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Abstract: Piecewise-affine (PWA) approximations are widely used among hybrid modeling
frameworks as a way to increase computational efficiency in nonlinear control and optimization
problems. A variety of approaches to construct PWA approximations have been proposed, most
of which are tailored to specific application areas by using some prior knowledge of the system
in their assumptions and/or steps. In this paper, a parametric method is proposed to identify
PWA approximations of nonlinear systems, without any prior knowledge of their dynamics or
application requirements. The algorithm defines the regions parametrically using hyperplanes
to cut the domain, and increases the number of regions iteratively until a user-defined error
tolerance criterion is met. General remarks are given on the algorithm’s implementation and a
case study is provided to illustrate its application to vehicle dynamics.

Keywords: Hybrid and switched systems modeling, Modeling and control of hybrid systems,
Piecewise-affine systems, Piecewise-affine approximation, Parametric system approximation.

1. INTRODUCTION

The literature on hybrid systems provides analysis and
control synthesis methodology for systems featuring in-
teracting continuous and discrete dynamics. To do so,
a variety of modeling frameworks have been proposed
for hybrid systems, as well as proof of their equiva-
lence (Heemels et al., 2001), such as PWA, Mixed-Logical-
Dynamical (MLD), Max-Min-Plus-Scaling (MMPS), and
linear complementary systems (Lunze and Lamnabhi-
Lagarrigue, 2009). Several of these frameworks have been
extensively studied, including for control (De Schutter
et al., 2020) and reachability analysis (Cândido et al.,
2018) of MMPS systems, model predictive control de-
sign (Bemporad and Morari, 1999) and its explicit solution
in some cases (Oberdieck and Pistikopoulos, 2015) for
MLD, as well as for continuous PWA systems (De Schutter
and van den Boom, 2004).
Among all the hybrid modeling frameworks, PWA systems
have received extensive attention due to their simple, yet
clear, formulation of the hybrid nature of the system
behavior (i.e. explicit representation of different dynam-
ics and their activation criteria). For example, the per-
formance of discrete-time PWA systems (Ferrari-Trecate
et al., 2002), their stability criteria in presence of un-
certainty (Hovd and Olaru, 2018), their periodic solu-
tions (Sessa et al., 2016), and bifurcation phenomena (Ito
et al., 2016) were analyzed.

⋆ This research is funded by the Dutch Science Foundation NWO-
TTW within the EVOLVE project (no. 18484). The third author
was also partly supported by the National Key R&D Program of
China no.2022YFE0198700, and by the Natural Science Foundation
of China nos. 62150610499, 62073074.

The PWA formalism is not only applied in domains where
the hybrid nature of the system is important, but it has
also been extensively utilized in a wide range of problems
to increase computational efficiency, such as modeling
prostate-specific antigen levels (Suzuki and Aihara, 2013),
water motion in sewer networks (Joseph-Duran et al.,
2014), or cornering behavior in vehicles (Sun et al., 2020).
In some cases, PWA approximation of a nonlinear model
facilitates reduction of the nonlinear control optimization
problem into a mixed-integer programming one, while still
capturing the complexity of the nonlinear behavior.
There are two main aspects to the problem of finding
a PWA approximation: optimal partitioning of the state
space into regions, and finding the optimal affine approx-
imation in each one. The shape and the number of the
regions influence computational complexity, the accuracy,
and potential numerical issues of the final form. A higher
number of regions improves accuracy and reduces the error
bound, but leads to computationally more complex control
problems. In addition, the shape and edge of the regions
are of importance as the optimization problem is most
likely to encounter numerical problems, if e.g. regions have
redundant edges or gaps exist between them.
In some applications, a proper partitioning strategy is
known based on heuristics or physics-based knowledge
of the system (Zheng and Shyrokau, 2019; Jagga et al.,
2018). In such cases, finding local affine approximations
is more straightforward and can be achieved using least-
squares or other regression methods. However, a generic
PWA-approximation optimization problem is combined,
i.e. both regions and local approximations are decision
variables. Some techniques have been proposed to tackle
challenges due to the combined nature of the problem,
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1. INTRODUCTION

