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A proven methodology to solve multiphase flows is based on the one-fluid formulation of the 
governing equations, which treats the phase transition across the interface as a single fluid with 
varying properties and adds additional source terms to satisfy interface jump conditions, e.g., 
surface tension and mass transfer. Used interchangeably in the limit of non-evaporative flows, 
recent literature has formalized the inconsistencies that arise in the momentum balance of the non-

conservative one-fluid formulation compared to its conservative counterpart when phase change 
is involved. This translates into an increased sensitivity of the numerical solution to the choice of 
formulation. Motivated by the fact that many legacy codes using the non-conservative one-fluid 
formulation have been extended to phase-change simulations, the inclusion of two corrective 
forces at the interface and a modification of the pressure-velocity solver with an additional 
predictor-projection step are shown to recover the exact momentum balance in the evaporative 
non-conservative one-fluid framework for low-viscosity incompressible flows. This has direct 
implications for obtaining a physically meaningful pressure jump across the interface and is seen 
to affect the dynamics of two-phase flows. In the high-viscosity domain, the discretization of the 
viscous term introduces a momentum imbalance which is highly dependent on the chosen method 
to model the phase transition. In the context of film boiling, this imbalance affects the time scales 
for the instability growth. Lastly, the need to develop sub-models for heat and mass transfer and 
for surface tension becomes evident since typical grid resolutions defined as “resolved” in the 
literature may not be enough to capture interfacial phenomena.

1. Introduction

Multiphase flows undergoing significant phase change are found in many engineering applications including the evaporation of 
liquid fuels during injection [1,2], the boiling of coolants used in heat exchangers for thermal management [3,4], or the formation 
of hydrogen bubbles in water electrolysis [5,6]. Regardless of the mechanisms driving the phase transition, these flows typically 
involve a variety of scales ranging from system sizes of (10−1) to (10−3) meters with droplets or bubbles usually in the micro-

scale, i.e., (10−5) to (10−6) meters. This multiscale nature is demanding for both experimental and numerical studies. Nonetheless, 
numerical computations have become a key tool to improve the physical understanding of relevant multiphase flows as shown by 
the aforementioned works.
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The development of accurate numerical tools for multiphase flows is a challenging on-going field of study [7]. A common approach 
is to use the so-called one-fluid formulation to solve the Navier-Stokes equations. That is, the two phases are treated as a single fluid 
whose properties vary across the interface weighted by some function, e.g., smoothed Heaviside or volume average, and which is 
driven by a single velocity field. The interface between both phases is still considered and the jump conditions across it are satisfied 
by including additional source terms in the governing equations only active at the interface by means of a Dirac delta function 𝛿Γ
[8–17].

Conservative formulations of the one-fluid momentum equation, coupled to momentum-consistent advection schemes, successfully 
deal with flows that traditionally induced numerical difficulties (e.g., high density ratio flows) [10,17,18]. Yet, non-conservative 
formulations of the one-fluid momentum equation are commonly used in the literature. Mainly out of numerical convenience, they 
have been extended to incompressible two-phase flows undergoing phase change [8,11–15]. Although mathematically equivalent to 
the conservative form in the continuous phase, the analytical derivation of the jump conditions for the non-conservative formulation 
differs from the exact jumps obtained with the conservative form when phase change occurs and, therefore, are physically inconsistent 
across the interface [14]. In other words, numerical integration of the non-conservative forms leads to an ill-defined momentum 
balance expressed in terms of a non-physical pressure field.

This inconsistency may seem negligible for practical purposes when convective speeds are large compared to the Stefan flow or 
when surface tension dominates over the momentum jump caused by the change of phase; thus, it is usually ignored. However, it 
may become important in, e.g., pressurized systems with fluids undergoing phase change close to the critical point as the surface 
tension coefficient and latent heat of vaporization drop [19]. These configurations may include droplet-laden or bubbly flows. Despite 
the correct velocity jump may be recovered, the momentum imbalance leads to a pressure solution that compromises the dynamical 
evolution of the flow and analyses based on pressure data, such as determining turbulence statistics (i.e., pressure fluctuations), 
studying the vorticity dynamics (i.e., calculating the baroclinic torque), or calculating forces around bodies (e.g., drag force on a 
droplet). These issues challenge the use of the one-fluid framework in such cases.

This work proposes a correction for the non-conservative form of the one-fluid momentum equation in terms of additional body 
forces in the context of the Continuum Surface Force (CSF) model [20] and a modified predictor-projection method to recover the 
correct momentum balance when phase change occurs and, consequently, obtain a physically meaningful pressure jump. Moreover, 
this paper is also intended as a reflective exercise to highlight how the choice of numerical methods in two-phase solvers with phase 
change drastically affects the numerical solution.

The paper is structured as follows: Section 2 introduces the governing equations for two-phase flows undergoing phase change 
and the basis to define new body forces to correct the momentum imbalance in non-conservative formulations; Section 3 describes 
the discretization of the governing equations, the flow solver and its implementation; Section 4 validates the momentum balance cor-

rections in canonical flows with constant vaporization flux; Sections 5 and 6 extend the validation to fully-coupled systems involving 
energy transport; and Section 7 summarizes the major findings and contributions of this work.

2. Mathematical description

2.1. Governing equations

The governing equations for the motion and evaporation (or condensation) of a single-component fluid are the Navier-Stokes 
equations, given by the mass conservation or continuity equation (1), the momentum equation (2), and the energy transport equation 
(3). The variables 𝜌, 𝐮 = (𝑢, 𝑣,𝑤), 𝑝, 𝜇, and 𝐠 are, respectively, the density, velocity, pressure, dynamic viscosity and gravity, while 
ℎ, 𝑘, and 𝑇 are the specific enthalpy, thermal conductivity and temperature. A Newtonian fluid is assumed under Stokes hypothesis; 
thus, the viscous stress tensor is 𝜏 = 𝜇

[
∇𝐮+ (∇𝐮)𝑇 − 2

3 (∇ ⋅ 𝐮)𝐈
]
, where 𝐈 is the identity tensor.

𝜕𝜌

𝜕𝑡 
+∇ ⋅ (𝜌𝐮) = 0 (1)

𝜕𝜌𝐮
𝜕𝑡 

+∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝+∇ ⋅
(
𝜇
[
∇𝐮+ (∇𝐮)𝑇 − 2

3 (∇ ⋅ 𝐮)𝐈
])

+ 𝜌𝐠 (2)

𝜕𝜌ℎ

𝜕𝑡 
+∇ ⋅ (𝜌ℎ𝐮) = ∇ ⋅ (𝑘∇𝑇 ) (3)

Convective speeds tend to be small in boiling flows or droplet-laden flows in most configurations of interest [12,21] except in, 
e.g., jet atomization [1,2]. Accordingly, the pressure term and viscous dissipation term that would appear in the energy equation are 
neglected. Further, the flow velocities approach the incompressible limit. Henceforth, the mathematical formulation and numerical 
approach are simplified to incompressible flows, except for the local volume dilatation at the vaporizing interface enforced in the 
continuity equation. However, many practical applications involve high pressures, large temperature variations and multi-component 
mixtures. In such environments, fluid properties may vary strongly and a low-Mach number formulation is more suitable. The frame-

work outlined in this work can easily be extended to such scenarios, similar to previous studies [12,16].

Eqs. (1)-(3) are valid within each phase, while jump conditions link both phases across the liquid-gas interface, herein denoted 
by Γ, based on conservation relations. Denoting the interface normal unit vector as 𝐧Γ , which is defined from liquid to gas, the jump 
conditions normal to the interface for Eqs. (1)-(3) are given, respectively, by [14]

�̇�′′ = 𝜌𝐿(𝐮𝐿 − 𝐮Γ) ⋅ 𝐧Γ = 𝜌𝐺(𝐮𝐺 − 𝐮Γ) ⋅ 𝐧Γ (4)
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[𝜌𝐺𝐮𝐺(𝐮𝐺 − 𝐮Γ) − 𝜌𝐿𝐮𝐿(𝐮𝐿 − 𝐮Γ)] ⋅ 𝐧Γ = −(𝑝𝐺 − 𝑝𝐿)𝐧Γ + [𝜏𝐺 − 𝜏𝐿] ⋅ 𝐧Γ − 𝜎𝜅𝐧Γ (5)

[𝜌𝐺ℎ𝐺(𝐮𝐺 − 𝐮Γ) − 𝜌𝐿ℎ𝐿(𝐮𝐿 − 𝐮Γ)] ⋅ 𝐧Γ = [𝑘𝐺∇𝑇𝐺 − 𝑘𝐿∇𝑇𝐿] ⋅ 𝐧Γ (6)

where �̇�′′ is the mass flux per unit area across the interface (�̇�′′ > 0 for vaporization), 𝐮Γ = 𝐮𝐺 − �̇�′′

𝜌𝐺
𝐧Γ = 𝐮𝐿 − �̇�′′

𝜌𝐿
𝐧Γ the interface 

velocity, 𝜎 the surface tension coefficient (assumed constant) and 𝜅 = ∇ ⋅ 𝐧Γ the interface curvature. Note the subscripts 𝐿 and 𝐺
indicate liquid and gas values at the interface. Further, 𝐿 and 𝐺 are also used to refer to the fluid properties in each single-phase region 
since they are assumed constant for the purpose of this work. Tangent to the interface, the velocity and shear stress are continuous. 
Rearranging Eq. (4), the velocity jump is given by (𝐮𝐺 − 𝐮𝐿) ⋅ 𝐧Γ = �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
). Then, substitution of Eq. (4) into Eqs. (5) and (6) 

results in an equation for the pressure jump across the interface and an equation for the mass flux, given by

𝑝𝐿 − 𝑝𝐺 = 𝜎𝜅 + ([𝜏𝐿 − 𝜏𝐺] ⋅ 𝐧Γ) ⋅ 𝐧Γ + (�̇�′′)2(𝜌−1
𝐺

− 𝜌−1
𝐿
) (7)

�̇�′′ =
[𝑘𝐺∇𝑇𝐺 − 𝑘𝐿∇𝑇𝐿] ⋅ 𝐧Γ

ℎ𝐿𝑉
(8)

with ℎ𝐿𝑉 = ℎ𝐺 − ℎ𝐿 being the latent heat of vaporization.

2.2. Interface capture with volume-of-fluid

The interface between liquid and gas is captured using the Volume-of-Fluid (VOF) method [22]. Despite other interface capturing 
techniques could be considered (e.g., Level-Set [23–25] or Phase-Field [26]), VOF provides a good balance between the physical rep-

resentation of the interface (e.g., sharpness, evaluation of the thermodynamic state) and numerical behavior (e.g., mass conservation 
to machine error with a divergence-free velocity field [27]). In the VOF method, an indicator function 𝑋(𝐱, 𝑡) identifies the reference 
phase (i.e., the liquid) with 𝑋(𝐱, 𝑡) = 1 and the gas phase with 𝑋(𝐱, 𝑡) = 0. Accordingly, a volume fraction is defined in each cell as 
𝐶 = 1 

𝑉0
∫
𝑉0
𝑋𝑑𝑉 , where 𝑉0 is the cell volume.

A geometrical VOF framework where the interface is reconstructed at each cell is considered. A Piecewise Linear Interface Con-

struction (PLIC) is implemented where 𝐧Γ and 𝜅 are obtained, respectively, from the Mixed-Youngs-Center (MYC) method [28] and 
the Height-Function (HF) method [29] following [27]. Analytical relations are used to calculate the cell volume cut by the reconstruc-

tion plane [30]. Further, the Interface Reconstruction Library1 [31,32] is included to enhance the calculations of geometric fluxes and 
interface curvature by fitting a paraboloid to the PLIC reconstruction, i.e., via a Piecewise Paraboloid Interface Construction (PPIC) 
[33]. Although the HF method is more robust in static tests, curvatures obtained from PPIC do not deteriorate as quickly under 
interface displacement due to the combined effect of reduced geometrical errors during advection and the derivation of curvature 
directly from the paraboloid itself. Therefore, surface-tension related spurious currents are reduced compared to PLIC [34]. In this 
work, the PPIC enhancements are used but default back to PLIC wherever the paraboloid fitting is locally ill-defined. Note that PPIC 
is about six times as costly as PLIC [32].

The indicator function 𝑋(𝐱, 𝑡) is transported with the material interface (i.e., 𝐷𝑋∕𝐷𝑡 = 0), which in the case of �̇�′′ = 0 is advected 
with the fluid. The discontinuous velocity when �̇�′′ ≠ 0 requires some rethinking of the advection approach to obtain consistent 
interface displacements. Some works advect the interface directly with 𝐮Γ [10,11,35]. In contrast, the transport equation for 𝑋(𝐱, 𝑡)
is defined here by Eq. (9) using a liquid velocity 𝐮𝐿 and a source term to account for the liquid volume subtracted (or added) due 
to the vaporizing (condensing) interface. This term is described by a mass flux per unit volume �̇�′′′ = �̇�′′𝛿Γ, active only at interface 
cells [13,16,17]. 𝐮𝐿 is a divergence-free velocity field representative of the liquid phase obtained by subtracting the Stefan flow from 
𝐮 by solving a Poisson equation efficiently using an FFT-based solver [11]. Alternatively, one may use an iterative solver to solve the 
Poisson equation only in a narrow band around the interface [13]. The use of 𝐮𝐿 and 𝜌𝐿 in Eq. (9) is applicable to droplet-laden flows, 
whereas the subtraction of the Stefan flow results in a divergence-free gas phase velocity 𝐮𝐺 in bubbly flows [11]. Consequently, 𝐮𝐺
and 𝜌𝐺 replace 𝐮𝐿 and 𝜌𝐿 in Eq. (9).

𝜕𝑋

𝜕𝑡 
+∇ ⋅ (𝑋𝐮𝐿) −𝑋∇ ⋅ 𝐮𝐿 = − �̇�

′′′

𝜌𝐿
(9)

The geometric advection of 𝑋 (i.e., 𝐶) is performed in two steps similar to [13,17]. First, an intermediate volume fraction field is 
obtained by shifting the interface plane along the direction of 𝐧Γ to account for the phase change source term in Eq. (9) (see [13]). 
Overshoots and undershoots may appear, which are redistributed to acceptable neighboring cells [16]. Next, a conservative three-step 
split advection is used [36]. Conservation is only ensured for a divergence-free velocity, i.e., ∇ ⋅ 𝐮𝐿 = 0. Note 𝑋∇ ⋅ 𝐮𝐿 in Eq. (9) is 
not removed since it must be included during the directional split advection steps. However, the inclusion of a phase change source 
term has implications for mass conservation (see Section 4.2.2).

2.3. Non-conservative one-fluid formulation of the Navier-Stokes equations

The non-conservative one-fluid formulation of the Navier-Stokes equations are given by

∇ ⋅ 𝐮 = �̇�′′′(𝜌−1
𝐺

− 𝜌−1
𝐿
) = �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)𝛿Γ (10)

1 The Interface Reconstruction Library, R. Chiodi and F. Evrard, https://github.com/robert-chiodi/interface-reconstruction-library/tree/paraboloid_cutting.
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𝜌
𝜕𝐮
𝜕𝑡 

+ 𝜌(𝐮 ⋅∇𝐮) = −∇𝑝+∇ ⋅
(
𝜇
[
∇𝐮+ (∇𝐮)𝑇

])
+ 𝜌𝐠+ 𝐟𝜎 (11)

where the continuity equation is replaced by Eq. (10) and the momentum equation in its non-conservative form by Eq. (11). Note 
that despite ∇ ⋅ 𝐮 ≠ 0 at the interface, the divergence is removed from the viscous term [11,13,17]. 𝐟𝜎 = −𝜎𝜅𝐧Γ𝛿Γ is a localized body 
force to include the effects of surface tension. In the context of VOF, any generic fluid property, 𝜙, is locally weighted by the cell’s 
volume fraction as 𝜙 = 𝐶𝜙𝑙 + (1 −𝐶)𝜙𝑔 , with 𝜙 being, e.g., the density 𝜌 or viscosity 𝜇.

