are carried out. The tasks consist of traveling to goal locations marked by
colored rectangles. PaparazziUAV and FlightGear are used to simulate the RL agent. The learned policies are
consequently uploaded to an AR Drone 2 and the performance of the real and simulated quadcopter are compared.

The next section (Section II) provides some background on RL and describes the algorithms used in this study.
Section III discusses the navigation tasks, the environment of the guidance tasks and details about the agent. After
this the simulations and the flight tests are expanded upon and their results explained in Sections IV and V. Finally,
the report is concluded in Section VI with a statement of the findings of this paper and directions for further work.

II. Background on Reinforcement Learning

The following subsection provides an explanation of the elements that make up RL and its working principle.
After that, an overview of two key concepts of RL, the ideas of value and policy, are explained. Lastly the
learning method used in this work is described. The information provided in this section is sufficient to create the
vision-based RL agent that will be taught a guidance task.

A. Overview of RL

RL is a machine learning method which can be used to teach a software agent sequential decision making tasks
that have delayed rewards. In RL, the learning entity is called the agent. It acts in an environment, in order
to accomplish a defined goal. While acting in the environment the agent senses its state and a scalar reward
accompanied with every state transition. The reward is a scalar measure of how “good” it was to take the previous
action from the previous state. The goal of an RL agent is to maximize the sum of future rewards that it can
accumulate.

One of the most basic forms of the RL problem is characterized by a finite and discrete time Markov Decision
Process (MDP). A MDP is a decision process whose state and state transitions satisfy the Markov Property. For
a description of the state and the consequent state transition brought on by the environment to be Markov, future
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states must only depend on the current state and the current action. This property is important for many RL
methods as it allows learning based on the current state. Since all future states the agent can be in are fully
determinable by its current state and action, the expected sum of rewards the agent can gather from any state is
also function of its current state and action.

A finite MDP can be described using the five following elements: a finite state space (S), a finite action space
(A), the transition probability (P (st−1, st, a)) between the states, a reward model (R(s, a)) and the discount
factor (γ).

State Space (S) The state space consists of all the possible discrete states the agent can be in.
Action Space (A) The action space consists of all the actions the agent may take.
Transition Probability (P (st−1, st, a)) The transition probability is the system model. It describes the likelihood

of ending up in state st given the agent takes action a from state st−1.
Reward Model (R(s, a)) The reward model describes the reward, rt, that the agent obtains when it transitions to

a new state.
Discount Factor (γ) RL tasks with a fixed ends are called episodic tasks. In general an RL task does not need to

have a fixed ending, i.e. they may be non-episodic. The discount factor is used to make the sum of rewards
to infinity bounded for non-episodic tasks.

B. Return, Value and Policy

The sum of rewards the agent obtains is called the return. RL agents aim to maximize the return. The value
(V (s)) of a state is given by the expectation of the discounted sum of rewards from that state to the terminal state
(Eq. (1)). An RL agent learns better ways of performing a task by acting in its environment and estimating the
value of each of the states. The value is an estimate of the return that may be obtained from a state while following
a certain policy. Being in states of higher value implies the agent will be able to accumulate more rewards.

V π(st) = E

[ ∞∑
t=0

γtrt

]
(1)

The policy (π(s, a)) expresses the probability of taking an action when in a specific state. The value of a
state depends on the way the agent acts, thus the estimated values in RL depend on a specific policy (V π(s)).
The optimal policy (π∗) maps the action which leads to the maximum return to every state (i.e. the best action is
selected 100% of the time). A goal of RL is to find the optimal policy (π∗). Choosing an action which leads to the
state of highest value is referred to as acting “greedily”.

π∗(st−1) = argmax
a

∑
st

P (st−1, st, a)V
∗(st) (2)

C. Q-Learning

Temporal difference (TD) learning [21] is a RL method which can be used to find optimal policies by estimating
the value of each state through interactions with the environment. TD learning works by adjusting the estimate of
the value of a state based on the reward and the value of the next state.

V (st−1) = V (st−1) + α(rt + γV (st)− V (st−1)) (3)

On the one hand, the agent must explore the environment to estimate the value of the states. On the other hand,
it must use the estimated values to act optimally. These two contradictory requirements lead to the dilemma of
exploration versus exploitation in RL.

An approach to deal with the dilemma is using a policy that encourages random actions at the start of learning
and optimal actions at the end of learning. This study uses the ε-greedy policy which picks a random action with
probability 1− ε and a greedy (or optimal) action with probability εa

Through the use of such a policy, a value approximation relation of Eq. (3) and an optimal action definition
of Eq. (2), it is possible to come up with progressively better policies by interacting with the environment. With

aMany prefer to use another interpretation of ε, where a higher ε implies more random actions
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sufficient exploration and improvement of the policy, the optimal policy will be found given the problem is a
discrete time MDP [37].

However, without a model of the system one cannot find the optimal actions from the state values (V (s))
alone as the agent has no way of knowing how every action causes the state to transition. The model is needed to
estimate the optimal action shown in Eq. (2). There are numerous solutions to this problem; the one used in this
study is Q-Learning as proposed by Watkins [38]. In Q-learning state-action values (or Q-values) are used instead
of state values to bypass the need for a model.

