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Safe Distributed Control of
Wireless Power Transfer Networks

Kasım Sinan Yıldırım, Ruggero Carli, Member, IEEE, and Luca Schenato, Fellow, IEEE

Abstract—Wireless power transfer networks (WPTNs) are
composed of dedicated energy transmitters that charge energy
receivers via radio frequency waves. A safe-charging WPTN
should keep electromagnetic radiation below pre-determined
limits meanwhile maximizing the transmitted power. In this
article we consider this requirement as an optimization problem:
the maximization of harvested power by ERs subject to the
electro-magnetic safety constraints. In order to provide an
approximated solution to this problem, we introduce a dual
ascent-like distributed charging algorithm that enables energy
transmitters to work without global information and satisfy safety
constraints asymptotically. We provide an in-depth theoretical
analysis of our algorithm which is supported by numerical
simulations.

Index Terms—Wireless Power Transfer, Electromagnetic Ra-
diation, Distributed Optimization

I. INTRODUCTION

Using batteries to power millions of interconnected de-
vices forming today’s Internet of Things (IoT) is not feasible
since batteries increase the weight, the cost, the maintenance
overhead and the ecological footprint of the embedded hard-
ware [1]. Fortunately, the standalone and sustainable operation
of the embedded devices without any batteries is becoming
more feasible thanks to advancements in ambient energy
harvesting. In particular, by means of radio frequency (RF)
energy harvesting, a new class of embedded devices that
can sense, compute and communicate using the harvested
RF energy only has already emerged—so called the RF-
powered computers [2]. These computers have very interesting
future applications, e.g. battery-less sensing using wireless-ly
powered cameras has already been demonstrated in [3].

In order to enable sustainable operation and charge RF-
powered computers, a dedicated network of electromagnetic
wave energy emitters should be deployed. Such networks,
namely wireless power transfer networks (WPTNs) [4], are
composed of several energy transmitter nodes (ETs) that
control their power levels in order to charge nearby energy
receiver nodes (ER) collaboratively to maximize the total
transmitted power, and in turn to charge them as quickly as
possible. However, WTPNs should also ensure that humans
are not exposed to excessive electromagnetic radiation (EMR)
[1]. Therefore, a safe-charging WPTN should comply with the
RF exposure regulations [5].
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Ege University, İzmir, Turkey and the Embedded Software group, TU Delft,
The Netherlands. Ruggero Carli and Luca Schenato are with the Department
of Information Engineering, University of Padova, Italy.

A. Problem Statement

In this article, we assume that there are sensor nodes
deployed at specific locations so that ETs can communicate
with these sensors and obtain their measurements in order
to detect overexposure to EMR. Our focus is to answer the
question of how to maximize the total transmitted power to
ERs meanwhile complying with the RF exposure regulations?
This defines an optimization problem with safety constraints
that dictates the measured values at sensor locations not to
exceed a pre-defined EMR threshold value. Unfortunately,
it is not feasible to obtain a one-shot centralized solution
to this optimization problem due to the following reasons.
First, a centralized solution uses a mathematical model for
the sensor EMR measurements rather than incorporating the
actual measured values into the calculations. However, the real
measurements cannot be represented perfectly using a theoret-
ical radio wave propagation model since the transmitted power
is inherently random due to environmental effects [1]. Second,
ERs and sensors as well as ETs might not be stationary.
In order to keep the charging network safe despite changed
positions or addition/removal of the new devices, the whole
network state should be collected at a centralized entity to re-
calculate the optimal power levels satisfying safety constraints.
Considering these facts, an online distributed solution that
is reactive against network dynamics and does not require
global network information is required in order to meet safety
constraints effectively in practice.

B. Contributions

In this article, we introduce a feedback-based dual ascent-
like distributed charging algorithm to provide an approximated
solution to the aforementioned optimization problem: ETs
maximize the total transmitted power meanwhile satisfying
safety constraints without global information. In particular:
• Our algorithm allows ETs to communicate only with

the sensor nodes within their communication range—ETs
communicate neither with other ETs nor ERs to update
their power levels, leading to a simplistic implementation
with low message complexity.

• Each ET uses actual measurements from sensors—since
the measurements of the sensor nodes are not estimated
by using theoretical RF propagation models, the proposed
algorithm satisfies the safety constraints asymptotically.

• We provide an in-depth theoretical analysis of the pro-
posed algorithm supported by numerical simulations.

The rest of this article is organized as follows. Section II
presents the state of the art and Section III describes the system
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model and problem statement. We provide an approximated
optimal solution to the aforementioned optimization problem
in Section IV. In Section V, we describe how the approximated
algorithm can be implemented in a distributed manner. We
provide numerical simulations in Section VI. Finally, we
conclude and present future work in Section VII.