The literature on hybrid systems provides analysis and
control synthesis methodology for systems featuring in-
teracting continuous and discrete dynamics. To do so,
a variety of modeling frameworks have been proposed
for hybrid systems, as well as proof of their equiva-
lence (Heemels et al., 2001), such as PWA, Mixed-Logical-
Dynamical (MLD), Max-Min-Plus-Scaling (MMPS), and
linear complementary systems (Lunze and Lamnabhi-
Lagarrigue, 2009). Several of these frameworks have been
extensively studied, including for control (De Schutter
et al., 2020) and reachability analysis (Cândido et al.,
2018) of MMPS systems, model predictive control de-
sign (Bemporad and Morari, 1999) and its explicit solution
in some cases (Oberdieck and Pistikopoulos, 2015) for
MLD, as well as for continuous PWA systems (De Schutter
and van den Boom, 2004).
Among all the hybrid modeling frameworks, PWA systems
have received extensive attention due to their simple, yet
clear, formulation of the hybrid nature of the system
behavior (i.e. explicit representation of different dynam-
ics and their activation criteria). For example, the per-
formance of discrete-time PWA systems (Ferrari-Trecate
et al., 2002), their stability criteria in presence of un-
certainty (Hovd and Olaru, 2018), their periodic solu-
tions (Sessa et al., 2016), and bifurcation phenomena (Ito
et al., 2016) were analyzed.
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The PWA formalism is not only applied in domains where
the hybrid nature of the system is important, but it has
also been extensively utilized in a wide range of problems
to increase computational efficiency, such as modeling
prostate-specific antigen levels (Suzuki and Aihara, 2013),
water motion in sewer networks (Joseph-Duran et al.,
2014), or cornering behavior in vehicles (Sun et al., 2020).
In some cases, PWA approximation of a nonlinear model
facilitates reduction of the nonlinear control optimization
problem into a mixed-integer programming one, while still
capturing the complexity of the nonlinear behavior.
There are two main aspects to the problem of finding
a PWA approximation: optimal partitioning of the state
space into regions, and finding the optimal affine approx-
imation in each one. The shape and the number of the
regions influence computational complexity, the accuracy,
and potential numerical issues of the final form. A higher
number of regions improves accuracy and reduces the error
bound, but leads to computationally more complex control
problems. In addition, the shape and edge of the regions
are of importance as the optimization problem is most
likely to encounter numerical problems, if e.g. regions have
redundant edges or gaps exist between them.
In some applications, a proper partitioning strategy is
known based on heuristics or physics-based knowledge
of the system (Zheng and Shyrokau, 2019; Jagga et al.,
2018). In such cases, finding local affine approximations
is more straightforward and can be achieved using least-
squares or other regression methods. However, a generic
PWA-approximation optimization problem is combined,
i.e. both regions and local approximations are decision
variables. Some techniques have been proposed to tackle
challenges due to the combined nature of the problem,
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The PWA formalism is not only applied in domains where
the hybrid nature of the system is important, but it has
also been extensively utilized in a wide range of problems
to increase computational efficiency, such as modeling
prostate-specific antigen levels (Suzuki and Aihara, 2013),
water motion in sewer networks (Joseph-Duran et al.,
2014), or cornering behavior in vehicles (Sun et al., 2020).
In some cases, PWA approximation of a nonlinear model
facilitates reduction of the nonlinear control optimization
problem into a mixed-integer programming one, while still
capturing the complexity of the nonlinear behavior.
There are two main aspects to the problem of finding
a PWA approximation: optimal partitioning of the state
space into regions, and finding the optimal affine approx-
imation in each one. The shape and the number of the
regions influence computational complexity, the accuracy,
and potential numerical issues of the final form. A higher
number of regions improves accuracy and reduces the error
bound, but leads to computationally more complex control
problems. In addition, the shape and edge of the regions
are of importance as the optimization problem is most
likely to encounter numerical problems, if e.g. regions have
redundant edges or gaps exist between them.
In some applications, a proper partitioning strategy is
known based on heuristics or physics-based knowledge
of the system (Zheng and Shyrokau, 2019; Jagga et al.,
2018). In such cases, finding local affine approximations
is more straightforward and can be achieved using least-
squares or other regression methods. However, a generic
PWA-approximation optimization problem is combined,
i.e. both regions and local approximations are decision
variables. Some techniques have been proposed to tackle
challenges due to the combined nature of the problem,

