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Abstract

Intensity modulated proton therapy is an advanced radiotherapy technique that is used to treat
cancer patients. In order to successfully treat a patient, sufficient dose to the tumor is required.
However, during the fractionated treatment, multiple errors can cause a difference between the
planned and actual dose delivery. To ensure adequate dose delivery in potential error scenarios,
robust treatment plans are acquired as these are less sensitive to uncertainties inherent to proton
therapy. However, robust optimization is challenging.

First, as robust optimization accounts for multiple error scenarios, the time needed to generate
optimal treatment plans increases significantly. Therefore, it is investigated in this thesis if the
optimization time can be reduced while preserving treatment plan quality. This is investigated
through two different methods. In the first method, the number of error scenarios accounted for
during optimization is reduced. We found that this can significantly reduce optimization time,
while improved target coverage and lower risk on side effects are obtained. However, the near-
maximum dose to the tumour was found to be less favourable. The second method investigated
is variance optimization. This method significantly reduces optimization time. However, for
similar target coverage, the risk of side effects increases.

Another challenge related to robust optimization is the increase in delivered dose to healthy
tissues surrounding the tumor, which increases the risk of side effects. Therefore, it is investi-
gated in this thesis if the risk of side effects can be lowered by allowing higher maximum dose
to the tumor. It is found that this method indeed reduces the risk of side effects. However, the
increased maximum dose to the tumor may not be clinically desired as the increase may lead
to higher risks of other side effects: edema and fibrosis. The clinically desired trade-off between
near-maximum dose and normal tissue sparing should be established.
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Preface

This thesis marks the end of my combined master in Applied Mathematics and Biomedical
Engineering at Delft University of Technology. My thesis, worth 42 ECTS, separately highlights
the mathematical and biomedical aspects of the research but also shows the connection between
the two fields. First, Section 2 provides a general introduction into the thesis topic, which
combines mathematical and biomedical aspects. Sections 3 and 4 focus on the biomedical
aspects. Whereas Section 5 is centered around the mathematical aspects of this thesis.
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1 Introduction

In 2020, over 900.000 people worldwide were diagnosed with head and neck cancer and over
450.000 people died from this type of cancer [1]. Head and neck cancer includes all types of
cancer in the head and neck region excluding the brain, eyes, thyroid and spinal cord.

One of the advanced modalities to treat cancer is intensity modulated proton therapy (IMPT),
where protons are used to eradicate the tumor. As treatment is delivered in multiple fractions,
divided over a number of weeks, it is key to generate a treatment plan that ensures sufficient
dose to the tumor in each of these fractions. Many things such as tumor shrinkage, as result of
successful treatment, and weight loss of the patient can impact the dose delivery in the different
treatment fractions. This, together with other uncertainties inherent to IMPT, makes it chal-
lenging to generate an optimal treatment plan. To deal with these challenges, robust treatment
plans are generated as these are less sensitive to uncertainties. However, with robust optimiza-
tion it takes many hours to generate an optimal treatment plan. To improve the efficiency of
robust treatment plan generation, it is crucial to minimize optimization times.

Another issue in IMPT treatment planning is that by irradiating the tumor, unavoidable doses
are also delivered to normal tissues. Therefore, one of the challenges is to reduce the dose to
normal tissues as damage to those can cause side effects. One of the main side effects for head
and neck patients is xerostomia, also known as dry mouth syndrome. In the worst case scenario,
patients with xerostomia have to drink water every 30 minutes to keep their mouth hydrated.
This means both during the day and at night. The other main side effect is dysphagia, which
means difficulty in swallowing. Patients with severe cases of dysphagia can not eat and have to
rely on a feeding tube. As these side effects have a substantial impact on the patient’s quality of
life, it is key to optimize treatment plans such that the tumor is eradicated but normal tissues
are spared.

Hence, the focus of this thesis is two-fold, which is summarized in the following research ques-
tions:

• Can we reduce the optimization time while maintaining treatment plan quality?

• Can we reduce the risk of side effects?

To answer these questions, the remainder of this thesis is structured as follows. In Section 2 the
basic principles of proton therapy and treatment plan generation are covered. Then, in Section
3, we present a method that can be used to reduce the optimization time. By employing this
method, we hypothesize that the risk of side effects can be reduced by increasing the maximum
allowable dose to the tumor, which is further investigated in Section 4. In Section 5, we explore
if variance optimization can be used to again reduce the optimization time. Finally, in Section
6 we formulate answers to the research questions.
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2 Technical background

The aim of this section is to provide some practical background that is needed to understand this
thesis. Therefore, in Section 2.1 the basic principles of conventional radiotherapy and proton
therapy are explained. In Sections 2.2 and 2.3, we explain what radiotherapy treatment planning
and fractionation is, respectively. Then, in Sections 2.4 and 2.5, we explain the uncertainties
that are related to radiotherapy treatment planning and two methods that deal with these
uncertainties. Once a treatment plan is generated, it is important to assess its quality. To this
end, Section 2.6 presents two methods that are used to evaluate treatment plans. In Section 2.7,
we provide medical information about head and neck patients as they are the focus group for
this research. Finally, in Section 2.8 we elaborate on some criteria that are used for treatment
plan assessment in this study.

2.1 Radiotherapy

Cancer is frequently treated using radiotherapy, where radiation is used to eradicate cancerous
tissue [2]. Various types of radiotherapy are applied, which differ in the radiation dose as a
function of the penetration depth. In photon therapy, which is most commonly used, patients
are treated with X-rays. For X-rays, the peak radiation dose is deposited close to the skin, after
which the dose deposition decreases exponentially. Proton therapy is another, rapidly growing,
radiotherapy treatment modality [3]. In proton therapy, patients are treated with protons rather
than X-rays. The energy of a proton determines how deep it can penetrate, also called its range.
However, its penetration depth also depends on the density of the material it encounters. This
behaviour is described by the stopping power. Hence, the depth of the peak radiation dose can
be changed by altering the proton energy. For proton therapy, this peak is known as the Bragg
peak. Moreover, the radiation dose decreases instantly after depositing the peak radiation dose.
For both types of therapy, the relation between dose deposition and penetration depth is shown
in Figure 2.1.1.
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Figure 2.1.1: The relation between dose deposition and penetration depth of photons and protons
[4].

Here, the proton energy is adjusted such that the Bragg peak coincides with the tumor. This
figure illustrates the potential dosimetric advantages of proton therapy compared to photon
therapy. Because of the differences in the dose-depth curves, the radiation dose deposited to
healthy tissue surrounding the tumor can be reduced in proton therapy compared to photon
therapy.

The type of proton therapy considered throughout this research is called intensity modulated
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proton therapy (IMPT). Here, the proton beam is divided into smaller pencil beams, where each
pencil beam can be steered with magnets and their energy and intensity can be tuned.

During radiotherapy treatment delivery, the patient is positioned on a couch inside the treatment
room. A schematic overview of a treatment device is shown in Figure 2.1.2. The couch can be
translated and rotated horizontally inside the treatment room. Connected to the couch is a
machine referred to as the gantry, which can rotate around the patient. At the head of the
gantry, called the snout, proton beams are released and directed towards the patient. As the
snout can be positioned 360◦ around the patient, its position is known as the beam angle.

Figure 2.1.2: Schematic overview of a treatment device [5].

2.2 Treatment planning

In proton therapy treatment planning, a patient-specific optimal dose distribution is generated.
To this end, numerous machine parameters have to be determined. These parameters include
beam and couch angles as well as the energy, direction and intensity of the pencil beams. To
determine these parameters, an entire workflow is developed [6]. First, a planning computed
tomography (CT) scan of the patient is required. Using this CT scan, the proton stopping
power is calculated as well as the dose that will be delivered to the patient by a pencil beam.
Furthermore, on this planning CT (pCT) scan both the tumor and the surrounding healthy
tissues in the vicinity of the tumor, known as organs at risk (OARs), are delineated. Delineation
allows for fast and easy distinction of structures. The volume that contains the tumor as visible
on the CT scan and parts where the microscopic parts of the tumor are expected to be, is the
clinical target volume (CTV). The CTV is the volume that must be irradiated during therapy
and thereby requires a minimum amount of dose to eradicate the cancerous tissue. However, it
is crucial to limit OAR dose to minimize side effects. Therefore, structure-wise dose constraints
and objectives are defined. Subsequently, a computer program is used to find an optimal dose
distribution within given constraints. To compute the dose distribution inside a patient, the
planning CT scan is discretized into voxels. The relation between the dose in a voxel due to a
pencil beam is given by the dose deposition matrix D ∈ Rn×m as follows:

d = Dx. (2.1)

Here, d ∈ Rn represents the vector containing the dose in each voxel for all n voxels and
x ∈ Rm represents the pencil beam intensities for the m pencil beams [5]. In this research, the
in-house developed program Erasmus-iCycle is used to generate and optimize the dose distribu-
tion. Hence, the output of the treatment planning process contains the values for each of the
parameters that are required to deliver the desired dose distribution.
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2.3 Fractionation

Radiotherapy is typically delivered in multiple fractions. As healthy tissue generally recovers
faster than malignant cells, fractionation increases the therapeutic window [7]. Prior to each
treatment fraction it is important to accurately position the patient to limit errors in dose
deposition. To reduce geometrical variability of head and neck patients between and during
treatment fractions, patients wear a mask that significantly limits freedom of movement. Also,
to verify the patients’ position, a cone-beam CT scan (a low dose CT-scan) is acquired to move
the patient in the planned position. Still, over the course of a treatment, the patients’ anatomy
can change due to various reasons. These reasons include weight loss and tumor shrinkage as
result of successful treatment. Therefore, during the course of the fractionated treatment, repeat
CT (rCT) scans are made. These scans are used to verify whether the original treatment plan
is still sufficient for the current anatomy. If not, a new treatment plan is generated and used for
the remainder of treatment fractions.

In the current treatment schedule we use, head and neck cancer patients are treated with 35
fractions, spread over 7 weeks. Due to resources, it is impossible to generate a new planning CT
scan every fraction. However, in every fraction, sufficient dose should be delivered to the CTV
and minimal dose to the OARs. This highlights the importance of finding an optimal treatment
plan that optimizes dose delivery to the CTV and spares healthy tissues in each treatment
fraction.

2.4 Uncertainties

In both photon and proton therapy an adequate combination of machine parameters and patient
setup are crucial to obtain optimal treatment delivery as slight deviations in these parameters
can lead to undesired dose distributions [8]. In fact, some uncertainties might interfere with
treatment quality. The main setup uncertainties and their corresponding magnitude, obtained
from measurements at HollandPTC, are listed in Table 2.4.1. These uncertainties include errors
in the CT isocenter, which is the error during positioning of the patient while acquiring the
planning CT scan. Furthermore, MR-imaging is used for delineation of the CTV. Next, the
CTV is propagated onto the planning CT scan. As the match between MRI and CT is likely to
be imperfect, this results in an MR-registration error. Right before the treatment, the patients’
position relative to the gantry is verified by the acquisition of a cone-beam CT scan. The cone
beam CT scan is aligned with the planning CT scan. After alignment of the CT scans, a residual
setup error remains [9]. The match between the cone-beam and planning CT scans is used to
move the couch in the required position, which is not guaranteed to be exact. Other uncertainties
are related to intra-fraction movement of the patient [6]. The total set-up error can be divided
into a systematic and random part. The systematic error is defined as the mean error. Hence,
it is the same for every treatment fraction. The random errors are variations around the mean
error during a fractionated treatment.

Table 2.4.1: Main setup uncertainties in proton therapy with their corresponding magnitudes
as measured in HollandPTC [8,10].