Q(st−1, at−1) = Q(st−1, at−1) + α
[
rt + γmax

a
Qπ(st, a)−Q(st−1, at−1)

]
(4)

π∗(st) = argmax
a

Q∗(st, a) (5)

Estimating the Q-values for acting optimally allows the agent to select the best actions without a transition
probability as it can pick the action with the maximum value from the state it is in (Eqs. (4), (5)). An added
advantage of Q-learning is its off-policy learning capacity. This makes any policy that sufficiently explores the
state-action space a viable option for approximation of the Q-values. This is the case as Q-learning always makes
the Q-value updates based on the next optimal action (Eq. 4).

III. Tasks and Agent

This section describes the guidance tasks, the designed RL agent and a rule based controller for performance
comparison with the RL agent. The exact nature of the vision-based state and the reward scheme selected are
described. Following this, the performed simulations and their results are discussed in Section IV.

A. Guidance Tasks

The guidance task consists of approaching fixed markers in an obstacle free 8m by 8m square room (Fig. 3a).
The goals are physically represented by colored rectangles of dimensions approximately 42 cm by 60 cm (the
dimension of an A2 papers). Two guidance tasks are defined:

One goal One red goal is placed at the middle of the South wall. The quadcopter must turn and approach the goal
until a threshold amount of red pixel is seen. With fixed initializations, the quadcopter starts facing 180◦

away from the goal at a distance of 4m from the goal (Fig. 3b).
Two goal A blue goal is placed near the northern side of the East wall and a red goal is placed near the southern

side of the West wall (Fig. 3c). The quadcopter must approach both goals until the threshold amount of the
specific goal is seen. With fixed initializations, the quadcopter starts in the middle of the room facing the
North wall; one goal is in its front left and another in its rear right .

(a) Dimensions (b) One goal task (c) Two goals task

Figure 3: The dimensions of the environment, position of the goals for the two tasks and their initialization state
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The room for the flight test is a 10m by 10m enclosure called the Cyber Zoo. It is equipped with a motion
sensing systemb which accommodates experiments with robots. The quadcopters environment is constricted to an
8m by 8m region bounded by virtual walls inside the Cyber Zoo. For the simulation, an approximate 3D model
of the 8m by 8m environment of the quadcopter in the Cyber Zoo is created. Snapshots from the real and the
simulated environments are presented in Fig. 4.

Figure 4: A picture of the real environment (left) and simulated environment (right).

The tasks are simulated with two sets of actions in order to look at the effect of incorporating expert knowledge
into the RL agent through pre-programmed actions. Additionally, the effects of fixed and random initialization are
studied.

B. Agent

This subsection discusses details about the agent: the vision-based state used by the agent is described, its learning
and exploration scheme are discussed, the two action sets used in this study are presented and the reward scheme
is characterized.

1. Vision-Based State

The separate components of the vision-based state is shown in Fig. 5. The first component of the state consists
of three integers which represent seeing the goal at different parts of the quadcopter’s field of view. The second
component represents the amount of pixels being seen by the quadcopter and provides a sense of distance to the
goal. The third and fourth components are memory states; the third component represents which goals have been
visited and the fourth component represents a collision with the wall during the previous action.

Figure 5: Representation of the vision-based state and its constituents

The first and second components of the state contain the information required to guide the agent towards
the goal. The task requires the agent to approach colored markers (goals). Thus, the agent has to be able to
distinguish the colored markers and get an idea of where it is relative to the markers from vision information.
The first component of the state represents the information about the specific colored marker being seen and the
relative lateral location of the marker with respect to the quadcopter.

The image frame is divided into three columns and the number of pixels above predefined thresholds are
counted in each of columns. The three integers represent the detection (or no detection) of colored pixels above
the threshold in the three columns. Some examples of what the quadcopter sees and the corresponding first

bOptitrack: Motive Tracker http://www.naturalpoint.com
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component of the vision-based state are shown in Fig. 6. The integers take a value of “0” if there are no pixels
above the threshold, a value of “1” if there are pixels above the red threshold and a value of “2” if there pixels
above the blue threshold. Therefore the state “0,0,1” represents the presence of red pixels (above the threshold) in
the right column.

Figure 6: Three snapshots of the quadcopter’s vision during simulation. The segmentation of the image into three
columns and the consequent dominant columns part of the vision state have been depicted.

The detection of the red or the blue goal is based on the detection of pixels whose values are higher than a
threshold. The thresholding for the detection is in RGB color space in the simulation and in YUV color space
in the flight tests. In simulation, the RGB values of each pixel is summed and the percentage of red and blue
calculated. A pixel is considered a red or a blue goal if more than 75% of its value is in the respective color. In
flight tests, a pixel is considered red if its U components is less than 0.0 and its V component is greater than 0.13.
The thresholds for detecting the blue are not defined for the flight tests as only the one goal task is performed in
real life.

