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Abstract

Currently, non-rigid image registration algorithms are too time intensive to use in time-
critical applications. To solve this problem, stochastic gradient descent (SGD) has been
implemented in image registration. But, SGD depends on manual step size selection which
is difficult and time consuming. To avoid such manual selection, SGD has been improved
further by using adaptive stochastic gradient descent (ASGD) and fast adaptive stochastic
gradient descent (FASGD) to select an optimal step size automatically. Although FASGD
has reduced the computation time drastically, non-rigid registration still cannot be used in
time critical applications. So far, a serial implementation of FASGD has been tested on CPU
architecture in elastix toolbox. Thus, a parallel implementation of SGD can be a possible
solution to this problem.
The work proposed in this thesis implemented a NiftyReg toolbox extension to graphic pro-
cessing units (GPUs), divided into two methods. First, NiftyReg2, a possible optimization
of the current NiftyReg. Second, NiftyRegSGD, a high performance implementation of SGD
on the GPU framework of NiftyReg. A novel sampling strategy, random chunk sampling is
also proposed which is tailored to the GPU architecture. Random chunk sampling is an op-
timization to utilize memory bandwidth of GPU effectively to increase throughput of CUDA
kernels.
Experiments have been performed on 3D lung CT data of 19 patients, which compared
NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix FASGD
and NiftyReg. The registration runtime was 21.5s, 13.02s, 4.4s and 2.8s for elastix-FASGD,
NiftyReg2, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respec-
tively, while similar accuracy was obtained. Thus, proposed GPU based non-rigid registration
can be used for a time critical application with further extensions. The abstract which dis-
cusses the work done during this thesis has been accepted for publication in the medical
imaging conference of the Society of Photographic Instrumentation Engineers (SPIE).
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Introduction 1
On November 8, 1895 in Germany, Wilhelm Conrad Roentgen made the remarkable
discovery of X-rays [15]. These rays penetrated through human flesh to take a photograph
of the bones. Roentgen asked his wife to be a volunteer, and he took a photograph of her
hand. Only the bones and the ring on his wife’s hand were visible in that photograph.
This discovery was made public, and only within a month, X-rays were used to treat a
patient successfully [15]. Two Birmingham doctors took a X-ray photograph to remove
a broken needle from a patient’s hand. This discovery has been helping physicians to
diagnose a medical case without cutting the patient. Since then, radiology has been an
integral part of medical therapy.

Around the same time, the United States census bureau was facing a problem during
the 1890 census. Ten years earlier, 1880 census was done manually and it took seven
years to process. For the 1890, the bureau predicted it would take them more than
ten years to survey the growing population of 62 million people [16]. So, a contest
was held to address this problem. This contest was won by Herman Hollerith, who
proposed an electro-mechanical punched card tabulator to tabulate the census data.
This invention enabled the census to be processed within six weeks saving a lot of time
and money. Herman founded Tabulating Machine Company which later amalgamated
with other three companies to form Computing-Tabulating-Recording Company in 1911,
which is nowadays known as IBM (International Business Machines Corporation). Then,
in the 20th century, IBM made faster and better tabulating machines mainly used for
accounting in the finance industry.

Figure 1.1: Left picture shows Hand mit Ringen (hand with rings), the first medical
X-ray photo taken by Wilhelm Roentgen of his wife Anna Bertha Ludwig’s hand [1].
The right picture shows a tabulating machine used during 1890 US census [2].

Thus, in the late 19th century, both medical imaging and hardware computing made

1



2 CHAPTER 1. INTRODUCTION

a significant impact on their respective fields. In the 20th century, both fields had other
breakthroughs from the enigma machine to the rise of Microsoft and Intel, from SONAR
to computed tomography (CT). In mid 20th century, these two fields converged when
CT was introduced by Hounsfield and Cormack for which they won the Nobel Prize in
Physiology or Medicine. This was the first time a digital medical image was constructed.
Apart from X-ray based CT, different modalities were developed like Magnetic Resonance
Imaging (MRI), Positron Emission Tomography (PET) and ultrasound. All these various
modalities have advantages and disadvantages and can be used to acquire medical images
for diagnostics.