Uncertainty Systematic error (mm) Random error (mm)

Isocenter CT 0.5 0

Isocenter gantry 0 0.5

Couch 0 0.5

MR registration 0.5 0

Residual setup (x,y,z) 0.21, 0.32, 0.38 0.52, 0.48, 0.61

Intra-fraction motion (x,y,z) 0.35, 0.31, 0.55 0.62, 0.49, 0.84

In proton therapy, there is an additional type of uncertainty compared to photon therapy. This
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uncertainty is related to the proton range as the stopping power is predicted with uncertainty
[11,12]. Underestimating and overestimating tissue density can lead to overshoot and undershoot
of the proton beam, respectively. In head and neck cancer, the range error is estimated at
1.5% [13].

In photon therapy, uncertainties are typically dealt with by putting a margin around the CTV,
resulting in the so called planning target volume (PTV). Subsequently, the PTV is irradiated
with the prescribed dose to ensure sufficient CTV coverage. This approach is suitable for photon
therapy, since we may assume that small deviations do not influence the shape of the dose
distribution [14]. This assumption is known as the static dose cloud approximation. However,
the static dose cloud approximation is not valid for protons. This can be observed in Figure
2.1.1. Here, the curve for protons is much steeper and therefore much more sensitive to small
shifts of the curve. Hence, another approach has to be incorporated to obtain appropriate CTV
coverage in proton therapy.

2.5 Robust optimization

One of the approaches that deals with uncertainties in IMPT treatment planning is robust
optimization [15, 16]. In robust optimization, the treatment plan is optimized while assuming
specific errors might occur. To this end, multiple treatment scenarios are considered. In the
nominal treatment scenario, it is assumed that no errors occur. The other treatment scenarios
are included to account for errors in proton range and setup. For errors in range, undershoot and
overshoot are considered. For errors in setup, it is typically assumed that a patient is shifted in
a specific direction. Any combination of treatment scenarios can be included in the optimization
problem. With robust optimization, the aim is to obtain the planning goals in each treatment
scenario accounted for. For each treatment scenario k, the dose distribution as presented in
Equation (2.1) changes into the following discrete dose form:

dk = Dkx. (2.2)

Note that range and setup uncertainties correspond to uncertainties in the dose deposition
matrix [15].

2.5.1 Minimax optimization

There are multiple robust optimization methods. One of the most used methods, which is
currently used in Erasmus-iCycle, is minimax optimization [15–17]. In minimax optimization,
the aim is to optimize the dose distribution for the worst treatment scenario that is accounted
for. Therefore, it is also known as worst-case optimization. As a consequence, the quality of
the treatment plan is determined by the best treatment plan that can be obtained in the worst
possible treatment scenario. Mathematically, the minimax approach is represented as

minimize
x

max
k

[f(dk(x))] (2.3)

subject to dk = Dkx (2.4)

x ≥ 0. (2.5)

Here, the objective function f is considered for each treatment scenario k. This objective
function can be, for example, the function that computes the mean or maximum value of the
dose. The goal is then to minimize the maximum objective function value that can be found
for any of the treatment scenarios accounted for. Hence, we are looking for those pencil beam
intensities that minimize the objective function value.

2.5.2 Stochastic programming

Another commonly used robust optimization method is stochastic programming, also referred to
as the probabilistic approach [15,16]. Like minimax optimization, stochastic programming aims
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to find the optimal solution while taking multiple treatment scenarios into account. However, in
contrast to minimax optimization, the quality of the expected treatment scenario is optimized
rather than the worst case treatment scenario. There exist multiple ways to formulate the cor-
responding optimization problem. In this research, it is assumed that every included treatment
scenario k has an assigned weight wk. These weights can be used to indicate the probability that
treatment scenario k occurs. Hence, higher weights are assigned to the most likely treatment
scenarios. During optimization, the expected value of the weighted sum of objective values is
minimized. Therefore, the optimization problem is mathematically formulated as

minimize
x

∑
k

wkf(dk(x))

subject to dk = Dkx

x ≥ 0.

Unkelbach et al. show the potential of stochastic programming in IMPT treatment planning
[14,18]. In [18] they tested the method on a circular phantom, representing a slice of a patient,
containing a tumor that surrounds an OAR. The geometry of the phantom is presented in Figure
2.5.3.

Figure 2.5.3: Geometry of the phantom where the OAR is surrounded by the CTV [18].

To test the method, two optimization cases are considered. In the first case, the treatment plan
for the nominal treatment scenario is optimized without taking uncertainties into account. In the
second case, a range uncertainty of 5 mm is considered and stochastic programming is used to
find an optimal treatment plan. It was found that in the second case, improved target coverage
and homogeneity were obtained compared to optimizing for the nominal treatment scenario.
Furthermore, excessive OAR dose and underdosage to the tumor were avoided in case of range
errors. However, in general, the OAR dose increases when accounting for range uncertainty.

In [14], the stochastic programming approach is tested for a patient with a paraspinal tumor.
Again, two cases are considered. In the first case, the treatment plan is optimized accounting
only for the nominal treatment scenario. In the second case, the systematic setup (2.5 mm)
and range uncertainties (5 mm) are accounted for while optimizing the treatment plan using
stochastic programming. They found that by accounting for uncertainties, the spinal cord is
protected against overdoses. Furthermore, target coverage and homogeneity were obtained,
respectively.

2.5.3 Multi-criterial optimization

Optimization of IMPT treatment plans is a multi-criterial optimization (MCO) problem [19]. In
MCO, multiple objective functions are defined. Objectives include for example minimum dose
in the target, maximum dose in the target and mean dose to OARs.
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Erasmus-iCycle is a system for automatic MCO treatment planning and sequentially optimizes
objectives while satisfying constraints. The objectives and constraints are specified in a wish-list,
where all objectives have assigned priorities. In Table 2.5.2 a simplified version of a wish-list is
shown. The top row indicates a constraint and in the bottom rows, the prioritized objectives
are listed. The aim is to find a plan that satisfies all objectives within the given constraints,
where it is most important to satisfy the objective with highest priority. The general formula of
the optimization problem becomes:

minimize
x

[f1(x), ...,fn(x)]

subject to gj(x) ≤ bj ,

x ≥ 0.

Here, n is the number of objectives, gj with 1 ≤ j ≤ m is the number of constraints and bj is the
goal value of a particular constraint [5]. In each step of the MCO process one of the objective
functions fi is minimized while satisfying all constraints and higher prioritized objectives. After
the MCO process, a Pareto optimal treatment plan is obtained. Hence, an objective can only
be improved at the cost of another objective.

The optimization process of Erasmus-iCycle consists of two steps. In the first step, if an ob-
jective can attain its desired value, the objective is assigned its highest acceptable value (for a
minimization problem). Hence, the objective is not further minimized even though this might
be possible. Thereby offering room for the other objectives to be satisfied as well. In the sec-
ond step, all objectives are assigned their optimal value, in order of their priority. To find the
optimum of an objective function, a primal-dual interior-point approach is used. This approach
requires both the gradient and the Hessian of the objective functions to find the step direction
for each iteration [20].

Table 2.5.2: An example of a wish-list.

Structure Type Goal Sufficient

constraint CTV min 67.9 Gy 67.9 Gy

Priority

1 CTV minimize max 74.2 Gy 74.2 Gy

2 Brain stem minimize max 30 Gy 1 Gy

2 Spinal cord minimize max 30 Gy 1 Gy

3 Brain minimize max 30 Gy 1 Gy

4 Left parotid minimize mean 1 Gy 1 Gy

4 Right parotid minimize mean 1 Gy 1 Gy

5 Oral cavity minimize mean 1 Gy 1 Gy

2.6 Evaluation methods

In treatment planning it is crucial to obtain sufficient CTV coverage while satisfying OAR
constraints [15]. In robust evaluation it is investigated whether developed treatment plans
obtain sufficient CTV coverage in the treatment scenarios accounted for. In conventional photon
therapy there exist common ways to evaluate robustness. These evaluation methods for photons
are PTV based. Here, PTV V95% > 98% is typically used, which means the volume of the
PTV that receives more than 95% of the prescribed dose is over 98%. However, as discussed
in Section 2.4, the PTV approach is not valid for proton therapy. Therefore, other evaluation
methods are needed to evaluate robustness.

To develop similar standards for robustness evaluation of IMPT treatment plans, Korevaar et
al. [11] investigated multiple methods. These are explained in Section 2.6.1.
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2.6.1 Voxelwise evaluation

To develop similar rules for robustness evaluation of IMPT treatment plans compared to photon
treatment plans, Korevaar et al. [11] used a two-step approach.

In the first step, the goal is to find summary evaluation dose distributions to allow for easy
plan assessment in daily clinical practice. A summary evaluation dose distribution summarizes
the location of under-dosage in treatment scenarios. Three summary evaluation dose distribu-
tions that have been investigated are voxelwise minimum dose, voxelwise mean dose and worst
case scenario dose. An overview of these methods is presented in Figure 2.6.4. The voxelwise
minimum dose is the minimum dose to each voxel over all treatment scenarios. The voxelwise
mean dose, is the mean dose for each voxel over all treatment scenarios. In worst-case treatment
scenario dose, an entire treatment scenario which shows lowest CTV D98% is stored. Here, CTV
D98% is the minimum dose to 98% of the CTV.

Figure 2.6.4: An illustration of voxelwise min, voxelwise mean dose and worst scenario summary
evaluation dose distributions [11].

To quantify robustness in a similar manner as in the PTV approach for photons, Korevaar et
al. determine the correlation between CTV D98%, CTV V95% loss and the average CTV D98%
and CTV V95% loss for the summary evaluation dose distributions of all considered treatment
scenarios, respectively for photon and proton plans. Here, V95% loss is the percentage of the
CTV receiving less than 95% of the prescribed dose.
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The proton and photon plans using voxelwise minimum, voxelwise mean and worst scenario dose
all showed strong correlation with the CTV D98% metric. The V95 loss metric showed much
weaker correlations. Even though voxelwise minimum, voxelwise mean and worst scenario all
show similar correlation for the CTV D98% metric, voxelwise minimum is expected to be most
convenient. Voxelwise minimum allows clinicians to judge under-dosage in a similar way to the
conventional PTV-approach. In the other methods, locations of under-dosage can be missed.

In the second step, the acceptance criteria CTV D98% > 95% was compared against the PTV
D98% > 95% for photons. Very strong correlation was found between PTV D98% and CTV
D98% using voxelwise minimum. Therefore, according to [11], a treatment plan is called robust
if CTV D98% > 95% using the voxelwise minimum approach.

2.6.2 PCE evaluation

The approach used in Section 2.6.1 considers only a limited and fixed number of treatment
scenarios to evaluate robustness. Whereas in reality, the error changes each treatment fraction.
Therefore, another approach called polynomial chaos expansion (PCE) evaluation is used to sim-
ulate many fractionated treatments to evaluate the robustness while modeling the uncertainties
more precisely. In PCE, the relation between a random variable (here, the dose distribution) and
uncertain input values (here, the setup and range uncertainties) is represented as a polynomial
function [8,21]. To show how the PCE of the dose is computed, we follow the reasoning of [21].

To compute the PCE of the dose, we first define the vector ξ =

(
δ
ρ

)
with ξ ∈ RN . Here, N

indicates the number of uncertainties accounted for. Furthermore, δ ∈ RN−1 contains setup
uncertainties and ρ represents the uncertainty in range. Then, the dose as depending on δ and
ρ, using PCE, is represented as [8]

d(ξ) =
P∑
l=0

clψl(ξ). (2.6)

Here, cl are expansion coefficients and ψl(ξ) are the polynomial basis vectors. P indicates
the number of basis vectors that are used for the PCE computation. In general, the accuracy
of the PCE increases if P increases. However, including more basis vectors also increases the
computation time [22]. To determine the basis vectors, the distribution of the input values must
be determined. The distribution of ξ is given by the joint probability density function (PDF)
of all input variables. Assuming that the uncertainties accounted for are independent, we have
that the joint PDF of the input variables is the product of the individual PDF of the input
variables. Hence, in the remainder of this thesis we assume that the joint PDF pξ(ξ) is given by

pξ(ξ) =
N∏
j=1

pξj (ξj).