The second component (fourth integer) of the state represents how much of a goal is being seen by the quad-
copter, and is a relative description of the distance to the goal. The sum of pixels above the threshold is divided
by 5000 and the resulting number floored to obtain a discretized representation of the number of pixels above the
threshold which are being seen. This integer is named the “Color Fraction” in this study. Its other use is deciding
if a goal has been visited. In the simulations, the red goal is considered visited if the color fraction is greater
than “3” and the blue goal is considered visited if the color fraction is greater than “2”. The difference in the two
thresholds is due to the lighting in the models of the environment which makes the blue goal less visible. Hence
the range of values for this component of the state is between “0” and “3”.

The third component (fifth integer) is a memory state which is relevant for the two goal task. This integer
remembers which of the goals has been visited. It has a value of “0” when neither goals have been visited, a value
of “1” if the red goal has been visited, a value of “2” if the blue goal has been visited and a value of “3” if both
goals have been visited. For the one goal task this component can take one value; for the two goal task this state
has three possible values.

The fourth component (sixth integer) of the state represents a collision with the wall caused by the previous
action. This information is used to teach the agent to avoid walls . Its value is “1” if a forward movement in the
previous action would have resulted in a collision with the wall. In such a case, the quadcopter does not make a
forward movementc. For all other actions, its value is “0”.

Such a state description leads to a total permutation of 64 states for the one goal taskd and 748 states for the two
goal taske. However, in reality the number of states are lower than this due to the definition of the environment.
For example, it is not possible to see a disjoint goal f neither is it possible to see two goals at the same timeg.

2. Learning scheme and parameters

This study uses Q-learning with an ε-greedy policy. The values for the learning rate (α) and the discount factor (γ)
are kept constant at 0.3 and 0.9 respectively. As the goal of this work is the real life application of a vision-based
RL agent on a quadcopter, a sensitivity of the agent to the RL parameters is not performed, as long as there is
learning and convergence with the used values.

cIt is assumed that it has some kind of distance sensor to obtain this information
d23 × 4× 1× 2
e33 × 4× 3× 2
fthe state “1,0,1” is not possible
gthe state “1,2,0” is not possible
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The exploration-exploitation problem is handled by increasing the greediness of the agent sequentially as the
training progresses. A number of starting exploration rates (i.e. ε0) were tried out in simulation; the trials led to
a starting value of 0.60. A high early exploration rate was found to be wasteful in terms of learning rate as the
number of possible states in either of the tasks are not significantly high. The schedule of increasing the ε for the
two simulated tasks and the flight test is presented in Fig. 7.

Figure 7: The ε schedule for training the RL agents in this study

3. Actions

Two sets of actions are defined for the agent. The primitive action set consists of going forward, turning left by
22.5◦ or turning right by 22.5◦. The extended action set consists of the actions in the primitive set supplanted with
an additional action. The extra action is a temporally extended action, called an option [39], which causes the
agent to keep turning right until it sees a goal. The option is available to the agent only when it is seeing nothing
(i.e. in the state 0,0,0;0;x;x). It is implemented with the intention of speeding up learning by incorporating external
knowledge. The two sets of actions available to the agent are visualized in Fig. 8.

Figure 8: Depiction of the primitive actions and the extended action that are avalable to the agent.

4. Reward scheme

The reward scheme is defined with the objective of teaching the RL agent the task of guiding itself to (and between
the) goals in the least number of steps. The designed reward accomplishes this objective by encouraging (or
discouraging) three things: all movements are penalized to minimize the number of steps, seeing an unvisited goal
is encouraged while seeing a visited goal is discouraged and finally visiting an unvisited goal is encouraged. A
flow chart depicting the logic of the reward scheme is presented in Fig. 9.

The logic for these three encouragements to the agent through the reward scheme are colorcoded in Fig. 9.
The green rhombuses are the initial penalty applied to every action as it is desired to minimize the number of steps
required to finish the task. Simulations found that incorporating the knowledge of moving forward when seeing a
goal and turning when not seeing anything in the reward scheme speeds up learning.
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Figure 9: Flowchart depicting the selected reward scheme for the task. rt represents the current reward and Pfrac

represents the count fraction. The reward for each step is initialized at 0 and modified according to the logic presented
in this chart.

The orange rhombuses represent the reward for taking an action that ends up with the goal in sight. This
reward is higher if more of the goal is seen and thus depends on the color fraction. For the two goal task, there is
a penalty for having a visited goal in sight. This encourages the agent to visit the other goal. Finally, the agent is
awarded a big positive reward for visiting an unvisited goal through the logic in the purple rhombus.

C. Rule based controller

The performanceh of the trained RL agent is compared to a rule based controller using the same vision-based
states as for the RL agent. The action selection logic of the rule based controller is presented below:

Action logic for approaching one goal

1. If not seeing goal→ Turn right
2. Else if seeing goal:

(a) If “Hitwall” = 0 (False):
i. if “Color Fraction” <= 2

A. If goal ONLY in middle column : → Move forward
B. Else : → Turn towards goal

ii. Else if “Color Fraction” > 2 : → Move forward
(b) Else if “Hitwall”= 1 (True): → Turn away from goal

Action logic for approaching two goals

1. If seeing visited goal→ Turn right
2. Else→ Use logic for approaching one goal

hin terms of the steps required to reach the goal
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IV. Simulation

The goal of this work is the implementation of a vision-based RL guidance agent in an AR Drone 2. A
simulation is performed before trying out a real life implementation. This section describes the setup and results
of the simulations.