Figure 1.2: Figure on left shows the sketch of CT scan drawn by Godfrey Hounsfield [3]
and figure on right shows the latest IQon spectral CT scanner by Philips [4]

Once a digital image is acquired and depending on the application, further analysis is
needed for optimal diagnostic. Such optimal diagnostic can be done by image processing
with the help of a computer hardware providing the necessary computing power. For
example, image segmentation is an algorithm which differentiates an image into separate
smaller images. Another example is to determine a spatial relation between two images.
For example, two CT scans are taken, one before and another after the treatment. To
find out the progression of the tumor, a spatial relation between the two images is
needed. Another example is to align two images taken by two different modalities. This
spatial correlation is established between MRI and ultrasound scanner to cancel the
disadvantages by MRI and ultrasound. This spatial relation is determined by algorithms
referred to as image registration.

1.1 Image registration and proton therapy

Image registration is one of the main tasks in medical processing pipeline for clinical
applications. As stated earlier, registration aligns two images and establishes a spatial
relation between images. This relation is established with the help of optimization of
transformation parameters. In general, there are two types of registration, affine, and
non-rigid. Affine registration can have around 16 parameters while non-rigid can have
up to 100k (or more) parameters for a 3D medical image. Thus, such a high num-
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ber of parameters under optimization makes the non-rigid registration computationally
intensive.

Figure 1.3: Left picture shows intensity modulated proton therapy (IMPT) equipment [5]
which is used to guide high energy proton beams and a proton dose distribution is shown
in the picture on the right [5].

Radiation therapy is a cancer treatment which uses high energy radiation of X-rays,
gamma rays or charged particles to destroy cancer cells by damaging Deoxyribonucleic
acid (DNA) of cancer beyond repair. These damaged cancer cells then eventually die.
But, this radiation beams can also affect healthy cells nearby. In intensity modulated
proton therapy (IMPT), a radiation dose is distributed in such a way that the proton
beams will hit the tumor with the highest intensity while surrounding healthy organs
will be hit with zero or lowest intensity, thus reducing irradiation of healthy tissues and
avoiding complications. Proton therapy has some advantages over other beam radiation
therapy. Proton therapy has fewer and lower side effect than other beam therapy. Hence,
IMPT is used for the cancer treatment of lung, prostate and brain cancer. Before therapy,
CT or MRI scans of a patient are taken. A non-rigid registration is used to locate cancer
tumors using these scans. Once tumors are located, distribution of a proton radiation
dose is finalized. With higher deformations and extra bending constraints, a non-rigid
registration can take up to 10 minutes. But, the location of a tumor may change because
of human respiration, bladder filling or patient’s motion. This means during proton
therapy, the distribution plan may not be optimal. Hence, healthy tissues can suffer
from a radiation overdose while there can be an underdose in the tumor.

Thus, non-rigid registration needs to be revised to find tumor locations within few
seconds to have an optimal treatment plan. Similar to a tabulating machine in 1890
census problem, modern day computers are assisting medical image processing with
high computing power. But, this computing power is not enough for a non-rigid reg-
istration. Graphics Processing Unit (GPU) can be a possible solution to this problem.
General-purpose computing on graphics processing units (GPGPU) has been used in the
healthcare field. H.A.D. Nguyen et al. [17] and G. Smaragdos et al. [18] proposed the
simulation of computationally intensive neuron model on GPU. Houtgast et al. [19] and
Ren et al. [20] accelerated big data algorithms related to the genomics analysis using
GPUs. Thus, GPGPU is a possible solution to accelerate the non-rigid registration.
Hence, the work done in this thesis focuses on answering the question, can non-rigid
registration be used in near real time applications using GPGPU?
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To answer the above main question, it must be divided into sub-questions as follows:

1. What is image registration and what makes a non-rigid registration time consum-
ing?

2. What are the current fast implementations for a non-rigid registration using GPU?

3. Can these implementations be further improved to perform faster?

4. What can be the possible optimizations to make them faster?

5. Are these optimizations enough to solve the main problem?

1.2 Thesis outline

This report discusses the above five sub-questions in order. Chapter 2 answers the first
two research questions by introducing the basics of medical image and image registration.
Related work and possible implementations are discussed as well. In Chapter 3, profiling
and analysis of potential implementations are discussed to answer the third question.
Possible optimizations are also proposed in Chapter 3 to answer the fourth question.
Chapter 4 discusses the implementation of these optimizations in detail. Chapter 5
and 6 discuss the results and conclusions to answer the fifth question. Future work is
also stated in Chapter 6 to answer the fifth research question further. This thesis is
done at the division of image processing (Laboratorium voor Klinische en Experimentele
Beeldverwerking LKEB) of the Leiden university medical center (LUMC). Based on the
results of this work, we published a paper [21] which answers all the above research
questions in the conference of the Society of Photographic Instrumentation Engineers
(SPIE) on medical imaging, February 2018.1

1Refer the appendix for the paper abstract which has been accepted to SPIE conference
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2.1 Medical image

Unlike a normal image, a medical image has two co-ordinate systems, world (or physical)
and image coordinate. The image co-ordinate system is similar to a normal non medical
image and it can be described using pixels or voxels. Physical coordinate system has
spatial information about that image. This spatial information is a vital part of medical
imaging. This information represents the physical difference between pixels (or voxels)
and the physical location of the image in the space. The space denotes the area under a
scanner.

