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Abstract— Climate change is expected to have an impact 

on wind patterns, and therefore the generation of waves. 

Phase 6 of the Coupled Model Intercomparison Project 

(CMIP6), provides various realization of outputs integrated 

global coupled models for different centuries. Wind quality 

is a cornerstone for wave energy as it is the primary 

generation driver in any wave model. Therefore, proper 

quantification of wind wave interactions are key in the 

evaluation of future wave energy potential. In this study, a 

wave hindcast for the North-East Atlantic, using the 

WaveWatchIII model forced by CMIP6 winds is presented. 

The model uses a grid of 0.25° of spatial resolution, covering 

a longitude range of -21.0° to 10° (west to east) and a latitude 

range of 18° to 80° (south to north). 

The main objective of this work is to assess the quality of 

historical winds from all the CMIP6 wind data that are 

available under the first realization criteria (r1i1p1f1) at the 

time of this study. This leads to understanding limitations 

and proposing a selection method to choose the optimal 

wind dataset to force the wave model within the analyzed 

area.  

Thus, the optimal CMIP6 historical winds for the North-

East Atlantic are used to create a 10 years hindcast(from 2003 

to 2012). To further assess the suitability of the selected 

winds dataset for wave generation, results are compared 

with the ERA5 wave product. The available CMIP6 models 

show region-specific variations depending on the Regional 

Climate models used for their developments. The results 

show the impact of zonal and, meridional wind intensities, 

on wave characteristics in different regions over the domain. 

Keywords— Climate, CMIP6, WaveWatchIII, Wind. 

I. INTRODUCTION

midst the backdrop of our changing climate, there is

an increasing interest in renewable energy resources

that have the capacity to ignite the future with reduced 

carbon emissions [1]. In this regard, recent studies have 

suggested that the future of our resources lies in the wind 
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and waves above the subtropical regions [2]. As the 

impacts of climate change continue to be felt across the 

globe, it is becoming increasingly clear that these 

subtropical regions are particularly susceptible to the 

effects of oceanic and atmospheric interactions, and 

environmental factors, which can have profound impacts 

on weather and climate patterns [3][4][5][6][7][8].  

Ocean surface waves are linked to the interaction 

between the atmosphere and the sea surface. In particular, 

the winds that have been affected by the changing climate, 

play a vital role in shaping the patterns of waves that 

propagate across the globe. In the collaborative endeavor 

to access and enhance comprehension of climate change 

across temporal planes, known as the Coupled Model 

Intercomparison Project (CMIP) stands as a pivotal 

framework.  

A recent study by [9] found that sea surface height and 

zonal wind stress in the equatorial Indo-Pacific are 

consistent across different spatio-temporal scales in CMIP 

models. Zelinka et al [10] conducted climate sensitivity 

research and reported that the multi-model mean and 

inter-model variance of cloud feedback in CMIP6 are 

statistically significant with 95% confidence, which 

explains the results obtained in CMIP5. Tokarska et al [11] 

examined the warming trends in recent decades in both 

CMIP5 and CMIP6 models and found that the latter exhibit 

notably higher climate sensitivity and project greater 

warming scenarios. Therefore, the accurate quantification 

of the intricate interplay between wind and waves is 

imperative in the assessment of the future potential for 

wave energy.  

   Several studies, such as those by [12][13][14], have used 

common statistical methods like bias, standard deviation, 

and NRMSE to classify the CMIP6 models. However, these 

methods have been found to be time-consuming and are 

influenced by the spatial and temporal scales under 

consideration. In this study, we aim to overcome these 
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limitations by adopting a K-Dimensional Tree approach 

for classification. 

As climate change continues to cause shifts and 

intensification in wind patterns, the corresponding 

changes in wave characteristics could significantly impact 

the potential for wave energy generation 

[15][16][17][18][19].  This impact could be either positive or 

negative and is largely dependent on the prevailing 

conditions and unique location [20] .  