A. Setup

The software used, the training scheme it’s scheme are described in this section.

1. Software

The simulations are carried out using a combination of the PaparazziUAV’s [40] simulator and FlightGear [41].
PaparazziUAV uses JSBSim [42] to simulate the autopilot software that it generates. FlightGear is an open source
flight simulator which generates the vision information required for simulation.

The two features which make FlightGear appropriate for vision simulation with PaparazziUAV are its capacity
to obtain state information from an external software and its ability to run a local HTTP server on a specified port.
The server can be used to obtain screen shots of FlightGear’s rendering of the environment. PaparazziUAV has
built in infrastructure to interface with FlightGear and send it the aircraft state information. FlightGear can use
this state information to visualize the environment of the aircraft.

The software for the RL agent has been implemented as a module inside PaparazziUAV. The state and rewards
of the RL agent are defined based on visual data. A submodule for vision simulation is created which down-
loads screenshots from a pre-programmed HTTP address. The flight dynamics of the agent is simulated using
PaparazziUAV’s JSBSim. This data is fed to FlightGear through a prescribed UDP porti. FlightGear renders the
environment and uploads its current view to the screenshot path of the HTTP server upon receiving a HTTP request
on that path (e.g. http://localhost:9723/screenshot). This is the pre-programmed address in the vision simulation
submodule. The screenshot is then unencoded as a RGB bitmap from JPEG and used to generate the vision based
state and the reward.

Figure 10: The interactions between the simulated autopilot software and FlightGear.

2. Task Training

The parameters and the training scheme are described in the following paragraphs. Both tasks are simulated with
the fixed and random initializations; each initialization is simulated with the primitive and the extended action
sets (Fig. 8). This leads to a total of four factor levels for each of the tasks. First the learning in both the tasks
are presented. The four cases trained are : (a) Fixed initialization; Primitive action set (b) Fixed initialization;
Extended action set (c) Random initialization; Primitive action set (d) Random initialization; Extended action set.
Furthermore, the performance of the trained RL agents are compared to a rule based autopilot (see Section III-C).

The one goal task is trained for 300 episodesj using Q-learning. The training runs are repeated 50 times to
obtain statistical estimates of the performance. The schedule for increasing the greediness (ε) is presented in Fig.
7. The learning rate (α) is kept at 0.30 and the discount factor (γ) is kept at 0.90. The two goal task is trained for

iThe FlightGear and the simulation software need to be run with specific arguments for this to work
jAn episode is the RL agent performing an episodic task from start to finish

10 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
M

ay
 2

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
01

42
 



500 episodes with 50 repetitions. The ε is increased according to Fig. 7 and like the one goal task, the α and γ are
kept at 0.30 and 0.90 respectively.

B. Results

This section discusses the learning performance in terms of the number of steps required to reach the goal with an
ε-greedy policy.

The learning of the agents for the one goal and the two goal task are summarized in Figs. 11 and 12. In both
figures, the left plot shows the change in steps, the middle plot shows the sum of changes to the Q-values and
the right plot shows the sum of reward over the 50 runs. The sum of changes to the Q-values are calculated by
summing the changes made to the Q-values at each step, over the whole episode.

Two means are taken in order to obtain the statistics of the run as presented in Figs. 11 and 12. For both tasks
the aforementioned quantities at each episode is averaged over the 50 repetitions of the training. Than the means
over 50 repetitions are split in groups of 60 episodes for the one goal task and 100 episodes for the two goal task.
The data points in Figs. 11 and 12 represent the grouped run means. The reason for grouping 60 episodes for the
one goal task and 100 episodes for the two goal task is based on the number of episodes over which the greediness
(ε) is increased by 10%.

Figure 11: Learning of the one goal task for four conditions

Figure 12: Learning of the two goal task for four conditions

The decreasing trend of the steps and the increasing trend of the returns in Figs. 11 and 12 show that, for
both tasks and all simulated factors, the agent manages to learn to perform the task better as it accumulates more
experience. However, there are differences in the learning and final performance of the trained agents.

ONE GOAL TASK: Table 1 compares the performance of the trained agents and the rule based autopilot. The
table shows that the randomly initialized agents take more steps to learn and perform the task than the agents with
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fixed initializations. It also shows that the agents perform worse than the rule based autopilot in all the simulated
conditions. The agent performs nearly as good as the rule based autopilot only for the one goal task with fixed
initializations.

The exclusion of the episodes, where the rule based autopilot gets stuck in infinite loops, is one of the reason
for its lower mean steps to reach the goal with random initializations. The rule based autopilot gets into infinite
loops when it is initialized near the wall, while also seeing a goal. The inability of the vision-based state to
remember a collision with the wall for more than one step causes this infinite loop. When the rule based autopilot
collides with a wall, while it is seeing a goal, it first tries to turn away from the goal. On the very next step it turns
towards the goal to put it in the center of its field of view. After having the goal in the center, it tries to move
forward again. The forward movement results in a collision, restarting the cycle.