Figure 2.1: A typical medical image with spatial information [6]

Figure 2.1 shows the spacial information terminologies of a medical image. The image
origin and spacing (δ) are two important factors to know the physical position of the
image or a structure in that image. Medical diagnosis, image-guided surgery assisted
radiation therapy or feature extraction is not possible without such spatial information.

2.2 Image registration

Medical imaging plays a vital role in clinical research and medical care. It is used
to detect diseases, to follow up on a disease progression and to select therapies for a
disease. Image registration is one of the key parts of the medical image processing and
analysis used in Computer-assisted Diagnosis (CAD), Computer-aided Therapy (CAT)
and Computer-assisted Surgery (CAS). The fundamental task of the image registration is

5
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to align medical images or to find out a spatial relationship between two or more images.
Each point in one image is mapped to the corresponding point in the other image.
The first image in the previous statement is called floating, moving or source image
while the latter is called fixed or target image. Such mapping of points is done by the
transformation models. Typically, two types of transformations are used in registration,
affine and non-rigid. The quality of a mapping (or an alignment) is measured using a cost
function (or a metric). The cost function is either similarity (e.g. mutual information) or
dissimilarity (e.g. mean squared distance). To align two images perfectly, the similarity
between those images should be maximum or the dissimilarity between them should be
minimum. To achieve this, transformation parameters are optimized iteratively with
the help of optimizer (e.g. gradient descent). The transformation model, cost function,
and optimizer are application dependent. Figure 2.2 shows a typical image registration
framework. The components of a registration algorithm are discussed in the following
sections.

Figure 2.2: A typical image registration algorithm [7]

2.2.1 Cost function

Cost function is the measure of alignment. As stated in section 2.2, registration aims to
find the optimal cost function between two images. The cost function in image registra-
tion can be expressed as:

C(µ) = Ψ

(
1

|ΩF |
∑

xi∈ΩF

ξ(F (xi),M(T(xi, µ)))

)
, (2.1)

where Ψ(u) and ξ(u, v) are continuous and differentiable functions, and where ΩF is a
discrete set of voxel coordinates from the fixed image [22]. As stated earlier, the cost
function can be either distance or similarity between images.

2.2.2 Sampler

The role of a sampler is to choose a set from the available sample space. Typically,
full sampling, i.e., full images are used in registration. But in stochastic optimization, a
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subset of a sample space is used. The sampler will be discussed in details in the stochastic
gradient descent.

2.2.3 Interpolation

The optimized parameters are then applied to the moving image and an interpolated
(or a warped or a deformed) image is obtained using an interpolator. This interpolated
image is used as the moving image for the next iteration. Hence, at each iteration, a new
moving image is interpolated. In some literature, this is also called resampling. This
new image M(T(xi, µ), is also called deformed or warped image. Nearest neighbour,
bilinear, and bi-cubic interpolation are usually used in registration.

2.2.4 Transformation models

The main goal of a transformation is to map any point from an image into the correspond-
ing point from another image. A transformation model can be stated using parameters
(or degrees of freedom (DOF)). A transformation is typically defined by following equa-
tion where transformation T maps a point (x, y, z) from source (moving) to (x′, y′, z′)
from target (fixed) image.

T : (x, y, z) 7→ (x′, y′, z′) (2.2)

In general, type of registration is defined by the nature of transformation used in
registration framework. Affine and non-rigid are mainly two types of transformations,
where affine is an extension of rigid transformation.

Rigid and affine registration

A rigid transformation has six parameters, three rotations and three translations. An
extension of rigid is called an affine transformation. An affine transformation has twelve
parameters. In addition to rotation and translation, shearing and scaling are also allowed
by affine transform [23]. Affine or linear transformation is defined by [23],

T : (x, y, z) =




x′

y′

z′

1


 =




a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

0 0 0 1







x
y
z
1


 (2.3)

Affine and rigid transformations are also called as the global transformations. Be-
cause, all points on an image are transformed by the same equation 2.3. But affine
transform is not enough for some applications. For example, to find out the progression
of a tumor inside the brain, a local transform is needed to be applied to the tumor
only, not to the whole image. In such cases, a non-rigid transformation is used as local
transform to map changes in a local object (like a tumor).