In the present study, the WWIII model was utilized to 

undertake an assessment of the wind data obtained from 

CMIP6 models, and the preliminary hindcast results are 

assessed with the cross-model comparison with ERA5. 

II. MODEL AND METHODOLOGY

A. Selection of the optimal CMIP6

All models under the first realization (r1i1p1f1) with

3hourly temporal resolution were considered for the study 

and presented in Table 1. Historical data from the first 

realization of 11 available model datasets have been 

analyzed, with a focus on zonal and meridional wind 

components. Leap days were removed from the 11 CMIP6 

model datasets, and the data were resampled to a 6-hourly 

temporal resolution for comparison with satellite data. We 

utilized decision tree algorithms, consisting of specifically 

K-nearest neighbors (KNN) and decision tree [21], with the

goal of identifying the most suitable climate model CMIP6

wind datasets that closely resemble the Copernicus Marine

Environment Monitoring Service satellite data in the

North Atlantic and European regions. Previous studies

employed various statistical techniques to arrive at a

conclusion. In contrast, the decision tree algorithm is a data

structure that partitions space in multidimensional

settings, enabling a more efficient and quantitative

approach to draw conclusions.

B. K Dimensional Tree (KD Tree)

KD Tree is a technique that integrates the strengths of

KNN and decision tree algorithms to structure multi-

dimensional data. The decision tree-like structure and fast 

search capabilities make it an adequate choice for data 

classification and grouping [22]. 

The algorithm begins at the root node and descends the 

tree, evaluating only the relevant branches that contain 

potential neighbors. This approach results in a significant 

reduction in search space, especially for high-dimensional 

data sets. In this case, we employed the Euclidean distance 

technique (1) to identify the nearest neighbor that is in 

closer proximity to the satellite measurements, when 

compared to all the available CMIP6 winds. This approach 

is described by the equation (1). 

𝑑(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)
2

𝑛

𝑖=1

 (1) 

For the analyzed, the optimal dataset is MIROC6, the 

Model for Interdisciplinary Research on Climate version 6, 

which is a collaborative climate model developed by 

multiple institutions in Japan [23]. It is a prominent 

participant in the Coupled Model Intercomparison Project 

Phase 6 (CMIP6), which aims to enhance our 

understanding of climate dynamics and refine projections 

of future climate change [24].  

TABLE I 

CMIP6 MODELS AND INSTITUTION 

MODEL INSTITUTION 

IPSL-CM6A-LR 
Institut Pierre-Simon Laplace, Paris, 

France 

GFDL-ESM4 NOAA, Geophysical Fluid Dynamics 

Laboratory, Princeton, USA 

MPI-ESM1-2-LR Max Planck Institute for Meteorology, 

Hamburg, Germany 

AWI-ESM-1-1-L R Alfred Wegener Institute, Helmholtz 

Centre for Polar and Marine Research, 

Germany 

MIROC6 Japan Agency for Marine-Earth 

Science and Technology 

IPSL-CM5A2-IN CA Institut Pierre Simon Laplace, Paris, 

France 

MPI-ESM-1-2-H AM ETH Zurich, Switzerland 

GFDL-CM4.gn NOAA, Geophysical Fluid Dynamics 

Laboratory, Princeton, USA 

GFDL-CM4.gr NOAA, Geophysical Fluid Dynamics 

Laboratory, Princeton, USA 

CMCC-CM2-SR5 Fondazione Centro Euro- 

Mediterraneo sui Cambiamenti 

Climatici, Lecce, Italy 

CMCC-ESM2 Fondazione Centro Euro-

Mediterraneo sui Cambiamenti 

Climatici, Lecce, Italy 

MIROC6 has a spatial resolution of 2° × 2° and a 

temporal resolution of 3-hour intervals. For this particular 

study, the region of interest is defined by a longitude range 

of -21.0° to 10° (west to east) and a latitude range of 18° to 

80° (south to north). By incorporating MIROC6 data into 

WWIII, the study aims to gain insights into the observed 

variations in wave climate within this specified geographic 

area for a period of 10 years.  