II. RELATED WORK

The prior studies our study builds upon can be divided into
the following categories:

a) Wireless Charging: The methods for wireless power
transfer can be classified into the non-radiative techniques that
can charge devices at short distances and radiative techniques
that typically use RF-waves as an energy delivery medium
to charge devices at long distances [6]. Even though these
techniques are not new, several researchers started to draw
more attention to RF-based charging due to the emergence
of ultra low-power embedded systems [7]. The power re-
quirements of such devices are only a few µWs that enabled
battery-less operation using only the harvested electromagnetic
energy [8]. RF-based charging can be used to charge many
receivers simultaneously by means of its broadcast nature and
it is suitable for mobile applications [1]. Several efforts have
still been devoted towards to increase the efficiency of RF
energy harvesting, e.g. [9].

b) RF-Based Charging Networks: The provision of en-
ergy to the embedded devices via dedicated network of RF-
energy transmitters has been demonstrated before[4]. There
are several recent research efforts in this domain focused on
the scalability of these networks in terms of total transmitted
power [10], minimization of the charging delay [11], charging
control of the energy transmitters to maximize the lifetime of
the network and minimize energy outage [12], [13],

c) RF-Based Charging Safety: The radiation safety dur-
ing RF-based charging is generally overlooked in the current
state of the art. It is generally accepted that being exposed
to radiation is considered as a threat for human health [14]
and the exposure regulations define the limits for the radiated
power from electronic devices [15]. As emphasized in [16],
satisfying radiation constraints on every point on a 2D area
is an NP-hard problem. To this end, [17] and [16] aimed
at providing efficient centralized solutions for the radiation-
constrained wireless power transfer optimization on a pre-
defined deployment area. To the best of our knowledge, [18]
provided the only distributed solution for the aforementioned
optimization problem. The algorithm proposed in this study
is composed of several phases: (i) a distributed redundant
constraint reduction algorithm is executed; (ii) the deployment
area is splitted into several small squares so that ETs can
employ linear programming (LP) locally; (iii) all the local LP
solutions are merged to obtain the global optimal solution.
These phases requires several computation steps and also
communication rounds among the ETs.

d) Distributed Optimization: In most of the exist-
ing approaches, e.g. distributed subgradient methods [19],
Lagrangian-based methods [20], consensus-based methods
[21], and distributed linear programming [22], each agent
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Fig. 1. A representative graph-theoretical view of a WPTN. Energy transmit-
ters are denoted by Ti, energy receiver devices are denoted by Rj and sensor
nodes are denoted by Sk .

computes the whole global minimizer—reasonable when the
number of decision variables is independent of the number
of agents involved. However, in our context the number of
decision variables scale with the number of agents, thus giving
rise to an unscalable solution. In recent alternative algorithms,
referred as partition-based, each agent is required to compute
only a subset of the decision variables [23], [24], [25].
Nonetheless, they are not directly applicable to our specific
problem since they are either developed for unconstrained
problems [23], or admit only equality constraints [24], [25].

e) Our Difference From Prior Studies: In this article,
we propose a distributed algorithm which is fundamentally
different from the existing safe-charging algorithms. First,
all of the aforementioned studies use a representative RF
propagation model to estimate the EMR value at particular
locations. However, estimations might not represent the actual
measurements, that might lead safety violations in practice.
On the contrary, we consider a different system model that
is composed of sensor nodes at particular locations sending
actual EMR measurement feedbacks. As a consequence, the
algorithm proposed in this article guarantees safety constraints
asymptotically. Second, our algorithm does not require com-
munication among ETs. Rather, it relies on the feedbacks from
the sensors in order to adjust the power levels and satisfy
safety constraints. Computations pertaining to this adjustment
are simple and do not include any complex operations.

Finally, we would like to mention that our work builds upon
the prior work in [26], [27]. In [27], we presented a different
algorithm which is based on the method of multipliers but
we did not provide theoretical analysis and limited ourselves
to only numerical results. In [26] we proposed an algorithm
which, as the one described in this article, is based on dual-
ascent approach. However, in [26], in order to force the
physical constraints related the amount of power that can be
transmitted, we modified the functional cost adding suitable
barrier functions—which led to some disadvantages which are
discussed in details in Section IV Remark IV.2. This article
is inspired by the ideas from these works, presents a different
algorithm together with in-depth theoretical analysis supported
by numerical simulations.
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III. MODELING AND PROBLEM FORMULATION

We represent a WPTN as a graph which is composed of
different types of nodes representing RF-based energy trans-
mitters (ETs), energy receivers (ERs) equipped with RF energy
harvesters, and sensor nodes (SNs) as depicted in Fig. 1.
We indicate these nodes with the sets T = {T1, T2, ..., TN},
R = {R1, R2, ..., RK}, and S = {S1, S2, ..., SM}, respec-
tively. Their location in space is defined by the variable
x ∈ R3 instantiated as xTi

to indicate the location of i-th
transmitter node (similarly for xRi

and xSi
). Each ET can

charge ERs within its wireless power transmission range. The
output power of Ti is denoted by Pi which is limited by a
maximum power level denoted by Pmax so that