Nonrigid registration

Non-rigid transform is used to find the local spatial relation which can not be established
by an affine transform. The basic idea in non-rigid is to use a high number of parameters
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(or DOF), typically around 50k. In mathematical terms, this can be achieved by using
a linear combination of the basis function θ to describe a deformation field [23]. Hence,
equation 2.3 is modified as,

T : (x, y, z) =




x′

y′

z′

1


 =




a00 a01 · · · a0n

a10 a11 · · · a1n

a20 a21 · · · a2n

0 0 · · · 1







θ1(x, y, z)
...

θn(x, y, z)
1


 (2.4)

Where θ is a basis function such as Fourier or wavelet basis functions [23] and n is the
order of basis function. Usually, basis spline (B-spline) is used as a basis function. The
word spline is referred to the long strips of a wood or metal, which are bent by attaching
weights to use in ships and planes [23], refer figure 2.3.

Figure 2.3: Picture on left shows the Gokstad Viking ship, a typical example of splines in
shipbuilding [8]. On the right side, picture shows a spline used in computer aided design
and computer graphics [9].

The parameters in a non-rigid transform are also called the control points. At these
control points, the displacement is interpolated or approximated to map points between
two images [23]. The control points are given by,

T(φi) = φ′i i = 1, 2, · · · , n (2.5)

Where φ is a control point, and n is a total number of control points. Freeform
deformations (FFDs) is a nonlinear transformation which is based on B-spline. The key
idea of FFD is to deform an object (in this case, an image) by manipulating underlying
mesh of control points (i.e. control point grid) [23]. A deformation at any point (x, y, z)
is given by [23],

u(x, y, z) =
3∑

l=0

3∑

m=0

3∑

n=0

θl(u)θm(v)θn(w)φi+l,j+m,k+n (2.6)

where i =
⌊x
δ

⌋
−1, j =

⌊y
δ

⌋
−1, k =

⌊z
δ

⌋
−1, u =

x

δ
−
⌊x
δ

⌋
, v =

y

δ
−
⌊y
δ

⌋
, w =

z

δ
−
⌊z
δ

⌋
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Figure 2.4: Figure shows the transformation models used in image registration [10].
(a) and (b) are two images to be aligned. Various transformations (from (c)-(f)) can
be applied to the moving image (b) to make it align with the fixed image (a). In a
typical registration application, an affine transformation (e) is followed by a non-rigid
(f) transformation.

and δ is uniform spacing among x,y,z axes.1 φ are control points and θ are B-spline
function, which are defines as,

θ0(s) =(1− s)3/6

θ1(s) =(3s3 − 6s2 + 4)/6

θ2(s) =(−3s3 + 3s3 − 3s+ 1)/6

θ3(s) =s3/6

(2.7)

2.2.5 Optimizer

Image registration is an iterative optimization problem that can be formulated as,

µk+1 = µk − γkgk, (2.8)

where µ represents the transformation parameters at iteration k, g is the search
direction and γk the stepsize. The optimizer uses a search direction gk based on the

1In general, δ is not same among all axes.
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gradient to select the optimal step size γk. For the search direction, the gradient gk :=
∂C/∂µ of the cost function C can be selected. A step size should be chosen wisely. Too
small step size leads to a high number of iterations which leads to a higher computational
time. On the other hand, a large step size leads to instability in the registration which
may leads to incorrect optimization of parameters.

Figure 2.5: Figure shows a plot of cost function [7]. Here two traslation parameters
along x and y directions are optimized. The cost function is minimum at the solution
point where two images are seen to be aligned perfectly.

Stopping criteria for registration

Since registration is an iterative algorithm, typically a stopping criterion is used. One
stopping criterion is a maximum number of iterations, kmax. In this criterion, a reg-
istration is computed till k = kmax for equation 2.8. The second criterion is to use a
line search. The key idea of a line search is to take few (e.g., ten iterations) steps in a
direction till the optimum cost function is obtained. If optimum cost function is obtained
before kmax, the registration is stopped. In general, conjugate gradient optimizer is used
with the line search. Typically, a conjugate gradient optimizer has higher convergence
rate than a simple gradient descent optimizer [24].