C. WAVEWATCHIII Model (WWIII)

This study employs WWIII v6.04, a third-generation

spectral wind wave model developed by the National 

Oceanic and Atmospheric Administration's National 

Centers for Environmental Prediction (NOAA/NCEP). The 

model is phased averaged and solves the action density 

balance equation (2).  

The equation presented as Equation 2 represents the 

conservation of wave action in the WWIII model, which is 

a fundamental aspect of wave energy analysis. In this 
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equation, the left-hand side consists of several terms that 

contribute to the overall energy associated with the waves.  

The second and third terms on the left-hand side 

correspond to the divergence of wave action flux. These 

terms indicate how the wave action density is distributed 

across space, capturing the spatial variations in wave 

energy propagation and dissipation. 

The fourth and fifth terms on the left-hand side 

represent the partial derivatives of the wave action density 

N with respect to the spectral width σ and the spectral 

peak direction θ, respectively. These terms account for 

how changes in the spectral characteristics of the waves 

impact the wave action density. 

The first term on the left-hand side represents the time 

derivative of the wave action density N and is measured 

in units of [m²/s]. This term quantifies the rate at which the 

wave action changes over time, providing insight into the 

temporal dynamics of wave energy. This equation enables 

the examination of wave energy transfer and propagation 

within the Wave Watch III model, contributing to a deeper 

comprehension of wave climate dynamics and their 

relevance to wave energy utilization. 

The WWIII was applied in this study with a spatial 

resolution of 0.25° and a temporal resolution of 1 hour. The 

model domain encompassed the European North East 

Atlantic region, spanning from 18°S to 80°N in latitude and 

from -21°W to 10°E in longitude. The simulation period 

covered a substantial timeframe from January 1, 2003, to 

December 31, 2012. 

To provide the necessary input data for the WWIII 

model, wind fields derived from the MIROC6 Climate 

model were utilized. In order to accurately represent the 

complex nature of wave behavior and wave-to-wave 

interactions, the model incorporated the discrete 

interaction approximation (DIA) proposed by Hasselmann 

et al. in 1985 [25]. 

In addition, the model employed specific 

parameterizations known as ST4, as described in the study 

conducted by Ardhuin et al. in 2010 [26], to account for the 

influence of wind and wave dissipation source terms 

within the simulation. These parameterizations were 

selected to effectively capture the effects of wind and wave 

dissipation throughout the simulation period. 

Recent research [27][28][29][30] highlights the superior 

performance of the third-generation numerical wind-wave 

model, WWIII, over reanalysis, satellite, and moored 

buoys datasets in terms of validating and predicting 

hindcast and forecast wave climate in both shallow and 

deep ocean regions. The exceptional accuracy and 

precision of the WWIII model can be attributed to the 

explicit definition of non-linear terms and regular updates 

[31]. 

𝜕𝑁

𝜕𝑡
+

𝜕𝑐𝑥𝑁

𝜕𝑥
+

𝜕𝑐𝑦𝑁

𝜕𝑦
+

𝜕𝑐𝜎 𝑁

𝜕𝜎
+

𝜕𝑐𝜃𝑁

𝜕𝜃
=

𝑆

𝜎

(2) 

Wave characteristics are hindcasted at hourly intervals 

for the years 1992 to 2014. To ensure accuracy, the model 

run has a warm run, with initiated 15 days before the study 

period to provide a spin-up period.  

D. Domain

The analysis focuses on the North Atlantic European

region, spanning from longitude -21W to 10E and latitude 

18S to 80N. The model utilizes the General Bathymetric 

Chart of the Oceans (GEBCO) for bathymetry input and 

the Global Self-consistent Hierarchical High-Resolution 

Shorelines (GSHHS) database for shoreline data.  