A methodology to properly derive jump conditions in one-fluid formulations is given by [14]. The momentum jump across the 
interface resulting from Eq. (11) [14] is

𝜌(𝐮𝐿 − 𝐮𝐺)𝐮Γ ⋅ 𝐧Γ + 𝜌𝐮 ⋅ (𝐮𝐺 − 𝐮𝐿)𝐧Γ = −(𝑝𝐺 − 𝑝𝐿)𝐧Γ + [𝜏𝐺 − 𝜏𝐿] ⋅ 𝐧Γ − 𝜎𝜅𝐧Γ (12)

where 𝜌 and 𝐮 are the one-fluid density and velocity, respectively. The terms on the left-hand side (LHS) of Eq. (12) differ from 
Eq. (5), demonstrating the ill-defined momentum balance introduced by the numerical integration of Eq. (11) if �̇�′′ ≠ 0. Note that 
the analysis presented in [14] is analytical in nature and does not include issues that may arise from a given discretization approach. 
Similarly, a different momentum balance is obtained if the non-linear term 𝐮 ⋅∇𝐮 is replaced with ∇ ⋅ (𝐮𝐮) − 𝐮(∇ ⋅ 𝐮) (≡ ∇ ⋅ (𝐮𝐮) in 
an incompressible flow), which also does not satisfy the form of Eq. (5). Still, the same steps outlined in the following lines to correct 
the momentum balance for the non-conservative form could be implemented to find the correction terms of this other form of the 
momentum equation.

The imbalance is addressed by aiming at the replacement of the LHS of Eq. (12) with that of Eq. (5). The first term on the LHS of 
Eq. (12), arising from the time derivative of Eq. (11) due to the displacement of the interface, is taken care of during the predictor-

projection method in the flow solver (see Section 3.3). Then, two body forces similar to 𝐟𝜎 are added to the right-hand side (RHS) of 
Eq. (11): (1) 𝐟NC to cancel the momentum jump error introduced by the convective term in the non-conservative (NC) formulation, 
i.e., the second term on the LHS of Eq. (12); and (2) 𝐟�̇�′′ to impose the exact momentum jump induced by phase change, i.e., the LHS 
of Eq. (5), similar to [12]. These are given by

𝐟NC = 𝜌�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)(𝐮 ⋅ 𝐧Γ)𝐧Γ𝛿Γ (13)

𝐟�̇�′′ = −(�̇�′′)2(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝐧Γ𝛿Γ (14)

where 𝐟NC is obtained by rewriting 𝜌𝐮 ⋅ (𝐮𝐺 − 𝐮𝐿)𝐧Γ using the relation (𝐮𝐺 − 𝐮𝐿) = �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝐧Γ. Thus, Eq. (11) becomes

𝜌
𝜕𝐮
𝜕𝑡 

+ 𝜌(𝐮 ⋅∇𝐮) = −∇𝑝+∇ ⋅
(
𝜇
[
∇𝐮+ (∇𝐮)𝑇

])
+ 𝜌𝐠+ 𝐟𝜎 + 𝐟�̇�′′ + 𝐟NC (15)

If the convective term is written as ∇ ⋅ (𝐮𝐮), 𝐟�̇�′′ is still identical but not 𝐟NC. For the term ∇ ⋅ (𝐮𝐮), the jump across Γ is given by 
𝜌(𝐮𝐺𝐮𝐺 − 𝐮𝐿𝐮𝐿) ⋅ 𝐧Γ [14], which can be used to derive the necessary body force that cancels the momentum balance error at the 
interface, similar to 𝐟NC. A validation of whether the correction is achieved at a discrete level needs to be performed, which is show in 
Section 3.5 for the non-conservative form. Note that the imbalance caused by the temporal term across the interface is not corrected 
by means of a body force, i.e., it is not included in 𝐟NC. A correction at a discrete level using such approach is not straightforward 
given the tight coupling with the predictor-projection method.

In this work, it is assumed that the pressure jump due to viscous stresses is small compared to the effects of surface tension or phase 
change. Thus, regularization of viscous forces is enough to recover the effects of the viscous term [37]. From a numerical standpoint, 
the jump introduced by the one-fluid velocity in the discretization of ∇𝐮 in the viscous term, which scales with the inverse of the mesh 
size, is also deemed negligible. Nonetheless, this assumption merits further analysis and the proposed methods could be extended 
to include viscosity effects explicitly in the momentum jump, if necessary. This numerical issue is independent of the form of the 
momentum equation used in the one-fluid framework. The problematic discretization of the viscous term dominates the discussion 
in Section 6.

The aforementioned inconsistencies could be mitigated by using phase-wise velocities (i.e., 𝐮𝑙 and 𝐮𝑔) and recovering the exact 
momentum jump by means of body forces, e.g., Eq. (14), or by implementing a Ghost Fluid Method (GFM) [38]. However, precise 
control of the numerically induced jump may be lost with the first approach and consistent extrapolation of variables across the 
interface or the implementation of GFM are prone to increased numerical instabilities due to the non-smooth 𝐧Γ distributions in the 
context of VOF. Thus, the one-fluid formulation with corrective terms may be preferable while seeking a final outcome similar to 
GFM. In contrast, GFM may be more suited for diffuse methods such as Level-Set or Phase-Field.

Possible inconsistencies must be carefully addressed in conservative formulations as well. Despite the analytical derivation of the 
jump conditions result in the exact momentum balance given by Eq. (5), the numerical approach can introduce issues. For example, 
during temporal integration or in the implementation of momentum-consistent advection schemes when dealing with a sharp velocity 
jump across the interface.

2.4. Phase-wise modeling of the energy equation

The phase-wise energy equation given in terms of temperature in its non-conservative form is

𝜌𝑓 𝑐𝑝,𝑓

(
𝜕𝑇

𝜕𝑡 
+ 𝐮𝑓 ⋅∇𝑇

)
=∇ ⋅ (𝑘𝑓∇𝑇 ) (16)
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where 𝑐𝑝 is the isobaric specific heat. Here, phase-wise fluid properties and velocities are used and are denoted by the subscript 𝑓 , 
which switches phase depending on the value of 𝐶 (i.e., 𝑓 = 𝑔,𝐺 if 𝐶 < 0.5 and 𝑓 = 𝑙,𝐿 if 𝐶 ≥ 0.5). The details on the evaluation of 
phase-wise velocities are given in Appendix A.

Instead of pursuing a one-fluid formulation for the energy equation which includes additional source terms [11–14,35], Eq. (16) is 
solved separately in a phase-wise manner in each phase with the interface acting as a moving boundary [8,16,17,38]. Both options are 
commonly used in the literature, but in the latter the thermodynamic equilibrium at the interface defines an interface temperature 
(e.g., saturation temperature), which is embedded in the discretization of convective and diffusive terms. Generally, the interface 
temperature can vary depending on the local equilibrium conditions. In this work, the analysis is limited to saturated conditions with 
a uniform interface temperature. The interface state is then implicitly accounted for; thus, no additional source terms are required. The 
phase-wise approach allows for a sharp treatment of the energy jump condition and a reduction of the smearing of the temperature 
field compared to the one-fluid formulation. Albeit out of scope, a similar strategy can be used to solve the species transport equations 
in multi-component multiphase flows. Note that a one-fluid formulation of the energy equation could be developed similar to the 
proposed momentum equation to ensure that the energy balance is satisfied [14]. However, the sharpness of the phase-wise approach 
has been favored in this work.

3. Flow solver algorithm

The details of the algorithm used to solve the multiphase problem described in Section 2 are presented in this section in the 
corresponding step order. It is inferred that the workflow described below starts from the initial condition or solution at the previous 
time step 𝑛. As a summary, the steps in each iteration are:

1. Obtain phase-wise velocities 𝐮𝑛
𝑙

and 𝐮𝑛
𝑔

for energy transport equation (see Appendix A)

2. Solve energy transport equation, Eq. (17), and obtain 𝑇 𝑛+1
3. Calculate divergence-free velocity 𝐮𝑛

𝐿
or 𝐮𝑛

𝐺
from 𝐮𝑛 for interface advection (see Section 2.2)

4. Solve VOF transport equation and obtain 𝐶𝑛+1 (see Section 2.2)

5. Update fluid properties based on 𝐶𝑛+1
6. Calculate new �̇�′′ based on 𝑇 𝑛+1 and 𝐶𝑛+1
7. Calculate 𝐟𝜎 and 𝐟�̇�′′ based on new �̇�′′ and 𝐶𝑛+1
8. Solve first predictor-projection step to shift Stefan flow and obtain 𝐮∗ (Eqs. (20) and (21))

9. Calculate 𝐟𝑁𝐶 based on new �̇�′′, 𝐶𝑛+1 and 𝐮∗
10. Solve second predictor step to obtain 𝐮∗∗ (Eq. (23)), i.e., momentum equation

11. Solve pressure Poisson equation to obtain 𝑝𝑛+1 (Eq. (27)) and 𝐮𝑛+1 (Eq. (26))

12. Calculate time step Δ𝑡 for next iteration

For the discretization of the governing equations, a Cartesian uniform mesh is adopted with a staggered configuration for the 
velocity components [39]. That is, scalar variables such as pressure, density or volume fraction are stored in cell centers, whereas the 
velocity components are stored at the cell faces. The notation in this work follows, e.g., 𝑝𝑖 , 𝑝𝑖+1 and 𝑝𝑖+2 for variables at cell centers 
and 𝑢

𝑖− 1
2
, 𝑢
𝑖+ 1

2
and 𝑢

𝑖+ 3
2

for variables at cell faces. A sketch is shown in Fig. 1 highlighting the definition of an interfacial region 
ΩΓ in cells where 𝛿Γ ≠ 0 (see Section 3.3 for more details on the calculation of 𝛿Γ) and the definition of staggered volume fractions, 
both cornerstones of the proposed flow solver. Lastly, the time step Δ𝑡 is determined by a CFL condition for multiphase flows [40], 
described in Appendix C.

3.1. Solution of the energy equation

The phase-wise energy equation, Eq. (16), is solved using the Adams-Bashforth (AB) explicit temporal integration scheme with 
variable time stepping [11] as

𝑇 𝑛+1 − 𝑇 𝑛

Δ𝑡𝑛+1
=

(
1 + 1

2
Δ𝑡𝑛+1
Δ𝑡𝑛

)
RT𝑛 −

(
1
2
Δ𝑡𝑛+1
Δ𝑡𝑛

)
RT𝑛−1 (17)

where Δ𝑡𝑛+1 = 𝑡𝑛+1 − 𝑡𝑛 and Δ𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1. The term RT𝑛 is given by

RT𝑛 = −𝐮𝑛
𝑓
⋅∇𝑇 𝑛 + 1 

𝜌𝑛
𝑓
𝑐𝑛
𝑝,𝑓

∇ ⋅
(
𝑘𝑛
𝑓
∇𝑇 𝑛

)
(18)

AB is used everywhere except in the interfacial cells and cells neighboring the interface that define ΩΓ . There, a first-order forward 
Euler explicit scheme is used. Note that the use of variable time stepping in an AB scheme may deviate from formal second order 
integration in time. However, consecutive time steps are expected to be very similar and the method provides flexibility to adjust Δ𝑡
accordingly if, e.g., flow velocities change over time or, in the case of momentum, surface tension increases locally.

Outside ΩΓ, the convective term is discretized with a third-order WENO scheme [41] and the diffusive term with second-order 
central differences. Inside ΩΓ, the proximity of the interface is accounted for by embedding the interface solution into the numerical 
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Fig. 1. Definition of the interfacial region ΩΓ in terms of 𝛿Γ = ||∇𝐶|| ≠ 0 and calculation of staggered volume fractions from the interface reconstruction (e.g., PLIC). 
A volume fraction value is shown in each cell. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 2. Two-dimensional sketch showing the normal probe technique to calculate the normal gradients of scalar quantities, i.e., temperature. The PLIC interface is 
represented by a solid red line and the liquid volume is colored in blue. The extension to three dimensions is straightforward.

stencils used to discretize Eq. (18) whenever necessary. Moreover, a first-order upwind scheme is used for the convective term. Details 
on the interface embedding in the discretization are provided in Appendix B.

3.2. Calculation of interfacial mass flux

Different approaches have been implemented in the literature to obtain �̇�′′ from Eq. (8), focusing on the calculation of the 
temperature gradients in each phase, e.g., [1,8,10,13,17,35,38,42]. Here, a normal stencil or probe is extended from the interface plane 
centroid into each phase along 𝐧Γ [16,43,44]. Then, scalar quantities from the grid nodes, i.e., temperature, are linearly interpolated 
on two probing points on each side. To avoid using values from the opposite phase during interpolation, the first point has to be 
placed sufficiently far away from the interface. One can determine that the minimum distance to avoid this conflict is the cell diagonal 
(i.e., 

√
2Δ𝑥 in two dimensions and 

√
3Δ𝑥 in three dimensions). Consequently, the first point is placed at a distance of Δ𝑥(1) = 1.75Δ𝑥

from the interface. Additionally, a second point is placed at Δ𝑥(2) = Δ𝑥 from the first point (i.e., Δ𝑥(1) + Δ𝑥(2) = 2.75Δ𝑥). Although 
this is not problematic in the problems analyzed in this work, one may shorten the stencil and use a single point if it extends into a 
conflicting interface, e.g., two bubbles coming very close to each other.

A two-dimensional sketch is shown in Fig. 2 for a non-conflicting scenario. One-sided second-order finite differences with non-

uniform spacing can be used to calculate
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∇𝑇𝐿 ⋅ 𝐧Γ ≈
𝜕𝑇𝐿

𝜕𝑛 
= −

(Δ𝑥(1)
𝐿
)2
[
𝑇
(1)
𝐿

− 𝑇 (2)
𝐿

]
+ (Δ𝑥(2)

𝐿
)2
[
𝑇
(1)
𝐿

− 𝑇Γ
]
+ 2Δ𝑥(1)

𝐿
Δ𝑥(2)
𝐿

[
𝑇
(1)
𝐿

− 𝑇Γ
]

Δ𝑥(1)
𝐿

[
(Δ𝑥(2)

𝐿
)2 + Δ𝑥(1)

𝐿
Δ𝑥(2)
𝐿

]
∇𝑇𝐺 ⋅ 𝐧Γ ≈

𝜕𝑇𝐺

𝜕𝑛 
=

(Δ𝑥(1)
𝐺
)2
[
𝑇
(1)
𝐺

− 𝑇 (2)
𝐺

]
+ (Δ𝑥(2)

𝐺
)2
[
𝑇
(1)
𝐺

− 𝑇Γ
]
+ 2Δ𝑥(1)

𝐺
Δ𝑥(2)
𝐺

[
𝑇
(1)
𝐺

− 𝑇Γ
]

Δ𝑥(1)
𝐺

[
(Δ𝑥(2)

𝐺
)2 + Δ𝑥(1)

𝐺
Δ𝑥(2)
𝐺

]
(19)

where, oftentimes, 𝑇Γ equals the saturation temperature at the given system pressure 𝑇𝑠𝑎𝑡. An inherent issue of the calculation of 
∇𝑇𝐺 ⋅ 𝐧Γ and ∇𝑇𝐿 ⋅ 𝐧Γ is its effect on the smoothness of the �̇�′′ distribution. As such, some works perform weighted averages of the 
temperature gradients around the interface cell to obtain a more uniform distribution [10,13,17]. Despite a smoother �̇�′′ distribution 
is observed with the proposed gradient calculation compared to other works for similar grid resolutions, variations in �̇�′′ still affect 
the long-term evolution of canonical configurations such as static evaporating droplets or growing bubbles. Therefore, once Eq. (8) 
is evaluated, the value of �̇�′′ is recalculated at each interface cell by averaging �̇�′′ from interface cells contained in a stencil of size 
3×3×3. As shown in Section 5.1, even though the first probing point extends almost two grid sizes into each phase, the second-order 
one-sided scheme results in �̇�′′ errors and convergence rates similar to other works.

3.3. Solution of the Navier-Stokes equations

The Navier-Stokes equations are solved using a modification of the predictor-projection method [45] together with machine-

accurate direct solvers for Poisson-type equations based on Fast Fourier Transforms (FFT) [46,47], which have been incorporated in 
the solver using the vfftpack library.2

Similar to other works [9,13], the advection of the interface from 𝑡𝑛 to 𝑡𝑛+1 is performed prior to the solution of the Navier-Stokes 
equations. As a result, fluid properties and interfacial terms belong to 𝑡𝑛+1 . Following the same idea, two predictor-projection steps 
are used where, first, an intermediate velocity 𝐮∗ is calculated as an adjustment to the Stefan flow from 𝑡𝑛 to 𝑡𝑛+1 using a velocity 
potential 𝜓 as

𝐮∗ = 𝐮𝑛 −∇𝜓 (20)

Then, Eq. (21) is a Poisson equation for 𝜓 obtained by taking the divergence of Eq. (20), which is solved using the FFT-based or 
direct solver with the same boundary conditions as the pressure field. As shown later in Section 3.5, a pressure jump that does not 
correspond to the expected physical jump is introduced if this first predictor-projection step is not included (i.e., if 𝐮∗ = 𝐮𝑛 remains 
true), resulting from the different Stefan flow from 𝑡𝑛 to 𝑡𝑛+1 and directly linked to the first term on the LHS of Eq. (12).