However, the agent does not necessarily get stuck forever in these kinds of loops. The value of the learned
actions keep changing while it goes goes through the loop. At some point, the values of the actions causing the
loop may decrease low enough that another action become more valuable in comparison to it. This causes the
agent to pick the other action, breaking the loop.

Table 1: Performance metrics of the agent and the rule based autopilot for the two tasks over 50 runs

Initialization Fixed Random
Action set Primitive Extended Primitive Extended

One goal task

Sum of steps 15839.08 5960.18 20317.54 7336.20
Steps to goal (RL) 14.89 14.91 24.22 19.27

Steps to goal (Rule based) 14.56 15.26

Two goals task

Sum of steps 61311.12 36419.14 72941.62 43149.54
Steps to goal (RL) 52.25 41.22 74.40 58.40

Steps to goal (Rule based) 35.04 33.57

The extended action of turning until a goal is seen, decreases the steps required to learn the one goal task by a
factor of approximately 2.5 (Table 1). This is on account of the way the tasks and the agents are formulated in this
study. There is greatest ambiguity in the states when the agent does not see anything. Most of the real positions
and headings the agent can be in, maps to seeing nothing. The positions for four different headings where the agent
sees nothing is illustrated in Fig. 13. Having the option to turn until a goal is seen allows the agent to circumvent
part of this ambiguity; the agent can use the option to transition from the ambiguous state of not seeing any goals
to a less ambiguous one of seeing a goal.

Figure 13: The regions in the environment where the quadcopter cannot see anything for four different headings.
Grey represents seeing nothing and white represents seeing a goal. The leftmost figure shows the dimension of the
environment, the goal and the field of view of the quadcopter. The leftmost figure shows the quadcopter facing the
reference North.

The agents using the extended action set have a better final performance than the ones using the primitive action
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set (see Table 1). Due to the ambiguity in the state description, the optimal policy is dependent on the initialization
of the quadcopter. For example, of the environment and the task implies that for some initial headings the goal
will be in the left region of the quadcopter, while for others it will be in it’s right. The optimal actions for these
different initial headings are left and right turns respectively. However, as both initializations of the heading have
the same vision-based state (i.e. “0,0,0”), they can map to one action. The vision-based state does not encode
any information about the relative heading of the quadcopter with respect to the goal. Thus the agent cannot learn
optimal actions for this case, and performs sub-optimally.

TWO GOALS TASK: The use of the extended action decreases the steps required to learn the two goal task by
a factor of approximately 1.5. The improvement in learning is less than in the one goal task because the option
is less effective in reducing the ambiguity for the two goal task. Firstly, the option does not always transition the
state of the agent from seeing nothing to seeing an unvisited goal. If, for example, the agent has already visited
the blue goal and turns left a number of times resulting in a state where it sees nothing, choosing the option will
transition the quadcopter back to seeing the blue goal again. Secondly, the agent has to spend more time in a
region of the state-space where the option is not available. The agent cannot choose the option when it is seeing a
goal. In the two goal task, the goal is in sight of the quadcopter for a bigger part of the environment and it has to
spend more time learning the right values for each action while seeing either of the goal.

Both initializations with the two goal task perform worse than the rule based autopilot (see Table 1). The two
goal task is harder to learn than the one goal task. The presence of a second goal and the need of a memory state
for goals visited nearly doubles the state space. Further, the behavior required of the agent to finish the task is
more complex, as it must now learn to visit two goals instead of one. Additionally, the presence of two goals lead
to more points in the environment where the quadcopter is next to the wall with the goal in front of it. Thus, the
quadcopter gets stuck in a loop more often in the two goal task. As the episodes where the agent gets into this loop
are ignored for the rule based autopilot but not for the RL agent, the rule based autopilot gets a bigger advantage
when estimating its final performance in the two goal task than in the one goal task.

Figure 14: Box plots of the steps taken by the agent for the two tasks after training. Results from 50 runs are presented
for each of the cases.

The means and standard deviations of the final performance for both tasks with both initializations is presented
in Fig. 14. The box plots are created using the final fully greedy parts of the training for the two tasksk. Due to
the small variance for the one goal task with fixed initialization, their boxes appear as lines in Fig. 14. The
smallness of the variance in the final performance of the one goal agent with fixed initialization is evidence of the
convergence of the learning.

A difference is observed in the number of outliers with the primitive and extended action sets. The number of
outliers are higher for the primitive action set for both tasks, with both initializations. This indicates that with the
primitive action set the agent may get lost, but with the extended action set the agent performs consistently.

There is a bigger gap in the mean performance of the trained agent between the two action sets for the two
goal task than for the one goal task. This can be explained by the difference in the “usefulness” of the option in

ki.e. the last 60 episodes for the one goal task and last 100 episodes for the two goal task
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performing the different tasks. As the one goal task comprises of turning to the red goal and approaching it, it is
simpler and there is a smaller chance for the quadcopter to get lost. Hence near optimal performance is easier to
obtain without the need for an action which helps bring the quadcopter back to the more relevant region of the
state space (i.e. when it is seeing a goal). The two goal task on the other hand comprises of four steps: turning
towards the closest goal, approaching it, turning towards the other goal and approaching it. There is a greater
chance of getting lost and following a trajectory which adversely influences the Q-value estimates this case. With
the extended actions, the quadcopter stays in trajectories which reduce the variance in the value estimate that result
from the state ambiguity. Therefore, the final performance is better and the variance in the performance is lower
with the extended action set for the two goal task.