E. Statistical Techniques

1) Normalised Mean Bias (NMB) and Bias

To comprehend the potential performance between 

the recorded data and reference information, the 

evaluation is based on the concept of NMB. It is a 

measure of the average deviation between the modeled 

(𝑋𝑚𝑜𝑑) and the observed (𝑋𝑜𝑏𝑠), taking into account the 

scale of the observed values. This normalization factor 

ensures that the bias is adjusted proportionally to the 

magnitude of the observed values, resulting in a 

standardized measure of deviation. The mathematical 

expression representing this relationship is as follows:  

𝑁𝑀𝐵(𝑋) =
∑(𝑋𝑚𝑜𝑑 − 𝑋𝑜𝑏𝑠)

∑ 𝑋𝑜𝑏𝑠

(3) 

 In addition, to examining the normalized mean bias 

(NMB), we also evaluate the bias between the recorded 

data and reference information. Bias provides a 

measure of the average deviation between the modeled 

or predicted values and the observed or recorded 

values, without considering the scale of the observed 

values. The expression is given below: 

𝐵𝑖𝑎𝑠 (𝑋) = ∑(𝑋𝑚𝑜𝑑 − 𝑋𝑜𝑏𝑠) (4) 

By incorporating both NMB and bias, a holistic 

understanding of the potential overestimation or 

underestimation between the recorded data and 

reference information, enabling a more thorough 

assessment of the model's performance. 

2) MAE Skill Score (SSMAE)

The skill score by Mean Absolute Error (MAE) approach

is employed in this context to evaluate the proficiency of 

the model, denoted as "𝑋𝑟𝑒𝑓" in comparison to the reference 

data, denoted as "𝑋𝑚𝑜𝑑 " The calculation is expressed as 

follows: 

𝑀𝐴𝐸 =
∑|𝑋𝑚𝑜𝑑 − 𝑋𝑟𝑒𝑓|

𝑛
(5)
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𝑆𝑆𝑀𝐴𝐸 = 1 −
𝑀𝐴𝐸

𝑀𝑒𝑎𝑛(𝑋𝑟𝑒𝑓)

(6) 

3) IOA

To ensure a thorough check of the assessment, the

esteemed Index of Agreement (IOA) is used, meticulously 

taking into account the presence of bias and variance 

within the errors [32][33].  The formula for the calculation 

of this metric is expressed as follows: 

𝐼𝑂𝐴 = 1 − (∑( |𝑋 −  𝑌|)2)  

÷ (∑((|𝑋 − 𝑚𝑒𝑎𝑛(𝑌)|

+ |𝑌 − 𝑚𝑒𝑎𝑛(𝑌)|2))  (7) 

The X represents the model estimates and Y represents 

reference data. 

4) KEG

The Kling-Gupta Efficiency (KGE) is a comprehensive

statistical metric that was introduced Gupta et al in 2009 

[34]. Its purpose is to evaluate the performance of 

hydrological and hydro-meteorological models by taking 

into account accuracy, variability, and bias. Unlike the 

Nash-Sutcliffe Efficiency (NSE) which focuses solely on 

squared differences, the KGE offers a more comprehensive 

assessment. This metric finds widespread application in 

the analysis of climate change impacts and the evaluation 

of hydrological system fitting performance[35][36]. The 

KEG is given by, 

𝐾𝐸𝐺 = 1 −  √[(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2] (8) 

r = correlation coefficient 

β = bias ratio 

α = variability ratio. 

5) Wave Power (WP)

The estimation of wave power for an irregular sea 

state can be described by the following equation, where 

wave power (WP) is quantified in kilowatts per meter 

(kW/m) along the wavefront [37]. 

𝑊𝑃 =
𝜌𝑔2

64𝜋
𝑇𝑒(𝐻𝑚0)2 (9) 

Where 𝜌 is the density of water, 𝑔 is the acceleration due 

to gravity ,  𝑇𝑒  is the wave energy period and 𝐻𝑚0 is the 

significant wave height. 