Multi-resolution registration

The registration can be done using the multiple resolutions (or levels), starting from the
registration at the lower resolution to the registration at the higher resolution. This is
done using downsampling with or without Gaussian smoothing [7]. This approach is
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Figure 2.6: The figure shows gradient descent vs conjugate gradient [11]. Green path
corresponds to the gradient descent, and red path represents the conjugate gradient.
Starting from X0, both optimizers converge at an optimum value X. The conjugate
gradient takes two iterations while gradient descent takes five iterations.

also called as pyramids (refer figure 2.2). The word pyramid indicates the data intensity
increases as the level resolution increases.

Similarly, in case of control points of B-spline, pyramid strategy is applied to the
number of parameters. At lower resolution, a coarse control point grid is used while, at
higher resolution, a refined control point grid is used. The multi-resolution strategy not
only reduces data and transformation complexity but also improves registration qual-
ity [7]. The main role of using pyramid (in case of non-rigid registration) is to align bigger
structure faster with lower resolution (with less data) and then align smaller structure
with higher resolution. In addition to this, pyramid also eliminates false minima.

2.3 Problem with non-rigid revisited

As the number of parameters used in non-rigid registration can be as high as 105 (term
φ in equation 2.6), non-rigid registration becomes more arithmetic intensive with higher
computation time as resolution level increases. Typically, non-rigid registration can take
up from few minutes to more than 10 minutes. Due to this, non-rigid cannot be used in
the time critical applications, such as image-guided surgery or the radiation therapy in
case of prostate cancer.

The alignment can be more complex due patient repositioning and continuous organ
movement [25]. Currently, non-rigid methods are applied with offline settings only which
may obstruct an efficient therapy. Hence, non-rigid registration methods need to be
revamped for the time-critical applications. In the next section, related work in the
literature is discussed to address this issue.
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Figure 2.7: Figure shows the multi-resolution strategy [7]. Here, registration is done
using three resolutions. In first row, downsampling is applied with Guassian pyramid
while in second row, only downsampling is applied. The number of voxels is doubled
with each resolution level and the size of voxel is halved.

2.4 Related work

In simple words, registration is an iterative algorithm which has an objective to achieve
optimum parameters to align two images. The methodological strategies like pyramid
approach and conjugate gradient enable a registration to perform faster. But these
strategies are not sufficient to speed up a non-rigid algorithm for time-critical applica-
tions. To address this problem, mainly two strategies have been proposed. First, to
use a methodological technique called Stochastic Gradient Descent (SGD) [26]. Second,
parallel computing using GPU or multithreading (openMP).

2.4.1 Stochastic gradient descent

The word stochastic means a random pattern or a random distribution. The key idea
in SGD [26] is to compute a fast but noisy approximation of the search direction g̃k :=
∂C̃/∂µ (for equation 2.8), by selecting a small random subset from full fixed image
sample space. At each iteration, a new random subset is drawn. This is done by the
sampler called random sampler in figure 2.2. Thus, a full sample space is avoided to
optimize parameters. In computation point of view, instead of using the data size of
millions at each iteration, the data size of few thousands can be used. The random
sampling reduces the data intensity of the algorithm drastically. But at the same time,
this degrades the conversion rate, which means stochastic registration may take more
iterations to reach a certain cost function value than a registration using full sampling.
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2.4.2 GPGPU

Another solution is to use the high performance parallel computing. Since last decade,
GPU and high performance computing (HPC) have been topics of research to address
high computation problems. For a typical linear algebra algorithm, by using the GPU,
a much higher throughput can be achieved than the CPU with the similar accuracy.
Hence, GPU can be a problem solver for the non-rigid registration.

High performance computation approaches such as [27], Haghighi et al. [28] and
Plastimatch [29] take advantages of the GPU architecture for parallel computing. In
Haghighi et al., only cost function computation is implemented on GPU. In Shamonin
et al. [30], CPU and GPU parallelization were implemented in elastix [31]. In this work,
Gaussian pyramid and image sampling were implemented on GPU using OpenCL and
cost function derivative calculation was optimized using CPU parallelism. In NiftyReg,
almost all the registration framework, except the cast function, is implemented on GPU
using CUDA.

These implementations are, however, based on gradient descent optimization using
full image sampling. In the field of machine learning or neural networks, there exist
implementations of SGD on the GPU [32]. However, these methods typically optimize
over a large collection of data, and the term stochastic refers to random batches of data
instead of random voxels within one image, which is a fundamental difference from a
registration point of view. Therefore, an implementation of SGD on GPU is lacking for
image registration.