0 ≤ Pi ≤ Pmax, i ∈ T , (1)

where with a little abuse of notation Pi = PTi
. We assume for

simplicity that each ET can adjust its power Pi at any value
between these two extremes, i.e. we neglect possible discrete
power levels. We also assume that the power P generated at a
location x arrives at different location y attenuated by a power
attenuation factor 0 ≤ κ(x, y) ≤ 1, i.e., the power at location
y is given by Px,y = Pκ(x, y). For sake of simplicity we
assume an isotropic attenuation within a certain radius and
null outside:

κ(x, y) =

{ γ
‖x−y‖2+γ if ‖x− y‖ ≤ r
0 otherwise

(2)

where γ and r are suitable positive constants. In practice, such
coefficient depends specifically on the environment (multiple
reflections, occlusions, fading, ...) and therefore the previous
expression should be considered only as a crude estimation
of the true power attenuation factor. The power attenuation
factor is then used to model the power received by the ERs
and power measured by the SNs. More specifically we define
the following power transfer matrix A ∈ RK×N and sensed
power matrix B ∈ RM×N whose i− j entries are given by:

Aij := ακ(xRi
, xTj

), i = 1, . . . ,K j = 1, . . . , N

Bij := β κ(xSi
, xTj

), i = 1, . . . ,M j = 1, . . . , N

where α and β are suitable positive constant which model
the power conversion factor and the power sensor scaling,
respectively. Based on these matrices we define the following
neighbours sets

T Ri = {j ∈ T |Aij > 0}, RTi = {j ∈ R |Aji > 0}
T Si = {j ∈ T |Bij > 0}, STi = {j ∈ S |Bji > 0}

where T Ri corresponds to the set of ETs which contribute to
the power received by the i-th ER, RTi corresponds to the set
of ERs which receives power from the i-th ET, T Si corresponds
to the set of ETs which contribute to the power measured by
the i-th SN, and STi corresponds to the set of SNs which
measure power from the i-th ET.

We will assume that the communication graph is consistent
with these sets, i.e. the i-th ET can charge the j-th ER if and
only if Aji > 0, and similarly the i-th ET and `-th SN can
communicate with each other if and only if B`i > 0. This

assumption is not unrealistic since the communication graph
and the power transmission graph in WPTN basically coincide.

Under the assumption that the power transmitted from
multiple sources and received at a certain location is additive,
we can define the power received by the i-th ER, ηi, and the
power measured by the `-th SN, δ` is given by

ηi :=

N∑
j=1

AijPj =
∑
j∈T R

i

AijPj , i = 1, . . . ,K (3)

δ` :=

N∑
j=1

B`jPj =
∑
j∈T S

i

B`jPj , i = 1, . . . ,M (4)

A. Problem Formulation

The objective of the WPTN is to charge ERs as fast as
possible meanwhile ensuring that the EMR values measured
by each sensor deployed at particular points are always smaller
than a pre-defined EMR threshold, δmax, i.e.

δ` ≤ δmax, ` = 1, . . . ,M

As a possible metrics for optimality, we pick the sum of the
received power by all the ERs, i.e. the total received power,
PTotal:

PTotal =

N∑
i=1

ηi =

N∑
i=1

∑
j∈T R

i

AijPj

Now let us define the following vectors P = [P1 · · ·PN ]T , η =
[η1 · · · ηK ]T , δ = [δ1 · · · δM ]T ,1 = [1 · · · 1]T ∈ RN , 0 =
[0 · · · 0]T ∈ RN . Noticing that η = AP , δ = BP , and
J = 1T η = 1TAP , we can write the optimization problem as

max
P

1TAP (5)

s.t. BP ≤ δmax1 (6)
0 ≤ P ≤ Pmax1 (7)

where the inequalities are to be interpreted component-wise.
More specifically, (5) corresponds to the total received power,
the inequality (6) can be interpreted as a soft constraint,
since violation of power limit at the sensors can be allowed
occasionally, while inequality (7) is hard constraint since these
bounds cannot be physically violated. The optimization prob-
lem just defined is clearly a Linear Program (LP) optimization
problem which could be easily solved via a centralized solver
as long as the matrices A,B are known. This is however prob-
lematic in a WPTN framework. To overcome this problem in
the next section we will propose a feedback-based distributed
optimization solution which has several advantages: it does not
require any global coordination among the nodes, it exploits
the sparsity of matrices A and B by performing only local
communication, it uses the measurements of the sensor to
asymptotically guaranteeing inequality (6) even if the matrices
A and B are not perfectly known.

Remark III.1 The matrices A and B can be time-varying if
the nodes are moving, i.e. xRi

, xSi
and xTj

are changing.
In the following sections, we will consider the static scenario
where matrices A and B do not change over time. In practice,
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we expect that the convergence rate of the algorithm proposed
in Section V to be much faster than the rate of the change in the
network topology. This scenario is explored in the Numerical
Simulations Section VI.