Next, orthogonal polynomial basis functions must be specified. Typically, the probabilist’s
Hermite polynomials are used for normally distributed parameters. The probabilist’s Hermite
polynomials are defined as:

Hen(ξ) = (−1)ne
ξ2

2
dn

dξn
e−

ξ2

2 ,

with n the degree of the Hermite polynomial. Then, the polynomial chaos basis vectors in
Equation (2.6) can be written as

ψl(ξ) =
N∏
j=1

Hej , glj (ξj). (2.7)
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Here, the multi-index gl,j is used to indicate that the j-th polynomial of the l-th basis vector
is of order glj . Finally, the cl expansion coefficients in Equation (2.6) can be calculated using
linear regression.

This approach has been implemented by Rojo Santiago et al. [8]. They have tested the approach
on the data of 26 neuro-oncological patients. Amongst their treatment plans are both clinically
robust and clinically non-robust plans. Clinically robust plans are plans in which all clinical
robust evaluation constraints are met. In clinically non-robust plans, robustness is sacrificed
for OAR sparing. They have used PCE to efficiently estimate the dose distribution depending
on the uncertainties in 100.000 treatment fractions for each patient. To evaluate the treatment
plans, the following standard is used:

Voxelwise minimum : CTV D98% ≥ 95%.

Here, the voxelwise minimum summary evaluation dose is as explained in Section 2.6.1. It was
found that for 97.7% of all generated treatment plans, the above standard is satisfied. They also
found that for clinically robust plans, the CTV dose is on average 3 percent points higher than
the prescribed dose.

It is concluded that this method is reliable as they found that all clinically robust plans were
also robust according to the PCE evaluation. Furthermore, if plans were not robust according
to PCE evaluation, CTV coverage was insufficient.

For the planning methods in Sections 3, 4 and 5 a voxelwise (minimum) evaluation method, as
explained in Section 2.6.1, is used. In addition, for the planning method in Section 3, Polynomial
Chaos Expansion (PCE) is used to evaluate the treatment plans, as explained in Section 2.6.2.
In Table 2.6.3 an overview is presented of which evaluation methods are used for each of the
methods in Section 3 - 5. Note that we also need to evaluate if the maximum dose to the
CTV is acceptable. Hereto, we often use the voxelwise maximum evaluation method. Similar to
voxelwise minimum, voxelwise maximum is the maximum dose to each voxel over all treatment
scenarios.

Table 2.6.3: Overview of planning and evaluation methods used in this research.

Planning method Evaluation method

Treatment scenario reduction voxelwise and PCE

Dose escalation voxelwise

Variance optimization voxelwise

2.7 Medical information

In this study, four head and neck cancer patients are included. All patients received IMPT at
Holland PTC. Here, we elaborate on some medical information that is relevant for this patient
group.

Dose used to irradiate the tumor, also affects healthy tissues. It is crucial to reduce the dose to
healthy tissue as much as possible to minimize the risk of radiotherapy induced complications.
In head and neck cancer, two main (chronic) complications are xerostomia and dysphagia.
Xerostomia, also known as dry mouth syndrome, is caused by malfunctioning of the parotid
and submandibular glands. These glands are two of the main salivary glands, their location
is highlighted in Figure 2.7.5a. Patients with dysphagia experience difficulty in swallowing.
To minimize the risk of dysphagia it is important to spare the oral cavity and the pharyngeal
constrictor muscles as much as possible. The latter are often referred to as the constrictor
muscles. These muscles are used to move food into the esophagus [23]. In Figure 2.7.5b these
muscles are schematically displayed.
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(a) Main salivary glands. (b) Pharyngeal constrictor muscles.

Figure 2.7.5: Anatomical overview of the main salivary glands and the pharyngeal constrictor
muscles. Created with BioRender.com

Normal Tissue Complication Probability (NTCP) models have been developed to establish the
relationship between dose to the organs at risk and clinical relevant toxicities [24]. Higher NTCP
indicates increased risk of a particular complication. The general formula for the NTCP is given
by:

NTCP =
1

1 + e−s
, (2.8)

where s is dependent on the complication. For xerostomia s depends, amongst other things, on
the mean dose in the parotids and submandibular glands. For dysphagia s is, amongst other
things, dependent on the mean dose in the oral cavity and the pharyngeal constrictor muscles.
The objective is to obtain NTCPs as low as possible. Note that we do not optimize on the
NTCPs directly, as Equation (2.8) is not convex. When a difference of 10%-point in NTCP can
be attained between photon therapy and proton therapy, patients are referred to proton therapy.
As the difference is often near this 10%-point, a difference of 2%-point in NTCPs can already
have significant clinical impact [10].

In this study we focus on the risk of patients getting xerostomia and dysphagia grade II or higher.
The grade of the complication indicates the severity. For both xerostomia and dysphagia, four
grades are considered, where grade IV represents the most severe level.

2.8 Treatment plan criteria

Here, we list the mean criteria that are used to assess the generated treatment plans.

The CTV of the patients in this study is split into two main parts: CTV7000 and CTV5425.
CTV7000 consists of the primary tumor and is prescribed 70.00 Gy. The other part, CTV5425,
which comprises the regions at risk of containing cancerous cells, is prescribed 54.25 Gy. To
obtain clinically acceptable treatment plans, several criteria must be met. First, according to
the robustness criteria, the D98% CTV7000 and D98% CTV5425 should be at least 95% of the
prescribed dose. That is, D98% CTV7000 ≥ 66.50 Gy and D98% CTV5425 ≥ 51.54 Gy. In
this study, unless mentioned otherwise, generated treatment plans are scaled such that D98%
CTV7000 ≥ 66.50 Gy and D98% CTV5425 ≥ 51.54 Gy in the voxelwise minimum scenario (Section
2.6.1) on the planning CT scan. Therefore, the D98% CTV7000 and D98% CTV5425 are typically
evaluated for the repeat CT scan to investigate if robustness can be maintained throughout the
fractionated treatment. Another criteria used in this study indicates that D2% CTV7000 ≤ 74.90
Gy. Here, D2% CTV7000 is the maximum dose to 2% of CTV7000. Furthermore, the NTCPs
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should be as low as possible. This is achieved by sequential minimization of the mean dose to
the OARs. The wish-list used throughout this research is presented in the Appendix A.
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3 Treatment scenario reduction

In order to generate robust treatment plans, we want to account for as many treatment scenarios
as possible. However, every included treatment scenario increases memory storage as typically
all corresponding dose deposition matrices are stored. In addition, the increased size of the
optimization problem causes a substantial increase in computation time. To reduce both memory
storage and computation time, we investigate the dosimetric impact of the inclusion of fewer
treatment scenarios in this section.

3.1 Method

In order to generate robust treatment plans, typically 29 treatment scenarios are taken into ac-
count during treatment plan optimization in Erasmus-iCycle. These treatment scenarios include
the nominal treatment scenario, where no error is accounted for, and 28 treatment scenarios in
which a setup error of ± 3 mm and a range error of ±3% are considered. A schematic overview
of the distribution of the setup errors accounted for using 29 treatment scenarios is depicted in
Figure 3.1.1. Note that in this figure, for each point, except the center point which represents
the nominal treatment scenario, twice the number of treatment scenarios is considered. That
is, once the setup error with positive range error and once the setup error with negative range
error.

Figure 3.1.1: Distribution of the setup errors in 29 treatment scenarios. The center dot (black)
represents the nominal treatment scenario. The other dots (red) represent the setup error used
in the other treatment scenarios.

To investigate the impact of the number of treatment scenarios on both the optimization time
and treatment plan quality, three test cases are constructed. In each of these test cases, treatment
plans are generated while accounting for a specific number of treatment scenarios. In the first
test case, a treatment plan is generated by considering only the nominal treatment scenario.
Then, for the second test case, 13 out of the 29 original treatment scenarios are included. For
the final test case, treatment scenarios are added to the original 29 treatment scenarios to obtain
a total of 53 treatment scenarios. A schematic overview of the distribution of the setup errors
in 13 and 53 treatment scenarios is shown in Figure 3.1.2.

To investigate the dosimetric impact of the number of treatment scenarios, we compare the
treatment plans that are generated with 1, 13, 29 and 53 treatment scenarios. To assess dose
delivery to the CTV, we compare D98% CTV7000 and D98% CTV5425 on the repeat CT scan
in the voxelwise minimum scenario, as explained in Section 2.6.1. Here, the voxelwise minimum
scenario is based on the 29 treatment scenarios depicted in Figure 3.1.1. Furthermore, we
compare the D2% CTV7000 for all test cases in the voxelwise maximum scenario on both the
planning and repeat CT scan. Finally, the NTCPs of xerostomia and dysphagia are compared
for all test cases in the nominal treatment scenario.

Additionally, we evaluate the generated treatment plans with PCE, as explained in Section
2.6.2. Hereto, we sample 10.000 fractionated treatment scenarios from the normal distribution
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such that the standard deviation of the setup error is defined by the total error in Table 2.4.1.
Furthermore, the standard deviation of the range is 1.5%.

(a) Setup errors in 13 treatment scenarios. (b) Setup errors in 53 treatment scenarios.

Figure 3.1.2: Distribution of the setup errors in 13 and 53 treatment scenarios. The center dot
(black) represents the nominal treatment scenario. The other dots (red) represent the setup
error of the other treatment scenarios.

3.2 Results

First we present the optimization time for the different test cases in Section 3.2.1. Subsequently,
in Section 3.2.2 the dosimetric results of the test cases, evaluated with both voxelwise and
PCE evaluation, are presented. As we obtained results with clinically unacceptable results
when optimizing only for the nominal treatment scenario, these results are shown in Appendix
B. Furthermore, to gain a better understanding of the results, the evaluation results of the
unscaled treatment plans are shown in Appendix B.

3.2.1 Optimization time

In Table 3.2.1, the optimization times in minutes when optimizing for 13, 29 and 53 treatment
scenarios are listed per patient. We observe some inter patient variation in optimization times.
However, for all patients, a reduction in optimization time between 59% and 75% is obtained
when reducing the number of treatment scenarios from either 29 to 13 or from 53 to 29.

Table 3.2.1: Optimization time (in minutes) for different number of treatment scenarios per
patient.

# scenarios Patient 1 Patient 2 Patient 3 Patient 4

13 351 226 195 197

29 1085 622 614 611

53 3572 2433 1507 2406

3.2.2 Treatment plan quality

In Figure 3.2.1, the D98% on the repeat CT scan is shown in the voxelwise minimum scenario
when optimizing for 13, 29 and 53 treatment scenarios. Figure 3.2.1a shows the results for
CTV7000 and Figure 3.2.1b shows the results for CTV5425. Similarly, in Figure 3.2.2, D98% is
shown using PCE evaluation. In addition, the percentage of treatment plans that satisfies the
robustness criteria D98% CTV7000 ≥ 66.5 Gy and D98% CTV5425 ≥ 51.54 Gy when optimizing
for 13, 29 and 53 treatment scenarios is presented, respectively.

According to Figure 3.2.1, the D98% CTV7000 is for all patients highest when 13 treatment
scenarios are used. The increase in D98% CTV7000 when 13 instead of 29 treatment scenarios are
used, ranges from 0.2 to 0.6 Gy. However, D98% CTV5425 is for three out of four patients highest
using 53 treatment scenarios. We also observe that some treatment plans show insufficient D98%.
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In these cases, a lower number of treatment scenarios results in improved, even if insufficient,
CTV coverage. In Figure 3.2.2 we observe that the results evaluated with PCE show similar
behaviour to the results evaluated in the voxelwise minimum scenario. We find that the number
of simulated treatment plans with D98% CTV7000 ≥ 66.50 Gy increases when less treatment
scenarios are included. When including 13 treatment scenarios at least 94.7% of the treatment
plans receives sufficient D98% CTV7000, while for 53 treatment scenarios, this is 90.1%. For
CTV5425, we obtain either improved or similar robustness when optimizing for less treatment
scenarios.