2.5 Registration toolboxes

There are a lot of registration toolboxes with different approaches for registration. There
are several open source registration softwares like Image Insight Segmentation and Reg-
istration Toolkit (ITK), elastix, NiftyReg, Plastimatch, etc. There are python packages
like SimpleITK, SimpleElastix to compute registration in Python. Sometimes, for a par-
ticular medical therapy, a new registration algorithm is proposed. For example, a new
penalty term is proposed to incorporate a missing structure in an alignment [33]. So,
registration toolboxes have a wide diversity with each has its advantages and disadvan-
tages. Recently, SuperElastix [34] is being developed to unify this diversity. The work
under this thesis will be included in SuperElastix.

2.5.1 Elastix

Elastix is an open source image registration based toolbox based on widely known Image
Insight Segmentation and Registration Toolkit (ITK) [35]. Being developed on the top
of ITK, elastix has all functionality offered by ITK in addition of some special enhance-
ments [10]. One of the enhancement is Fast Adaptive SGD (FASGD), which is developed
to tackle the problem of nonrigid registration for a time critical application.

In SGD [26], a decaying step size (rk) is used in the equation 2.8, and is given by,

γk =
a

(A+ k)α
, (2.9)
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Where parameters a, A and α are constants that typically need to be tuned for the type
of data. Since stochastic gradient descent does not have its own stopping criterion, the
maximum number of iterations kmax needs to be set as well. Hence, this manual selection
of rk is difficult and can be time consuming which defeats the purpose of being used in a
time critical application. Thus, adaptive SGD (ASGD) [22] and FASGD was proposed,
where FASGD outperforms ASGD in the computational time. Although FASGD can
speed up non-rigid registration, it is only tested in CPU hardware. Thus, FASGD can
be further optimized using parallel computing with the GPU.

2.5.2 NiftyReg

In Modat et al [27], NiftyReg toolbox was proposed in which image registration imple-
mented on both CPU and GPU architecture. NiftyReg uses .nii (nifty) format medical
images only2. NiftyReg uses entire sample space to compute cost function gradient
but lower computation time (within a minute) can be achieved with the help parallel
architecture of GPU.

2.6 Summary

In this chapter, an image registration algorithm has been explained in brief. Further,
two possible solutions, SGD and GPGPU were discussed. From this discussion, elastix or
NiftyReg can be chosen as a foundation for this thesis. Next chapter discusses profiling
and analysis of these toolboxes in details. Following table 2.1 shows the similarities and
dissimilarities (in bold) between elastix and NiftyReg registration toolboxes.

Elastix NiftyReg

• B-Spline Transform • B-Spline Transform

• NMI measure • NMI measure

• FASGD • Conjugate gradient ascent

• Runs predefined number of itera-
tions

• Stopping criteria with line search

• Computation of 5000 samples per
iteration(random sampling)

•Computation of Millions of samples
per iteration(full sampling)

Table 2.1: Comparison of Elastix and NiftyReg

2Using SimpleITK package in python, it is possible to change any medical image format.
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From literature survey, two possible implementations can accelerate the non-rigid regis-
tration. First, a GPU implementation of FASGD in elastix and second, a SGD implemen-
tation in NiftyReg. Due to the limited timeline of the thesis, only one implementation
can be selected and therefore, profiling and further analysis are needed to evaluate both
toolboxes. Both toolboxes were executed using a lung data set, and the accuracy was
tested for both. In this chapter, experiment setup, registration pipeline and profiling are
discussed. Based on the profiling and analysis, proposed implementations and optimiza-
tions are stated.

3.1 Amdahls law of speedup

To estimate the speedup of an application, Amdahl’s law of speedup is often used and
is given by,

Soverall =
1

(1− p) + p
s

(3.1)

Where Soverall is the overall speedup of the application, p is the portion of the exe-
cution time of a function eligible for optimization, and s is the expected speedup of that
function. The key idea of this formula is to find out functions in a program which are
more time consuming and can be accelerated using an optimization. Such a function
(or a part of a function) is often called as a hotspot or a bottleneck. To gain significant
overall speedupsoverall, the value of p should be more.

3.2 Proposed workflow

The code optimization is an iterative process and can be expressed as a workflow shown
in diagram 3.1. The very first step is to profile and analyze the original codes to find
out hotspots and bottlenecks. The next step is to optimize the code to remove the
bottlenecks found in the first step. An optimization can be a software based, hardware
based or using both. Sometimes a faster mathematical method can also be used to
solve the bottleneck. For example, SGD is a faster mathematical method than standard
gradient descent. While GPU computing, OpenMP, and Advanced Vector Extensions
(AVX) represent both hardware and software based optimizations.