IV. AN APPROXIMATED OPTIMAL SOLUTION

We will start by showing how a standard primal-dual ascent
algorithm cannot be applied in our scenario, we will later show
how an approximate optimization problem can address this
limitation, and finally we provide some parameter optimization
design procedures and characterisation of optimality.

A. Limitation of naive primal-dual iterative algorithm

Observe that the LP problem (5)-(7) is equivalent to the
following problem:

P ∗ := arg min
P∈P

J(P ) := −aTP (8)

s.t. BP ≤ δmax1

where P := {P | 0 ≤ P ≤ Pmax1} is a closed convex
set, more specifically a hypercube, and a = [a1 · · · aN ]T and
ai =

∑K
j=1Aji =

∑
j∈RT

i
Aji. The optimization problem

above is clearly feasible since P = 0 ∈ P satisfies the EMR
constraints. However, it might not have a unique minimizer
P ∗ being the cost function −J(P ) = −aTP simply convex.
A standard approach in constrained convex optimization is to
consider the corresponding Lagrangian

L(P, λ) = −aTP + λT (BP − δmax1)

where λ ∈ RM and dual function is given by

q(λ) = min
P∈P
L(P, λ)

and its maximizer is written as

λ∗ := argmax
λ≥0

q(λ)

From convex optimization theory it also follows that there is
no duality gap between the primal and the dual problem, i.e.:

q(λ∗) = −aTP ∗

At this point, one might be tempted to apply a standard
primal-dual coupled iterative algorithm to find a solution to
both the primal and dual problem as follows:

P k+1 = argminP∈P L(P, λk)
λk+1 = max{0, λk + ρk(BP

k+1 − δmax1)}
where ρk is a (possibly time-varying) step size for the dual
ascent, and the max operator has to be interpreted component-
wise. The previous algorithm however does not guarantee to
provide an optimal solution of the primal problem, the problem
being that Pk+1 might not be unique since L(P, λk) is simply
convex in P . In fact, although it can be shown that for a
suitable decreasing step-size ρk, we have λk → λ∗, this does
not help to guarantee Pk → P ∗ if argminP∈P L(P, λ∗) does
not provide a unique solution. To show this let us consider
the scenario where only one ET, one ER, and one SN are
present. Also assume that A = B = Pmax = 1 and
0 < δmax < 1. Clearly, in this scenario P ∗ = δmax and

it is unique. Moreover, by explicit computation of q(λ) it is
possible to derive that λ∗ = 1 which gives L(P, λ∗) = −δmax,
therefore P k+1 = argminP∈P L(P, λ∗) does not provide the
minimizer of primal problem—which is our interest.

Remark IV.1 An alternative solution would be the use of
augmented Lagrangian strategies such as ADMM [20]. How-
ever, these are suited for optimization problems with equality
constraints. One possibility to circumvent this problem is to
add additional variables zi, one for each sensor node, and
solve the following optimization problem:

(P ∗, z∗) := arg min
P∈P,z≥0

J(P ) := −aTP

s.t. δmax1−BP = z

where z = [z1 · · · zM ]T and then apply ADMM. Nonetheless,
the complexity of the algorithm in terms of computation and
communication will increase and its understanding requires a
dedicated analysis which is beyond the scope of this work.

As such, we propose to approximate the objective function
by adding a regularization term which would make the primal
problem strongly convex as shown in the next section.

B. Approximated optimization problem

Consider the following approximated optimization problem:

P ∗θ := arg min
P∈P

Jθ(P ) := −aTP + θ
2‖P −

Pmax

2 1‖2 (9)

s.t. BP ≤ δmax1

and the corresponding Lagrangian and dual functions:

Lθ(P, λ) = −aTP + λT (BP − δmax1) +
θ

2
‖P − Pmax

2
1‖2

qθ(λ) = min
P∈P
Lθ(P, λ)

The addition of the regularization term θ
2‖P −

Pmax

2 1‖2
basically bias each transmitter towards the mid power level
Pmax

2 . Clearly, the approximated optimization problem will
provide a suboptimal solution, however we expect by conti-
nuity arguments that

lim
θ→0

Jθ(P
∗
θ ) = J(P ∗).

This fact is confirmed by the bound on the difference between
Jθ(P

∗
θ) and J(P ∗), which is provided in the following propo-

sition.

Proposition IV.1 Let P ∗ and P ∗θ be defined as in (8) and (9),
respectively. Then,

0 ≤ Jθ(P ∗θ )− J(P ∗) ≤
θN

8
P 2
max

Proof: Since Jθ(P ) ≥ J(P ) for all P , it easily follows
that Jθ(P ∗θ ) ≥ J(P ∗).
Now, observe that for any P ∈ P it holds that

‖P − (Pmax/2)1‖2 ≤ (N/4)P 2
max.
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Since for any P ∈ P such that BP ≤ δmax1, it holds also
that Jθ(P ∗θ ) ≤ Jθ(P ), we can write that

Jθ(P
∗
θ ) ≤ Jθ(P ∗)

≤ −aTP ∗ + θ

2
‖P ∗ − (Pmax/2)1‖2

≤ −aTP ∗ + θ

2

N

4
P 2
max

≤ J(P ∗) + θN

8
P 2
max.

This concludes the proof.
Based on the previous result, one would be tempted to choose
a very small value for θ, but as it will be shown later, this
gives rise to a slower rate of convergence of P k → P ∗θ .