∇2𝜓 =∇ ⋅ 𝐮𝑛 −∇ ⋅ 𝐮∗ = �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝛿Γ

|||𝑛 − �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝛿Γ

|||𝑛+1 (21)

The use of FFT implies a discretization based on second-order central differences of Eq. (21) with a direct computation of the 
discrete velocity divergence at the cell from the staggered mesh as

∇ ⋅ 𝐮𝑖,𝑗,𝑘 ≈ (𝑢
𝑖+ 1

2
− 𝑢

𝑖− 1
2
)∕Δ𝑥+ (𝑣

𝑗+ 1
2
− 𝑣

𝑗− 1
2
)∕Δ𝑦+ (𝑤

𝑘+ 1
2
−𝑤

𝑘− 1
2
)∕Δ𝑧 (22)

with, e.g., ∇𝜓
𝑖+ 1

2
≈ (𝜓𝑖+1 − 𝜓𝑖)∕Δ𝑥 at the cell faces. Note some indices have been dropped for convenience. Here, 𝛿Γ = ||∇𝐶|| is 

evaluated from staggered volume fractions to minimize the smearing of the velocity jump when compared to using central differences 
[48]. For example, Fig. 1 shows how 𝐶

𝑖+ 1
2

is obtained from adding the enclosed volumes on the right half of 𝐶𝑖 and on the left half of 
𝐶𝑖+1. This evaluation of 𝛿Γ results in a more uniform and smoother distribution of the volumetric source term around curved interfaces 
compared to obtaining 𝛿Γ from the surface area density, e.g., [10,16], especially at lower interface resolutions. This preserves the 
symmetries of the flow around, e.g., an evaporating droplet better while maintaining a reasonably sharp phase jump across a region 
of thickness ∼ 2Δ𝑥.

Next, the second predictor step calculates a velocity 𝐮∗∗ from the momentum equation, Eq. (15), without the pressure gradient, 
𝐟𝜎 , 𝐟�̇�′′ and 𝐟𝑁𝐶 using the AB scheme

𝐮∗∗ − 𝐮∗
Δ𝑡𝑛+1

=

(
1 + 1

2
Δ𝑡𝑛+1
Δ𝑡𝑛

)
RU𝑛 −

(
1
2
Δ𝑡𝑛+1
Δ𝑡𝑛

)
RU𝑛−1 (23)

where RU𝑛 is given by

RU𝑛 = −𝐮∗ ⋅∇𝐮∗ + 1 
𝜌𝑛+1

∇ ⋅
(
𝜇𝑛+1

[
∇𝐮∗ + (∇𝐮∗)𝑇

])
+ 𝐠 (24)

As done for the energy equation, AB is used everywhere outside ΩΓ , while a classic first-order scheme is used in ΩΓ . The viscous 
term is discretized with second-order central differences, and the convective term is discretized with the third-order WENO scheme in 
cells not belonging to ΩΓ and second-order central differences in ΩΓ. These modifications around the interface are necessary to aim 

2 A vectorized package of Fortran subprograms for the fast Fourier transform of multiple real sequences, R.A. Sweet, L.L. Lindgren and R.F. Boisvert, https://

www.netlib.org/vfftpack/.
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for the cancellation of the numerical jump caused by 𝐮∗ ⋅∇𝐮∗ with 𝐟𝑁𝐶 . Note the choice of WENO in the momentum equation is to 
maintain consistency with the discretization of the energy equation. For practical purposes, no major differences have been observed 
between using WENO or central differences in the problems considered in this work.

The variable-coefficient pressure Poisson equation (PPE) resulting from the projection step is converted into a constant-coefficient 
PPE via the approximate substitution [9,49]

1 
𝜌𝑛+1

∇𝑝𝑛+1 → 1 
𝜌0

∇𝑝𝑛+1 +
(

1 
𝜌𝑛+1

− 1 
𝜌0

)
∇�̂� (25)

which splits the gradient 1 
𝜌𝑛+1

∇𝑝𝑛+1 into a constant-coefficient implicit term and a variable-coefficient explicit term. For accuracy 
and stability purposes, 𝜌0 = min(𝜌𝑔, 𝜌𝑙) and �̂� = [1+ (Δ𝑡𝑛+1∕Δ𝑡𝑛)]𝑝𝑛 −(Δ𝑡𝑛+1∕Δ𝑡𝑛)𝑝𝑛−1 is a linear extrapolation in time of the pressure 
field [9,49]. Then, a direct pressure solver can be used, resulting in a computationally more efficient solver than iterative methods 
[9,11,12,16,50].

However, pressure-splitting introduces considerable time-stepping restrictions for stability purposes when the pressure jump across 
the interface is large (e.g., large surface tension) or when the density ratio is large (i.e., ∇�̂� has a greater contribution in the PPE) 
[9]. In other words, smoothness in �̂� may be lost and substantial pressure oscillations occur as the interface moves across grid cells 
[51,52]. Such limitation could defy the implementation of the gradient splitting technique and reduce the benefits of a direct solver. 
This problem is mitigated by explicitly accounting for the pressure jump in the PPE [51], similar to a GFM. Thus, 𝐟𝜎 , 𝐟�̇�′′ and 𝐟𝑁𝐶
are removed from Eq. (15) during the predictor step in Eqs. (23) and (24) and, instead, are added in the projection step. Within 
the context of the gradient splitting technique, this is equivalent to the temporal extrapolation of the pressure jump instead of the 
pressure itself, i.e., see Eq. (26).

As a result of pressure-splitting, the velocity at the new time step 𝐮𝑛+1 is obtained from the projection step as

𝐮𝑛+1 = 𝐮∗∗ − Δ𝑡𝑛+1
[

1 
𝜌0

(
∇𝑝𝑛+1 − 𝐟𝑛+1

𝜎
− 𝐟𝑛+1
�̇�′′

)
+
(

1 
𝜌𝑛+1

− 1 
𝜌0

)(
∇�̂�− 𝐟𝜎 − 𝐟�̇�′′

)
− 1 
𝜌𝑛+1

𝐟𝑛+1
𝑁𝐶

]
(26)

which defines a constant-coefficient PPE by taking the divergence of Eq. (26), i.e.,

∇2𝑝𝑛+1 = ∇ ⋅
[(

1 −
𝜌0

𝜌𝑛+1

)(
∇�̂�− 𝐟𝜎 − 𝐟�̇�′′

)
+ 𝐟𝑛+1
𝜎

+ 𝐟𝑛+1
�̇�′′

+
𝜌0

𝜌𝑛+1
𝐟𝑛+1
𝑁𝐶

]
+

𝜌0

Δ𝑡𝑛+1
[
∇ ⋅ 𝐮∗∗ − ∇ ⋅ 𝐮𝑛+1

]
(27)

where ∇ ⋅𝐮𝑛+1 = �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝛿Γ

|||𝑛+1 ensures that the correct velocity jump given by Eq. (10) is imposed. It is important to highlight 
that the splitting operator is not applied to 𝐟𝑛+1

𝑁𝐶
since the variable density 𝜌𝑛+1 effectively cancels with the density term inside 𝐟𝑛+1

𝑁𝐶
. 

Then, Eq. (27) is solved using the FFT-based or direct solver. Another advantage of using the direct solver relates to stiffness problems 
that might arise as ∇ ⋅ 𝐮𝑛+1 increases, which could affect the convergence rate of iterative solvers [8,11].

The forces 𝐟𝜎 , 𝐟�̇�′′ and 𝐟𝑁𝐶 must be calculated at cell faces to correspond with the evaluation of ∇𝑝. In 𝐟𝜎 and 𝐟�̇�′′ , 𝜅 and �̇�′′

are averaged at cell faces [9] and 𝐧Γ𝛿Γ = −∇𝐶 following the CSF approach. ∇𝐶 is evaluated from cell values, e.g., 𝜕𝐶∕𝜕𝑥|𝑖+1∕2 ≈
(𝐶𝑖+1 −𝐶𝑖)∕Δ𝑥. In contrast, 𝐟𝑁𝐶 is discretized differently for smoothness purposes in order to minimize geometrical errors that may 
arise from an ill-defined discrete force at the interface given the sensitivity of the term 𝐮∗ ⋅𝐧Γ. Note that the corrective nature of 𝐟𝑁𝐶 to 
counteract the error introduced by 𝐮∗ ⋅∇𝐮∗ in ΩΓ implies that 𝐮∗ substitutes 𝐮 in Eq. (13). In this work, 𝐮∗ is linearly averaged at cell 
faces while 𝐧Γ is obtained at staggered interface cells (e.g., 0 < 𝐶𝑖+1∕2 < 1) using the MYC method with staggered volume fractions. 
Then, a narrow band of staggered cells around the interface is populated with a weighted average of the normal unit vectors obtained 
in the previous step with the method described in Appendix A. Lastly, discretizing 𝐧Γ𝛿Γ with 𝛿Γ obtained in staggered locations as, 
e.g., 𝛿Γ,𝑖+1∕2 =

1
2 (𝛿Γ,𝑖 + 𝛿Γ,𝑖+1) improves the smoothness of 𝐟𝑁𝐶 compared to the substitution 𝐧Γ𝛿Γ = −∇𝐶 . As shown in Section 3.5, 

both 𝛿Γ,𝑖+1∕2 or ∇𝐶 evaluated with staggered central differences, e.g., 𝜕𝐶∕𝜕𝑥|𝑖+1∕2 ≈ (𝐶𝑖+3∕2 −𝐶𝑖−1∕2)∕(2Δ𝑥), result in the correction 
of the error introduced by 𝐮∗ ⋅∇𝐮∗ at the discrete level for a well-posed one-dimensional case.

Lastly, it is worth discussing the computational cost of the flow solver, in particular the inclusion of additional Poisson-type 
equations. Besides the PPE, a Poisson equation is solved to calculate the divergence-free velocity for the advection of 𝐶 in Section 2.2

and to calculate 𝐮∗ via Eqs. (20) and (21). Depending on the set tolerance and type of, e.g., multigrid iterative solver, direct solvers 
may provide a speed-up between 3 and 14 times in typical two-phase flow implementations [9,53]. This translates into the PPE 
representing only about 58% of the wall-clock time per time step in parallel computing implementations of non-evaporative flows 
[9]. However, many configurations of interest involve disperse bubbly or droplet-laden flows and load balancing easily deteriorates 
when using typical domain decompositions, e.g., pencils. That is, only a few processes might take care of geometric reconstructions, 
evaluating interfacial heat and mass transfer, or calculating localized forces. As such, a behavior closer to what is reported in [11] 
is observed where solving each additional Poisson equation represents about 5% of the cost per time step in a configuration like the 
static evaporating droplet in Section 4.2.

3.4. Formal analysis of the modified predictor-projection method

The modified predictor-projection method or Fractional Step Method (FSM) described in Section 3.3 is analyzed following [54,55]. 
The discrete Navier-Stokes equations are recast in matrix-vector form 𝐀𝐱 = 𝐛 as
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I Δ𝑡 1 

𝜌
G

D 0

)(
𝐮𝑛+1
𝑝𝑛+1

FSM

)
=
(
Δ𝑡𝐑+ 𝐮𝑛

M𝑛+1

)
(28)

where I, G and D are the discrete identity, gradient and divergence operators, respectively. Further, 𝐑 corresponds to all the discretized 
terms on the RHS of the momentum equation, Eq. (15), plus the convective term. The various body forces are included here. That is, 
for the purpose of this analysis, no gradient splitting operator is implemented nor the body forces are moved to the projector step. 
Moreover, the temporal scheme for 𝐑 is left unspecified and could be obtained from, e.g., an explicit forward Euler or from the AB 
scheme. The volumetric expansion at the interface is given by M𝑛+1 = �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)𝛿Γ|𝑛+1. Note that the predictor-projection steps 

can be obtained by performing the LU decomposition of 𝐀𝐱 = 𝐛 [54,55], i.e., a Poisson-type equation emerges naturally.

However, the direct solution of Eq. (28) suffers from numerical inaccuracies arising from the abrupt shift of 𝐮 in the vicinity of the 
interface, which translates into the introduction of a time-oscillatory pressure field 𝑝𝑛+1

𝐹𝑆𝑀
that may impact the momentum balance 

across ΩΓ. Such oscillation originates at the projection step of the naive FSM as

D
1 
𝜌

G𝑝𝑛+1
𝐹𝑆𝑀

= D𝐮𝐩 − M𝑛+1 = Δ𝑡D𝐑+D𝐮𝐧 − M𝑛+1 (29)

where the two rightmost terms are equal to M𝑛 − M𝑛+1, which is indeed time-oscillatory due to its close relation to the surface 
interface transport. However, in the context of an incompressible flow, the pressure field is defined instantaneously to impose the 
divergence of the velocity field, and thus any time dependence is inconsistent with the original method. One can see how the naive 
approach does, inadvertently, break the original formulation of the problem. These oscillations are observed in Sections 4.1 and 5.2

when looking at the evolution of the pressure jump over time in different two-phase flows.

To improve the numerical solution of Eq. (28), 𝐮𝐧 is regularized by introducing a Stefan flow shift before proceeding to the FSM, as 
discussed in Section 3.3. Such a shift removes the dependence of pressure with the Stefan flow of the previous time step by introducing 
an intermediate velocity field, 𝐮∗, which corrects the velocity field 𝐮𝑛 to satisfy the volumetric expansion at the next time step M𝑛+1. 
The shift is defined implicitly by introducing an intermediate pressure, 𝑝∗, resulting in an additional linear system of equations given 
by (

I Δ𝑡 1 
𝜌
G

D 0

)(
𝐮∗
𝑝∗

)
=
(

𝐮𝑛
M𝑛+1

)
(30)

The connection between the original FSM given by Eq. (28), the Stefan flow shift given by Eq. (30), and the FSM step used to 
solve the Navier-Stokes equations in the flow solver materializes by rewriting Eq. (28) in the form 𝐀𝐱 = 𝐛0 + 𝐛1 as(

I Δ𝑡 1 
𝜌
G

D 0

)(
𝐮𝑛+1
𝑝𝑛+1

FSM

)
=
(
Δ𝑡𝐑
0

)
+
(

𝐮𝑛
M𝑛+1

)
=
(
Δ𝑡𝐑
0

)
+

(
I Δ𝑡 1 

𝜌
G

D 0

)(
𝐮∗
𝑝∗

)
(31)

where the vector 𝐛𝟏 is, in fact, the RHS of Eq. (30), such that the same system of equations is being solved. Now, manipulation of 
Eq. (31) results in(

I Δ𝑡 1 
𝜌
G

D 0

)(
𝐮𝑛+1 − 𝐮∗
𝑝𝑛+1

FSM
− 𝑝∗

)
=
(
Δ𝑡𝐑
0

)
→

(
I Δ𝑡 1 

𝜌
G

D 0

)(
𝐮𝑛+1
𝑝𝑛+1

)
=
(
Δ𝑡𝐑+ 𝐮∗

M𝑛+1

)
(32)

which is essentially the second FSM step used in the flow solver described in Section 3.3. One can easily check that the second 
projection step now implies

D
1 
𝜌

G𝑝𝑛+1 = D𝐮∗∗ − M𝑛+1 = Δ𝑡D𝐑+D𝐮∗ − M𝑛+1 (33)

where the two rightmost terms, which were the problematic ones as identified in Eq. (29), are identical now, removing the oscillatory 
behavior.

Note that Eq. (20) as a function of Ψ has been replaced in the analysis by 𝐮∗ = 𝐮𝑛 − Δ𝑡 1 
𝜌
∇𝑝∗ in Eq. (30). However, the actual 

implementation of the solver does indeed use Ψ to avoid having to solve another variable-coefficient Poisson equation. Since knowing 
the actual value of 𝑝∗ is not necessary, only 𝐮∗ is obtained.