(a) D98% CTV7000. (b) D98% CTV5425.

Figure 3.2.1: D98% CTV7000 and D98% CTV5425 when optimizing for 13, 29 and 53 treatment
scenarios. The results are evaluated on the repeat CT scan in the voxelwise minimum scenario.

Figure 3.2.2: D98% CTV7000 and D98% CTV5425 when optimizing for 13, 29 and 53 treatment
scenarios. The results are evaluated on the repeat CT scan using polynomial chaos expansion.
The values on the top right indicate for each number of treatment scenarios how often the D98%
CTV7000 ≥ 66.5 Gy and D98% CTV5425 ≥ 51.54 Gy criteria are satisfied.
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Figure 3.2.3 shows D2% CTV7000 in the voxelwise maximum scenario when optimizing for 13,
29 and 53 treatment scenarios. Figure 3.2.3a shows the results for the planning CT scan and
Figure 3.2.3b shows the results for the repeat CT scan. The results that were obtained from
PCE evaluation are presented in Figure 3.2.4.

In Figure 3.2.3, we find that D2% CTV7000 is highest when optimizing for 13 treatment scenar-
ios. The increase in D2% CTV7000 ranges from 0.3 to 1.6 Gy when optimizing for 13 instead of
29 treatment scenarios. Note that it is required that D2% CTV7000 ≤ 74.90 Gy. This criterion
is exceeded for patient 3 on the repeat CT scan when using 13 treatment scenarios. When evalu-
ating with PCE, we again find that higher D2% CTV7000 is generally obtained when optimizing
on fewer treatment scenarios, as shown in Figure 3.2.4. In contrast to voxelwise maximum
evaluation, none of the treatment plans exceeds the 74.90 Gy threshold with PCE evaluation.

(a) D2% CTV7000 on planning CT scan. (b) D2% CTV7000 on repeat CT scan.

Figure 3.2.3: D2% CTV7000 when optimizing for 13, 29 and 53 treatment scenarios. The results
are evaluated in the voxelwise maximum scenario on both planning and repeat CT scan.

Figure 3.2.4: D2% CTV7000 when optimizing for 13, 29 and 53 treatment scenarios. The results
are evaluated with polynomial chaos expansion on planning (left) and repeat (right) CT scan.
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In Figure 3.2.5, the difference (%-point) in NTCPs in the nominal treatment scenario is shown
when optimizing for 13 and 53 instead of 29 treatment scenarios. Figure 3.2.5a shows the results
for xerostomia. Similarly, Figure 3.2.5b shows the results for dysphagia. The results that were
obtained with PCE evaluation are presented in Figure 3.2.6. Since we obtained similar NTCP
results for the planning and repeat CT scans, only the results on the repeat CT scan are shown.

In Figure 3.2.5, we observe a general reduction of 0.3 to 1.7%-point when optimizing for 13
treatment scenarios. However for patient 3, increased NTCP of around 0.2%-point for xerostomia
is obtained when optimizing on 13 instead of 29 treatment scenarios. When evaluating with PCE,
similar results are obtained. In Figure 3.2.6 we observe a reduction in NTCPs when 13 treatment
scenarios are optimized for.

(a) NTCP of xerostomia. (b) NTCP of dysphagia.

Figure 3.2.5: NTCPs for xerostomia and dysphagia when optimizing for 13 and 53 treatment
scenarios with respect to optimizing for 29 treatment scenarios. The results are evaluated in the
nominal treatment scenario on the repeat CT scan.

Figure 3.2.6: NTCPs for xerostomia and dysphagia when optimizing for 13, 29 and 53 treatment
scenarios. The results are evaluated using polynomial chaos expansion on the repeat CT scan.
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3.3 Discussion

In this study, the impact of varying the number of treatment scenarios during optimization is
studied. The objective is to reduce optimization time and preserve treatment quality. The effect
on the dosimetry of the generated treatment plans is evaluated on the repeat CT scans. To still
achieve equal target coverage on the planning CT scan, all treatment plans are scaled to meet
the clinical target coverage constraints on 29 treatment scenarios. We find that by reducing the
number of treatment scenarios, a significant reduction in optimization time is achieved. However,
reducing the number of treatment scenarios also affects the dosimetry of the generated treatment
plans.

When comparing the performance of the treatment plans on 13, 29 and 53 treatment scenar-
ios, we find that CTV coverage on the repeat CT scan generally improves when using less
treatment scenarios. This effect is mainly observed for CTV7000. Additionally, NTCPs gen-
erally improve when reducing the number of treatment scenarios. However, we observe an in-
crease in D2% CTV7000 when planning on fewer treatment scenarios. For one patient, the D2%
CTV7000 ≤ 74.90 Gy criterion is violated when optimizing on 13 treatment scenarios in the vox-
elwise maximum scenario. Note that the voxelwise maximum scenario represents a physically
impossible scenario as it comprises the maximum dose to each voxel over 29 treatment scenarios.
When evaluating with PCE, none of the treatment plans exceeds the 74.90 Gy threshold.

Evaluation of the dose distribution with PCE is a strong aspect of this study. It allows for
assessment in 10000 normally distributed fractionated treatment scenarios rather than in 13,
29 or 53 fixed treatment scenarios. Moreover, unlike the voxelwise minimum scenario with 29
treatment scenarios, the evaluation metric is independent of the chosen treatment scenarios.
Another strong aspect of this study is the evaluation of the dose distributions on repeat CT
scans. This allows to assess the robustness of the treatment plans under actual inter-fraction
anatomical changes.

The treatment plans are scaled to meet exactly the clinical constraints on the planning CT scan
in 29 treatment scenarios. Higher scaling factors are required to obtain good CTV coverage when
using 13 treatment scenarios whereas the treatment plans on 53 treatment scenarios are scaled
down. For most patients on the unscaled treatment plans, D2% CTV7000 is relatively similar,
as is shown in Appendix B. For different number of treatment scenarios, the D2% CTV7000 is
within a 0.3 Gy range on the planning CT scan. Due to scaling, the D2% CTV7000 is higher on
13 treatment scenarios and lower on 53 treatment scenarios. However, by scaling the treatment
plans, lower NTCPs are obtained when less treatment scenarios are used.

Note that only the D2% CTV7000 is shown in the results. However, possibly other objectives,
such as the near-maximum doses in regions surrounding CTV7000 are also dosimetrically im-
pacted. For the sake of simplicity, these are not evaluated in this section.

As we observe a higher D2% CTV7000 together with improved CTV coverage and lower NTCPs,
the results gave rise to the following hypothesis: increasing the maximum allowable CTV dose,
which increases the degrees of freedom of the problem, might result in improved coverage on
repeat CT scans and reduced NTCPs. Therefore, we test this hypothesis in Section 4.

In conclusion, reducing the number of treatment scenarios in optimization lead to a significant
reduction in the optimization time. Furthermore, CTV coverage and NTCPs of generated
treatment plans generally improve on the repeat CT scan, but D2% CTV7000 increases. However,
D2% CTV7000 is still clinically acceptable for all patients when using PCE evaluation.
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4 Dose escalation

Increasing robustness settings leads to increased dose to healthy tissues [25]. To reduce this
undesired dose, a method called dose escalation is evaluated. In dose escalation, the constraint
on the maximum tumor dose is relaxed which increases the degrees of freedom for the problem.
As a result, the tumor is expected to receive a higher maximum dose whereas the dose in healthy
tissues should be reduced.

In this section we examine if increasing the maximum allowable dose in the tumor, and to which
specific parts of the tumor, can be used to improve treatment plan quality. To this end, we first
provide results obtained from other experiments with dose escalation in Section 4.1. Then, in
Section 4.2 we elaborate on the applied experimental procedure. The corresponding results are
presented and discussed in Sections 4.3 and 4.4, respectively.

4.1 Literature

An experiment with dose escalation was previously performed by Petit et al. [26]. They generated
different groups of treatment plans. For the first type of plans, a robust optimization strategy is
used. This strategy is a mixture between the minimax method and the stochastic programming
approach as the treatment plan is optimized for the nominal (most likely) treatment scenario,
while ensuring sufficient CTV coverage in the worst-case treatment scenario. Another group of
plans is constructed to minimize dose to the OARs by relaxing the maximum tumor dose. Petit
et al. have only taken range uncertainties into account, meaning only the nominal, undershoot
and overshoot treatment scenarios are considered. The general robust optimization problem
used, is as follows:

minimize
1

NR

NR∑
i=1

dnomi , i ∈ R

subject to min
i∈T

dnomi ≥ lT

min
i∈T

dunderi ≥ lT

min
i∈T

doveri ≥ lT

max
i∈P

dnomi ≤ uP

x ≥ 0.

Here, the mean dose over all NR voxels inside a ring R around the target T is minimized.
Typically, the width of this ring is in the order of a few mm, here 2 mm is used. lT and uP
represent the lower and upper bound on the target and patient dose, respectively. dnom, dunder

and dover represent the dose in the nominal, undershoot and overshoot treatment scenario,
respectively. Hence, the constraints ensure sufficient target coverage in all of these treatment
scenarios. By minimizing the mean dose in R, the aim is to obtain optimal OAR sparing close
to the target.

Both types of optimization problems have been tested on a liver patient and two phantom
cases. It was found that by applying only robust optimization, without dose escalation, an
increased amount of dose is deposited in the region close to the target. However, by allowing
dose escalation, this extra dose that was originally delivered close to the target can now be
delivered inside the target and thereby spare the surrounding OARs. As a result, the total dose
in the patient increases, but more dose is delivered to the target and less dose is delivered to the
OARs compared to robust optimization without dose escalation. More specifically, it is found
that an increase in maximum tumor dose from 105% to 120% resulted in healthy tissue dose
similar to non-robust plans with a maximum tumor dose of 105%. Hence, for the investigated
cases, combining robust optimization with an increase in maximum tumor dose leads to lower
OAR dose.
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Similar research has been performed on this topic for lung patients using photon therapy [27].
Here, it was found that relaxing the maximum constraint on the tumor dose results in better
tumor eradication.

4.2 Method

To assess the viability of the dose escalation method, we both relax and remove the maxi-
mum dose constraint to different parts of the CTV. These parts, CTV7000, CTVint10mm and
CTV5425shrunk, are defined by the following relations:

CTVint10mm = CTV5425 ∩ CTV7000r0-10mm,

CTV5425shrunk = CTV5425\ (CTV7000 ∪ CTV7000r0-10mm),

where CTV7000r0-10mm is an isotropic ring around CTV7000 of 10 mm. For clarification, these
parts are schematically depicted in Figure 4.2.1.

Figure 4.2.1: Schematic overview of CTV7000, CTVint10mm and CTV5425shrunk.

In order to observe the impact of dose escalation on treatment plan quality, two distinct experi-
ments are constructed, which are compared to a baseline plan. The baseline plan is a treatment
plan generated using the conventional planning method in Erasmus-iCycle as described in Sec-
tion 2.5.1. In the baseline plan, the maximum allowable dose to CTV7000, CTVint10mm and
CTV5425shrunk are as listed in Table 4.2.1. For the first set of experiments, we test the theoreti-
cal potential of dose escalation by applying full dose escalation. In the second set of experiments,
we apply partial dose escalation to test if clinically feasible treatment plans can be generated.

Table 4.2.1: Maximum allowable dose (Gy) to CTV7000, CTVint10mm and CTV5425shrunk in the
baseline plan.