Remark IV.2 A number of remarks are now in order:
(i) Although different bias power levels could be chosen,

as for example θ
2‖P‖

2 or θ
2‖P−Pmax1‖

2, the choice
provided above, is the one that, in general, reduces the
approximation gap J(P ∗θ)−J(P ∗), as it will be shown later.

(ii) Alternative regularization terms can be used. For exam-
ple, a typical choice is to use log-barriers by including
the regularization term

−θ

(
N∑
i=1

logPi +

N∑
i=1

log(Pmax − Pi)

)
as done in [26], which has also the benefit to automati-
cally enforce the constraint P ∈ P and therefore can be
removed from the optimization problem. However, this
regularization term has three disadvantages: the first be-
ing that, in general, the approximation gap J(P ∗θ)−J(P ∗)
is larger, the second is that the transmitter are never
allowed to fully exploit maximum power or be idles since
0 < P ∗θ < Pmax1, and the computation of the optimal
power level at each iteration P k+1 is more involved.

(iii) Since the Lagrangian Lθ(P, λ) is quadratic in P , its
minimizer is unique and can be computed in closed form.

(iv) The parameter θ is proportional to the error of the
approximation and therefore we would like to select
it sufficiently small. If we assume that during normal
operation, each receiver receives, on average, an amount
of power proportional to the total maximum power trans-
mitted by all sensors NPmax, i.e. J(P∗) ≈ `NPmax,
where ` is in the order of unity, then the bound on the
maximum relative error induced by θ is given by

|J(P ∗)− Jθ(P ∗θ )|
|J(P ∗)|

∼
≤ θ

8`
Pmax.

Therefore to have at worst a 1% error, we should pick
θ ≈ 0.01 8`

Pmax
.

Next, we prove important properties for the approximated
optimization problem.

Proposition IV.2 Let P θ(λ) := argminP∈P Lθ(P, λ) where
λ ∈ RM , θ > 0. Then the vector P θ(λ) = [P θ1 (λ) · · ·P θN ]T is
unique and it is given by:

P θ(λ) = projP

(
Pmax
2

1+
1

θ
(a−BTλ)

)
(10)

where projP is the projection operator on the convex set P ,
or equivalently:

P θi (λ)=h(ci)=


0 if ci > θPmax

2
Pmax

2 − ci
θ if −θPmax

2 ≤ ci≤θ
Pmax

2

Pmax if ci < −θPmax

2

(11)

where ci=
∑
j∈ST

i
Bjiλj−ai =

∑
j∈ST

i
Bjiλj−

∑
j∈RT

i
Aji.

Proof: The Lagrangian can be written as

Lθ(P,λ)=
∑N
i=1

(
(−ai+

∑
j∈ST

i
Bjiλj)Pi+

θ
2(Pi−

Pmax

2 )2
)
−δmax

∑M
i=jλj

Since the cost in the sum of N independent quadratic functions
in Pi and the constraint set P is a box, then

arg min
P∈P
Lθ(P, λ)⇔ arg min

0≤Pi≤Pmax

ciPi +
θ

2
(Pi −

Pmax
2

)2

whose solution is unique for each Pi and it is given by
(11). The minimizer can be rewritten in compact vector
form as in (10), where the projector operator is defined as
y = projP(x) := argminy∈P ‖y − x‖, i.e. the closest point
of P from the vector x. Finally note that the optimizer P θ(λ)
is well defined for any λ ∈ RM , not only for λ ≥ 0.
Another major advantage of the fact that approximated opti-
mization problem is strongly convex is the following:

Proposition IV.3 For θ > 0, the dual function qθ(λ) is
continuously differentiable all λ ∈ RM and its gradient is
given by:

∇qθ(λ) = BP θ(λ)− δmax1

Moreover, let λ, λ′ ∈ RM , then

‖∇qθ(λ)−∇qθ(λ′)‖∞ ≤
‖B‖∞‖B‖1

θ
‖λ− λ′‖∞

Proof: From duality theory, it is a well known fact that
if P θ(λ) is any minimizer of the Lagrangian, i.e. P θ(λ) ∈
argminP∈P Lθ(P, λ), then the vector gθ(λ) := BP θ(λ) −
δmax1 would be a sub-gradient for the concave function
qθ(λ) = minP∈P Lθ(P, λ) = Lθ(P θ(λ), λ), i.e. it has the
property that qθ(λ∗) ≤ qθ(λ) + (λ∗ − λ)T gθ(λ), i.e. gθ(λ)
provides a suitable ascent direction for the concave function
qθ(λ). However, since the minimizer P θ(λ) is unique, so it is
the sub-gradient gθ(λ). This is a sufficient condition to guar-
antee that qθ(λ) is strongly convex, continuously differentiable
and that gθ(λ) is indeed the exact gradient of qθ(λ), for any
λ ∈ RM (Prop 6.1.1 in [28]). As for the bound on gradient,
let us define φ(λ) = Pmax