Various details of the algorithm have become clear with the previous analysis and are summarized here. First, the flow solver has 
been split into two predictor-projection or FSM steps rather than one. By doing so, one integrates the velocity first from 𝐮𝑛 to 𝐮∗ purely 
based on mass conservation constraints due to the moving interface, absorbing the time oscillations in the pressure term 𝑝∗ ; then, 
one integrates momentum from 𝐮∗ to 𝐮𝑛+1, as visualized in Fig. 3. Second, by using the first FSM step, one eliminates the divergence 
constraint in ΩΓ and obtains a pressure field 𝑝𝑛+1 free of oscillations caused by a time-dependent stiff source term, resembling the 
implementation of the FSM in an incompressible single-phase problem. Third and last, the recasting of Eq. (32) shows that the second 
FSM step is indeed solving for a new pressure 𝑝𝑛+1 = 𝑝𝑛+1

FSM
− 𝑝∗ that differs from the pressure field that one would obtain from directly 

solving the system given by Eq. (28). In other words, the numerical pressure 𝑝𝑛+1
FSM

obtained with the traditional formulation of the 
FSM includes an additional pressure 𝑝∗ resulting from the temporal change of the Stefan flow, which carries the problematic pressure 
behavior across ΩΓ caused by the inconsistent temporal integration between the one-fluid Navier-Stokes equations and the interface 
transport when �̇�′′ ≠ 0.
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Fig. 3. Schematic comparing the integration from 𝐮𝑛 to 𝐮𝑛+1 with a single predictor-projection step or Fractional Step Method (FSM) step and the two FSM steps used 
in the flow solver described in Section 3.3 and formalized in Section 3.4.

Fig. 4. Discretization of the one-dimensional evaporating liquid surface with a uniform mesh Δ𝑥. The interface sits inside cell 𝑖, with the liquid on the left and the gas 
on the right.

Some limitations arise with the proposed two-step predictor-projection method. As shown in Eq. (24), 𝐑 is discretized with 
𝐮∗ instead of 𝐮𝑛. Thus, the impact on the evaluation of 𝐑 and how it might affect the temporal integration of momentum must be 
understood. This is left for future work, but preliminary analysis following the static droplet evaporation case presented in Section 4.2

suggests that the convective and diffusive terms differ by less than 0.03% given the considered Δ𝑡 restrictions. Further, by removing 
the information carried by 𝑝∗ regarding unsteady effects of the Stefan flow, one effectively imposes that the interface movement with 
respect to the fluid is a quasi-steady state process. Therefore, the pressure 𝑝𝑛+1 obtained with the modified FSM is only physical if 
the quasi-steady assumption holds despite the correct pressure jump and volumetric expansion may be recovered across ΩΓ when 
solving the Navier-Stokes equations. While this assumption may not be problematic in cases where the flow dynamics are driven by 
other forces (e.g., gravity), differences become more evident if the flow field is dominated by the evaporation process.

3.5. One-dimensional discrete analysis of momentum balance corrections

A one-dimensional discrete analysis of the momentum balance corrections is provided in this section to visualize the modifications 
introduced in the flow solver discussed in Sections 3.3 and 3.4. An evaporating liquid film sitting on a fixed wall is analyzed where the 
liquid is at rest and the flat surface does not deform. Similar to the Stefan problem but without coupling to the energy equation [13, 
17,35], this configuration results in the one-dimensional evolution of an evaporating flow. The analytical solution is straightforward, 
where the velocities in the liquid and gas phases are constant and given by 𝑢𝑙 = 0 and 𝑢𝑔 = �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
). Thus, the viscous term is 

identically zero and the quasi-steady assumption of the interface regression with respect to the fluid has no impact beyond ΩΓ . Here, 
phase change causes a pressure jump across the interface given by Δ𝑝 = (�̇�′′)2(𝜌−1

𝐺
− 𝜌−1

𝐿
). The discretization of the one-dimensional 

domain is shown in Fig. 4.

From this setup one can directly show the effects of the two modifications proposed to the flow solver, namely the intermediate 
step to calculate 𝐮∗ and the addition of 𝐟�̇�′′ and 𝐟𝑁𝐶 . Combining Eqs. (24) and (26) in ΩΓ where the forward Euler scheme is used 
for the temporal integration, the pressure gradient across a velocity node, e.g., 𝑖+ 1

2 , is given by

𝑑𝑝𝑛+1

𝑑𝑥 
=

𝜌0

Δ𝑡𝑛+1
(𝑢∗ − 𝑢𝑛+1) − 𝜌0𝑢∗

𝑑𝑢∗

𝑑𝑥 
+
(
1 −

𝜌0

𝜌𝑛+1

)(
𝑑�̂�

𝑑𝑥
− 𝑓�̇�′′ ,𝑥

)
+ 𝑓𝑛+1

�̇�′′ ,𝑥
+
𝜌0

𝜌𝑛+1
𝑓𝑛+1
𝑁𝐶,𝑥

(34)

The pressure field obtained from predictor-projection methods is essentially a mathematical operation to enforce the divergence-

free condition of the velocity field in incompressible flows. As long as 𝐮∗∗ is well posed, the pressure is physically meaningful. 
However, this is not the case with the one-fluid formulation introduced in Section 2.3 across ΩΓ if �̇�′′′ ≠ 0. Fundamentally, the PPE 
is used to overwrite the velocity field in ΩΓ to satisfy Eq. (10) regardless of 𝐮∗∗ . Thus, the correct velocity field may be obtained but 
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with an ill-defined momentum balance. The introduction of 𝐮∗, 𝐟𝑁𝐶 and 𝐟�̇�′′ aim to solve this issue by cancellation and correction. 
Similar to the modeling of surface tension in [51], the discretization of 𝑓𝑛+1

�̇�′′ ,𝑥
and 𝑓�̇�′′ ,𝑥 consistent with the pressure gradient ensures 

that the exact pressure jump due to phase change is recovered across ΩΓ if no other jumps are introduced numerically.

In Fig. 4, the volumetric expansion occurs in cells 𝑖 and 𝑖+ 1 where 𝛿Γ,𝑖 and 𝛿Γ,𝑖+1 are non-zero. Thus, one can show that from the 
staggered discretization of Eq. (34) using central differences, 𝑢∗ 𝑑𝑢

∗

𝑑𝑥 is non-zero only at velocity nodes 𝑖+ 1
2 and 𝑖+ 3

2 . In particular,

𝑢∗
𝑑𝑢∗

𝑑𝑥 
≈

⎧⎪⎪⎨⎪⎪⎩
𝑢∗
𝑖+ 1

2

𝑢∗
𝑖+ 3

2
−𝑢∗
𝑖− 1

2
2Δ𝑥 if 𝑖+ 1

2

𝑢∗
𝑖+ 3

2

𝑢∗
𝑖+ 5

2
−𝑢∗
𝑖+ 1

2
2Δ𝑥 if 𝑖+ 3

2

(35)

where 𝑢∗
𝑖− 1

2

= 𝑢𝑙 = 0 and 𝑢∗
𝑖+ 5

2

= 𝑢𝑔 = �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
). Further, from ∇ ⋅ 𝐮∗, one obtains

𝑢∗
𝑖+ 1

2
= �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)𝛿Γ,𝑖Δ𝑥

𝑢∗
𝑖+ 3

2
= 𝑢∗

𝑖+ 1
2
+ �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)𝛿Γ,𝑖+1Δ𝑥

𝑢∗
𝑖+ 5

2
= 𝑢∗

𝑖+ 3
2
+ �̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)𝛿Γ,𝑖+2Δ𝑥

(36)

where 𝛿Γ,𝑖 = |𝐶
𝑖+ 1

2
−𝐶

𝑖− 1
2
|Δ𝑥−1, 𝛿Γ,𝑖+1 = |𝐶

𝑖+ 3
2
−𝐶

𝑖+ 1
2
|Δ𝑥−1 and 𝛿Γ,𝑖+2 = |𝐶

𝑖+ 5
2
−𝐶

𝑖+ 3
2
|Δ𝑥−1. Then, substitution into Eq. (35) results 

in

𝑢∗
𝑑𝑢∗

𝑑𝑥 
≈

⎧⎪⎪⎨⎪⎪⎩
𝑢∗
𝑖+ 1

2

�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
) 12 (𝛿Γ,𝑖 + 𝛿Γ,𝑖+1) = −𝑢∗

𝑖+ 1
2

�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)
(𝐶

𝑖+ 3
2
−𝐶
𝑖− 1

2
2Δ𝑥 

)
if 𝑖+ 1

2

𝑢∗
𝑖+ 3

2

�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
) 12 (𝛿Γ,𝑖+1 + 𝛿Γ,𝑖+2) = −𝑢∗

𝑖+ 3
2

�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)
(𝐶

𝑖+ 5
2
−𝐶
𝑖+ 1

2
2Δ𝑥 

)
if 𝑖+ 3

2

(37)

which is equivalent to the discretization of 1 
𝜌𝑛+1
𝑓𝑛+1
𝑁𝐶,𝑥

in the same nodes (note 𝐮∗ ⋅ 𝐧Γ = 𝑢∗) using either 𝐧Γ𝛿Γ or −∇𝐶 .

Despite 1 
𝜌𝑛+1
𝑓𝑛+1
𝑁𝐶,𝑥

≡ 𝑢∗ 𝑑𝑢∗
𝑑𝑥 ensures the cancellation of both terms in the RHS of Eq. (34), the term 𝜌0

Δ𝑡𝑛+1 (𝑢
∗ − 𝑢𝑛+1) still introduces 

a pressure jump due to the adjustment of the velocity to satisfy mass conservation constraints. If Eq. (20) is not solved, then 𝑢∗ = 𝑢𝑛
and the velocity difference 𝑢𝑛 − 𝑢𝑛+1 may be sufficiently large in ΩΓ to cause a significant pressure jump as the interface moves. By 
including the calculation of 𝐮∗ as an intermediate step to account for the adjustment of the Stefan flow from 𝑡𝑛 to 𝑡𝑛+1 before solving 
the Navier-Stokes equations, one effectively cancels 𝜌0

Δ𝑡𝑛+1 (𝑢
∗ − 𝑢𝑛+1) in ΩΓ if 𝑢∗ = 𝑢𝑛+1, such as in this one-dimensional problem, or 

reduces the jump if 𝑢∗ ≈ 𝑢𝑛+1.

The adjustment of the Stefan flow with the first predictor-projection step eliminates the pressure jump introduced by the time 
derivative in Eqs. (11) or (15), i.e., the first term on the LHS of Eq. (12). Without correction, the temporal term in Eq. (34) causing a 
pressure jump becomes 𝜌0

Δ𝑡𝑛+1 (𝑢
𝑛 − 𝑢𝑛+1). In, e.g., node 𝑖+ 1

2 , it is given by

𝜌0

Δ𝑡𝑛+1
(𝑢𝑛 − 𝑢𝑛+1) = −

𝜌0

Δ𝑡𝑛+1
�̇�′′(𝜌−1

𝐺
− 𝜌−1

𝐿
)(𝛿𝑛+1Γ,𝑖 − 𝛿𝑛Γ,𝑖)Δ𝑥 (38)

Note that if 𝜌(𝐮𝐿 − 𝐮𝐺)(𝐮Γ ⋅ 𝐧Γ) from Eq. (12) is rewritten as a localized body force similar to 𝐟𝑁𝐶 , it could be approximated at 𝑖+ 1
2

as −𝜌0�̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
)𝑢𝑛+1

Γ,𝑖+ 1
2

𝛿𝑛+1
Γ,𝑖+ 1

2

. Thus, the effect of the interface shift over time on the momentum balance of the non-conservative 

formulation, driven by 𝑢𝑛+1
Γ,𝑖+ 1

2

𝛿𝑛+1
Γ,𝑖+ 1

2

, is approximated in the predictor-projection method with (𝛿𝑛+1Γ,𝑖 − 𝛿𝑛Γ,𝑖)
Δ𝑥 

Δ𝑡𝑛+1 . That is, the interface 

velocity is approximated by the shift in 𝛿Γ from 𝑡𝑛 to 𝑡𝑛+1, which is eliminated by considering the intermediate velocity 𝐮∗ instead.

4. Validation with fixed mass flux

The numerical approach and proposed momentum balance corrections are validated against fabricated solutions of evaporating 
flows with constant �̇�′′. This effectively decouples the flow solver from the energy equation. Thus, a better assessment of the handling 
of phase change in the advection of the interface and the Navier-Stokes equations can be made. Moreover, gravity is neglected.

To minimize the need to significantly reduce the time step for stability purposes due to the gradient splitting operator in Eq. (27) 
and the handling of phase change, conditions relevant to high-pressure boiling flows are considered since density and viscosity ratios 
are small. The properties of each phase are set to 𝜌𝐺 = 100 kg/m3, 𝜌𝐿 = 500 kg/m3, 𝜇𝐺 = 25 μPa⋅s and 𝜇𝐿 = 50 μPa⋅s, resulting in a 
density ratio 𝜌𝐿

𝜌𝐺
= 5 and viscosity ratio 𝜇𝐿

𝜇𝐺
= 2. At these conditions, a characteristic value of the surface tension coefficient is 𝜎 = 1

mN/m and, given the reduced latent heat of vaporization at such high pressures, �̇�′′ may vary substantially depending on the heat 
flux into the interface [19]. Thus, values ranging from 0.1 kg/(m2s) to 10 kg/(m2s) are considered in Section 4.2.
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Table 1
Grid size for each level of 
mesh refinement L1, L2, L3 
and L4 used in the validation 
cases with fixed mass flux.

Mesh Grid size [mm] 
L1 150/96 
L2 150/192 
L3 150/384 
L4 150/576 

Fig. 5. Velocity and pressure jumps across ΩΓ at 𝑡 = 0.2 s in the one-dimensional evaporating liquid problem. (a) Velocity; (b) pressure. (For interpretation of the 
colors in the figure, the reader is referred to the web version of this article.)

Note that �̇�′′ values are pushed to what could be considered upper limits in evaporative flows. Since the modifications to what 
is considered a standard two-phase flow solver disappear as �̇�′′ → 0, it is out of scope of this section to show results approaching 
non-evaporative conditions. Further, in this section the CFL constraints on the time step are driven by the interface evaporation. As 
such, a restrictive CFL condition on the interface shift limits the maximum shift per time step to (Δdmax∕Δ𝑥) = 0.001 to minimize the 
geometrical errors introduced by the respective term in Eq. (9) and focus on the behavior of the additional body forces 𝐟�̇�′′ and 𝐟𝑁𝐶 .

4.1. One-dimensional evaporating liquid surface

A numerical test following the one-dimensional liquid surface configuration described in Section 3.5 shows the recovery of the 
correct pressure and velocity jumps across ΩΓ in the one-fluid formulation, regardless of the mesh resolution, as seen in Fig. 5. 
The computational domain is defined with the wall at 𝑥 = 0, the liquid-gas interface initially at 𝑥 = 25 mm and an open boundary at 
𝑥 = 150 mm where the reference pressure is set at 0 Pa. The mass flux is set to �̇�′′ = 10 kg/(m2s), resulting in 𝑝𝑙 = 0.8 Pa and 𝑢𝑔 = 0.08
m/s. Various mesh resolutions are tested, which are given in Table 1 (i.e., L1, L2, L3 and L4). Although the error in the momentum 
balance introduced by the one-fluid velocity in the viscous term is negligible (i.e., well below 1% for the tested grid sizes and fluid 
properties), the results in this section have been obtained by neglecting viscous effects in the one-fluid momentum equation.