15
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Figure 3.1: Proposed workflow for the thesis

3.3 Setup overview

Hardware

For this thesis, the experiments were run on Intel Xeon CPU E5-1620- 8 cores with 64
GB memory. GPU used in this work is Nvidia Tesla K40c GPU with 12 GB global
memory, and peak performance of 4.29 Tflops for single precision1.

SPREAD Database

For this analysis, computed tomography (CT) lung data from SRPEAD [36] studies has
been used. It consists of 19 patient data with the baseline (fixed) and followup (moving)
images. Each patient has 100 ground truth points to determine target registration error
(TRE) to evaluate the accuracy of the registration.

Figure 3.2: Figure shows CT scan for baseline (left image) and followup (right) images.

1See appendix for more CPU (A.1) and GPU (A.2) specifications
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3.4 Registration pipeline

Figure 3.3 shows the registration pipeline used during this thesis, which includes imple-
mentation of a faster non-rigid registration and TRE evaluation of this implementation.
As shown in figure 3.3, 100 selected points from a baseline image are transformed using
optimized parameters (or control points grid) using the non-rigid registration. Euclidean
distance (in mm) is calculated between transformed points and corresponding points in
followup images. Such 100 euclidean distances are calculated, and boxplot of these
distances represents the quality of the registration. For timing analysis, log files from
non-rigid registration are used.

Figure 3.3: Figure shows the registration pipeline used in the thesis. The affine regis-
tration is followed by the non-rigid registration, and TRE evaluation is performed on
100 truth points by applying final registration. Default settings for affine registration
for NiftyReg were used while for FASGD settings from paper [12] were used.
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3.5 TRE evaluation

Both FASGD and NiftyReg were executed using the SPREAD dataset to observe registra-
tion quality. The registration settings for FASGD were taken from paper [12]. NiftyReg
was executed with the default settings. TRE formula is given by equation 3.2 [23],

TRE = T (p)− q (3.2)

Where, p and q are the corresponding points in two images to be aligned, and T is a
transformation. The final transformation for FASGD was computed by transformix,
which is a binary application in elastix. Similarly, reg transform, an application in
NiftyReg toolkit, is used to apply the final transformation to the image. After final
transformation, the euclidean distances between 100 ground truth points were calculated.
A ground truth point is a point whose position is known in images to be aligned. TRE is
an error and ideally, it should be zero and practically, as small as possible. So a boxplot
near to zero means the high accuracy. The figure 3.4 shows boxplots of the FASGD and
NiftyReg. FASGD accuracy is slightly better than the NiftyReg (default setting) but
not significantly different. This shows that both can be used as a foundation for the
proposed implementations.

Figure 3.4: TRE evaluation of base codes

3.6 Timing analysis

Both toolboxes can generate log files during registration. These log files have total time
taken for the computation2. From these log files, it is found out that FASGD takes an

2see appendix A.4 for more information about the log files
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average 22 seconds while NiftyReg takes around 34 seconds on average for the non-rigid
registration using the SPREAD dataset.

Figure 3.5: Average computational time for elastix and NiftyReg base codes

3.7 Profiling

To find out p in the equation 3.1, profiling is necessary. Without good profiling, it is
difficult to optimize a given program, which consists of thousands of lines. Toolboxes
like NiftyReg or elastix typically has a wide number of functions. To manually profile
such high number of functions is a difficult task in a given time. Further, only a part of a
function can be a bottleneck instead of the entire function. Therefore, the profiling tools
are must. There are many open source and commercial C++ profiling tools available for
CPU and GPU. For this thesis, Valgrind and Intel Vtune Amplifier were used to profile
elastix and NiftyReg. Though Valgrind is open source, it takes significant time (few
hours) to profile a program which runs around 15 seconds. On the other hand, Vtune
profiles the program in the same time as program computational time. Thus, Vtune
was chosen for profiling of the CPU in this thesis. Similarly, for the GPU, Nvidia visual
profiler (nvvp) and nvpof were used because of their hardware compatibility.

3.7.1 Elastix-FASGD profiling

Advance Hotspots Analysis of Vtune was used for profiling. From the figure 3.6, it can
be concluded that Elastix hotspots are functions from ITK libraries. From Amdahl’s
Law, if p is a portion of execution time equal to top three hotspots functions, then p
is around 16% of the CPU time. For this value of p, overall speedup Soverall will be
insignificant.

elastix has dependency over ITK. This makes elastix more complex from software
hierarchy point of view. Due to complex software hierarchy, CUDA (or OpenCL) frame-
work is difficult to add. The optimization of elastix on GPU may be a difficult task
given a limited timeline of the thesis as optimization requires a lot of software hierarchy
changes.
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Figure 3.6: Figure shows Advaced Hotspot analysis report of Vtune for FASGD. From
report, it can be concluded that ITK based functions are major bottlenecks.