2 1+ 1
θ (a−B

Tλ), then we have:

‖∇qθ(λ)−∇qθ(λ′)‖∞ ≤ ‖BP θ(λ)−BP θ(λ′)‖∞
≤ ‖B‖∞‖P θ(λ)− P θ(λ′)‖∞
= ‖B‖∞‖projPφ(λ)− projPφ(λ

′)‖∞
(1)

≤ ‖B‖∞‖φ(λ)− φ(λ′)‖∞

= ‖B‖∞‖
1

θ
BTλ− 1

θ
BTλ′‖∞

≤ 1

θ
‖B‖∞‖BT ‖∞‖λ− λ′‖∞

=
1

θ
‖B‖∞‖B‖1‖λ− λ′‖∞
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where inequality (1) follows from the fact that h : R → R
defined in Proposition IV.2 has the property that |h(ci) −
h(c′i)| ≤ |ci − c′i|, while the other inequalities follows from
standard properties of matrix norms.
The previous proposition will be instrumental in guaranteeing
the convergence of the iterative algorithm. In particular, the
inequality involving the gradient has been obtained for the
∞-norm and 1-norm of B.

Remark IV.3 An analogous bound holds for the standard 2-
norm, i.e. ‖∇qθ(λ)−∇qθ(λ′)‖2 ≤ ‖B‖

2
2

θ ‖λ−λ
′‖2, however the

proposed bound is more useful in our scenario. In fact, since
‖B‖∞ = maxi

∑N
j=1 |Bij | = maxi

∑
j∈T S

i
Bij and ‖B‖1 =

maxj
∑N
i=1 |Bij | = maxj

∑
i∈ST

j
Bij , in a typical WPTN the

number of neighbours is limited independently of the size of
the network. Therefore ‖B‖∞ and ‖B‖1 are likely to be almost
independent of the size of the network and upper bounds for
their value can be computed off-line.

V. EMR-SAFE DISTRIBUTED POWER CONTROL
ALGORITHM

The algorithm we propose to solve the approximated op-
timization problem is given by the following two iterative
updates that are performed sequentially:

P k+1 = projP
(
Pmax

2 1+ 1
θ (a−B

Tλk)
)

λk+1 = λk + ρ(BP k+1 − δmax1)
(12)

Note that as compared to the algorithm proposed in the
previous section, the computation of the power level P k+1

can be done in closed form by performing only multiplications,
sums and thresholding.

Next we discuss the distributed implementation of (12). Let
us start by observing that the vector λ is composed by the
M Lagrange multipliers λ1, . . . , λM where the multiplier λ`
is associated to the constraint δ` ≤ δmax; we assume that λ`
is stored in memory and updated by sensor S`. Now consider
the second equation of (12) and observe that its `-component
can be written as

λk+1
` =λk` + ρ

∑
j∈T S

i

B`jP
k+1
j − δmax

=λk`+ρ (δk+1
` − δmax

)
where δk+1

` is the power measured by sensor S` when the
transmitters transfer the power P k+1. It follows that sensor S`
can update the value of λ` in a purely decentralized way just
taking periodically the measurements δk` , k = 1, 2, . . . ,, and
without communicating with the other devices.

Now consider the first equation of (12). We have that P (k+1)
i

can be computed by transmitter Ti as in (11) once the value
of the quantity ci is known; observe that to compute ci,
transmitter Ti needs to receive the values of the Lagrange
multipliers only from the sensors in STi , namely, only from
the sensors which are within a distance r from transmitter Ti.

Based on the above observations, we have that the algorithm
we propose keeps alternating the following actions (Algorithm
1 presents the pseudocode for the sensor nodes in the system,
while Algorithm 2 presents the pseudocode for the transmitter
side):

1: After the update of the powers of the transmitters, each
sensor S` measures the EMR level (Alg. 1, Line 2);

2: Each sensor S`, based on the taken measurement, updates
the Lagrange multiplier λ` (Alg. 1, Line 3);

3: Each sensor S` broadcasts the value of the updated La-
grange multiplier to the transmitters which include S` into
their transmission coverage (Alg. 1, Line 4);

4: Each transmitter Ti, based on the received multipliers λ`
from each sensor S` ∈ STi (Alg. 2, Line 8), updates the
value of power Pi to be transferred completing the step
(11) (Alg. 2, Lines 9–10).

5: Each transmitter compensates for the changes in the net-
work topology by estimating the locations of the sensors
and receivers periodically and updating the matrices A and
B (Alg. 2, Lines 1–5).