V. Flight test

The RL agent is implemented in an AR Drone 2 and trained to perform the one goal task in real life flights.
The flight tests aim to show that a vision-based RL agent can be trained to perform a guidance task in real life.
Q-values learned in simultion are tested on the AR Drone 2 to study the reality gap in the simulations.

A. Setup

The setup of the one goal task has been described in Section III. This section discusses the other elements of the
flight tests. First, the AR Drone 2 and its applicability to this study is outlined. After this, an overview of the
software and hardware elements of the autopilot, and their interactions is provided. Lastly, differences between
the simulated and the real life vision are discussed.

1. AR Drone 2

This study uses a Parrot AR Drone 2 Elite Edition (see Fig. 15a) to perform flight test on the developed RL agent.
The key features of the quadcopter which make it suitable for these flight tests are its onboard camera and its use
of an open source operating system.

The specifications of the AR Drone 2 meet the requirement of this study. The forward facing camera is capable
of producing 1280 by 720 pixel video at 30 FPS. The simulations are carried out at 800 by 600 resolution and the
designed agent takes at least 1 second for each step. As it takes 1 second for each step, it requires a new estimate
of the vision information at approximately 1 Hertz (i.e. it requires images to be processed at 1 FPS). Therefore
both the resolution and the video frame rate of the AR Drone 2 are sufficient. It uses BusyBox, a distribution
of Linux, as its operating system. This enables the use of open source autopilots such as PaparazziUAV for its
control.

(a) Parrot AR Drone 2 Elite edition (b) Controller architecture

Figure 15: The AR Drone 2 and the controller architecture

A key limitation of small quadcopter, such as the AR Drone 2, is their short flight times. On full battery, the
AR Drone 2 is capable of approximately 12 minutes of flight. This creates a challenge for RL which requires
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a thorough exploration of the state-space. The quadcopter is tethered to an external power supply to enable the
prolonged flights required for RL.

2. Autopilot Elements

An overview of the interaction between the different elements of the system is presented in Fig. 15b. Three parts
of the PaparazziUAV autopilot are visualized: the implemented “RL” module, the position controlling navigation
module (“Nav”) and the rate controlling Incremental Non-linear Dynamic Inversion (“INDI”) [43] module. The
hardwares these modules interact with are the actuators, the communication system, the IMU and the camera.

PaparazziUAV’s autopilot controls the internal rate, position and attitude loops using feedback from the quad-
copters IMU and the motion sensing system of the CyberZoo (see Section III). The RL agent is a higher level
controller which decides between going forward or turning in either direction so that the quadcopter can reach the
goal.

The movements of the quadcopter are also detected by the external motion sensing system of the Cyber Zoo.
This information is passed to the autopilot through the ground station. Although the autopilot uses absolute
position and attitude information for stabilization and position control, the RL agent makes higher level guidance
choices based solely on the visual data. The inner loop control, although a challenging fields in its own regard, is
out of the scope of this study.

3. Differences with simulated vision

The visual stream from the real runs have the following differences in comparison to the simulation runs:

• There is no noise in the vision data in the simulation but real life vision data from the quadcopter is noisy
(see Fig. 16).

Figure 16: A noisy viewing (left), a less noisy viewing (middle) and a blurred viewing (right) of the red goal captured
during flight tests. The red pixels are detections.

The simulations are carried out with the time of day and the lighting conditions frozen at a specific point.
Although the CyberZoo is enclosed in three directions, ambient light can still get in and change the nature
of the visual data depending on the time of day. Further, blurring of the visual data (see right image in Fig.
16) caused by the motion of the quadcopter is not present in the simulated vision as FlightGear does not
support it.

• The resolution of the image, the field of view of the camera and the colorspace are different between the
simulation and the real-life system. The real system is tuned such that its outputs resemble that of the vision
module in simulation.

• The computer vision module operates at a frequency of about 1 Hz in the real-life implementation. The
total time to perform one action is between 1 to 3 seconds. There is a chance for the agent to use an image
frame from before an action is over to estimate its vision state after the action is taken. This can result in the
RL agent sensing the wrong vision-state. Fig. 17 illustrates the delay in perception. This does not happen
in simulation as the RL agent grabs a frame from FlightGear only after performing an action. The problem
of delayed perception can be mitigated by modifying the implementation; modifications to alleviate this
problem are not attempted due to time constraints of the project.

• The camera distorts the visual data due to its

– varying sensitivity to the different spectrums of visual light
– fixed focal length which blurs objects out of its depth of field
– imperfections (or flaws) in the lens
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Figure 17: Illustration of the erroneous perception resulting from the fixed update rate of the real-life vision module.

B. Results

Flight tests are performed to demonstrate the learning in real life and study the reality gap between the learning in
simulation and in real life.