III. RESULT AND DISCUSSION 

The understanding of ocean wave behavior and its 

impact on coastal regions is of paramount importance, 

particularly in the face of climate change and its potential 

consequences. Accurate and reliable simulations of wave 

climate serve as critical tools to address these concerns 

effectively. In this section, the analysis of the spatial 

patterns for wave climate is presented, with a specific 

emphasis on significant wave height (hs), employing the 

state-of-the-art CMIP6 (Coupled Model Intercomparison 

Project Phase 6) Wave Watch III simulations. Through an 

examination of the CMIP6 output, insights are derived into 

the intricate distribution and temporal variability of wave 

heights across the dynamic domain.  

Furthermore, this study undertakes a rigorous 

evaluation of model performance, encompassing 

meticulous assessments of bias, normalised mean bias, 

SSMAE, and a meticulous comparison of observed and 

simulated wave heights. Additionally, we integrate the 

application of Index of Agreement (IOA) and Kling-Gupta 

Efficiency (KEG) as yearly evaluation metrics. This 

exhaustive analysis aims to foster a robust comprehension 

of the complex spatial patterns characterizing wave 

climate, while simultaneously assessing the reliability of 

the CMIP6 Wave Watch III simulations. 

I. Analysis  of Normalised Mean Bias, Bias, SSMAE,

IOA, and KEG for 2003-2012

To evaluate the accuracy of the simulation, the fifth-

generation ECMWF (European Centre for Medium-Range 

Weather Forecasts) reanalysis dataset, ERA5, was 

employed as the reference data for the period spanning 

2003-2012 [38]. ERA5 combines advanced forecast models 

and data assimilation systems with a vast amount of 

observations to produce high-quality reanalysis data 

[39][40]. 

Fig 1 illustrates the spatial distribution of bias for the 

period from January 1, 2003, to December 31, 2012, 

comparing the significant wave height (Hs) simulated by 

our model with the reference data (ERA5). The fig 

highlights regions of underestimation and overestimation 

in the model's performance in capturing the wave climate. 

In the North Sea and Norwegian Sea regions, the CMIP6-

driven WWIII model consistently underestimates wave 

heights by an average of 0.3 meters. Similarly, in the Bay 

of Biscay and the southern part of the English Channel, the 

model exhibits an underestimation of approximately 0.5 

meters. 

Conversely, the north-western region of the figure 

shows an overestimation, which can be attributed to the 

absence of ice usage in our model compared to ERA5. The 

inclusion of ice in the ERA5 wave data simulation leads to 

higher wave heights in this region. The underestimation of 

wave height observed in our model can be attributed to the 

absence of swells originating from the North Atlantic, 

which are not adequately captured by our simulation. This 

limitation in our model's representation of swell 

propagation contributes to the overall underestimation of 

wave heights in the analyzed period.  

The presence of temporal coincidence inaccuracies in 

both the model simulations and the ERA5 wave dataset, 

combined with the lack of consideration for swells, 
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contributes to a normalized bias range between -0.25 and 

0.25 in Fig 3. This normalized bias indicates a generally 

favorable agreement between the model outputs and the 

reference data across the region. However, it is worth 

noting that the ice forcing from ERA5 introduces 

discrepancies in certain areas.  

Fig. 1. Spatial distribution of bias (in meters) between significant 

wave height (hs) simulated by WWIII using MIROC6 winds from 

CMIP6 and significant wave height (swh) in ERA5 for the period of 

2003-2012. 

The evaluation of the mean absolute error skill score 

demonstrates the proficiency of the CMIP6 WWIII model 

in simulating significant wave heights, which is crucial for 

wave energy applications. The obtained scores range from 

0.5 to 0.8 across the domain, as illustrated in Fig 2, 

indicating a moderate to high level of accuracy in 

reproducing the observed significant wave heights from 

the ERA5 wave data. Notably, for all years between 2003 

and 2012, the model achieves skill scores above the 

moderate threshold, highlighting its consistent 

performance and reliability in capturing the wave height 

characteristics. 