Algorithm 1 Sensor side Si
Definitions
ρ . a constant
δmax . a constant representing EMR threshold
δk` . EMR measurement of sensor S` at time k
λk` . Lagrangian multiplier of sensor S` at time k

1: � At each iteration
2: Sample δk+1

` . Measure EMR value

3: λk+1
` = λk+1

` + ρ
(
δk+1
` − δmax

)
. Update λk`

4: broadcast λk+1
` . Send to i ∈ T S

`

Algorithm 2 Transmitter side Ti
Definitions
θ . a constant
Pmax . maximum power allowed
Pk
i . power of transmitter Ti at time k
Aji . estimated power loss to neighboring receivers
B`i . estimated power loss to neighboring sensors

1: � Periodically
2: Collect information about:
3: xRj

for all receivers j ∈ RT
i . neighboring ERs

4: xS`
for all sensors ` ∈ STi . neighboring sensors

5: calculate Aji and B`i . update estimates
6:
7: � At each iteration
8: Receive λk` from all ` ∈ STi
9: ci =

∑
`∈ST

i
B`iλ

k
` −

∑
j∈RT

i
Aji . update ci

10: Pk+1
i = h(ci) . update power, h(·) as in Eqn.(11)

Remark V.1 Observe that in Algorithm described in (12) we
do not force the Lagrange multipliers to be non-negative,
since the algorithm will guarantee it asymptotically. This
follows from the properties of the dual function q(λ) stated
in Proposition IV.3.

Remark V.2 In order to estimate the locations of the energy
receivers and sensors to update the matrices A and B period-
ically, each transceiver can employ well-known distance esti-
mation and localization techniques, e.g. by using the received
signal strength indication, time of arrival/time difference of
arrival, angle of arrival, and communication range [29].

A. Convergence analysis for static nodes
In next proposition we state the convergent properties of

Algorithm in (12) under the assumptions that the nodes are
static, i.e. the matrices A and B do not change over time.
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Proposition V.1 Consider the algorithm (12). If

ρ ≤ 2 θ

‖B‖∞‖B‖1
,

then
lim
k→∞

P k = P ∗θ .

Proof: According to Proposition IV.3, the evolution of the
Lagrange multipliers in algorithm (12) can be written as

λk+1 = λk + ρ∇qθ(λk)

Since qθ(λ) is concave, it corresponds to a standard gradient-
ascent algorithm with constant step-size ρ. Also, according
to Proposition IV.3, its gradient is Lipschitz continuous with
constant L = ‖B‖∞‖B‖1

θ . Then, based on Proposition 2.1 in
[30], we have that limk→∞ qθ(λ

k) = qθ(λ
∗) and since qθ(λ)

is continuous and λ∗ is singleton, then also limk→∞ λk =
λ∗. In turn, also P θ(λ) is continuous in λ and therefore
limk→∞ P k = P θ(λ∗). Finally, since there is no duality gap,
we necessarily have that P θ(λ∗) = P ∗θ .

Remark V.3 It is possible to refine the above result providing
also some insights into the rate of convergence of the proposed
algorithm. In particular it is possible to show that, under the
more restrictive assumption ρ ≤ θ

‖B‖∞‖B‖1 , it holds (see [28])

|qθ(λk)− qθ(λ∗)| ≤
1

ρk
‖λ0 − λ∗‖.

It follows that the rate of convergence is O(1/k), i.e. is
sublinear in log-scale (i.e. sub-exponential in standard scale).
One might wonder if such rate can be improved to be linear
(i.e. exponential). This typically would require to have qθ(λ)
to be strongly concave, i.e. qθ(λ′) ≤ qθ(λ) +∇gθ(λ)T (λ′ −
λ)−ε‖λ′−λ‖2 for some ε > 0. However, this is not the case in
our scenario due to the presence of the box constraints P ∈ P
in the primal problem, which prevents that.

Remark V.4 The previous analysis is based on the assump-
tion that the nodes are static and therefore the matrices A and
B are constant. If the nodes are mobile, then the proposed
algorithm will not reach the optimal instantaneous solution of
the LP problem, but it will track such optimal solution since
the step-size ρ is constant, differently from [19] in which the
step-size is required to go to zero over time.

VI. NUMERICAL SIMULATIONS

We now present the numerical simulations of the proposed
algorithm in MATLAB for the sample network depicted in
Fig. 2. The network is composed of 25 transmitters, 20
receivers and 5 sensor nodes. We also implemented the cen-
tralized LP formulation presented in (5) using MATLAB’s
linprog function to obtain the optimal solution. The arbi-
trarily selected parameter values during simulations are pre-
sented in Table I. We set the initial powers of the transmitters
randomly.

We performed several simulations for the proposed algo-
rithm with different θ values—by using the corresponding
maximum ρ values according to the Proposition V.1. Figure 3
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Fig. 2. The random WPT used for the simulations. The transmitters 4, 8, 12,
16 and 20 are marked with circles.