like partitioning the domain based on the variations of
the nonlinear function (Azuma et al., 2010), learning-
based PWA system identification using recursive adap-
tive control laws (Kersting and Buss, 2019) and online
observer-based identifiers (Du et al., 2021), or clustering
approaches, either based on convex relaxation of sparse op-
timization problems (Bako, 2014) or incorporating fuzzy-
based outlier rejection and k-means method (Khanmirza
et al., 2016).
To date, many of the developed techniques, either explic-
itly or implicitly, limit the application to low dimensions or
a bound on the number of local dynamics/modes (Thuan
et al., 2016), and many require some prior knowledge of
the PWA approximation to be found. e.g. by employing
some heuristic clustering steps (Hartmann et al., 2015).
Evidently, the effectiveness of the method depends upon
the application area and its requirements; the cited papers
have successfully found computationally efficient PWA
models for their respective systems. However, to the best
of our knowledge, no method has been proposed that ad-
dresses generic PWA approximation of a system, without
taking specific dimensions, applications, or assumptions
into account.
In this paper, we propose an iterative algorithm to find
PWA approximations of nonlinear systems satisfying a
user-defined error tolerance. Our proposed approach solves
combined optimization problems in each iteration where
parametric hyperplanes are used to cut the domain into
different regions. This results in parametric definition of
regions, which are then directly optimized as a subset
of the decision variables. As the algorithm assumes no
prior knowledge of the system, it can be implemented
for discrete-time and continuous-time dynamics, as well as
event-driven and time-driven dynamics, in a wide range of
application areas. In any case, the algorithm can still be
simplified, curtailed, or easily modified if any information
on the system is available. Details of the algorithm and
parametric region definition are described in Section 2,
accompanied by general remarks on various steps and
considerations. The algorithm is then tested using a non-
linear vehicle model as a case study in Section 3. Finally,
concluding remarks and suggestions for future work are
given in Section 4.

2. PWA APPROXIMATION

2.1 Problem Formulation

Consider a given nonlinear system with its dynamics
expressed in the generic form

ṡ = F(s,u),
where s ∈ Rn and u ∈ Rm respectively represent the state
and input vectors and F : Rm+n → Rn is the nonlinear
function to be approximated. Without loss of generality,
the augmented state vector x = [sT uT ]T is used to define
F(x) := F(s,u) since the approximated function will be
selected to be affine in both the state and the input. The
augmented domain is assumed to be bounded and will be
defined as dom(F) = D ⊂ Rm+n.
The proposed approach approximates the nonlinear func-
tion F by a PWA function f defined as

x ∈ Cp =⇒ f (x) = fp(x), fp(x) = Apx+Bp, (1)

with p ∈ {1,2, . . . ,P}, where P is the number of regions,
each defined by polytope Cp ⊆ Rm+n with

Cp ̸= /0, (2)
int(Cp)∩ int(Cq) = /0, (3)

P∪
p=1

Cp = D , (4)

for
∀p,q ∈ {1,2, . . . ,P}, p ̸= q,

to form a partition of D , with int(Cp) denoting the interior
of region Cp. By defining the border hyperplanes Lp,q ⊂
Rm+n−1 as

Lp,q = Cp ∩Cq, ∀p,q ∈ {1,2, . . . ,P}, p ̸= q, (5)
the set of border hyperplanes forming boundaries of the
region Cp are represented by the set

Lp = {Lp,q | q ∈ {1,2, . . . ,P}∧q ̸= p}.

For a fixed P, both the regions Cp and the corresponding
local affine approximations fp are obtained by finding the
optimal values of the matrices Ap and Bp, as well as the
set Lp so as to minimize the squared approximation error.
This is implemented by solving the optimization problem

min
Ap∈A , Bp∈B, Lp∈L

∫

D

∥F(x)− f (x)∥2
2

∥F(x)∥2
2 +1

dx,

s.t. (1)− (4),

(6)

where A , B, and L represent the sets containing Ap, Bp,
and Lp, respectively. The term ∥F(x)∥2

2 in the denominator
is introduced such that the cost values represent the
relative error and the added 1 prevents division be very
small values where ∥F(x)∥2 ≈ 0.