FLIGHT TESTS: The one goal task is trained for the shorter duration of 100 episodes in the flight tests. Simula-
tions of the one goal task with 100 episodes of training showed that the agent can learn the task with 100 episodes
of training. The leftmost and rightmost plots in Fig. 19 visualizes the steps required by the simulated agent during
and after training with 100 episodes.

The scheme for increasing the ε is justified in Section III and visualized in Fig. 7. Fig. 18 shows the mean
trends in the learning over the five runs of the flight tests. In contrast to the datapoints in the simulation plots (i.e.
Figs. 11 and 12), the datapoints in Fig 18 represent means over 10 episodes; this corresponds to a 5% increase of
ε.

Figure 18: The learning metrics from flight tests of the one goal task averaged over five runs

Figure 19: The two left figures show steps against episode for the 50 simulated runs and the five flight test runs. The
rightmost figure shows the statistics of the fully trained performance.
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Fig. 18 shows a decreasing trend in the steps and the sum of changes to the Q-values along with an increasing
trend in the returns over the training. These indicate that the agent manages to learn the task better as it explores the
environment. The performance of the agent gets worse when learning with full greed; this is seen in the rightmost
parts of the plots in Fig. 18. The cause of this apparent degradation in the performance is the small number of
runs used to estimate the mean performance. Due to the small number of runs, aberrations in the performance of
the agent in one run has a significant effect on the mean. This can be seen in the rightmost part of the middle plot
of Fig. 19. One of the lines in the middle plot of Fig. 19, representing one of the flight test runs, shows how the
agent required more steps to reach the goal in the final phase of the training than the others. This can be caused by
noise in the experiment or the ambiguity in the state description. The fluctuation in the performance on that run
causes the mean over the five runs

Some of the differences between the real life learning and the simulated learning can be seen when comparing
the left and right plots of Fig. 19. The figure shows the steps required to reach the goal for the five flight test runs,
and the 50 runs of the simulation with 100 episodes of training.

The trajectories taken by the real and the simulated quadcopter, at different episodes of the training, from a
specific training run are visualized in Fig. 20. The trajectories of the agent in the flight test are more erratic
because of the greater amount of noise present in real flights. Besides the noisy motion, there are visible loops in
the quadcopter’s trajectory during the flight tests. These occur when the quadcopter chooses the option and keeps
yawing until it sees a goal. The instability in the yawing motion of quadcopters and the introduced forces by the
power tether contributes to the drift of quadcopter while it yaws, which results in the aforementioned loops. The
simulated quadcopter also has these loops, but their diameter is smaller.

Figure 20: Trajectories taken by the simulated and the real quadcopter during one training

There is more variance in the steps required to reach the goal in flight tests in comparison to the simulations.
The noise in the setup of real-life flights and in the flights themselves cause this variance. The noise in the flight
introduces variance in the result of the state transitions, which gets reflected in the Q-values. Noise in the vision
information makes the quadcopter perceive erroneous things. Erroneous state perception leads to erroneous Q-
value updates, leading to a greater variance in its estimate. Further, there are inconsistencies in the initialization
of the quadcopter and on the accuracy of the motion sensing system. Small variations in the initialization and
calibration of the motion sensing system make the motion of the real quadcopter different from the simulated
quadcopter.

Another observable feature is the maximum number of steps required to reach the goal in simulation and in
flight. Fig. 19 shows two of the episodes in the flight test requiring more than 250 episodes to reach the goal.
The maximum steps required to reach the goal in simulation out of all the episodes from all the runs is about 125
steps. In general the learning performance indicates that the performance in simulation is more consistent. This is
expected as the simulation does not include many factors, such as the noise in the vision, which makes learning the
task harder in reality. The fully trained quadcopter performs nearly as well as the quadcopter trained in simulation
(rightmost plot in Fig. 19) but with higher variance in the final performance.
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SIMULATION VALIDATION: The applicability of the policy learned in simulation to real life is studied. This
information is desirable because online learning with quadcopters is often challenging, and learning in simulation
is the preferable way to attempt RL based solutions.

The Q-values learned by an agent over 300 episodes of training in simulation are uploaded and tested in the
AR Drone 2. The Q-values at specific points in the training is uploaded to the quadcopter and the task performed.
The performance of the real life agent is compared to the simulated agent at the consequent point of training. The
comparison is visualized in using a bar chart in Fig. 21.

Due to time constraints, no repetitions are carried out for the episodes performed with the real quadcopter.
Secondly, the seed for the random number generator in the simulation and the flight test are not the same; the
random actions picked by the policy are different between the simulated agent and the real life agent.

Figure 21: The steps taken in the simulation run and in the validation flight tests

The difference in the steps required to perform the task at the five validation points are visualized in Fig. 21.
There is a difference of about 80 steps between the simulated and the real-life agent with the Q-values after 60
episodes of training. Q-values from consequent phases of the training have a difference of between 10 to 20 steps
with the simulated agent.

Besides the noise, the delayed perception in the flight test (Fig. 17) causes the performance of the agent trained
in simulation to degrade when transferred to a real-life quadcopter. When the agent is trained in flight, this delay
is incorporated into the learning of the agent. However, in the validation flights, the Q-values on which the real life
agent acts are trained without the delayed perception of the real world. The underlying transition model between
the states in the simulation and the flight test are different.