TABLE I
THE PARAMETER VALUES USED DURING OUR EXPERIMENTS.

γ Pmin Pmax δmax α β

100 0 10 1 1 0.1

(top) shows the the maximum EMR overflow in the network,
i.e. maximum δ` at each iteration which is normalized with
respect to δmax. As can be observed from this figure, even
though the initial network violates the EMR constraints, each
iteration of the algorithm forces the network to transition
towards a safe state. Observe that the larger values of the θ
led to faster transition time: with θ = 1, the EMR overflow
is reaching almost 1% of δmax after iteration 200, which is
acceptable from practical perspective. Figure 3 (bottom) also
depicts the steady-state total transmitted power to the receivers
aTP ∗θ which is normalized with respect to the optimal LP
solution −J(P ∗)—0.90 is subtracted for the clearness of the
plot. The smaller values of the θ led the cost function of the
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Fig. 3. The EMR overflow (up) and steady-state total transmitted power to
the receivers (bottom) using the proposed distributed solution with different
θ and corresponding maximum ρ values according to Proposition V.1.
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Fig. 4. The difference of the transmitter power levels in our algorithm and
their optimal values, with θ = 0.1 and the corresponding maximum ρ.
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Fig. 5. The difference between the normalized EMR overflows using the ideal
and realistic matrices with the proposed algorithm with θ = 1.

distributed algorithm closer to the cost function of the optimal
LP solution, and in turn more power is transferred. On the
other hand, as mentioned previously, the smaller θ leads to
longer transient, which indicates that there is always a trade-
off between faster transient to the safe state and the amount
of total power transmitted.

Figure 4 presents the difference of the transmitter power
levels (4, 8, 12, 16 and 20) and their values with the cen-
tralized optimal solution. Observe that the final powers of the
transmitters 4, 16 and 20 were greater than their power levels
in LP solution, and it was the opposite case for the transmitters
8 and 12. This is due to the fact that there are more than one
optimal configurations, and MATLAB finds one among them.
It is the case that our algorithm converges to another optimal
state asymptotically, in which the power configurations are
different. Moreover, our algorithm provides a feasible but sub-
optimal solution which depends on the selection of θ.

In reality, each transmitter Ti in the network implements
the following algorithm:

P ki = h(cki ) = h(
∑
j∈ST

i

B̂jiλ
k
j −

∑
j∈RT

i

Âji) (13)

since they can only obtain the estimates of the matrices A and
B, denoted by Â and B̂; respectively. However, the sensors
update their Lagrange multipliers by taking EMR overflow
measurements; i.e. δki = BP k+1 represent the actual EMR
value observed by the sensor Si. In other words, the update of
the Lagrange multipliers is performed using the real matrix B.
Figure 5 presents the EMR overflows in the ideal and realistic
cases where we introduced an uniformly distributed error of
20% to all of the components of the matrices A and B initially,
which resulted in the matrices Â and B̂. At each iteration, we

0 500 1000 1500 2000

Iteration

4

6

8

10

12

14

P
o

w
e

r

Fig. 6. The effect of mobility in the network. The proposed algorithm tracks
the optimal solution.

also introduced a dynamic random error of at most 2% to
these matrices. Observe from the figure that also in the noisy
case, the safety constraints are asymptotically satisfied since
the Lagrange multipliers are updated by considering actual
sensor measurements.

In order to explore the effect of mobility, we considered
the deployment area shown in Fig. 2 and created a random
network of 50 transmitters, 10 receivers and 150 sensors. The
positions of all the nodes are slowly changed according to a
random walk: at each iteration we modified the entries of the
matrices A and B by adding a random value in the interval
[−10−4, 10−4]. Figure 6 depicts the total power transmitted
by using the proposed algorithm (with θ = 0.9) and the
centralized linear programming solution. Due to the mobility,
the matrices A and B change over time—leading to a different
optimal solution at each change in the network topology. It can
be observed that after the initial transient necessary to find
the optimal solution, the proposed algorithm adapts to these
changes and tracks the optimal solution with a small error.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we considered the maximization of the total
transmitted wireless power to RF energy harvesting devices
subject to the electromagnetic radiation safety constraints.
Our main contribution was to introduce a dual ascent-like
distributed safe-charging algorithm where energy transmitters
communicate only with the sensors in their communication
range and adjust their power levels without global information.
We provided an extensive theoretical analysis of the pro-
posed approach and presented several numerical simulations
in MATLAB that showed that our algorithm satisfies the EMR
constraints with a performance comparable to that of the
optimal centralized linear programming solution. We would
like to leave the implementation of our algorithm on a real
hardware platform and its experimentation in a real-world
testbed as a future work. It is also interesting to explore the
case where each receiver has its individual power requirement
and the transmitters are turned-off after the required power is
transmitted. In order to eliminate continuous power transmis-
sion and in turn energy waste, feedbacks from the receiver
devices should be considered. We also would like to explore
this case within the context of a future study.
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