Structure Max dose (Gy)

CTV7000 74.2

CTVint10mm 57.5

CTV5425shrunk 57.5

To test if dose escalation indeed reduces dose to healthy tissues, the NTCPs of xerostomia and
dysphagia for each test case are compared with respect to the baseline plan in the nominal
treatment scenario on the repeat CT scan. The results on the planning CT scan are not shown
since they are very similar. Additionally, to assess the robustness of the generated treatment
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plans, the D98% CTV7000 and D98% CTV5425 of all generated treatment plans are evaluated
using voxelwise minimum evaluation, as explained in Section 2.6.1. These values are then
compared with respect to the baseline plan on the repeat CT scan. Furthermore, to gain an
understanding of the results, we compare a representative dose distribution of each experiment
to the dose distribution of the baseline plan on the planning CT scan in the voxelwise minimum
scenario.

4.2.1 Full dose escalation

To observe the potential of dose escalation, we start by escalating the maximum allowable dose to
CTV7000, CTVint10mm and CTV5425shrunk equally. Specifically, we alter the maximum allowable
dose as described in Table 4.2.1 of all structures to 70, 77, 80, 90 and 105 Gy. In addition, we
remove the maximum allowable dose constraint. Note that for all cases except for the first case,
we relax the maximum dose constraint for all three structures. Whereas in the first case, we
actually tighten the maximum dose constraint to CTV7000 but not to the other CTV structures.

4.2.2 Partial dose escalation

In the second set of experiments, the aim is to investigate the effect of increasing the dose in
CTV7000 on one hand and both CTV5425shrunk and CTVint10mm on the other hand. This is done
by increasing the maximum allowable dose of the respective structures by 5, 10, 15 and 20 %.

Originally, we only planned on increasing the dose in CTV7000. However, we received poor
results. In order to better understand these results, we also investigate increasing the maximum
allowable dose in CTV5425shrunk and CTVint10mm. Note that, according to conversations with
radiation oncologists, it is not desirable to increase the maximum dose in CTV5425shrunk and
CTVint10mm as it increases the risk of fibrosis and edema. Note that there are no NTCP models
available for these side effects. Hence, this additional experiment is mostly performed to gain a
better understanding of the method.

4.3 Results

First we show the results of the full dose escalation experiments in Section 4.3.1. Subsequently, in
Section 4.3.2 the results of the partial dose escalation experiments are presented. Furthermore,
in Appendix C, additional results regarding the impact of dose escalation on the OARs and
CTV are provided.

4.3.1 Full dose escalation

In Figure 4.3.2, the difference in NTCPs (%-point) when increasing the maximum allowable
dose to CTV7000, CTVint10mm and CTV5425shrunk with respect to the baseline plan, is shown.
Figure 4.3.2a shows the results for xerostomia. Similarly, Figure 4.3.2b shows the results for
dysphagia. We observe a decrease in NTCPs by increasing the maximum allowable dose for
all patients compared to the baseline plan. In general, higher maximum allowable doses result
in lower NTCPs. The reduction in NTCP ranges from 0.7 up to 7.5%-point. However, for
patient 1, the reduction in NTCP for dysphagia decreases with maximum allowable dose to the
CTV structures. For this patient, a significant portion of both the oral cavity and the superior
pharyngeal constrictor muscle is inside CTV7000, CTVint10mm and CTV5425shrunk, as shown in
Figure 4.3.4. As a result, by increasing the maximum allowable dose to these CTV structures,
the dose to the oral cavity and the superior pharyngeal muscle constrictor increases. This, in
turn, increases the NTCP of dysphagia.
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(a) Difference (%-point) in NTCP of xerostomia. (b) Difference (%-point) in NTCP of dysphagia.

Figure 4.3.2: Difference (%-point) in NTCPs when applying full dose escalation with respect to
the baseline plan on the repeat CT scan.

Figure 4.3.3 shows the D98% on the repeat CT scan. Figure 4.3.3a shows the results for CTV7000

and Figure 4.3.3b shows the results for CTV5425. We observe mainly for CTV7000 an increase
in D98% when full dose escalation is applied. An increase of up to approximately 2 Gy can be
obtained. Hence, robustness of the plans against anatomical changes is increased.

(a) D98% CTV7000 (Gy). (b) D98% CTV5425 (Gy).

Figure 4.3.3: D98% (Gy) on the repeat CT scan for the baseline plan and full dose escalation
treatment plans.

Finally, in Figure 4.3.4, a representative example of the difference in dose distribution between
the baseline plan and a full dose escalation treatment plan is shown for patient 1. Here, positive
values indicate higher delivered dose when compared to the baseline plan. In this case, the
maximum allowable dose constraint is completely removed. We observe that the delivered dose
mostly increases inside CTV7000, CTVint10mm and CTV5425shrunk. At most, the increase inside
the CTV is 46 Gy when compared to the baseline plan. In the parotids, a reduction of around 25
Gy can be achieved. However, some regions outside CTV7000, CTVint10mm and CTV5425shrunk

also experience an increased dose delivery. For instance, the dose on the top right (of the
image) increases. However, it is important to note that this region is not assigned a maximum
dose constraint during optimization. Furthermore, we observe that almost everywhere outside
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CTV7000, CTVint10mm and CTV5425shrunk, the dose is reduced. Especially in the surrounding
OARs, the delivered dose is reduced.

Figure 4.3.4: Difference (Gy) in dose distribution when full dose escalation is applied with
respect to the baseline plan.

4.3.2 Partial dose escalation

First, we present the results when the maximum allowable dose to only CTV7000 is increased and
the maximum allowable dose to CTVint10mm and CTVshrunk5425 are as in the baseline plan. Then,
we present the results when the maximum allowable dose to both CTVint10mm and CTVshrunk5425

is increased and the maximum allowable dose to CTV7000 remains as in the baseline plan.

Partial dose escalation of CTV7000

Figure 4.3.5 shows the difference in NTCP (%-point) on the repeat CT scan when the max-
imum allowable dose constraint in CTV7000 is relaxed and the maximum allowable dose in
CTV5425shrunk and CTVint10mm are as in the baseline plan. Figure 4.3.5a shows the results for
xerostomia and Figure 4.3.5b shows the results for dysphagia. Here, the increase in maximum
allowable dose is represented in percentage of the conventional maximum allowable dose (Table
4.2.1). In Figure 4.3.5, we observe that increasing the maximum allowable dose to CTV7000

results in a decrease in NTCP for xerostomia of up to 0.8%-point. For dysphagia, a decrease up
to 0.5%-point in NTCP is obtained for two out of four patients. For the other two patients, an
increase up to 0.9%-point in NTCP is obtained as higher maximum dose to CTV7000 is allowed.
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(a) Difference (%-point) in NTCP of xerostomia. (b) Difference (%-point) in NTCP of dysphagia.

Figure 4.3.5: Difference (%-point) in NTCPs obtained by increasing the maximum allowable
dose to CTV7000 with respect to the baseline plan, on the repeat CT scan.

In Figure 4.3.6, we show the results for D98% on the repeat CT scan. Figure 4.3.6a shows the
results for CTV7000. Similarly, 4.3.6b shows the results for CTV5425. We see that generally
the D98% CTV7000 increases with increasing maximum allowable dose. The maximum obtained
increase is 0.5 Gy. The D98% CTV5425 remains relatively constant as higher maximum dose to
CTV7000 is allowed.

(a) D98% CTV7000 (Gy). (b) D98% CTV5425 (Gy).

Figure 4.3.6: D98% (Gy) on the repeat CT scan for the baseline plan and when increasing the
maximum allowable dose to CTV7000.

Finally, Figure 4.3.7 shows a representative difference in dose distribution between the baseline
plan and the treatment plan by applying partial dose escalation for patient 1. In this case,
the maximum allowable dose to CTV7000 is increased by 20%. In Figure 4.3.7, positive values
indicate regions where the delivered dose is higher compared to the baseline plan. We see that
by increasing the maximum allowable dose to CTV7000, the delivered dose to CTV7000 increases
up to 13 Gy. Outside CTV7000, many parts receive less dose. However, there also exist many
parts that receive higher dose.
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Figure 4.3.7: Difference (Gy) in dose distribution when partial dose escalation is applied with
respect to the baseline plan.

Partial dose escalation of CTVint10mm and CTVshrunk5425

Next, the results for the final experiment are shown. In Figure 4.3.8, the difference in NTCP
(%-point) on the repeat CT scan is shown when the maximum dose constraint in CTV5425shrunk

and CTVint10mm is relaxed and the maximum dose constraint in CTV7000 remains as in the
baseline plan. Figure 4.3.8a shows the results for xerostomia. Similarly, Figure 4.3.8b shows the
results for dysphagia. We find that the NTCP for both xerostomia and dysphagia decrease with
increasing maximum allowable dose. Reduction of up to 5%-point and 6%-point is obtained
for xerostomia and dysphagia, respectively. However, for patient 2, increasing the maximum
allowable dose by 20%, gives similar NTCP values as in the baseline.
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(a) Difference (%-point) in NTCP of xerostomia. (b) Difference (%-point) in NTCP of dysphagia.

Figure 4.3.8: Difference (%-point) in NTCPs obtained by increasing the maximum allowable
dose to CTVint10mm and CTV5425shrunk with respect to the baseline plan, on the repeat CT.

In Figure 4.3.9, we show the D98% in both CTV7000 and CTV5425 on the repeat CT scan. In
Figure 4.3.9a, D98% CTV7000 is shown. Similarly, in Figure 4.3.9b, D98% CTV5425 is shown.
We observe that D98% CTV7000 is generally highest when increasing the maximum allowable
dose by 20%. The increase is up to 1 Gy. Furthermore, the increase in maximum allowable dose
does not appear to have a significant impact on the D98% CTV5425.

(a) D98% CTV7000 (Gy). (b) D98% CTV5425 (Gy).

Figure 4.3.9: D98% (Gy) on the repeat CT scan for the baseline plan and when increasing the
maximum allowable dose to CTVint10mm and CTV5425shrunk.

In Figure 4.3.10, a representative difference in dose distribution between the baseline plan and
the plan obtained with partial dose escalation is shown for patient 1. In the case shown here, the
maximum allowable dose to CTV5425shrunk and CTVint10mm is increased by 20%. Here, positive
values indicate regions where more dose is delivered in the partial dose plan with respect to
the baseline plan. We observe that inside CTV5425shrunk and CTVint10mm the delivered dose, in-
creases up to 5 Gy. We also observe that in many regions outside CTV5425shrunk and CTVint10mm,
reduced dose delivery of around 25 Gy is obtained when applying partial dose escalation.

28



Figure 4.3.10: Difference (Gy) in dose distribution when partial dose escalation is applied with
respect to the baseline plan.

4.4 Discussion

In this study, the impact of increasing the maximum allowable dose to different parts of the
CTV is investigated. The objective is to preserve CTV coverage and reduce NTCPs. The
results are evaluated on the repeat CT scans. To still achieve equal target coverage on the
planning CT scan, all treatment plans are scaled to meet the clinical target coverage constraints
on 29 treatment scenarios.

When increasing the maximum allowable dose in CTV7000, CTVint10mm and CTV5425shrunk si-
multaneously, a considerable reduction in NTCPs on both the planning and repeat CT scan
is obtained. Hence, this experiment demonstrates the potential of dose escalation in reduc-
ing the NTCPs. In addition, increasing the maximum allowable dose in only CTVint10mm and
CTV5425shrunk shows significant NTCP reduction. However, by applying dose escalation only to
CTV7000, poor results are obtained as the decrease in NTCPs is much lower than obtained by
increasing the maximum allowable dose in CTVshrunk5425 and CTVint10mm. From this, we find
that the primary contributing factor in reducing NTCPs is allowing a higher maximum dose to
CTVint10mm and CTV5425shrunk.

Furthermore, improved robustness is obtained on the repeat CT scan when applying full dose
escalation with respect to the baseline plan. In contrast, when applying partial dose escalation,
robustness is more comparable to the baseline plan.