2.2 Parametric Definition of Regions

Without loss of generality, m + n is assumed to an
even 1 number as m+ n = 2d, and the states are paired in
couples as (xi,x j) to form 2-dimensional subspaces. The
corresponding pairs (i, j) are collected in the set Ω and
the local domains Di, j ⊂ R2, are defined as

x ∈ D =⇒ [xi x j]
T ∈ Di, j, ∀(i, j) ∈ Ω.

After pairing the states, the regions are defined by cutting
D perpendicular to the (xi,x j) planes as shown in Fig. 1.
Since the region boundaries are to be optimized, the place
of the cuts needs to be defined parametrically. To do so,
two carrier lines are introduced on opposite sides of Di, j,
on which points αi, j and βi, j can slide. As an example,
Fig. 1 shows three points (in yellow and orange) sliding
on the carriers, where the lines connecting the pairs 2 of
(αi, j,βi, j) are used to cut the domain D perpendicular to
Di, j.

1 It should be noted that this assumption will not pose any restric-
tions on the method since for an odd (m+n) value, the cutting pro-
cedure can be easily implemented on the unpaired single dimension
as an axis.
2 The αi, j values should be increasing and the same holds for the βi, j
values, since otherwise the corresponding cuts collide.
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Fig. 1. Parametric definition of cutting the domain; two
cases are proposed to cover all the cutting angles
within the local domain.

Remark 1. Given lα and lβ , the location of the points αi, j
and βi, j on the carriers can be obtained as

xiα = ximin +Xi sin2 ϕ + lα cosϕ ,
x jα = x jmin +Xi sinϕ cosϕ + lα sinϕ ,
xiβ = ximin +Xi sin2 ϕ + lβ cosϕ ,
x jβ = x jmin +Xi sinϕ cosϕ + lβ sinϕ ,

(7)

where the domain parameters X , ϕ , and xmin associated
with the i and j axes are shown in Fig. 2.

Fig. 2. A schematic view of the connection among various
domain parameters and their relation to the decision
variables, i.e. domain cuts.

To cover all possible cutting angles, the two cases 3 in
Fig. 1 should be investigated separately with different car-
riers. For a rectangular Di, j (e.g. due to bound constraints),
or a parallelogram, it is convenient to define the carriers for
αi, j and βi, j points parallel to one of the diagonals in each
case. Nevertheless, this concept can be easily extended for
applications with other Di, j forms by circumscribing a par-
allelogram to Di, j and defining the carriers parallel to the
diagonals for each case. The numbers of cuts perpendicular
to each (xi,x j) plane, is denoted by nci, j and it is equal to
the number of αi, j and βi, j points sliding on the carriers.

2.3 Approximation Algorithm

As the optimal number of regions is not known a priori, our
proposed algorithm tackles PWA approximation through
an iterative loop given in Algorithm 1. The vector nc

3 Requiring two cases stems from the (xi,x j) plane being 2-
dimensional.

contains the number of cuts nci, j with indices i and j such
that (xi,x j) ∈ Ω. By getting nc as input and solving (6) for
a fixed P as

P = ∏
(i, j)∈Ω

(
nci, j +1

)
,

the function reg_optimization finds the optimal affine
approximations and their corresponding regions simulta-
neously. During each iteration, reg_optimization returns
both the minimum objective J∗ and its corresponding
optimal decision variables

ν∗ = (A ∗, B∗, L ∗) ,

as output. The asterisk indicates the optimal value of the
variable, and the border hyperplanes are defined using the
position of the αi, j and βi, j points as

L =
{
(lαk , lβk

) | κ ∈ {1,2, . . . ,d} , k ∈ {1,2, . . . ,(nc)κ}
}
.

It should be noted that (6) is a nonlinear optimization
problem. Therefore, reg_optimization can either use a
global search solver such as genetic algorithm or particle
swarm, or gradient-based approaches with multiple start-
ing points. In both cases, the best objective value would
be the lowest value among the minima obtained in each
trial.