The errors introduced by the one-fluid formulation without corrections (i.e., 𝐟𝑁𝐶 = 0, 𝐟�̇�′′ = 0 and 𝐮∗ = 𝐮𝑛) are visualized in Fig. 6
by comparing the results obtained with L3. Further, the figure also analyzes the individual effect of each correction. As expected, 
a pressure field is obtained that corrects the predicted velocity to satisfy ∇ ⋅ 𝐮𝑛+1. Therefore, the velocity jump is the same with 
and without corrections (see Fig. 6a). However, the pressures are different. For example, the pressure difference 𝑝∗ between the 
pressures 𝑝𝑛+1

FSM
(W/o corrections) and 𝑝𝑛+1 (Stefan shift only), as defined in Section 3.4, can be as large as 1 Pa or 25% more than the 

actual pressure jump. Moreover, 𝑝∗ varies over time as the interface moves across cells, as seen in Figs. 6b and 6c. For this particular 
configuration, the momentum imbalance caused by the convective term does not vary much over time as the interface crosses grid 
cells; thus, the addition of 𝐟�̇�′′ and 𝐟𝑁𝐶 mainly correct the pressure offset necessary to obtain the exact Δ𝑝 with 𝑝𝑛+1. In this case, 
the pressure jump is underestimated by more than 12.5% without the additional body forces. In contrast, the Stefan flow shift is 
responsible for the elimination of the large temporal pressure oscillations that take some time to decrease before re-emerging once 
a new cell is suddenly identified as belonging to ΩΓ. That is, Δ𝑝 spikes as the one-fluid suddenly accelerates due to the volumetric 
expansion caused by phase change when ΩΓ moves across cells.
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Fig. 6. Pressure and velocity jumps across ΩΓ in the one-dimensional evaporating liquid problem using mesh L3. The results with the flow solver corrections are 
compared against the results without corrections (i.e., traditional one-fluid approach), the results only adding the corrective body forces, and the results obtained by 
only considering the Stefan flow shift. (a) Velocity at 𝑡 = 0.2 s; (b) pressure at 𝑡 = 0.2 s; (c) pressure jump vs. time. (For interpretation of the colors in the figure, the 
reader is referred to the web version of this article.)

Table 2
Mass flux per unit area, �̇�′′, and sur-

face tension coefficient, 𝜎, for the differ-

ent configurations of the static evaporating 
droplet.

Case �̇�′′ [kg/(m2s)] 𝜎 [mN/m] 
1 0.1 1 
2 10 0.01 
3 10 1 

4.2. Static evaporating droplet

The flow solver is tested for a static droplet evaporating under constant �̇�′′ to analyze the physical consistency of the solution 
and stability of the proposed method. An analytical solution to a simplified version of this problem can be obtained by decoupling 
the velocity calculation from the pressure. Under spherical symmetry, the radial velocity 𝑢𝑟 is obtained from the continuity equation 
in spherical coordinates, resulting in

𝑢𝑟(𝑟, 𝑡) =
⎧⎪⎨⎪⎩
0 if 𝑟 < 𝑅(𝑡)

𝑢𝐺

(
𝑅(𝑡)
𝑟 

)2
if 𝑟 ≥𝑅(𝑡) (39)

where 𝑢𝐺 = �̇�′′(𝜌−1
𝐺

− 𝜌−1
𝐿
). Next, the pressure is calculated by substituting 𝑢𝑟 into the momentum equation, also in spherical coordi-

nates. Assuming that 𝑝𝑟→∞ = 0 and a quasi-steady state evolution of the interface location, the pressure is given by

𝑝(𝑟, 𝑡) =
⎧⎪⎨⎪⎩
𝑝𝐺 + 𝜎𝜅 + (�̇�′′)2(𝜌−1

𝐺
− 𝜌−1

𝐿
) + 4 𝜇𝐺

𝑅(𝑡) 𝑢𝐺 if 𝑟 < 𝑅(𝑡)

− 1
2𝜌𝐺𝑢

2
𝐺

(
𝑅(𝑡)
𝑟 

)4
if 𝑟 ≥𝑅(𝑡) (40)

with 𝑝𝐺 = −1
2𝜌𝐺𝑢

2
𝐺

. In Eqs. (39) and (40), the droplet radius is given as a function of time by 𝑅(𝑡) =𝑅0 −
�̇�′′

𝜌𝐿
𝑡 where 𝑅0 is the initial 

radius. Note the pressure jump due to the normal viscous stress is included despite being negligible compared to the other terms.

For the numerical test, a droplet with an initial diameter 𝑑0 = 25 mm is suspended at the center of the computational domain 
with a side length of 150 mm (i.e., 6𝑑0). Open boundaries are considered in all directions, which have been approximated with 
homogeneous Neumann boundary conditions for all variables. The direct pressure solver imposes such condition in 𝑥 and 𝑦, while a 
reference pressure of 0 Pa is imposed on one point at the top 𝑧 boundary. This treatment aims to recover the analytical solution for 
the pressure field given by 𝑝𝑟→∞ = 0 under the assumption that the computational domain is large enough.

A range of �̇�′′ and 𝜎 values are considered (see Table 2) to test the accuracy of the one-fluid corrections and the interplay with 
surface tension. A non-dimensional time is defined as 𝑡∗ = 𝑡∕𝑡𝑐 , where the characteristic time is given by 𝑡𝑐 = 𝜌𝐿𝑑0∕�̇�′′. Note the 
scaling with the interface regression velocity 𝐮Γ for a static droplet.

4.2.1. Flow field

Similar to Section 4.1, Figs. 7a and 7b show the radial profiles of 𝐮 and 𝑝 extracted along the 𝑧 direction from the droplet’s center 
for case 3 at 𝑡∗ = 0.08 s. The same mesh resolutions L1, L2, L3 and L4 from Table 1 are considered, which show good convergence 
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Fig. 7. Velocity and pressure jumps across ΩΓ at 𝑡∗ = 0.08 s in the static evaporating droplet for case 3. (a) Velocity; (b) pressure; (c) pressure with and without flow 
solver corrections using mesh L3. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 8. Temporal evolution of droplet volume, pressure and resolution in the static evaporating droplet for case 3. (a) Normalized volume; (b) average internal droplet 
pressure; (c) grid resolution. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

to the analytical solution given by Eqs. (39) and (40). Because of the three-dimensional nature of the problem, 𝐮 and 𝑝 show some 
oscillations around ΩΓ affected by the grid resolution and spurious currents.

The impact of not considering the flow solver corrections is seen in Fig. 7c using L3. As expected from the discussion in Section 4.1, 
a bigger pressure jump is introduced without the corrections, while the correct Δ𝑝 is captured with the corrections. Compared to 
the one-dimensional results shown in Fig. 6, the pressure field is unphysical in both cases. In particular, the pressure field in the gas 
phase without corrections may be more consistent with the unsteady analytical solution but overestimates Δ𝑝, while the pressure 
field with corrections misses the unsteady effect of the shift in Stefan flow but reproduces the quasi-steady analytical solution and 
imposes the exact Δ𝑝.

Figs. 8a and 8b show, respectively, the temporal evolution of the droplet volume normalized by the initial volume 𝑉0 =
4
3𝜋𝑅

3
0 and 

the droplet’s internal pressure for case 3, taken as the average of the pressure value in all pure liquid cells (i.e., 𝐶 = 1). For reference, 
Fig. 8c presents the droplet resolution over time where the thresholds of 32 cells per diameter (c/d) and 8 c/d are emphasized. That 
is, 32 c/d is oftentimes assumed as a well-resolved droplet. However, lower resolutions are often used in configurations with multiple 
droplets or bubbles (e.g., 25 c/d in [56]). Note that L2 covers this resolution range with the initial droplet being resolved with 32 
c/d.

All meshes capture the volume of the droplet accurately and maintain the spherical shape within resolution limits. A similar 
behavior is shown in [13]. However, a tendency to underpredict the droplet’s volume is observed in Fig. 8a, especially for 𝑡∗ > 0.1. 
This affects the pressure inside the droplet shown in Fig. 8b as it shrinks and the pressure jump due to surface tension becomes more 
important, i.e., a larger curvature is predicted due to the smaller volume. A formal error analysis is presented in Section 4.2.2.

The evolution of the droplet shape is shown in Fig. 9 for case 3 with mesh L3 together with the magnitude of 𝐮, plotted on the 𝑥𝑦
plane at 𝑧 = 0. The droplet remains nearly spherical despite the spurious currents that appear around the interface, which deteriorate 
over time as the droplet resolution decreases. The sphericity of the droplet is shown in Fig. 11. These affect the Stefan flow in the gas 
phase and some degree of non-symmetry is seen. 8 c/d has been observed to be the limit where shape deterioration becomes evident, 
spurious currents rise considerably and numerical oscillations in, e.g., the internal droplet pressure, significantly increase (see L1 in 
Fig. 8b).
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Fig. 9. Temporal evolution of the droplet represented by the iso-surface 𝐶 = 0.5 for case 3 with mesh L3. The velocity magnitude resulting from the Stefan flow is 
shown on the 𝑥𝑦 plane across the center of the droplet. The length scale in each snapshot remains constant.

Fig. 10. Grid convergence of the internal droplet pressure and droplet volume at 𝑡∗ = 0.08 s in the static evaporating droplet. (a) Pressure; (b) volume; (c) volume 
convergence for case 3 under the effect of the phase-change CFL constraint given by Δdmax. Case 3* corresponds to case 3 but without solving the momentum equation. 
(For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

4.2.2. Numerical stability and error analysis

The extension of the one-fluid formulation to two-phase flows undergoing phase change introduces numerical errors beyond the 
physical consistency of the results. The extensive use of non-smooth geometrical information (i.e., 𝜅 and 𝐧Γ) from the interface 
reconstruction in the calculation of 𝐟𝜎 , 𝐟𝑁𝐶 or the interface shift in Eq. (9) to account for phase change in the VOF advection generate 
spurious currents around the interface that further deteriorate 𝐧Γ and 𝜅. Moreover, these numerical oscillations easily affect the 
extrapolation of �̂� and the stability of the flow solver. Partially affected by the low viscosities considered here, i.e., less dissipation, 
these issues intrinsic to geometric VOF frameworks are evident in the context of a static evaporating droplet where no convective 
flow exists and the velocities are solely a result of the Stefan flow and spurious currents.

This motivates the use of PPIC to improve the calculation of 𝜅, which is a more sensitive parameter than 𝐧Γ under geometrical 
deterioration. In fact, from the cases outlined in Table 2, a direct benefit of using PPIC vs. PLIC is observed in achieving a smoother 
flow around the interface and stabilizing the solution throughout the entire droplet evaporation process (within resolution limits) for 
most grid sizes. With PLIC, case 1 eventually becomes unstable as spurious currents grow unbounded. That is, as �̇�′′ decreases, the 
spurious currents become of the order of the Stefan flow and dominate the dynamics in ΩΓ. The use of energy-preserving schemes 
(i.e., balancing surface and kinetic energy) has been shown to guarantee the stability of the system [57] and may be pursued in future 
work.

Error metrics in terms of convergence with grid refinement are evaluated for the droplet’s internal pressure and volume at 𝑡∗ = 0.08, 
as shown in Figs. 10a and 10b, respectively. Here, the mesh resolutions from Table 1 are also used. At this 𝑡∗, a large number of 
numerical integration steps have been taken and the volume has been reduced to 𝑉 ∕𝑉0 = 0.592. Two scenarios are considered by 
fixing 𝜎 = 1 mN/m and varying �̇�′′ (i.e., cases 1 and 3) and, then, by fixing �̇�′′ = 10 kg/(m2s) and varying 𝜎 (i.e., cases 2 and 3). The 
relative error at 𝑡∗ = 0.08 is evaluated as 𝐸 = |𝜙𝑛 − 𝜙𝑒|∕𝜙𝑒, where 𝜙𝑛 and 𝜙𝑒 are the value of any variable 𝜙 obtained, respectively, 
from the numerical solution and the exact (analytical) solution.

The convergence of the internal pressure error is nearly second order. This behavior is expected for a static droplet with �̇�′′ = 0
given the modeling of 𝐟𝜎 in the context of the CSF approach and shows that the addition of 𝐟�̇�′′ and 𝐟𝑁𝐶 behaves similarly. However, 
larger �̇�′′ values (cases 2 and 3) result in convergence rates varying between first and second order depending on the range of mesh 
sizes considered. Specifically, the convergence rate drops closer to first order when 𝜎→ 0 (case 2). Assuming that 𝐟�̇�′′ behaves similar 
to 𝐟𝜎 , it means the discretization of 𝐟𝑁𝐶 is first-order at best. This is a result of the stability (i.e., source term smoothness) trade-off 
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Fig. 11. Temporal evolution of droplet sphericity (Λ) in the static evaporating droplet with mesh L3. Case 3* corresponds to case 3 but without solving the momentum 
equation. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

between a CSF-like discretization and the approach described in Section 3.3 using staggered volume fractions to obtain the interfacial 
terms in 𝐟𝑁𝐶 .

Despite capturing the correct volume decrease and maintaining a spherical shape, grid convergence of the droplet’s volume is 
hardly achieved with the plane shift strategy described in Section 2.2. This is a clear consequence of the lack of smoothness in 𝐧Γ . 
For instance, Fig. 10b shows that the method benefits from the smoother 𝐧Γ distribution when the spurious currents in ΩΓ are less, 
such as when �̇�′′ → 0 (case 1) or 𝜎→ 0 (case 2). However, since grid refinement demands a larger number of time steps to reach the 
same 𝑡∗ = 0.08, the accumulation of geometrical errors during plane shifts prevents a clear converging trend. This is supported by the 
addition of case 3∗ in Fig. 10b, which corresponds to case 3 (or case 2) but without solving the momentum equation in the algorithm. 
That is, the effects of surface tension are not included and the pressure is only used to impose the Stefan flow. This eliminates the 
spurious currents caused by surface tension and other CSF-like forces, and results in lower volume errors and better convergence. 
However, the convergence rate is still lower than first order, highlighting the limitations of plane shifting at high �̇�′′ . Nonetheless, 
all mesh resolutions from Table 1 display volume errors around 1% or less, in line with other works using different methodologies to 
handle phase change in VOF methods (e.g., advection of 𝐶 with 𝐮Γ [11,35]).

Geometry errors are also measured in terms of the sphericity of the vaporizing droplet, Λ = [𝜋1∕3(6𝑉 )2∕3]∕𝐴 where 𝑉 is the 
droplet volume and 𝐴 its surface area calculated as the sum of the area of all the local interface reconstruction planes. The temporal 
evolution of Λ is shown in Fig. 11 for all cases with mesh L3, including case 3∗. The data extends beyond the time reported in Fig. 10

and clearly shows the enhanced accumulation of geometrical errors as �̇�′′ increases (case 1 vs. case 3). Without the restoring effect 
of surface tension (case 2), the geometrical errors may degrade the spherical shape completely. Further proof that this is a result 
of the spurious currents generated around the interface and not the plane shifting strategy is given by case 3∗, which preserves the 
spherical shape of the vaporizing droplet better over time. Given these results, a clear connection between the deterioration of Λ and 
the volume convergence errors is observed.

Note that this validation test imposes a restrictive CFL condition based on a maximum allowed interface shift due to phase change 
in a given time step of (Δdmax∕Δ𝑥) = 0.001. However, no significant improvement in the volume errors is observed by varying 
(Δdmax∕Δ𝑥) or 𝜃3 from 0.04 to 0.001 (see Appendix C for the definition of 𝜃3). Fig. 10c shows the volume errors for case 3 and, 
similar to Fig. 10b, grid convergence is not achieved. Except for mesh L1, volume errors are almost identical regardless of Δdmax. 
Thus, a maximum plane shift around (Δdmax∕Δ𝑥) = 0.01 is more reasonable to avoid reducing the time step significantly if its 
calculation is limited by the evaporation of the interface. Beyond the reported trends, reducing the time step delays the onset of 
numerical instabilities because of two main reasons: (a) smaller plane shifts in the phase change correction of 𝐶 deteriorate less the 
geometry; and (b) the errors in the temporal extrapolation of �̂�, 𝐟𝜎 and 𝐟�̇�′′ are reduced. Thus, spurious currents are smaller and 
geometrical calculations do not degrade as fast.

By pushing the solver to its limits in the context of a static configuration, some limitations of the proposed treatment of phase 
change in the geometric advection of 𝐶 and the discretization of the various corrective source terms added in the momentum equation 
have been highlighted. Nonetheless, the magnitude of �̇�′′ is typically smaller, surface tension effects prevail (unless very close to the 
critical point of the fluid), and dynamic configurations aid in masking the spurious currents.

5. Coupling with energy equation

This section addresses the fully-coupled system involving the energy equation and the calculation of the interfacial mass flux. 
Section 5.1 looks at the growth of a static vapor bubble in superheated liquid, while Section 5.2 considers a dynamic setup where a 
bubble rises in superheated liquid due to the effects of buoyancy. These analyses look at the correct solution of the energy equation 
and the effects of the momentum imbalance and its corrections. Also, they involve a variety of fluid properties and show that the 
flow solver behaves well at, e.g., low and high density ratios and different surface tension coefficients. The relevant properties of the 
fluids considered here are listed in Table 3.
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Table 3
Properties of the test fluids (A and B) and ethanol used 
in the bubble growth in superheated liquid studies and 
two-dimensional film boiling [8,13,17].