Table II provides the yearly significant wave height (Hs) 

values, along with the corresponding Index of Agreement 

(IOA) and Kling-Gupta Efficiency (KEG) scores, 

representing the performance evaluation of the Wave 

Watch III model utilizing MIROC6 winds from CMIP6. 

These scores offer a comprehensive assessment of the 

model's capability to accurately reproduce the observed 

wave heights throughout the study period.  

Fig. 2. Illustrates the spatial distribution of the Mean Squared Skill 

Score (MSSS) between the simulated significant wave height (Hs) 

obtained from WWIII utilizing MIROC6 winds from CMIP6 and the 

significant wave height (swh) data in ERA5 from 2003 to 2012. 

The IOA scores exhibit a range of 0.80 to 0.89, indicating 

a significant agreement between the simulated Hs values 

and the observed wave heights in ERA5. These high IOA 

scores reflect a robust level of consistency between the 

model outputs and the reference data, underscoring the 

model's ability in capturing the wave height variations. 

Likewise, the KEG scores span from 0.60 to 0.80, 

emphasizing the efficiency of the model in replicating the 

observed wave heights. By incorporating both the 

variability and magnitude of the wave heights, the KEG 

scores provide a valuable measure of agreement between 

the model outputs and the reference data.   

The calculation of wave power was conducted on an 

hourly basis on CMIP6 forced WWIII simulations for the 

period spanning 1992-2014, shown in Fig 4. The maximum 



PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3–7 SEPTEMBER 2023, BILBAO 153-6 

wave power was observed in 2009 and 2010. The analysis 

of wave power distribution encompasses both yearly 

variations and the overall aggregation across the entire 

study period. The WWIII results based on the MIROC6 

model successfully reproduce the spatial variability of 

wave power, demonstrating distinct regions of high and 

low power intensity. The maximum predicted power 

reaches 60 kW/m, indicating the model's capability in 

capturing the intensity patterns. 

Fig. 3. Spatial distribution of normalized mean bias between 

significant wave height (hs) simulated by WWIII using MIROC6 

winds from CMIP6 and significant wave height (swh) in ERA5 for the 

period of 2003-2012. 

Furthermore, in light of the findings by Reguero [41] 

suggesting the influence of climate change on wave 

climate through wind patterns, it is imperative to calibrate 

and validate the WWIII model, specifically focusing on its 

ability to simulate climate change dynamics. This 

calibration and validation process holds significant 

importance for the wave energy sector, as it enables 

effective mitigation and adaptation strategies to address 

the anticipated changes. Therefore, particular attention 

must be given to refining and improving the WWIII model 

in the context of climate change analysis, ensuring its 

applicability and reliability for the wave energy industry. 

TABLE II 

YEARLY AGGREGATED SPATIAL MEAN VALUES OF SIGNIFICANT WAVE 

HEIGHT FOR  

, IOA, KEG SCORES AND ALL METRICS 

YEAR IOA  KEG Bias  RMSE   SI  MAE  

2003 0.85  0.73 -0.31 0.47 0.21 0.39 

2004 0.83  0.64 -0.46 0.55 0.24 0.48 

2005 0.88 0.80 -0.23 0.34 0.15 0.27 

2006 0.85 0.72 -0.28 0.46 0.20 0.38 

2007 0.80 0.61 -0.46 0.59 0.25 0.52 

2008 0.80 0.60 -0.51 0.62 0.29 0.55 

2009 0.82 0.70 -0.37 0.53 0.22 0.44 

2010 0.89 0.80 -0.15 0.31 0.14 0.24 

2011 0.81 0.60 -0.54 0.62 0.25 0.56 

2012 0.85 0.75 -0.36 0.43 0.19 0.38 

Fig. 4. Illustrates the spatial distribution of the Mean Wave 

Power(WP) in KW/m for the period of  2003-2012 from MIROC6 

forced WWIII. 