Algorithm 1 Iterative cut-based PWA approximation
cond ← true
nc ← 01×d
iter ← 0
while cond do

iter ← iter +1
ncuts ← 1d×1 ×nc + Id×d
for i ∈ {1,2, . . . ,d} do

nin ← d-th row of ncuts
[err(i),sol(i)]← reg_optimization(nin)

end for
dbest ← arg min

i
(err (i))

nc ← dbest-th row of ncuts
if min(err)� tolerr then

cond ← false
return nc,sol(dbest)

else if ∏d
q=1 nc(q)� Nregmax then

cond ← false
return print(‘Exceeded Nreg’)

else if iter � itermax then
cond ← false
return print(‘Exceeded itermax’)

end if
end while

However, the number of regions may not be sufficient to
approximate the nonlinear function within a particular
error bound. In that case, more cuts should be introduced
to partition D . To do so, the designed loops runs as
follows to investigate different scenarios: in each iteration,
reg_optimization is solved for d cases, in which only
one element in nc is increased by 1, and the nc with the
lowest objective is selected as the best cutting strategy
for the next iteration. The algorithm stops when reaching
objective values below the error tolerance tolerr. To avoid
an infinite loop, the procedure can also be stopped by
passing maximum bounds on the number of iterations or
the number of regions.

Example. For D ⊂ R4, d = 2, and Ω = {(1,2),(3,4)},
the algorithm starts by setting nc = [0 0], which means
no cutting. In the first iteration, reg_optimization is
called twice, finding the best approximations for nc = [1 0]
and nc = [0 1] which correspond respectively to making
only one cut perpendicular to D1,2, and only one cut
perpendicular to D3,4. If nc = [1 0] gives a lower objective,
but fails to satisfy the error tolerance, the next iteration
starts with nc = [1 0], and two cases nc = [2 0] and nc =
[1 1] are investigated. In other words, if one cut on D1,2 is
considered a successful cutting strategy, the next step is to
improve the result by adding more cuts to it as a baseline.

2.4 General Remarks

The power of Algorithm 1 stems from neither posing limits
on system dimensions nor assuming a required number of
regions. Moreover, as the approximation problem (6) can
be solved by gridding the domain, our proposed method
can also be applied in cases where the analytical form of
the nonlinear model is not available. For instance, training
measurement data sets can also be used to find a fitted
PWA approximation using Algorithm 1. In addition, some
general notes should be made:

• PWA approximation of F : Rm+n → Rn is done by
running Algorithm 1 independently for each of the
n states. This leads to the cuts and subsequently
regions that are independently defined and evaluated
for each component of ṡ. If this is not convenient for
certain applications and it is desired to have the same
regions for all the elements of ṡ, Algorithm 1 can be
used in the same fashion or modified by changing the
objective in (6) as

min
Ap∈A , Bp∈B, Lp∈L

∫

D

∥W (F(x)− f (x))∥2
2 +1

∥F(x)∥2
2

dx,

s.t. (1)− (4),
where W is a weight matrix.

• Implementing the proposed approach is completed by
running Algorithm 1 for cases 1 and 2 in parallel and
choosing the best result. However, one of the two cases
may always be showing better results from the first
iteration. To avoid unnecessary computation in such
instances, the cases can be tested and compared by
running the first iteration of Algorithm 1, identifying
the better case (i.e. with a lower objective), and then
implementing Algorithm 1 only for that case.

• Pairing the states as Ω can be done arbitrarily.
Prior knowledge of the system and/or its application
may suggest that specific states should be paired.
Nevertheless, the pairing can be also done by testing
different combinations of Ω through one iteration, as
was proposed for evaluating cases 1 and 2.

• The proposed algorithm assumes the domains (D
and subsequently Di, j) to be bounded. In case of an
unbounded domain, a subset of the regions Cp need
to be defined unbounded as well. This will not affect
the decision variables in (6) as the cutting places
are optimized, not the regions’ boundaries. However,
the objective in (6) approaches infinity across an
unbounded domain. To avoid this, a sufficiently large
bounded subset of the unbounded domain D can

be used to find the PWA approximation using our
algorithm. The result can then be directly used to
approximate the behavior in the original domain.

• The matrix form of the border hyperplanes obtained
from (5) can be constructed by extending the defini-
tion of the cuts. Using (7), a cut L is defined by

L := x j =

(
x jα − x jβ

xiα − xiβ

)
xi +

(
x jα − xiα

x jα − x jβ

xiα − xiβ

)
.