This validation study led to three findings: First, the real life agent is bad at incorporating Q-values from early
stages of the training. Second, there is a near constant offset between the performance of the simulated agent and
the real life agent for Q-values which are relatively stable. Third, the delayed perception in the flight tests is one
of the causes for the difference in behavior.

VI. Conclusions

This work explores the possibility of a learning vision-based guidance controller for a quadcopter. Such
systems may improve the flight of Unmanned Aerial Vehicles (UAVs) in dynamic and Global Positioning Systems
(GPS) denied environments. The possibility for such a guidance controller is investigated by developing a vision-
based Reinforcement Learning (RL) controller for an AR Drone 2 and training it to perform simple guidance tasks
first in simulation and later in real flights.

The descriptions of the state, reward and terminal condition for the tasks are derived from vision data. The
training of one task, consisting of turning to a red marker, is performed in simulation and in flight test. A more
complex task of approaching two markers (one red and one blue) is trained in simulation. The effect of incorporat-
ing knowledge into the agent is studied by expanding the actions it can take to include a multi-step action, called
an option, designed to decrease the ambiguity in the state perception of the agent. The robustness of the learning
is examined by simulating it with fixed and random initializations.

The simulation results show that the agent performsl the tasks better with increasing exploration of the envi-
ronment. The option of turning until a goal is seen improves the learning rate. Further, if the task is relatively

lNote that “performance” is used to refer to the steps required to perform the task after full training and “learning performance” is used to
refer to the steps required to learn the task.
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simple and the options are made to consist of a sequence of primitive actions, both the set of primitive actions and
the set of extended actions can converge to the optimal performance. As the complexity of the task is increased,
for example by using a random starting position, the final performance of the agent with the extended set of action
is better than the agent with the primitive set of actions. This is on account of the increased ambiguity in the state
perception with random initializations which the option is better able to mitigate.

The agent in the flight test also manages to learn the task, albeit with worse learning and final performance
than in simulation. The noise in the visual perception and motion of the quadcopter in flight tests lead to greater
variance in the real-life learning in comparison to the simulated learning. Other factors that contribute to the
reality gap are the delay in perception of the vision-based state in the real-life agent and the greater drift of the
quadcopter position while yawing in real life.

The simulations and flight tests are carried out without any tuning or sensitivity analysis on the hyperparame-
ters in order to meet time constraints. This does not have consequences for the final performance of the simulated
agent performing the one goal task with fixed initialization. The observed final performance of that agent is close
to the performance of the rule based autopilot. This is not true for any of the other simulations or the flight tests.
Hence, the final performance for the other agents and the learning characteristics of all the trained agents in this
study can potentially be improved by tuning the learning rate (α), the discount factor (γ) and trying out other
policies. Namely a higher discount factor should speed up learning as more accurate information of the value of a
state-action gets propagated backwards.

The development of a learning and vision-based guidance system for UAVs will broaden their domain of
operation and thus increase their demand. This technology will enable the development of generic Unmanned
Aerial Systems (UAS) that can be targeted towards specific markets. For example, a generic learning and vision-
based UAS that is designed for checking the inventory will be usable in warehouses, supermarkets, workshops
etc. Using learning and vision-based systems for guidance will remove the need to setup a local positioning
system or programming the UAS autopilot for the environment on an ad-hoc basis. Furthermore, as one software
architecture can be used to learn different tasks, there are potential savings in terms of software development for
the UAV manufacturers. If vision-based learning can be made generic, it can be marketed to mass consumers who
train their UAVs for personalized applications they desire. As the trained agent takes over the task of guiding the
UAV, operating them will require less man power.

New regulatory bodies will need to be created to certify the systems and operators of learning based UAVs
like the ones presented in this study. Social norms and outlooks will need to adapt to the emergence of mobile
robots that are not defined by their programming, but have the capacity to improve on their designed roles over
time. Before the mass marketing of learning based UAS, the manufacturers will have to ensure the safety and
security of their owners and the societies where they are being marketed. Typical questions pertaining to the
use of artificial intelligent systems in daily life will need to be answered. Questions such as who will be held
accountable for damages caused by the autonomous operation of these systems and how to ensure the livelihood
of people whose jobs are going to be replaced by such systems will need to be answered.

Perhaps the biggest factor which prevents the use of RL based controllers in current UAS is the time they take
to learn. The agent designed in this study takes about two hours of flight to learn the relatively simple task of
turning and approaching a goal. The learning time increases as the dimensionality of the state space is increased
to enable more complex tasks. The results show that incorporating programmed behaviors can speed up learning.
However, it also increases complexity of the design and implies the encoding of expert knowledge into the system.
The time required for an agent to learn forces most applications to carry out the learning offline and then implement
the learned policies in the UAS. Besides the slow learning in RL, vision-based applications need to deal with the
problem of making sense of the large volume data that are contained in images. Generalized RL structures to map
pixel based vision data to actions exist [44], although these methods are still expensive in terms of memory and
computations.
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