Fluid A Fluid B Ethanol 
𝑝 [bar] - - 1.013 
𝜌𝐿 [kg/m3] 2.5 200 757 
𝜌𝐺 [kg/m3] 0.25 5 1.435 
𝜇𝐿 [μPa⋅s] 7 × 103 1 × 105 429 
𝜇𝐺 [μPa⋅s] 7 × 102 5 × 103 10.4 
𝑘𝐿 [W/(m⋅K)] 7 × 10−2 1 0.154 
𝑘𝐺 [W/(m⋅K)] 7 × 10−3 1 0.02 
𝑐𝑝,𝐿 [kJ/(kgK)] 0.0025 0.2 3 
𝑐𝑝,𝐺 [kJ/(kgK)] 0.001 0.2 1.83 
𝜎 [mN/m] 1 100 18 
𝑇𝑠𝑎𝑡 [K] 1 1 351.45 
ℎ𝐿𝑉 [kJ/kg] 0.1 10 963 

Table 4
Grid size for each level of 
mesh refinement V1, V2, 
and V3 used in the static 
growing bubble.

Mesh Grid size [m] 
V1 1/64 
V2 1/128 
V3 1/192 

5.1. Static bubble growth in superheated liquid

The growth of a static saturated vapor bubble in superheated liquid without gravity is a common validation test performed in the 
literature for multiphase solvers with heat transfer [1,8,13,17]. Under spherical symmetry, an analytical solution with constant fluid 
properties and including the effects of radial convection is provided by Scriven [58]. The bubble radius is given by

𝑅(𝑡) = 2𝛽

√
𝑘𝐿

𝑐𝑝,𝐿𝜌𝐿
𝑡 (41)

where the value of the growth constant 𝛽 is obtained from solving

𝜌𝐿𝑐𝑝,𝐿(𝑇∞ − 𝑇𝑠𝑎𝑡) 

𝜌𝐺
(
ℎ𝐿𝑉 + (𝑐𝑝,𝐿 − 𝑐𝑝,𝐺)(𝑇∞ − 𝑇𝑠𝑎𝑡)

) = 2𝛽2
1 

∫
0 

exp
[
− 𝛽2

(
(1 − 𝜁)−2 − 2

(
1 −

𝜌𝐺

𝜌𝐿

)
𝜁 − 1

)]
𝑑𝜁 (42)

with 𝑇𝑠𝑎𝑡 and 𝑇∞ being, respectively, the saturation temperature and superheated temperature (i.e., 𝑇∞ > 𝑇𝑠𝑎𝑡). Furthermore, the 
temperature along the radial direction is obtained from

𝑇 (𝑟, 𝑡) =
⎧⎪⎨⎪⎩
𝑇𝑠𝑎𝑡 if 𝑟 ≤𝑅(𝑡)
𝑇∞ − 2𝛽2

(
𝜌𝐺

(
ℎ𝐿𝑉 +(𝑐𝑝,𝐿−𝑐𝑝,𝐺)(𝑇∞−𝑇𝑠𝑎𝑡)

)
𝜌𝐿𝑐𝑝,𝐿

)
1 ∫

1−𝑅(𝑡)∕𝑟
exp

[
− 𝛽2

(
(1 − 𝜁)−2 − 2

(
1 − 𝜌𝐺

𝜌𝐿

)
𝜁 − 1

)]
𝑑𝜁 if 𝑟 > 𝑅(𝑡)

(43)

Similar to other works [13,17], a fluid with the properties of fluid A shown in Table 3 is considered, which is defined for numerical 
testing purposes and may not resemble any real fluid. The bubble is immersed in a superheated liquid with 𝑇∞ = 3 K. These conditions 
may arise when a sudden decrease in system pressure causes the boiling of a previously saturated liquid at a higher pressure. The 
assumption that the change in 𝑇𝑠𝑎𝑡 is small holds, and the effect of temperature on the fluid properties is neglected, i.e., remain 
constant. In terms of the Jakob number, 𝐽𝑎 = [𝜌𝐿𝑐𝑝,𝐿(𝑇∞−𝑇𝑠𝑎𝑡)]∕𝜌𝐺ℎ𝐿𝑉 , this configuration with the properties of fluid A corresponds 
to 𝐽𝑎 = 0.5.

The computational domain is a cubic box of size 12𝑑0 with the same boundary conditions used in Section 4.2. The reason for the 
bigger domain is to limit the effect of the boundary conditions on the solution as the bubble grows and gets closer to the domain 
boundaries. The problem is initialized with the analytical solution at 𝑡 = 0.5 s with the bubble of diameter 𝑑0 ≈ 0.23408 m centered 
in the computational domain. Then, the simulation runs until 𝑡 = 2 s, when the bubble diameter roughly doubles. Three mesh sizes 
are considered: V1, V2 and V3 (see Table 4). c/d ratios like those in Section 4.2.1 are used, with V1 initially resolving the bubble 
with about 15 c/d, V2 about 30 c/d, and V3 about 45 c/d.
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Fig. 12. Temporal evolution of the bubble radius, temperature radial profiles and average mass flux in the static growing bubble. The initial conditions (IC) are shown. 
(a) Radius; (b) temperature profiles; (c) average mass flux. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Table 5
Relative errors, |𝜙𝑛 − 𝜙𝑒|∕𝜙𝑒 , and convergence rate of the bubble radius and average mass flux 
at 𝑡 = 2 s. The analytical radius and mass flux are, respectively, 𝑅𝑒 = 0.234081 m and �̇�′′

𝑒
=

0.0150569 kg/(m2s).

Mesh Radius [m] Error [%] Rate Mass flux [kg/(m2s)] Error [%] Rate 
V1 0.228099 2.556 - 0.0146752 2.535 -

V2 0.231191 1.235 1.05 0.0148696 1.244 1.03 
V3 0.232995 0.464 2.41 0.0149492 0.715 1.37 

The evolution of the bubble radius, temperature radial profiles at 𝑡 = 1 s and 𝑡= 2 s (extracted along the 𝑧 direction), and average 
mass flux are shown in Fig. 12. The analytical solution is captured and converging trends are observed. Table 5 reports convergence 
rates of the bubble radius and average mass flux between first and second order, which are in line with previous works [13,17]. 
Still, the bubble radius is directly related to the volume and the limitations of the plane shift strategy shown in Section 4.2 (i.e., low 
volume convergence rates with fixed mass flux) may resurface once the mass flux errors become very small. That is, the volume error 
clearly decreases with mesh refinement as long as the calculated �̇�′′ improves significantly.

When accounting for viscosity, the error introduced by the jump in viscous stresses is significant given the relatively high viscosity 
of fluid A. If viscosity is neglected as in the original work by Scriven [58], the correct pressure jump is obtained. In other words, 
the pressure jump and pressure field are inconsistent with the proposed modeling neglecting corrections to the viscous jump, and 
a pressure spike is observed across the interface. Moreover, the pressure solution suffers from the same limitations discussed in 
Section 4.2 regarding the quasi-steady interface behavior assumption. Nonetheless, a consistent velocity field, i.e., Stefan flow, is 
still obtained due to the static configuration. The bubble remains centered in the computational domain, as indicated by the results 
presented in Fig. 12. In Section 6, however, it is shown that the inconsistent viscous jump is critical in a dynamic setup, emphasizing 
the need to develop consistent momentum balance frameworks in future works.

5.2. Rising bubble in superheated liquid

The impact of the momentum imbalance in a dynamical setup is assessed for a three-dimensional rising bubble in a superheated 
liquid. Following [8,42], saturated ethanol at a pressure of 1.013 bar is used (see fluid properties in Table 3) with a liquid superheat 
of 3.1 K, for which experimental data is available [59]. Due to gravity (i.e., 𝐠 = (0,0,−9.81) m/s2), buoyancy drives the bubble’s 
upward motion. The computational cost is alleviated by using the symmetry of the problem. The computational domain is a box with 
size [0,4] × [0,4] × [0,16] mm. The bubble is initially spherical with 𝑑0 = 0.42 mm and is centered at 𝐱0 = (0,0,1) mm. Temperature 
is initialized with Scriven’s analytical solution [58] for the given bubble size at 𝑡 = 0.0056 s. Symmetry is considered at the 𝑥 = 0 and 
𝑦 = 0 boundaries while no-slip boundary conditions are imposed at 𝑥= 4 mm, 𝑦 = 4 mm and 𝑧 = 0. Lastly, outflow boundary conditions 
are imposed at 𝑧 = 16 mm. For the pressure solver, homogeneous Neumann boundary conditions are imposed at all boundaries with 
a reference pressure of 0 Pa at 𝐱𝑝 = (0,0,16) mm.

The bubble growth is measured in terms of the average radius from the bubble diameters in each direction computed as 𝑅𝑏 =
(𝑑𝑥 + 𝑑𝑦 + 2𝑑𝑧)∕8. Fig. 13 reports the normalized radius 𝑅∗ =𝑅𝑏∕(2𝛽

√
𝛼𝐿) where 𝛽 = 5.39869 is the growth constant from Scriven’s 

solution, i.e., Eq. (42), and 𝛼𝐿 = 𝑘𝐿∕(𝜌𝐿𝑐𝑝,𝐿) the liquid’s thermal diffusivity. Results for different mesh resolutions are shown and are 
compared to available data from numerical [8,42] and experimental [59] works, as well as Scriven’s solution for bubble growth under 
zero gravity. The sensitivity to mesh resolution is evident. That is, if the thermal boundary layer is under-resolved, the evaluation of 
�̇�′′ affects the bubble growth and the overall dynamics of the problem. For the mesh with a grid spacing of Δ𝑥 = 25 μm, equivalent 
to an initial bubble resolution of 16 c/d, the evaporation of the bubble is significantly underestimated. In contrast, a resolution 
of Δ𝑥 = 12.5 μm (i.e., initially 32 c/d) is more in line with previous numerical studies and follows the reference data better. Due 
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Fig. 13. Temporal evolution of the normalized radius, 𝑅∗, in the ethanol bubble rising in superheated liquid for different mesh resolutions. The results are compared 
against experimental data [59], computational data [8,42], and Scriven’s analytical solution [58] for zero gravity, Eq. (41). (For interpretation of the colors in the 
figure, the reader is referred to the web version of this article.)

Fig. 14. Temporal evolution of the diameter in each direction of the rising ethanol bubble given by 𝑑𝑧 and (𝑑𝑥 + 𝑑𝑦)∕2 (left axis) and the aspect ratio 2𝑑𝑧∕(𝑑𝑥 + 𝑑𝑦)
(right axis) obtained with a grid spacing of 12.5 μm. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

to limitations in the available computational resources, finer mesh resolutions have not been considered. Thus, certain parameters 
shown in this section, such as 𝑅∗ , are not guaranteed to have converged, probably requiring a mesh resolution closer to Δ𝑥 = 7 μm 
based on previous works [8,42].

In Fig. 13, substantial differences can be seen in the evolution of 𝑅∗ between three different works with very similar resolutions, 
namely the recent results using a grid spacing of 12.5 μm and two previous works using a resolution of 15.6 μm [8,42]. While these 
differences can partially be justified by the thermal boundary layer resolution and the accuracy in evaluating �̇�′′ in each work, 
uncertainties remain that may be linked to the different code frameworks. This highlights the intrinsic difficulties that arise in two-

phase solvers once phase change is involved. Fig. 14 presents the evolution of (𝑑𝑥 + 𝑑𝑦)∕2, 𝑑𝑧 and the aspect ratio 2𝑑𝑧∕(𝑑𝑥 + 𝑑𝑦)
obtained with the resolution of 12.5 μm. After a brief growth stage where the bubble diameter increases almost uniformly in all 
directions, it begins to grow faster in the radial direction outward of the 𝑧 axis, evolving into a flat ellipsoid or disk (see Fig. 15).

The impact of mesh resolution on the evolution of the bubble’s shape is also visualized in Fig. 15, which compares side by side 
the bubble location and shape obtained with the resolutions of 25 μm and 12.5 μm. Similar to the discussion around Fig. 13, the 
12.5 μm mesh resolves the thermal boundary layer better, enhancing the calculation of �̇�′′ and increasing the bubble volume faster 
than with 25 μm. For reference, Fig. 16 depicts the contours on the 𝑦𝑧 plane at 𝑥 = 0 of temperature, mass flux, velocity magnitude 
and pressure around the bubble at 𝑡 = 45.6 ms obtained with the grid spacing of 12.5 μm. The thin thermal boundary layer along 
the bubble’s upper side contrasts sharply with the bubble size. The vaporization mass flux is stronger there, reaching a peak value 
around 0.02 kg/(m2s) near the edge of the bubble. Instead, almost no vaporization occurs at the bottom of the bubble due to the 
low temperature region in the tail. Indicated by the lower pressure and the velocity magnitude contours, a recirculation region is 
identified along the bubble’s edge as in previous works [8].

Since the bubble displacement shown in Fig. 15 obtained with both grid resolutions is nearly identical, the bubble rise velocity 
𝑤𝑏 is compared against available data [8], which is calculated as a volume average of the 𝑤 velocity component inside the bubble. 
Fig. 17a shows that minor differences are observed in 𝑤𝑏 between using a grid resolution of 25 μm or 12.5 μm until about 40 ms. 
That is, despite the thermal boundary layer is captured more accurately and the average radius of the bubble is larger, the balance 
between the drag and buoyancy forces is similar, suggesting that 𝑤𝑏 is a parameter less sensitive to the mesh resolution. After 40 ms, 

Journal of Computational Physics 524 (2025) 113704 

19 



J. Poblador-Ibanez, N. Valle and B.J. Boersma 

Fig. 15. Temporal evolution of the ethanol bubble shape as it rises due to buoyancy. The results obtained with a grid spacing of 25 μm (left) and 12.5 μm (right) are 
compared. The interface location is visualized by the iso-surface with 𝐶 = 0.5.

the velocities start to deviate. With the finer mesh, the bubble reaches a terminal velocity as it grows into a flat ellipsoid, while the 
coarser mesh displays oscillations mainly as a result of spurious currents growing unbounded. Regardless, a clear offset with respect 
to the reference data is observed.

The shift in rise velocity is caused by the momentum balance corrections, as shown in Fig. 17b. Following the previous discussion 
on the grid sensitivity of 𝑤𝑏, the coarse mesh is used to analyze the early 𝑤𝑏 trends. Three cases are shown together with the 
reference data [8]: (a) with all corrections, (b) only adding 𝐟𝑁𝐶 and 𝐟�̇�′′ , and (c) with no corrections. The latter is more aligned with 
the numerical approach from [8] to solve the one-fluid Navier-Stokes equations and reproduces more closely the 𝑤𝑏 trends shown in 
their work. As the momentum balance corrections are progressively considered, first by only adding 𝐟𝑁𝐶 and 𝐟�̇�′′ and then by also 
adding the first predictor step to shift the Stefan flow, an increase in 𝑤𝑏 occurs. In any case, all the reported velocities fall within 
expected values [59,60]. This result is somewhat surprising given that the maximum value of �̇�′′ is around 0.02 kg/(m2s) throughout 
the simulation, leading to believe that the momentum balance corrections are negligible, i.e., (�̇�′′ )2(𝜌−1

𝐺
− 𝜌−1

𝐿
) is of (10−4) Pa. 

However, they still impact the pressure field around the bubble and the flow dynamics.

Additional insights can be gained by looking at various details of the pressure field. Fig. 18 shows the pressure contours at 𝑡 = 7.6
ms on a 𝑦𝑧 plane at 𝑥 = 0, focusing on the pressure around the bubble and considering the three momentum balance modeling 
frameworks shown in Fig. 17b. In this snapshot, the bubble size and position is almost identical for all frameworks. Nonetheless, 
different pressure distributions and magnitudes are observed, with the simulation without momentum balance corrections seemingly 
predicting a lower pressure in the liquid overall. This is corroborated in Fig. 19, which shows the pressure extracted along the 
diagonal of an 𝑥𝑦 plane located at 𝑧 = 0.00625 mm, i.e., from 𝐱𝑖 = (0,0,0.00625) mm to 𝐱𝑓 = (4,4,0.00625) mm, at 𝑡 = 7.6 ms. Under 
the assumption that the bubble and its motion have negligible influence on the pressure at the considered depth, the hydrostatic 
pressure given the liquid column is 118.772 Pa. Indeed, the omission of the momentum balance corrections induces a lower pressure, 
while the addition of 𝐟𝑁𝐶 , 𝐟�̇�′′ and the Stefan flow shift improves the agreement.