As each pair of cuts from different Di, j are perpendic-
ular, the resulting cutting hyperplanes in D can be
directly combined in a generic matrix form

Lp,q := Hx+h = 0.

3. CASE STUDY: VEHICLE DYNAMICS

In this section, Algorithm 1 is used to find a PWA
approximation of a nonlinear model of vehicle dynamics,
integrating the coupled longitudinal and lateral dynamics
in a single-track configuration, and considering linear tire
forces. The model and implementation of the proposed
approach are explained in the following sections.

3.1 Nonlinear Vehicle Model

A single-track representation of the vehicle is shown in
Fig. 3. With the system variables and parameters respec-
tively defined in Tables 1 and 2, the nonlinear vehicle
model is described by the following equations:

v̇x =
1
m

[
Fxf cosδ −Fyf sinδ +Fxr

]
+ vyr, (8)

v̇y =
1
m

[
Fxf sinδ +Fyf cosδ +Fyr

]
− vxr, (9)

ṙ =
1
Izz

[
Fxf sinδ lf +Fyf cosδ lf −Fyr lr

]
, (10)

and the lateral forces are given by the linear tire model
Fyf =Cαfαf, Fyr =Cαrαr,

where the slip angles are obtained by

αf = δ − tan−1
(

vy + lfr
vx

)
, αr = tan−1

(
vy − lrr

vx

)
.

αf δ

αr
r = ·ψ

ψ
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Fig. 3. Configuration of the single-track vehicle model

3.2 Implementation and Results

Considering system dynamics in (8) to (10), Algorithm 1
is used to find PWA approximation of v̇x, v̇y, and ṙ
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Example. For D ⊂ R4, d = 2, and Ω = {(1,2),(3,4)},
the algorithm starts by setting nc = [0 0], which means
no cutting. In the first iteration, reg_optimization is
called twice, finding the best approximations for nc = [1 0]
and nc = [0 1] which correspond respectively to making
only one cut perpendicular to D1,2, and only one cut
perpendicular to D3,4. If nc = [1 0] gives a lower objective,
but fails to satisfy the error tolerance, the next iteration
starts with nc = [1 0], and two cases nc = [2 0] and nc =
[1 1] are investigated. In other words, if one cut on D1,2 is
considered a successful cutting strategy, the next step is to
improve the result by adding more cuts to it as a baseline.

2.4 General Remarks

The power of Algorithm 1 stems from neither posing limits
on system dimensions nor assuming a required number of
regions. Moreover, as the approximation problem (6) can
be solved by gridding the domain, our proposed method
can also be applied in cases where the analytical form of
the nonlinear model is not available. For instance, training
measurement data sets can also be used to find a fitted
PWA approximation using Algorithm 1. In addition, some
general notes should be made:

• PWA approximation of F : Rm+n → Rn is done by
running Algorithm 1 independently for each of the
n states. This leads to the cuts and subsequently
regions that are independently defined and evaluated
for each component of ṡ. If this is not convenient for
certain applications and it is desired to have the same
regions for all the elements of ṡ, Algorithm 1 can be
used in the same fashion or modified by changing the
objective in (6) as

min
Ap∈A , Bp∈B, Lp∈L

∫

D

∥W (F(x)− f (x))∥2
2 +1

∥F(x)∥2
2

dx,

s.t. (1)− (4),
where W is a weight matrix.

• Implementing the proposed approach is completed by
running Algorithm 1 for cases 1 and 2 in parallel and
choosing the best result. However, one of the two cases
may always be showing better results from the first
iteration. To avoid unnecessary computation in such
instances, the cases can be tested and compared by
running the first iteration of Algorithm 1, identifying
the better case (i.e. with a lower objective), and then
implementing Algorithm 1 only for that case.

• Pairing the states as Ω can be done arbitrarily.
Prior knowledge of the system and/or its application
may suggest that specific states should be paired.
Nevertheless, the pairing can be also done by testing
different combinations of Ω through one iteration, as
was proposed for evaluating cases 1 and 2.