PONNI MAYA et al.: CMIP6 WAVE CLIMATE SIMULATION IN THE EUROPEAN NORTH EAST ATLANTIC BASIN USING 

WAVEWATCHIII

153-7 

IV. CONCLUSION

The present study provides valuable insights into the 

spatial patterns and temporal variations of wave climate, 

with a specific focus on significant wave height (Hs), 

utilizing the CMIP6 Wave Watch III simulations. This 

research in the field of wave energy emphasizes the 

importance of analyzing wave climate characteristics for 

assessing wave energy potential.  The evaluation of model 

performance through bias, normalized mean bias, SSMAE, 

IOA, and KEG metrics highlights the strengths and 

limitations of the CMIP6-driven WWIII model in 

reproducing observed wave heights over a 10-year period 

from 2003 to 2012. The analysis of bias distribution reveals 

regions of underestimation and overestimation, mainly in 

the North Sea, Norwegian Sea, Bay of Biscay, and the 

southern part of the English Channel. These discrepancies 

can be attributed to the absence of accurate representation 

of swells and the influence of ice forcing in the reference 

data (ERA5). Nonetheless, the normalized bias falls within 

an acceptable range (-0.25 to 0.25), indicating a reasonable 

agreement between the model outputs and the reference 

data. 

It is important to recognize the limitations of using non-

climate model forcing data, such as ERA5, which may not 

provide a complete understanding of climate change 

impacts on wave characteristics. Incorporating the CMIP6 

MIROC wind data into the model is essential for obtaining 

a more accurate representation of climate change-induced 

wave patterns. Fine-tuning the model based on this data 

will enhance our understanding of the potential effects of 

climate change on the wave climate in these specific 

regions. 

The observed normalized bias indicates the promising 

performance of the model in reproducing the wave 

climate, considering the aforementioned limitations. 

However, further investigation and fine-tuning, 

particularly with the inclusion of CMIP6 MIROC6 wind 

data, are necessary to improve our understanding of the 

wave climate and its implications for wave energy analysis 

in the study region. By addressing these factors, we can 

refine the model's ability to capture the complex dynamics 

of wave behavior and enhance its accuracy in assessing the 

impacts of climate change on wave energy resources. 

The assessment of mean absolute error skill scores 

demonstrates the model's ability in reproducing 

significant wave heights, with scores ranging up to 0.8 

across the study domain. The scores indicate a moderate to 

high level of accuracy in capturing the observed wave 

heights and validate the model's reliability for wave 

energy applications. Furthermore, the evaluation of Index 

of Agreement (IOA) and Kling-Gupta Efficiency (KEG) 

scores provides additional evidence of the model's 

capability to accurately replicate wave height variations 

throughout the study period. The high IOA scores (0.80 to 

0.89) and KEG scores (0.60 to 0.80) further underscore the 

consistency and efficiency of the model in reproducing 

observed wave heights. 

The analysis of wave power distribution reveals distinct 

regions of high and low power intensity, as captured by 

the CMIP6-driven WWIII model. The maximum predicted 

power of 60 kW/m highlights the model's ability to capture 

the intensity patterns and provides substantial insights for 

wave energy assessments. 

In light of, the findings on the influence of climate 

change on wave climate through wind patterns, it is crucial 

to calibrate and validate the WWIII model specifically for 

climate change analysis. This calibration and validation 

process will be essential for the wave energy sector and is 

part of future work, enabling effective mitigation and 

adaptation strategies to address the anticipated changes. 

Special attention should be given to refining and 

improving the model, incorporating climate change 

dynamics, and ensuring its reliability and applicability for 

the wave energy industry. 

Overall, this study enhances our understanding and 

highlights the importance of wave climate characteristics, 

model performance, and the implications of climate 

change for wave energy applications. These findings 

contribute to the advancement of wave energy research 

and provide valuable insights for the effective utilization 

of wave energy resources in the study region and beyond. 
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