However, further inspection reveals that the pressure field is affected by considerable oscillations if no momentum balance cor-

rections are implemented, similar to Fig. 6c. Fig. 20 shows the average pressure inside the bubble (i.e., from all pure gas cells), the 
average pressure around the bubble (i.e., from all pure liquid cells directly neighboring the interface) and the average pressure jump 
calculated by subtracting the two previous quantities. After an initial transient due to the relaxation of the initial conditions, the 
pressure inside and around the bubble obtained with all corrections implemented behaves smoothly over time. In contrast, frequent 
pressure oscillations are observed if the momentum balance is affected by the numerical approach. Here, the addition of only the 
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Fig. 16. Contours on the 𝑦𝑧 plane at 𝑥 = 0 of temperature (top left), mass flux across the interface (top right), velocity magnitude (bottom left) and pressure (bottom 
right) of the rising ethanol bubble at 𝑡 = 45.6 ms obtained with a grid spacing of 12.5 μm. The interface location is visualized by the iso-contour with 𝐶 = 0.5.

Fig. 17. Effect of mesh resolution and momentum balance corrections on the rise velocity 𝑤𝑏 of the ethanol bubble rising in superheated liquid. The results are 
compared against computational data [8]. (a) Grid convergence of 𝑤𝑏 ; (b) variation of 𝑤𝑏 depending on the momentum balance corrections. (For interpretation of 
the colors in the figure, the reader is referred to the web version of this article.)

body forces 𝐟𝑁𝐶 and 𝐟�̇�′′ helps reducing the pressure oscillations after the initial transient although nearly complete mitigation is only 
possible once the Stefan flow shift is considered. It can be observed that at 𝑡 = 7.6 ms, the solution without corrections is predicting 
a smaller pressure than the trend, i.e., the observations from Figs. 18 and 19. Moreover, the imbalance oscillations translate into 
pressure jump oscillations over time. During the initial transient, the magnitudes of the oscillations obtained without corrections and 
by only adding the body forces are very similar. This shows that the addition of the Stefan flow shift is responsible for improving 
the behavior of the pressure field during the adjustment phase too. Notably, taking proper care of the momentum balance is also 
reflected in the relatively smooth evolution of the average pressure jump.

Lastly, it is worth noting that the trends of the pressure field quantities reported in Fig. 20 are very similar during the early 
stages despite the oscillations introduced by the formulation without momentum balance corrections. This is more aligned with 
the expectation that the corrections are, in terms of magnitude, negligible for this problem. However, different rise velocities are 
reported. Since the interface dynamics strongly depend on the pressure jump between liquid and gas, it is expected that the bubble 
shape evolves differently if the solution of the momentum equation is according to the corrected pressure field. This results in a 
different balance between buoyancy and drag; thus, a different rise velocity is observed.
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Fig. 18. Pressure field on the 𝑦𝑧 plane with 𝑥 = 0 at 𝑡 = 7.6 ms of the rising ethanol bubble obtained with a grid spacing of 12.5 μm. The results without momentum 
balance corrections (left), only with the body forces 𝐟𝑁𝐶 and 𝐟�̇�′′ (center), and with all corrections (right) are shown. The interface location is visualized by the 
iso-contour with 𝐶 = 0.5.

Fig. 19. Pressure field on the 𝑥𝑦 plane with 𝑧 = 0.00625 mm at 𝑡 = 7.6 ms of the rising ethanol bubble obtained with a grid spacing of 12.5 μm. The data is extracted 
along the diagonal of the plane, i.e., from 𝐱𝑖 = (0,0,0.00625) mm to 𝐱𝑓 = (4,4,0.00625) mm. Additionally, the hydrostatic pressure of liquid ethanol at a depth of 
ℎ𝑑 = 15.99375 mm is shown and is given by 𝑝ℎ = 𝜌𝐿||𝐠||ℎ𝑑 = 118.772 Pa. (For interpretation of the colors in the figure, the reader is referred to the web version of 
this article.)

Fig. 20. Effect of momentum balance corrections on the pressure field inside and in the vicinity of the ethanol bubble rising in superheated liquid obtained with a grid 
spacing of 12.5 μm. (a) Average internal bubble pressure; (b) average pressure in the immediate vicinity of the bubble; (c) average pressure jump. (For interpretation 
of the colors in the figure, the reader is referred to the web version of this article.)
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Table 6
Grid size for each level of mesh refinement M1, M2, M3, M4, M5 and M6 used in the two-

dimensional film boiling.

Mesh Grid size [cells] Grid size [mm] Mesh Grid size [cells] Grid size [mm] 
M1 50x100 0.786844 M4 300x600 0.131141 
M2 100x200 0.393422 M5 400x800 0.098356 
M3 200x400 0.196711 M6 500x1000 0.078684 

6. Assessment of the viscous stress jump with evaporation

A two-dimensional film boiling configuration is considered as an additional benchmark [17,61,62]. Another test fluid with the 
properties of fluid B shown in Table 3 is used. This highly viscous fluid causes a momentum imbalance across the interface due to 
the regularization approach of the viscous term assumed in Section 2.3, which is a more challenging task to address in this kind of 
multiphase solvers. As discussed below, the untreated discretization of the viscous term modifies the flow dynamics due to the sharp 
one-fluid formulation.

Following Rayleigh-Taylor instability theory, the vapor film is initialized with a perturbation of wavelength 𝜆𝑑 to trigger the most 
unstable mode. The evaporation of the liquid increases the vapor volume and the dynamics are dominated by the combined effect 
of the momentum balance (e.g., surface tension) and buoyancy, forming a bubble that rises due to gravity (i.e., 𝐠 = (0,−9.81) m/s2). 
The computational domain is a box of size [0, 𝜆𝑑∕2] × [0, 𝜆𝑑 ] with symmetric boundaries at 𝑥 = 0 and 𝑥 = 𝜆𝑑∕2, a wall with no-slip 
boundary conditions at 𝑦 = 0 and outflow boundary conditions at 𝑦 = 𝜆𝑑 . For the pressure solver, homogeneous Neumann boundary 
conditions are imposed at the bottom and top boundaries with a reference pressure of 0 Pa at 𝐱𝑝 = (0, 𝜆𝑑 ). For this problem, PLIC 
is used since no major differences are observed in the curvature computation and interface evolution with respect to PPIC; thus, 
favoring computational savings. The liquid remains at 𝑇𝑠𝑎𝑡 and the wall temperature is fixed at 𝑇𝑤𝑎𝑙𝑙 = 𝑇𝑠𝑎𝑡 + 5 K. The vapor film, 
which sits on top of the wall, is initialized with a linear temperature profile, 𝑇0 , between the initial interface location, 𝑦0 , and the 
wall. 𝜆𝑑 , 𝑇0 and 𝑦0 are given, respectively, by Eqs. (44), (45) and (46) (see [17] for more details). For the given fluid properties, 
𝜆𝑑 = 78.6844 mm.

𝜆𝑑 = 2𝜋

√
3𝜎

(𝜌𝐿 − 𝜌𝐺)||𝐠|| (44)

𝑇0(𝑥, 𝑦) =

{
𝑇𝑠𝑎𝑡 if 𝑦 ≥ 𝑦0(𝑥)
𝑇𝑤𝑎𝑙𝑙 − (𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡)

𝑦 
𝑦0(𝑥)

if 𝑦 < 𝑦0(𝑥)
(45)

𝑦0(𝑥) =
𝜆𝑑

128

[
4 + cos

(
2𝜋𝑥
𝜆𝑑

)]
(46)

The results are compared against the reportedly converged solutions from Guo et al. [61], Sun et al. [62] and Boyd and Ling 
[17]. However, each work uses different forms of the one-fluid governing equations and different numerical approaches, resulting in 
different results of the same configuration, mainly in terms of bubble formation time scales. Note that the viscous jump for fluid B 
cannot be neglected due to its high viscosity, and the numerical jump induced by the one-fluid formulation remains in the center of 
the discussion as neither this work nor the aforementioned works perform any attempt to address it.

Nu = 2 
𝜆𝑑

𝜆𝑑∕2

∫
0 

(
1 

𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡

)√
𝜎

(𝜌𝐿 − 𝜌𝐺)||𝐠||
(
𝜕𝑇

𝜕𝑦 

)
𝑦=0
𝑑𝑥 (47)

The increase in vapor volume 𝑉 normalized by the initial vapor volume 𝑉0 and the average Nusselt number, Nu, on the bottom 
wall, defined as in Eq. (47) [17], are shown in Fig. 21. Moreover, grid convergence is assessed with six mesh sizes (i.e., M1 to M6, 
with M6 corresponding to 1000 cells across 𝜆𝑑 ), summarized in Table 6. The reference data shown here corresponds to a resolution 
across 𝜆𝑑 of 128 cells for Guo et al. [61], 400 cells for Sun et al. [62], and 2048 cells for Boyd and Ling [17] (the latter using 
adaptive mesh refinement near the interface). Up to 0.2 s, the results agree well with the reference data and are fairly independent 
of mesh resolution. This corresponds to the initial growth of the vapor film before the instability accelerates and the bubble forms. 
For reference, Fig. 22 shows the evolution of the mass-averaged vapor rise velocity and its center of mass obtained with M6 (i.e., 
the quantities are averaged over the vapor volume due to 𝜌𝐺 being constant). After that, substantial differences in 𝑉 ∕𝑉0 and Nu are 
observed across different mesh resolutions and, more importantly, across different numerical frameworks.

At first glance, one may claim that the solution from Guo et al. [61] is reproduced. However, upon closer inspection of the bubble 
shape, this is not the case. Instead, a shift in the time scale linked to the bubble formation, i.e., instability growth, is observed. The 
shape of the bubble is compared in Fig. 23 against benchmark solutions at 𝑡 = 0.42 s [17,62] and at 𝑡 = 0.43 s [61], and its growth is 
clearly slower. The plots also show the results with mesh M6 at 𝑡 = 0.46 s, which agree much better with the reference data. This delay 
between 0.03 s and 0.04 s is consistent with the shift in the 𝑉 ∕𝑉0 and Nu profiles shown in Fig. 21. When it comes to the numerical 
approach, the present work is close in methodology to Boyd and Ling [17] and considers the recent state-of-the-art in multiphase 
flow modeling. Some differences revolve around the conservative/non-conservative treatment of the momentum equation and the 
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Fig. 21. Convergence of the increase in vapor volume and the average Nusselt number at the wall of the two-dimensional film boiling case compared against benchmark 
solutions from Guo et al. [61], Sun et al. [62] and Boyd and Ling [17]. (a) Vapor volume ratio 𝑉 ∕𝑉0 ; (b) average Nusselt number. (For interpretation of the colors in 
the figure, the reader is referred to the web version of this article.)

Fig. 22. Evolution of the mass-averaged rise velocity of the two-dimensional vapor film and its center of mass obtained with mesh M6. Note that the center of mass 
(CM) of half the film is reported; thus, 𝑥≠ 0. (a) Rise velocity; (b) 𝑥 coordinate of the CM; (c) 𝑦 coordinate of the CM.

Fig. 23. Convergence of the bubble shape in the two-dimensional film boiling case and comparison against benchmark solutions from Guo et al. [61], Sun et al. [62] 
and Boyd and Ling [17]. (a) 𝑡 = 0.42 s; (b) 𝑡 = 0.43 s. A later snapshot at 𝑡 = 0.46 s with mesh M6 is also shown. The interface location is visualized by the iso-contour 
with 𝐶 = 0.5. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

implementation of the volume dilatation due to phase change, but convergence of the numerical solution is observed with similar 
grid resolutions to M6. In fact, one could argue that earlier works are somewhat under-resolved [61,62].

Regardless of the exact onset, the numerical solution is very similar to previous literature. Thus, the differences must arise from the 
flow dynamics during the growth of the vapor film and the necking process leading to the bubble formation. Beyond the possibility that 
slight different initial conditions are affecting the time scales, the flow dynamics are affected by the specific numerical framework. 
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Fig. 24. Contour plots of pressure (top), velocity magnitude (center top), temperature (center bottom) and mass flux across the interface (bottom) of the two-dimensional 
film boiling case obtained with mesh M6 at various times. The interface location is visualized by the iso-contour with 𝐶 = 0.5.

These issues are not related to lack of convergence or to capturing the thermal layer as in Section 5.2. Fig. 24 presents various 
snapshots of the solution at 𝑡 = 0.15 s, 𝑡 = 0.25 s, 𝑡 = 0.35 s and 𝑡 = 0.45 s obtained with M6, focusing on the contours of pressure, 
velocity magnitude, temperature and mass flux across the interface. It becomes immediately clear that a pressure spike occurs across 
the interface, which scales with �̇�′′ . This is a result of a momentum imbalance introduced by the discrete viscous term whereby 
“numerical regularization” fails. That is, a numerical pressure jump is introduced due to the calculation of ∇𝐮 in the one-fluid 
framework, augmented by a high fluid viscosity. The thin region of the vapor film closer to the wall shows the largest momentum 
imbalance, while the error is much less significant along the bubble’s edge due to vapor cooling and the decrease in �̇�′′ . This 
regularization failure occurs independently of the type of mean used to average the viscosity, i.e., arithmetic vs. harmonic.

As depicted in Fig. 24, the lateral pressure gradient that drives the vapor flow and bubble growth is a result of the varying 
film thickness and neck formation process. Because �̇�′′ varies along the interface, the error introduced by the imbalance also does, 
modifying the pressure jump along the interface non-uniformly. Thus, the dynamics are easily affected, such as the spurious currents 
around the interface, and could explain the slower bubble growth with the current formulation. Note that despite the pressure spike 
across the interface scales with ∼ (Δ𝑥)−1, the solution seems to converge but to a wrong pressure field. This is visualized in Fig. 25, 
showing the pressure extracted along 𝑥 = 17 mm at 𝑡 = 0.45 s.

In contrast, previous works with one-fluid formulations might suffer less from this issue, which might explain the different solu-

tions. Boyd and Ling [17] work with a sharp VOF approach but shift the volume dilatation caused by phase change to the vapor cells 
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Fig. 25. Pressure field extracted along 𝑥 = 17 mm at 𝑡 = 0.45 s in the two-dimensional film boiling case. The impact of mesh resolution on the pressure spike across 
the interface is shown. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 26. Shape along the bubble edge at 𝑡= 0.45 s in the two-dimensional film boiling case obtained with mesh M6. The impact of considering the momentum balance 
corrections discussed in this work is shown. The interface location is visualized by the iso-contour with 𝐶 = 0.5. (For interpretation of the colors in the figure, the 
reader is referred to the web version of this article.)

adjacent to the interface. Although this is done to work with a divergence-free velocity field across the interface for the purpose of 
the VOF advection, it inadvertently mitigates the numerical pressure jump induced by the discrete viscous term since the cells with 
an ill-defined ∇𝐮 are only weighted by 𝜇𝐺 , which is two orders of magnitude lower than 𝜇𝐿. Sun et al. [62] use the commercial 
solver Fluent and no explicit mention of the software version is provided, thus making it difficult to analyze. However, from the few 
details provided on the numerical method, it is not clear how the one-fluid velocity and the local volume dilatation are treated in 
the VOF advection and governing equations. In terms of the discretization of the viscous term, a sharp approach is used similar to 
the present work. Lastly, Guo et al. [61] also consider a divergence-free velocity for the interface advection but diffuse the interface 
discontinuity like in the Level-Set method, which results in a lower numerical jump. Thus, the growth of the bubble is also delayed 
to some extent with respect to Boyd and Ling [17].

In this configuration, the impact of the momentum balance corrections from the Stefan flow shift and the addition of 𝐟𝑁𝐶 and 𝐟�̇�′′
are minimal given that the viscous imbalance dominates. However, some differences are still observed that suggest that corrections 
in the treatment of the viscous term to improve consistency may help bring the solution closer to recent reference data [17] and 
reduce uncertainty. For example, Fig. 26 shows a slight change in the shape of the bubble along its edge by considering or not the 
momentum balance corrections. The shape corresponds to the snapshot at 𝑡 = 0.45 s obtained with M6.