• The proposed algorithm assumes the domains (D
and subsequently Di, j) to be bounded. In case of an
unbounded domain, a subset of the regions Cp need
to be defined unbounded as well. This will not affect
the decision variables in (6) as the cutting places
are optimized, not the regions’ boundaries. However,
the objective in (6) approaches infinity across an
unbounded domain. To avoid this, a sufficiently large
bounded subset of the unbounded domain D can

be used to find the PWA approximation using our
algorithm. The result can then be directly used to
approximate the behavior in the original domain.

• The matrix form of the border hyperplanes obtained
from (5) can be constructed by extending the defini-
tion of the cuts. Using (7), a cut L is defined by

L := x j =

(
x jα − x jβ

xiα − xiβ

)
xi +

(
x jα − xiα

x jα − x jβ

xiα − xiβ

)
.

As each pair of cuts from different Di, j are perpendic-
ular, the resulting cutting hyperplanes in D can be
directly combined in a generic matrix form

Lp,q := Hx+h = 0.

3. CASE STUDY: VEHICLE DYNAMICS

In this section, Algorithm 1 is used to find a PWA
approximation of a nonlinear model of vehicle dynamics,
integrating the coupled longitudinal and lateral dynamics
in a single-track configuration, and considering linear tire
forces. The model and implementation of the proposed
approach are explained in the following sections.

3.1 Nonlinear Vehicle Model

A single-track representation of the vehicle is shown in
Fig. 3. With the system variables and parameters respec-
tively defined in Tables 1 and 2, the nonlinear vehicle
model is described by the following equations:

v̇x =
1
m

[
Fxf cosδ −Fyf sinδ +Fxr

]
+ vyr, (8)

v̇y =
1
m

[
Fxf sinδ +Fyf cosδ +Fyr

]
− vxr, (9)

ṙ =
1
Izz

[
Fxf sinδ lf +Fyf cosδ lf −Fyr lr

]
, (10)

and the lateral forces are given by the linear tire model
Fyf =Cαfαf, Fyr =Cαrαr,

where the slip angles are obtained by

αf = δ − tan−1
(

vy + lfr
vx

)
, αr = tan−1

(
vy − lrr

vx

)
.
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Considering system dynamics in (8) to (10), Algorithm 1
is used to find PWA approximation of v̇x, v̇y, and ṙ
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Table 1. System Variables

Var. Definition Unit
vx Longitudinal velocity m/s
vy Lateral velocity m/s
ψ Yaw angle rad
r Yaw rate rad/s
δ Steering angle (road) rad

Fxf Longitudinal force on the front axis N
Fxr Longitudinal force on the rear axis N
Fyf Lateral force on the front axis N
Fyr Lateral force on the rear axis N
Fzf Normal load on the front axis N
Fzr Normal load on the rear axis N
αf Front slip angle rad
αr Rear slip angle rad

Table 2. System Parameters

Par. Definition Value Unit
m Vehicle mass 1970 kg
Izz Inertia moment about z-axis 3498 kg/m2

lf CoG∗ to front axis distance 1.4778 m
lr CoG to rear axis distance 1.4102 m

Cαf Front cornering stiffness 126784 N
Cαr Front cornering stiffness 213983 N
∗Center of Gravity

independently. MATLAB’s Optimization toolbox is used
to implement the algorithm using lsqnonline for 10
starting points. The system is simulated during an evasive
double lane-change maneuver and the axes corresponding
to the augmented state vector x = [vx vy r Fxf Fxr δ ]T are
paired as

Ω = {(vx,r),(vy,δ ),(Fxf,Fxr)},
which results from our physics-based knowledge of the sys-
tem states, their dimensions, and their order of magnitude.
Comparing the first iterations of cases 1 and 2 showed that
case 2 gives lower objectives when cutting D perpendicular
to Dvx,r and Dvy,δ , while case 1 is the better one to define
cuts on DFxf,Fxr .
The solution time depends on the number of regions due to
an subsequent increase in the number of decision variables.
The algorithm was run for different error tolerances using
the DelftBlue supercomputer, at the Delft High Perfor-
mance Computing Centre (DHPC) with every iteration
for the number of regions between 2 to 10 taking on
average 435 minutes.
The approximations obtained for tolerr values in Table 3
using our proposed cut-based algorithm (CB), and the
Lebesgue PWA approximation (LB) approach proposed
by Azuma et al. (2010), have been compared with the
nonlinear system for the open-loop system simulation in
Fig. 4. In the LB approach, the domain is partitioned
perpendicular to each axis and based on variation of the
nonlinear function’s gradient; this results in hypercubic
regions. However, the CB approach cuts the domain per-
pendicular to 2-dimensional subspaces which leads to poly-
topic regions. The same tolerances were selected for both
algorithms for fair comparison, and they converged to the
number cuts nc defined as

nc =
[
nc(vx ,r)

, nc(vy,δ )
, nc(Fxf,Fxr)

]
.