In all treatment plans, an overall reduction in dose delivered to tissues surrounding the CTV is
obtained when applying dose escalation to either CTV7000, CTVint10mm and CTV5425shrunk or
CTVint10mm and CTV5425shrunk. These results are in line with the anticipated outcomes of dose
escalation. However, the reduction is again less when only increasing the maximum allowable
dose to CTV7000.

29



In conclusion, dose escalation is an efficient method to reduce the dose to surrounding healthy
tissues and maintaining robustness. The most significant contribution to these results is obtained
by increasing the maximum allowable dose to CTVint10mm and CTV5425shrunk. However, as this
increases the risk of edema and fibrosis, it is best to refrain from increasing the dose to these
particular CTV parts. For further research, it would be interesting to develop NTCP models
for edema and fibrosis. This enables fair assessment of the risk of side effects.

Furthermore, by applying dose escalation only to CTV7000, a small reduction in NTCP can be
obtained for similar robustness. Therefore, a suggestion for further research, is to investigate if
there exists a specific group of patients for whom escalating the dose to only CTV7000 results in
decent NTCP reduction.

Another suggestion for further research focuses on the relation between findings in Sections 3
and 4. In Section 3, we found higher D2% and lower NTCPs when optimizing on 13 treatment
scenarios and performing a scaling. To show that increased D2% results in improved robustness
and reduced NTCPs, one could test if for the same D2% CTV7000 that is obtained when planning
on 13 treatment scenarios, similar reduction in NTCP and improvement in CTV coverage can
be obtained.
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5 Variance optimization

Generation of robust treatment plans is time consuming as it involves optimization of many
treatment scenarios. To reduce the optimization time, while maintaining robustness, variance
optimization is applied [28]. In variance optimization, rather than constraining the minimum
target dose in multiple treatment scenarios, only the minimum target dose in the nominal treat-
ment scenario is constrained. In order to preserve practical robustness, an additional objective
is added. This objective consists of two terms. The first term is used to minimize the variance in
delivered dose of a voxel over all treatment scenarios. The second term minimizes the difference
between the prescribed dose and mean dose of the voxels over all treatment scenarios. This way,
the delivered dose in a voxel inside the CTV should be similar and sufficient in every treatment
scenario.

In this section the feasibility of variance optimization is investigated. To this end, we first derive
the mathematical formula to the optimization problem in Section 5.1. Then, treatment plans
are generated with and without variance optimization and the results of both types of treatment
plans are presented in Section 5.2. Finally, the results are discussed in Section 5.3.

5.1 Method

With variance optimization, we aim to find pencil beam intensities x such that the delivered
dose d(x) ∈ Rn is close to the prescribed dose d∗ ∈ Rn. To this end, we consider the following
least squares objective function:

F (d(x)) = (d(x)− d∗)T (d(x)− d∗). (5.1)

Let d(x) be a random variable with K = {d1(x), ...,dK(x)} the set of possible outcomes. Recall
from Section 2.5 that dk(x) = Dkx is the dose deposited in treatment scenario k. Then, the
expectation of d(x) is given by

d̄(x) =
1

|K|
∑
k∈K

dk(x)

=
1

|K|
∑
k∈K

Dkx

= D̄x.

Here, the mean dose deposition matrix D̄ is the element wise average of the dose deposition
matrices of all treatment scenarios.

To make sure Equation (5.1) is minimized over all possible outcomes of d(x), we want to minimize
the expectation of the least squares objective function. This expectation is determined as follows:

E [F (d(x))] = E
[
(d(x)− d∗)T (d(x)− d∗)

]
= E

[
n∑

i=1

(di − d∗i ) · (di − d∗i )

]

=

n∑
i=1

E [(di − d∗i ) · (di − d∗i )] (5.2)

=
n∑

i=1

(Cii + E [di − d∗i ]E[di − d∗i ]) (5.3)

= tr(C) + (E[d(x)]− d∗)T (E[d(x)]− d∗), (5.4)

with C the covariance matrix of d(x)− d∗. We derived Equation (5.3) from Equation (5.2) by
applying the covariance formula which states that for two random variables X,Y

E[XY T ] = cov(X,Y ) + E[X]E[Y T ]. (5.5)
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Next, we separately compute tr(C) and (E[d(x)]− d∗)T (E[d(x)]− d∗) to obtain an expression
for E [F (d(x))] in terms of Dk and x. We begin with the computation of tr(C).

Computation of tr(C)

We use the formula presented in Equation (5.5) to obtain an expression for the covariance matrix
C. Since we have X = Y = d(x)− d∗, we obtain

E
[
(d(x)− d∗)(d(x)− d∗)T

]
= C + E [d(x)− d∗]E [d(x)− d∗]T .

Then, C can be computed as follows:

C = E
[
(d(x)− d∗)(d(x)− d∗)T

]
− E [d(x)− d∗]E[d(x)− d∗]T

= E
[
(d(x)− d∗) (d(x)− d∗)T

]
− (E[d(x)]− d∗) (E[d(x)]− d∗)T

= E
[
d(x)d(x)T

]
− E

[
d(x)d∗T ]− E

[
d∗d(x)T

]
+ E

[
d∗d∗T ]

−
(
E [d(x)]E [d(x)]T − E [d(x)]d∗T − d∗E [d(x)]T + d∗d∗T

)
= E

[
d(x)d(x)T

]
− E [d(x)]d∗T − d∗E

[
d(x)T

]
+ d∗d∗T

−
(
E [d(x)]E [d(x)]T − E [d(x)]d∗T − d∗E [d(x)]T + d∗d∗T

)
= E

[
d(x)d(x)T

]
− E [d(x)]E [d(x)]T

= E
[
DxxTDT

]
− E [Dx]E [Dx]T

= E
[
DxxTDT

]
− E [D]xxTE [D]T (5.6)

=
1

|K|
∑
k∈K

Dkxx
TDT

k − D̄xxT D̄T , (5.7)

where in the last step we used

E
[
DxxTDT

]
=

1

|K|
∑
k∈K

Dkxx
TDT

k .

The verification of this step is provided in Appendix D. Now that we have an expression for the
covariance matrix C, we can compute tr(C). We find that

tr(C) = tr

(
1

|K|
∑
k∈K

Dkxx
TDT

k − D̄xxT D̄T

)

=
1

|K|
tr

(∑
k∈K

Dkxx
TDT

k

)
− tr

(
D̄xxT D̄T

)
=

1

|K|
∑
k∈K

tr
(
Dkxx

TDT
k

)
− tr

(
D̄xxT D̄T

)
(5.8)

=
1

|K|
∑
k∈K

xTDT
k Dkx− xT D̄T D̄x (5.9)

=
1

|K|
∑
k∈K

xTDT
k Dkx− 1

|K|2
∑
k∈K

xTDk
T
∑
k∈K

Dkx. (5.10)

Here, we derived Equation (5.9) from Equation (5.8) by applying the cyclic property of the
trace.
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Computation of (E[d(x)]− d∗)T (E[d(x)]− d∗)

Next we compute an expression in terms of Dk and x for the second term of Equation (5.4). We
find that:

(E [d(x)]− d∗)T (E [d(x)]− d∗) = E [d(x)]T E [d(x)]− d∗TE [d(x)]− E [d(x)]T d∗ + d∗Td∗

= E [d(x)]T E [d(x)]− 2d∗TE [d(x)] + d∗Td∗

=
1

|K|2
∑
k∈K

xTDT
k

∑
k∈K

Dkx− 2

|K|
d∗T

∑
k∈K

Dkx+ d∗Td∗.

Computation of E [F (d(x))]

Now that we have an expression for tr (C) and (E [d(x)]− d∗)T (E [d(x)]− d∗), we can write
E [F (d(x))] in terms of Dk and x. Hence, we find that the expectation of the least squares
objective function is equivalent to

E [F (d(x))] = tr (C) + (E [d(x)]− d∗)T (E [d(x)]− d∗)

=
1

|K|
∑
k∈K

xTDT
k Dkx− 1

|K|2
∑
k∈K

xTDk
T
∑
k∈K

Dkx+
1

|K|2
∑
k∈K

xTDT
k

∑
k∈K

Dkx

− 2

|K|
d∗T

∑
k∈K

Dkx+ d∗Td∗

=
1

|K|
∑
k∈K

xTDT
k Dkx− 2

|K|
d∗T

∑
k∈K

Dkx+ d∗Td∗

= xT

(
1

|K|
∑
k∈K

DT
k Dk

)
x− 2

|K|
d∗T

∑
k∈K

Dkx+ d∗Td∗.

Note that we can write this quadratic optimization problem into the canonical form:

E [F (d(x))] =
1

2
xTAx+ bTx+ c. (5.11)

Here,

A = 2 · 1

|K|
∑
k∈K

DT
k Dk,

b = − 2

|K|

(
d∗T

∑
k∈K

Dk

)T

,

c = d∗Td.

The aim of variance optimization is to find x such that Equation (5.11) is minimized. Note that
by minimizing tr(C), the variance of the dose to each voxel over different treatment scenarios is
minimized. The second term, (E[d(x)]− d∗)T (E[d(x)]− d∗), is used to minimize the difference
between the mean dose over all treatment scenarios and the prescribed dose.

Experimental setup

To investigate the feasibility of variance optimization, four sets of experiments are constructed
which are compared to a baseline plan. The baseline plan is a treatment plan generated using
the conventional robust planning method in Erasmus-iCycle, as described in Section 2.5.1. The
baseline plan is optimized using 29 treatment scenarios. In the first set of experiments, we apply
full variance optimization to minimize tr(C)+(E[d(x)]−d∗)T (E[d(x)]−d∗). For the second set
of experiments, partial variance optimization is applied in which we only optimize tr(C). The
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latter approach has also been proposed by [28]. For both experiments, we include 29 treatment
scenarios.

As we received poor dosimetric results using both full and partial variance optimization, two ad-
ditional sets of experiments are constructed. The third set is implemented to further exploit the
potential of partial variance optimization. In this third experiment, referred to as constrained
partial variance optimization, we constrain the NTCPs obtained in the baseline plan and sub-
sequently optimize tr(C). This way, we test if similar CTV doses as in the baseline plan can
be obtained for similar NTCPs. Finally, in the fourth set of experiments we apply modified full
variance optimization. This method is used to analyze the results obtained from full variance
optimization in order to gain a better understanding of full variance optimization. To this end,
we optimize tr(C) + |tr(C)|

|E[F (d(x))]| · (E[d(x)]− d∗)T (E[d(x)]− d∗). An overview of the terms that
are optimized in each of the experiments, is provided in Table 5.1.1.

Table 5.1.1: Overview of terms to be optimized for in each experiment.

Experiment Term to be optimized

Full variance optimization tr(C) + (E[d(x)]− d∗)T (E[d(x)]− d∗)

Partial variance optimization tr(C)

Constrained partial variance optimization tr(C)

Modified full variance optimization tr(C) + |tr(C)|
|E[F (d(x))]| · (E[d(x)]− d∗)T (E[d(x)]− d∗)

In all experiments, the method is applied to the voxels of CTV7000, CTVint10mm and CTV5425shrunk

simultaneously (Figure 4.2.1). Hence, for each of these structures, an objective is added that
minimizes (part of) Equation (5.11).

To investigate the impact of partial and full variance optimization on optimization time, we com-
pare the optimization times with respect to the baseline plan. Additionally, to assess the dosi-
metric impact, we evaluate D2% CTV7000 in the voxelwise maximum scenario and the NTCPs
in the nominal treatment scenario. All results are evaluated on the planning CT scan and com-
pared with respect to the baseline plan. Note that the treatment plans are scaled such that
D98% CTV7000 ≥ 66.5 Gy and D98% CTV5425 ≥ 51.54 Gy on the planning CT scan. Hence,
we do not show D98% CTV7000 and D98% CTV5425 as they do not provide information on the
difference between the methods in treatment plan quality.