A preliminary attempt to correct the viscous imbalance follows a phase-wise discretization of ∇ ⋅
(
𝜇
[
∇𝐮+ (∇𝐮)𝑇

])
. Here, phase-

wise velocities are obtained by solving a Poisson equation in a narrow band around the interface to satisfy ∇ ⋅ 𝐮𝑙 = 0 and ∇ ⋅ 𝐮𝑔 = 0
[13]. Then, phase-wise values of velocity and viscosity are used at each face of the staggered velocity cell when discretizing the 
viscous term according to the predominant phase at the face. For that, the volume fraction in a cell centered around each face, 𝐶face , 
is calculated geometrically. Liquid values are used if 𝐶face ≥ 0.5 and gas values are used if 𝐶face < 0.5. This discretization mitigates 
the momentum imbalance caused by the viscous term and improves the agreement with the instability timescale shown in previous 
work that may not suffer from the issue, as discussed in previous lines. This is shown in Fig. 27, which plots again the evolution of the 
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Fig. 27. Effects of the one-fluid vs. phase-wise discretization of the viscous term on the increase in vapor volume and the average Nusselt number at the wall of the 
two-dimensional film boiling case compared against benchmark solutions from Guo et al. [61], Sun et al. [62] and Boyd and Ling [17]. Mesh M3 is used. (a) Vapor 
volume ratio 𝑉 ∕𝑉0 ; (b) average Nusselt number. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

normalized vapor volume and the average Nu at the bottom wall obtained with the one-fluid and the phase-wise approaches using 
mesh M3.

The implications of the momentum imbalance due to the treatment of the viscous term in this problem are many. Not only the 
growth of the first bubble is delayed, but the release frequency of bubbles during the boiling process may be altered. Therefore, it 
becomes necessary to develop a comprehensive one-fluid formulation with consistent momentum balancing to ensure the solution is 
not compromised by the arbitrarities resulting from the choice of numerical framework.

7. Conclusions

This work has shown that a direct extension of multiphase codes based on the non-conservative one-fluid formulation of the 
momentum equation to simulations with phase change introduces a momentum imbalance. This originates from the treatment of 
convective terms [14] and the implementation of classic discretization techniques, e.g., central differences, due to the local volume 
dilatation at the interface and the induced velocity jump.

A two-step correction has been proposed consisting of the addition of: (1) two body forces within the context of the CSF model 
[20], namely 𝐟𝑁𝐶 to correct or cancel the effects of an ill-defined convective term and 𝐟�̇�′′ to recover the exact momentum jump 
due to phase change [12], and (2) a shift of the Stefan flow after advecting the interface to obtain an intermediate velocity field 𝐮∗
before solving the momentum equation. The latter effectively addresses the momentum jump induced by the interface displacement 
in the non-conservative formulation [14], but imposes the assumption that the interface regression relative to the fluid is a quasi-

steady process. Various tests have shown that these modifications successfully impose the correct momentum balance in viscous 
flows with low viscosity, recovering analytical solutions and reducing oscillations in the pressure field as the interface moves across 
grid cells. Moreover, the improvements are also evident in dynamic flows where the momentum balance corrections are seemingly 
negligible and have direct implications on the dynamic behavior of the flow. For example, bubble rise velocities may differ as shown 
in Section 5.2. However, the sharp discretization of the viscous term in highly viscous flows can induce pressure spikes across the 
interface and affect the momentum balance and dynamics of the flow, regardless of whether the conservative or non-conservative 
form of the momentum equation is used (see Section 6).

It is in these scenarios that inconsistencies among different flow solvers are highlighted. The introduction of phase change is 
not trivial and requires a thorough examination of the impacts of a particular interface capturing scheme or discretization of the 
governing equations. Otherwise, different solvers will produce solutions similar in nature but with critical differences that may affect 
the particular analysis, e.g., the shift in the instability growth time scales seen in film boiling (see Section 6). Therefore, future 
work will focus on developing a comprehensive momentum balance correction model for the one-fluid formulation in a sharp VOF 
framework to include the correct treatment of the pressure jump due to viscous stresses and reduce the solution uncertainty.

Additionally, this work has shown that the required resolution to achieve convergence can be very demanding in terms of cells 
per diameter of the bubble or droplet. This can be a result of having a very thin thermal boundary layer due to the properties of 
the fluid or it can be related to the resolution of surface tension. For practical simulations of multiple bubbles or droplets, realistic 
resolutions are much lower and require the development and integration of sub-models. Note that turbulence scales may be well-

resolved to be considered a Direct Numerical Simulation framework, but under-resolution may still be an issue when it comes to 
interfacial phenomena. Thus, future work will consider heat and mass transfer sub-models for �̇�′′ and sub-models to accelerate, e.g., 
the bubble growth and necking formation in film boiling. Likewise, the momentum balance corrections might need some enhancement 
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to converge faster to the expected pressure jump. Lastly, the proposed methodology must be extended to handle multiple objects, 
which includes the coupling with coalescence and breakup models to prevent, e.g., numerical coalescence.
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Appendix A. Calculation of phase-wise velocities for energy transport

The phase-wise velocity 𝐮𝑓 is estimated by using an efficient fast marching method [63] to extrapolate the velocity of each phase 
across the interface. A constant extrapolation normal to the interface is performed. This strategy has been previously used in the 
literature with a PDE-based extrapolation instead [64], and has been shown to mitigate numerical instability issues that may arise 
from higher-order 𝐮𝑓 calculations in regions affected by spurious currents [10]. Since 𝐧Γ is only defined in interface cells, a narrow 
band of cells around the interface is populated with a weighted average of the normal unit vectors calculated at interface cells. The 
weights are defined based on the projection of the distance vector between cells onto 𝐧Γ and the inverse of the squared distance to 
emphasize locality and directionality in the averaging process (see [17] for more details on a similar implementation).

The resulting phase-wise velocities are not divergence-free but provide a close approximation of the velocity at interface cells 
without the expense of solving two Poisson-type equations in the narrow band to satisfy ∇ ⋅ 𝐮𝑙 = 0 and ∇ ⋅ 𝐮𝑔 = 0, such as in [13]. 
Further, the extrapolation of 𝐮𝑓 is performed with cell-centered values which are later re-staggered to cell faces. Thus, the averages 
involved in this process effectively act as a spatial filter that smooths 𝐮𝑓 across the interface, improving stability.

Appendix B. Interface embedding in the discretization of the energy transport

A two-dimensional illustration of some possible interface intersections with the numerical stencils for the energy equation, Eq. (16), 
is given in Fig. B.1a. The extension to three dimensions is straightforward. Rather than calculating the exact distance between a 
node and the intersection of the stencil with the interface, 𝜃𝐺

𝑦
, 𝜃𝐿
𝑦

and 𝜃𝐿
𝑥

are estimated from staggered volume fractions obtained 
geometrically by evaluating the enclosed volumes of two adjacent cells overlapping with the staggered cell [10,16,48]. For the gas 
cell (𝑙,𝑚) in Fig. B.1a, the distance to the interface is given by 𝜃𝐺

𝑦
≈ (1 − 𝐶

𝑙,𝑚− 1
2
)Δ𝑦 and, for the liquid cell (𝑖, 𝑗), the distances are 

given by 𝜃𝐿
𝑦
≈ 𝐶

𝑖,𝑗+ 1
2
Δ𝑦 and 𝜃𝐿

𝑥
≈ 𝐶

𝑖− 1
2 ,𝑗

Δ𝑥. The steps to approximate 𝜃𝐺
𝑦

, 𝜃𝐿
𝑦

and 𝜃𝐿
𝑥

are visualized in Fig. B.1b.

If the components of the phase-wise velocity in cell (𝑖, 𝑗) are 𝑢𝑖,𝑗 > 0 and 𝑣𝑖,𝑗 < 0 in Fig. B.1a, the discretization of Eq. (18) is given 
by

𝐮𝑛
𝑓
⋅∇𝑇 𝑛 = 𝑢𝑖,𝑗

𝑇 𝐿
𝑖,𝑗

− 𝑇 Γ
𝑖− 1

2 ,𝑗

𝜃𝐿
𝑥

+ 𝑣𝑖,𝑗

𝑇 Γ
𝑖,𝑗+ 1

2

− 𝑇𝐿
𝑖,𝑗

𝜃𝐿
𝑦

∇ ⋅
(
𝑘𝑛
𝑓
∇𝑇 𝑛

)
= 1 
ℎ𝑥

(
𝑘𝐿
𝑖+ 1

2 ,𝑗

𝑇 𝐿
𝑖+1,𝑗 − 𝑇

𝐿
𝑖,𝑗

Δ𝑥 
− 𝑘𝐿

𝑖− 1
2 ,𝑗

𝑇 𝐿
𝑖,𝑗

− 𝑇 Γ
𝑖− 1

2 ,𝑗

𝜃𝐿
𝑥

)
+ 1 
ℎ𝑦

(
𝑘𝐿
𝑖,𝑗+ 1

2

𝑇 Γ
𝑖,𝑗+ 1

2

− 𝑇𝐿
𝑖,𝑗

𝜃𝐿
𝑦

− 𝑘𝐿
𝑖,𝑗− 1

2

𝑇𝐿
𝑖,𝑗

− 𝑇𝐿
𝑖,𝑗−1

Δ𝑦 

) (B.1)

where upwinding is used in the convective term and ℎ𝑥 = 0.5Δ𝑥 +min(0.5Δ𝑥, 𝜃𝐿
𝑥
) and ℎ𝑦 = 0.5Δ𝑦 +min(0.5Δ𝑦, 𝜃𝐿

𝑦
). Note ℎ𝑥 = Δ𝑥

and ℎ𝑦 =Δ𝑦 in the given example. Fluid properties and temperatures belong to 𝑡𝑛. Although the interface temperature and properties 
are constant for the problems considered in this work, a generalized averaging of these variables is proposed for completeness, e.g., 
𝑘𝐿
𝑖+ 1

2 ,𝑗
= 1

2

(
𝑘𝐿
𝑖+1,𝑗 + 𝑘

𝐿
𝑖,𝑗

)
and 𝑘𝐿

𝑖− 1
2 ,𝑗

= 1
2

(
𝑘𝐿
𝑖,𝑗

+ 𝑘Γ
𝑖− 1

2 ,𝑗

)
where 𝑘Γ

𝑖− 1
2 ,𝑗

is obtained from averaging interface values at the cell face [9], 

i.e., the thermal conductivities on the liquid side of the interface. 𝑇 Γ
𝑖− 1

2 ,𝑗
and 𝑇 Γ

𝑖,𝑗+ 1
2

are calculated analogously. This approach aims 

to use a characteristic value of the interface properties belonging to the PLIC reconstructions involved in the calculation of, e.g., 𝜃𝐿
𝑦

and 𝜃𝐿
𝑥

.
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Fig. B.1. Two-dimensional sketch showing (a) the stencils used in the discretization of the energy equation and (b) the steps to calculate distances for the interface 
embedding in the discretization of the phase-wise energy equation (from left to right: original intersections, calculation of staggered volume fractions, and distance 
approximation from the staggered volume fraction). The PLIC interface is represented by a solid red line and the liquid volume is colored in blue. The extension to 
three dimensions is straightforward.

Singularities may arise when the interface gets too close to a cell node, e.g., 𝜃𝐿
𝑥
→ 0 or 𝜃𝐿

𝑦
→ 0. Instead of re-defining the numerical 

stencil, the solution is stabilized by considering a region of influence of the interface where, e.g., 𝑇 𝑛+1
𝑖,𝑗

= 𝑇 Γ
𝑖,𝑗

if 𝜃𝐿
𝑥
< 𝜀Δ𝑥 or 𝜃𝐿

𝑦
< 𝜀Δ𝑦, 

with 𝜀 = 0.01 in this work. A smaller 𝜀 value may be considered to the detriment of the CFL conditions presented in Appendix C, 
requiring smaller time steps to maintain a bounded temperature field upon numerical integration. Further, the interface temperature 
is also assigned to any cell that “changes phase” from 𝑡𝑛 to 𝑡𝑛+1, e.g., 𝐶𝑛

𝑖,𝑗
< 0.5 and 𝐶𝑛+1

𝑖,𝑗
≥ 0.5.

Appendix C. Time step calculation

The time step Δ𝑡 is determined by a CFL condition for multiphase flows [40], which has been implemented in other works using 
explicit solvers [11,16,38,65].

A time step for the momentum equation is defined as

Δ𝑡𝐮 =
2 

𝛿𝑡𝐮 + 𝛿𝑡𝜇 +
√

(𝛿𝑡𝐮 + 𝛿𝑡𝜇)2 + 4𝛿𝑡2𝐠 + 4𝛿𝑡2
𝜎

(C.1)

where

𝛿𝑡𝐮 =
|𝑢|max

Δ𝑥 
+

|𝑣|max

Δ𝑦 
+

|𝑤|max

Δ𝑧 

𝛿𝑡𝜇 = 2
(

1 
Δ𝑥2

+ 1 
Δ𝑦2

+ 1 
Δ𝑧2

)(
𝜇

𝜌 

)
max

𝛿𝑡𝐠 =
√||𝐠||

Δ𝑧 

𝛿𝑡𝜎 =

√
(𝜎|𝜅|)max

min(𝜌𝐺, 𝜌𝐿)min(Δ𝑥2,Δ𝑦2,Δ𝑧2)

(C.2)

Next, a time step for the energy equation is given by

Δ𝑡𝑇 =
min(Δ𝑥2

𝑒
,Δ𝑦2

𝑒
,Δ𝑧2

𝑒
)

2𝛼max

(C.3)

with 𝛼 = 𝑘∕(𝜌𝑐𝑝) being the thermal diffusivity, and Δ𝑥𝑒, Δ𝑦𝑒 and Δ𝑧𝑒 being effective grid spacings based on the numerical stencil 
used to calculate the diffusion term in Eq. (18) with the interface embedding. In the example provided in Eq. (B.1), Δ𝑥𝑒 =

1
2 (𝜃

𝐿
𝑥
+Δ𝑥)

and Δ𝑦𝑒 =
1
2 (𝜃

𝐿
𝑦
+Δ𝑦). A similar time step could be defined to account for diffusion of species in multi-component systems.

Additional time-step restrictions are given by the interface displacement due to phase change, Δ𝑡�̇�′′ , and the limitation of geomet-

rical errors during advection of 𝐶 with split-advection solvers, Δ𝑡𝐶 . These are given by limiting the maximum shift of the interface 
plane under phase change, Δdmax, as
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Δ𝑡�̇�′′ = Δdmax

𝜌𝐿

�̇�′′ (C.4)

and the advection of 𝐶 as

Δ𝑡𝐶 = 𝜃2min

(
Δ𝑥 |𝑢𝐿|max

,
Δ𝑦 |𝑣𝐿|max

,
Δ𝑧 |𝑤𝐿|max

)
(C.5)

using the non-zero components of 𝐮𝐿. To be consistent with the advection of 𝐶 described in Section 2.2, Eq. (C.4) uses 𝜌𝐿 for 
droplet-laden flows and 𝜌𝐺 for bubbly flows, and Eq. (C.5) uses 𝐮𝐿 or 𝐮𝐺 accordingly.

Lastly, the time step is obtained from

Δ𝑡 = min

(
𝜃1min(Δ𝑡𝐮,Δ𝑡𝑇 ),Δ𝑡�̇�′′ ,Δ𝑡𝐶

)
(C.6)

The coefficients for the time step calculations are given as follows. 𝜃1 is the classic CFL parameter that varies among solvers. In 
this work, a value of 𝜃1 between 0.1 and 0.2 has been shown to provide a stable and consistent numerical integration when Δ𝑡𝐮 or Δ𝑡𝑇
dominate. However, other works in the literature report 𝜃1 values in the range of 0.35 to 0.5 [11,38]. Then, 𝜃2 = 0.01 following the 
geometrical errors under advection reported in [27]. Δdmax can be defined similarly, but it set to Δdmax = 0.001Δ𝑥 for the purpose 
of the validation of the code. Note that one can express Δdmax ≡ 𝜃3Δ𝑥 for a uniform mesh; thus, the value of 𝜃3 can be adjusted (see 
Section 4.2.2 for more details).

Data availability

Data will be made available on request.
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