The total number of regions N is listed as well in Ta-
ble 3. Fig. 4 shows that the CB approach provides a

more accurate approximation of the model, and its good
performance is better seen in v̇x which has a higher degree
of nonlinearity where CB gives a better approximation
while introducing a smaller number of regions.

Table 3. The number of cuts at convergence
for case study instances with different error

tolerance values

Instance v̇x v̇y ṙ
tolerr 0.30 0.10 0.05

PWA−LB nc [1,3,0] [0,0,0] [0,0,0]
N 8 1 1

PWA−CB nc [0,3,0] [1,0,0] [1,0,0]
N 4 2 2

Fig. 4. Open-loop simulation of an evasive double lane-
change maneuver using nonlinear vehicle model and
two PWA approximations: LB and CB approaches

4. CONCLUSIONS

In this paper, an iterative algorithm for PWA approxima-
tion of nonlinear systems was proposed assuming no prior
knowledge of the application area. By using a cut-based
parametric definition of the regions in the optimization
problem, the algorithm aims at finding an optimal parti-
tioning of the domain into polytopic regions and the corre-
sponding local affine approximations, simultaneously. This
combined optimization problem is solved in each iteration
for several cases of adding new cuts whereas the number
of cuts is increased in each iteration until a user-specified
error tolerance is reached. The algorithm is implemented

on a nonlinear vehicle model as a case study where dif-
ferent error tolerances were selected for each state and the
results were compared to another PWA approximation ap-
proach from the literature, where similar to our proposed
algorithm, the regions are included parametrically in the
decision variables of the combined optimization problem.
The comparison shows that our approach gives more a
accurate approximation of the nonlinear system, in some
cases with fewer number of regions.
In future work, the current algorithm can be improved
along two lines. First, the iteration law can be enhanced for
faster convergence to the optimal number of regions while
avoiding introduction of extra and/or redundant cuts. For
instance, instead of increasing the number of cuts in each
iteration by one, more cuts can be introduced based on the
difference of the objective functions between the last two
iterations. Second, adjustments or additions to the algo-
rithm structure can be introduced for applications where
discontinuity is problematic, to either avoid discontinuity
on the region borders in the obtained PWA approxima-
tion, or to circumvent its undesired consequences (e.g. in
switching analysis or control synthesis) by defining auxil-
iary affine dynamics or switching rules along the borders.
Moreover, on the application level we aim at investigating
the performance of our proposed approximation method
on a wider variety of test cases, i.e. driving scenarios.
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on a nonlinear vehicle model as a case study where dif-
ferent error tolerances were selected for each state and the
results were compared to another PWA approximation ap-
proach from the literature, where similar to our proposed
algorithm, the regions are included parametrically in the
decision variables of the combined optimization problem.
The comparison shows that our approach gives more a
accurate approximation of the nonlinear system, in some
cases with fewer number of regions.
In future work, the current algorithm can be improved
along two lines. First, the iteration law can be enhanced for
faster convergence to the optimal number of regions while
avoiding introduction of extra and/or redundant cuts. For
instance, instead of increasing the number of cuts in each
iteration by one, more cuts can be introduced based on the
difference of the objective functions between the last two
iterations. Second, adjustments or additions to the algo-
rithm structure can be introduced for applications where
discontinuity is problematic, to either avoid discontinuity
on the region borders in the obtained PWA approxima-
tion, or to circumvent its undesired consequences (e.g. in
switching analysis or control synthesis) by defining auxil-
iary affine dynamics or switching rules along the borders.
Moreover, on the application level we aim at investigating
the performance of our proposed approximation method
on a wider variety of test cases, i.e. driving scenarios.
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