5.2 Results

In Section 5.2.1 we present the optimization times for the baseline, full and partial variance
optimization plans. The dosimetric results of the full and partial variance optimization experi-
ments are presented in Section 5.2.2. Then, in Section 5.2.3 the dosimetric results of constrained
partial variance optimization are presented. Finally, in Section 5.2.4 results of additional tests
on the functioning of full variance optimization are presented.

5.2.1 Optimization time

The optimization times for the baseline, full and partial variance optimization plans are listed in
Table 5.2.2. We observe that the optimization time reduces when applying either full or partial
variance optimization. When applying partial variance optimization, reduction in optimization
times of 85% to 99% are achieved compared to the baseline plan. We also observe some variability
in optimization time between patients. The optimization time for patient 1 using full variance
optimization is high when compared to the other patients. This is due to divergence during
optimization of the treatment plan. As a result, part of the optimization process starts over at
a new starting point which causes an increase in optimization time.

34



Table 5.2.2: Optimization time in minutes for baseline, partial and full variance optimization
treatment plans.

Plan Optimization time (min)

Patient 1 Patient 2 Patient 3 Patient 4

Baseline 804 686 456 693

Full variance optimization 120 33 29 26

Partial variance optimization 7 4 5 24

5.2.2 Full and partial variance optimization

In Figure 5.2.1, the D2% CTV7000 is shown for the baseline, full and partial variance optimization
plans. Note that D2% CTV7000 should be below 74.90 Gy. This criterion is satisfied for both
the baseline and partial variance optimization plans. However, when applying full variance
optimization, we find that D2% CTV7000 always exceeds the 74.90 Gy threshold.

Figure 5.2.1: D2% CTV7000 in the baseline, full and partial variance optimization treatment
plans.

In Figure 5.2.2, the NTCPs of xerostomia and dysphagia are shown for the baseline, full and
partial variance optimization plans. Figure 5.2.2a shows the results for xerostomia. Similarly,
Figure 5.2.2b shows the results for dysphagia. Both NTCPs increase in the partial and full
variance treatment plan when compared to the baseline plan. The increase is most significant
when using partial variance optimization where an increase of up to 9%-point is obtained in the
risk of both xerostomia and dysphagia.
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(a) NTCP Xerostomia. (b) NTCP Dysphagia.

Figure 5.2.2: NTCPs for xerostomia and dysphagia in the baseline, full and partial variance
optimization treatment plans.

5.2.3 Constrained partial variance optimization

In this experiment, we investigate if for similar CTV coverage, similar NTCPs can be obtained
when compared to the baseline plan. To this end, we constrain the NTCPs obtained for the
unscaled baseline plan. After optimization, the treatment plan is again scaled to fulfill the
robustness criteria. In Figure 5.2.3, we show the NTCPs that are obtained after scaling of
the treatment plans. The results for xerostomia and dysphagia are shown in Figures 5.2.3a
and 5.2.3b, respectively. For reference, the results of the partial variance optimization are also
shown. In general, the NTCPs in the baseline plan and constrained variance optimization plan
are very similar. This indicates that for equal robustness, similar NTCPs can be obtained.

(a) NTCP for xerostomia. (b) NTCP for dysphagia.

Figure 5.2.3: NTCPs for xerostomia and dysphagia in the baseline, partial and partial con-
strained variance optimization treatment plans.

In Figure 5.2.4, the D2% CTV7000 is shown for baseline, partial and partial constrained variance
optimization plans. In all cases, we find that D2% CTV7000 ≤ 74.90 Gy, as desired. Hence, for
NTCPs similar to the baseline plan, suitable D2% CTV7000 is obtained.
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Figure 5.2.4: D2% CTV7000 in the baseline and partial constrained variance optimization treat-
ment plans.

5.2.4 Modified full variance optimization

In Section 5.2.2 we obtained poor D2% CTV7000 results using full variance optimization. To
better understand these results, we analyze the contribution of the individual terms of

E [F (d(x))] = tr(C) + (E[d(x)]− d∗)T (E[d(x)]− d∗)

in the optimization process. The values of the separate terms, as well as the complete formula
for both the baseline and full variance optimization plan of patient 1 are listed in Table 5.2.3.
For the other patients, similiar results were obtained.

Table 5.2.3: Values obtained with baseline and full variance optimization for patient 1.

tr(C) (E[d(x)]− d∗)T (E[d(x)]− d∗) E [F (d(x))]

Baseline 1.6 · 104 4.5 · 105 4.6 · 105
Full variance optimization 5.5 · 104 3.1 · 105 3.7 · 105

We observe that by applying full variance optimization, E [F (d(x))] decreases. However, the
term (E[d(x)]− d∗)T (E[d(x)]− d∗) decreases whereas tr(C) shows an increase when compared
to the baseline plan. As a result, in the full variance optimization plan, the mean delivered dose
is closer to the prescribed dose but the variance in voxel dose increases when compared to the
baseline plan. This causes the difference in minimum and maximum dose to a particular voxel
over different treatment scenarios to increase.

A potential explanation for this behaviour is that (E[d(x)]− d∗)T (E[d(x)]− d∗) is one order
of magnitude larger than tr(C). As a result, (E[d(x)]− d∗)T (E[d(x)]− d∗) dominates the
minimization process. To test this hypothesis, we apply an adjusted version of full variance
optimization. We minimize

tr(C) +
1.6 · 104

4.6 · 105
· (E[d(x)]− d∗)T (E[d(x)]− d∗)

such that both terms are of the same order. Consequently, both terms are minimized rather
than only the second term. The results obtained with this modified version of full variance
optimization are shown in Figure 5.2.5. Here, we did not scale the treatment plan such that D98%
CTV7000 ≥ 66.5 Gy and CTV5425 ≥ 51.54 Gy. Instead, we compare the unscaled D98% CTV7000,
D98% CTV5425 and D2% CTV7000 to the baseline, full and partial variance optimization method.
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We observe that when applying full variance optimization, low D98% and high D2% are obtained.
Hence, reducing the order of (E[d(x)]− d∗)T (E[d(x)]− d∗), results in improved CTV coverage
and improved D2% CTV7000 when compared to full variance optimization. However, the NTPs
(not shown) increased.

Figure 5.2.5: unscaled D98% CTV7000, D98% CTV5425 and D2% CTV7000 of the baseline, partial
and full variance optimization as well as the modified full variance optimization plan.

5.3 Discussion

In this study we investigate if variance optimization can be applied to reduce optimization
time and preserve treatment plan quality. This method only constraints the minimum target
coverage in the nominal treatment scenario and adds an additional objective to obtain practical
robustness.

Both full and partial variance optimization result in a significant reduction in optimization time
when compared to the conventional planning method. As the optimization time is independent
of the number of treatment scenarios, many treatment scenarios can be included.

However, when applying full variance optimization, we find that the D2% CTV7000 is too high.
Also, the NTCPs for both xerostomia and dysphagia increase. It seems that full variance
optimization prioritizes minimizing the difference between the mean dose and the prescribed
dose over minimizing the variance of the dose in different treatment scenarios. As a result,
the minimum dose to the CTV generally decreases whereas the maximum dose to these voxels
increases. Consequently, high D2% CTV7000 is obtained.

When applying partial variance optimization, we again notice an increase in NTCPs. Never-
theless, applying constrained partial variance optimization shows that similar NTCPs as in the
baseline plan can be obtained for similar CTV coverage and suitable D2% CTV7000. Hence,
with partial variance optimization, it should be possible to generate treatment plans with al-
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most similar dosimetric results in significantly less time. As it is still unknown how to obtain
these results, a suggestion for further research would be to find a trade off between NTCPs and
CTV coverage. Alternatively, it would be interesting to develop models that predict the NTCPs.
When constraining the predicted NTCPs, partial variance optimization could be used to reduce
optimization time while preserving treatment plan quality.

Originally, we also generated a baseline, full and partial variance optimization plan using 13
treatment scenarios. As similar results were achieved, we only present the results on 29 treatment
scenarios.

Due to increased NTCPs and/or high D2% CTV7000, variance optimization is inferior to the
original planning method in Erasmus-iCycle. Hence, we provide some suggestions for further
research. First, as full variance optimization causes the difference between minimum and maxi-
mum delivered dose to increase, the expectation of the penalized least squares objective function
could be optimized. With this method, voxels that are at high risk of deviating from the pre-
scribed dose can be assigned higher penalty which might improve the dose delivery to the CTV.

Another suggestion for further research is to test the method while including more treatment
scenarios. As increasing the number of treatment scenarios does not affect the optimization
time. These results could also be evaluated using polynomial chaos expansion.

In conclusion, by applying variance optimization results, significant reduction in optimization
time up to 99% can be obtained. However, to obtain robustness, increased D2% CTV7000 and/or
increased NTCPs are obtained. Therefore, variance optimization is currently not applicable in
clinical practice.
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6 Conclusion

In this section, we summarize the most important conclusions. Furthermore, we formulate
answers to our research questions. We begin with answering the first research question:

Can we reduce optimization time while maintaining treatment plan quality?

To answer this question, two methods were investigated. In Section 3, it is investigated if
treatment plans can be generated while accounting for fewer treatment scenarios. It is found
that reducing the number of treatment scenarios decreases the optimization time up to 75%.
Additionally, treatment plan quality can be preserved when planning on 13 instead of 29 treat-
ment scenarios. Therefore, it is suggested to plan on 13 instead of 29 treatment scenarios using
Erasmus-iCycle. The second method that is investigated to reduce the optimization time of
treatment plan generation, is variance optimization, as presented in Section 5. It was found
that with this method, the optimization time can be reduced up to 99% of the original opti-
mization time. However, to obtain good target coverage, the risk of two main complications,
xerostomia and dysphagia, increases. Furthermore, often too high near-maximum doses are ob-
tained. As a result, this method is currently not applicable in clinical practice and suggestions
for further research were provided.

Next, we answer the second research question:

Can we reduce the risk of side effects?

In Section 4 we investigated if allowing higher maximum dose to the tumor can be used to
reduce the risk of side effects. We found that by increasing the maximum allowable dose to the
entire tumor, the risk of dysphagia and xerostomia can be lowered up to 7.5%-point. However,
according to radiation oncologists, it is safest to only increase the maximum allowable dose
to the tumor core. If not, the risk of edema and fibrosis increases. By only allowing higher
maximum dose to the tumor core, the extent to which the risk of side effects decreases is limited
(<1%-point). However, it is recommended to investigate if, for some patients, the potential
increase in risk of edema and fibrosis outweigh the significantly reduced risk of xerostomia and
dysphagia.

It is important to note that all methods investigated in this thesis have been tested on four
patients. As a results, our conclusions are based on a small patient population. Therefore, it is
recommended to test each method for more patients.
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Appendix

A Wish-list

Table A.1: Wish-list used in this study.

Constraints

Structure Type Goal Sufficient Robust

CTV7000 min 67.9 Gy 67.9 Gy 29 scenarios

CTVint10mm min 53.2 Gy 53.2 Gy 29 scenarios

CTVshrunk5425 min 53.2 Gy 53.2 Gy 29 scenarios

Objectives

Priority Structure Type Goal Sufficient Robust

1 CTV7000 minimize max 74.2 Gy 74.2 Gy 29 scenarios

1 CTVint10mm minimize max 57.5 Gy 57.5 Gy 29 scenarios

1 CTVshrunk5425 minimize max 57.5 Gy 57.5 Gy 29 scenarios

2 CTVcombined ring 0-10 mm minimize max 57.5 Gy 57.5 Gy No

2 CTVcombined ring 10-15 mm minimize max 57.5 Gy 57.5 Gy No

3 xi minimize max 35.5 35.5 No

4 Brain stem minimize max 30 Gy 1 Gy 29 scenarios

4 Spinal cord minimize max 30 Gy 1 Gy 29 scenarios

5 Brain minimize mean 1 Gy 1 Gy 29 scenarios

6 Parotid minimize mean 1 Gy 1 Gy No

7 Submandibular gland minimize mean 1 Gy 1 Gy No

8 Constrictor muscle superior minimize mean 1 Gy 1 Gy No

8 Constrictor muscle middle minimize mean 1 Gy 1 Gy No

9 Oral cavity minimize mean 1 Gy 1 Gy No

12 Muscle esophagus inlet minimize mean 1 Gy 1 Gy No

10 Larynx subglottic minimize mean 1 Gy 1 Gy No

10 Glottic area minimize mean 1 Gy 1 Gy No

11 Constrictor muscle inferior minimize mean 1 Gy 1 Gy No

11 Cricopharyngeus minimize mean 1 Gy 1 Gy No

13 CTVcombined ring 0-10 mm minimize max 1 Gy 1 Gy No

13 CTVcombined ring 10-15 mm minimize max 1 Gy 1 Gy No

13 CTVcombined ring 15-25 mm minimize max 1 Gy 1 Gy No

14
∑m

i=1 xi minimize mean 1 1 No

Here, xi denotes the i−th element of x which is the vector that contains the pencil beam
intensities.
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B Treatment scenario reduction

Here, we present some additional results. In Section B.1, we present the optimization time and
the dosimetric results, evaluated with both voxelwise and PCE, when optimizing for 1, 13, 29
and 53 treatment scenarios. Additionally, in Section B.2, the D98% CTV7000, D98% CTV5425

and D2% CTV7000 are shown for the unscaled treatment plans on the planning CT scan when
optimizing on 1, 13, 29 and 53 treatment scenarios.

B.1 Optimizing nominal treatment scenario

Optimization times

Here we present the optimization time for plans generated using the nominal treatment scenario
as well as 13, 29 and 53 treatment scenarios. The results are listed in Table B.1.

Table B.1: Optimization times (in minutes) for different number of treatment scenarios.

# scenarios Patient 1 Patient 2 Patient 3 Patient 4

1 22 21 14 16

13 351 226 195 197

29 1085 622 614 611

53 3572 2433 1507 2406

Optimizing nominal treatment scenario

In Figure B.1 the D98% on the repeat CT scan is shown in the voxelwise minimum scenario when
optimizing for 1, 13, 29 and 53 treatment scenarios. Figure B.1a shows the results for CTV7000

and Figure B.1b shows the results for CTV5425. Similarly, in Figure B.2, D98% is shown using
PCE evaluation. According to Figure B.1, both D98% CTV7000 and D98% CTV5425 increase
significantly when planning only on the nominal treatment scenario. In Figure B.2, we find
similar results when using PCE evaluation.

In Figure B.3, the D2% CTV7000 is shown when optimizing for 1, 13, 29 and 53 treatment
scenarios. The results are obtained in the voxelwise maximum scenario. Figure B.3a shows the
results on the planning CT scan. Similarly, B.3b shows the results on the repeat CT scan. In
addition, in Figure B.4, the same results are shown when PCE evaluation is applied. For both
evaluation methods, we find that the D2% CTV7000 drastically increases when planning on the
nominal treatment scenario when compared to planning on 13, 29 or 53 treatment scenarios. In
all cases, the D2% CTV7000 ≤ 74.90 Gy is exceeded.

Finally, in Figure B.5, the difference (%-point) in NTCPs of xerostomia and dysphagia are
shown when optimizing on 1, 13, 29 and 53 treatment scenarios on the repeat CT scan. Figure
B.5a shows the results for xerostomia and B.5b shows the results for dysphagia. Furthermore,
in Figure B.6 the results are shown when PCE evaluation is applied. We observe for both
xerostomia and dysphagia that the evaluation methods are in line with each other. However,
there is no trend. For some patients, the NTCP increases whereas for the others, it decreases.
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(a) D98% CTV7000 on the repeat CT scan. (b) D98% CTV5425 on the repeat CT scan.

Figure B.1: D98% CTV7000 and D98% CTV5425 for 1, 13, 29 and 53 treatment scenarios on the
repeat CT scan. Evaluated with voxelwise minimum evaluation.

Figure B.2: D98% CTV7000 and D98% CTV5425 for 1, 13, 29 and 53 treatment scenarios on the
repeat CT scan. Evaluated using polynomial chaos expansion.
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(a) D2% CTV7000 on planning CT scan. (b) D2% CTV7000 on repeat CT scan.

Figure B.3: D2% CTV7000 for 1, 13, 29 and 53 treatment scenarios on both the planning and
repeat CT scan. Evaluated with voxelwise maximum evaluation.

Figure B.4: D2% CTV7000 for 1, 13, 29 and 53 treatment scenarios on both the planning and
repeat CT scan. Evaluated using polynomial chaos expansion.
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(a) NTCP of xerostomia on the repeat CT scan. (b) NTCP of dysphagia on the repeat CT scan.

Figure B.5: NTCPs of xerostomia and dysphagia when using 1, 13 and 53 treatment scenarios
with respect to using 29 treatment scenarios.

Figure B.6: NTCPs of xerostomia and dysphagia for 1, 13, 29 and 53 treatment scenarios on
the repeat CT scan. Evaluated using polynomial chaos expansion.

B.2 Unscaled treatment plans

Here, we show the results of the unscaled treatment plans. In Figure B.7, D98% on the repeat CT
scan is shown using voxelwise minimum evaluation on 29 treatment scenarios. Figure B.7a shows
the results for CTV7000. Similarly, in Figure B.7b the results for CTV5425 are shown. In Figure
B.8 the results are shown when PCE is used to evaluate the treatment plans. Additionally, in
Figure B.9b, D2% CTV7000 is shown on the planning and repeat CT scan. Similarly, in Figure
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B.10 D2% CTV7000 is shown using PCE evaluation. We observe that D98% CTV7000 and D98%
CTV5425 are lower when planning on the fewer treatment scenarios whereas D2% CTV7000 is
relatively similar.

(a) Unscaled D98% CTV7000 on repeat CT scan. (b) Unscaled D98% CTV5425 on repeat CT scan.

Figure B.7: Unscaled D98% CTV7000 and CTV5425 for 13, 29 and 53 treatment scenarios on the
repeat CT scan using voxelwise minimum evaluation.

Figure B.8: Unscaled D98% CTV7000 and D98% CTV5425 for 13, 29 and 53 treatment scenarios
on the repeat CT scan. Evaluated using polynomial chaos expansion.
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(a) Unscaled D2% CTV7000 on planning CT scan. (b) Unscaled D2% CTV7000 on repeat CT scan.

Figure B.10: Unscaled D2% CTV7000 for 13, 29 and 53 treatment scenarios on the planning and
repeat CT scan using PCE evaluation.
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C Dose escalation

Here, we show the dosimetric impact to other CTV structures and OARs when compared to the
baseline plan. These other CTV parts are isotropic rings around CTVcombined, which is defined
as

CTVcombined = CTV5425 ∪ CTV7000 ∪ CTV7000r0-10mm,

where CTV7000r0-10mm is an isotropic ring around CTV7000 of 10 mm. For clarification, the
structure CTVcombined is schematically depicted in Figure C.1. To investigate the dosimetric
effect on tissues surrounding the parts where dosis escalation is applied, we compare the delivered
dose in three different rings around CTVcombined. More specifically, the delivered dose in a ring
of 0-10 mm, 10-15 mm and 15-25 mm around CTVcombined is compared to the delivered dose in
the baseline plan. Furthermore, we investigate the delivered dose to the brainstem, spinal cord,
esophagus inlet muscle, the subglottic larynx, the glottic area and the cricopharyngeus.

For the CTV structures, except CTV7000, CTVint10mm and CTVshrunk5425, the max and mean val-
ues are computed in the nominal treatment scenario. For CTV7000, CTVint10mm and CTVshrunk5425,
the maximum value is computed over all 29 treatment scenarios.

For all OARs, except the spinal cord, brainstem and brain, the mean dose is computed over all
voxels in the nominal treatment scenario. The mean value of the spinal cord, brainstem and
brain are computed using all 29 treatment scenarios.

Figure C.1: Sketch of CTVcombined.

C.1 Full dose escalation

We investigate the dosimetric consequences of full dose escalation on several CTV parts and
OARs. The dose these parts receive when compared to the baseline plan from the multicriterial
optimization process are presented in Figures C.2 and C.3, respectively.

In Figure C.2, we observe that by increasing the maximum allowable dose to CTV7000, CTVint10mm

and CTV5425shrunk, the mean delivered dose in all rings around the CTVcombined decreases. How-
ever, the maximum delivered dose to the ring of 0-10 around CTVcombined increases compared
to the baseline plan.

In Figure C.3, we note that all structures, except the superior pharyngeal constrictor muscle
in patient 1, receive lower or similar dose compared to the baseline plan. For most OARs, the
difference stabilizes for higher values of the maximum allowable dose.
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Figure C.2: Difference (Gy) in CTV dose using full dose escalation with respect the baseline
plan.
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Figure C.3: Difference (Gy) in OAR dose using full dose escalation with respect to the baseline
plan.
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C.2 Partial dose escalation

We show the difference in dose delivered to several CTV parts and OARs as obtained from the
multicriterial optimization for increased maximum allowable dose to CTV7000 when compared
to the baseline. The results are presented in Figures C.4 and C.5, respectively.

In Figure C.4, we observe that by increasing the maximum allowable dose to CTV7000, especially
the dose in this region increases. The areas closest to this region, CTVint10mm and CTV5425shrunk

also experiences a small increase in maximum delivered dose, generally. In the rings around
CTVcombined, the maximum and mean dose are relatively similar to the maximum and mean
dose in the baseline plan.

The dose delivered to the OARs is much more similar to the baseline plan than in the full dose
escalation experiments, as can observed in Figure C.5.
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Figure C.4: Difference (Gy) in CTV dose when increasing maximum allowable dose CTV7000

with respect to the baseline plan.
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Figure C.5: Difference in OAR dose (Gy) when increasing the maximum allowable CTV7000

dose with respect to the baseline plan.
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Finally, we investigate the mean and maximum dose to several CTV parts and OARs, as ob-
tained from the multicriterial optimization when applying dose escalation to CTVint10mm and
CTV5425shrunk. The results are shown in Figures C.6 and C.7, respectively.

In Figure C.6 we observe that especially the dose to CTV5425shrunk increases compared to the
baseline plan. Whereas for increasing values of the maximum allowable dose to both CTVint10mm

and CTV5425shrunk, the maximum dose to CTV7000 and CTVint10mm decreases slightly. In the
combined ring 0-10 mm, the maximum delivered dose increases with increasing values of the
maximum allowable dose. The other rings generally receive a lower mean dose.

Most OARs receive similar or a decreased amount of dose when increasing the maximum allow-
able dose when compared to the baseline plan, as can be observed in Figure C.7.

58



Figure C.6: Difference (Gy) in CTV dose when increasing the maximum allowable dose to
CTV5425shrunk and CTVint10mm with respect to the baseline plan.
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Figure C.7: Difference (Gy) in OAR dose obtained when increasing the maximum allowable
dose to CTV5425shrunk and CTVint10mm with respect to the baseline plan.
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D Variance optimization

We derived Equation (5.7) from Equation (5.6) by applying the following relation:

E
[
DxxTDT

]
=

1

|K|
∑
k∈K

Dkxx
TDT

k .

Here, we provide verification for this step. We defined the mean of multiple matrices as the ma-
trix of the element wise averages. Therefore, to compute the expected value of several matrices,
we might as well compute the expected value of each entry of the matrix. Hence, it suffices to
show what the expected value of entry iz of DxxTDT is. We have

(DxxTDT )iz =
∑
j

∑
p

DijxjxpDzp.

The expected value of (DxxTDT )iz is computed as follows:

E
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.

Hence, we conclude that

E[DxxTDT ] =
1

|K|
∑
k∈K

Dkxx
TDT

k .
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