3.7.2 NiftyReg profiling

Hotspots Analysis of NiftyReg (fig 3.7) indicates that 56% of total CPU time is taken by
reg getEntropies function. For such high value of p, Soverall can be significant. Further
analysis showed that joint histogram filling is the main bottleneck within this function.
A GPU implementation can be a possible optimization for the joint histogram filling
as proposed in paper [37]. NiftyReg already has pre-existing GPU (CUDA) framework
which makes it more suitable than elastix to be used as a foundation of our implemen-
tations. Thus, NiftyReg was chosen for this thesis.

3.8 Proposed optimization - iteration 1

From the discussion in the previous section, NiftyReg was chosen as the foundation.
Based on the profiling and a rule of thumb, two implementations were proposed as shown
in figure 3.8. First, NiftyReg2, an optimization of NiftyReg by porting the joint histogram
filling to the GPU. Second, NiftyRegSGD, a SGD implementation of NiftyReg2. Further
implementations were proposed in the next optimization iteration.

Porting of the joint histogram filling

This optimization is important to remove the main hotspot present in the current
NiftyReg version. From paper [37], two histogram strategies were chosen for this op-
timization. 1) CUDA global memory atomics, 2) Local histogram reduction, which uses
faster shared memory atomics over slower global memory atomics. These methods are
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Figure 3.7: Figure shows Advaced Hotspot analysis report of Vtune for NiftyReg. From
the report, it can be concluded that the function reg getEntropies is a major bottleneck.

Figure 3.8: Proposed implementations for optimization iteration 1. First itera-
tion involves profiling using profiling tools and, implementations of NiftyReg2 and
NiftyRegSGD.

discussed in Chapter 4 in details.

NiftyRegSGD

Current NiftyReg uses full sampling. This means for the SPREAD data, around 13 mil-
lion samples are used at each iteration. This data intensity can be minimized by using
SGD [26] as discussed earlier in chapter 2. So, NiftyRegSGD represents an implementa-
tion of the faster methodology using SGD.
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Optimization - Iteration 2

The previous optimizations will have mathematical and parallel computing advantages.
Since optimization is an iterative process, further profiling and analysis are needed.
NiftyRegSGD will be profiled again with Vtune and Nvidia visual profiler to find out
new bottlenecks. Based on the profiling, further optimizations will be proposed.

3.9 Summary

This chapter concludes the selection of NiftyReg as the foundation for this thesis by
profiling and analysis. Two optimization strategies were proposed to accelerate NiftyReg
in the first iteration of optimization cycle. In next chapter, implementations of all
proposed optimizations are discussed in details.
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4.1 GPGPU computing

Parallel and distributed computing are main topics of research in high performance
computing. The computational problems for data intensive and arithmetic intensive
applications like big data analytics and liner algebra has been tackled by parallel and
distributed (or cluster) computing. Image registration is not a big data problem. The
average size of a lung CT data is around 30 MegaBytes. So here, cluster computing may
not be an optimal solution. On the other hand, a GPU with sufficient global memory
and optimizations suitable to the GPU hardware, can provide an optimal solution.
Following figure 4.1 describes CUDA programming and memory hierarchy for general
purpose GPU (GPGPU) programming [38].

Figure 4.1: GPU memory and programming hierarchy [13].

CUDA programming model consists of grids, blocks, warps, and threads, where a grid
resides on the top of the hierarchy and a thread resides at the bottom of the hierarchy,
refer figure 4.1. A GPU hardware consists of streaming multiprocessors (SM), and SM
consists of streaming processors (SP). So, CUDA blocks are computed on SM while
threads are computed on SP. Similarly, GPU memory has a hierarchy. The local memory
for a thread, the shared memory for a block and the global memory for a grid.
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4.2 Mutual information and joint histogram

Mutual Information is most widely used cost function in the medical image registration.
In NiftyReg, normalised mutual information (NMI) is used as the cost function as default
and is given by,

NMI =
H(F ) +H(M(T))

H(F,M(T))
(4.1)

where H(F ) and H(M(T)) are marginal entropies of the fixed and moving image
respectively. H(F,M(T)) is the joint entropy of two images. To calculate a joint entropy,
a joint histogram is calculated, which is similar to a normal histogram. But a joint
histogram has two dimensions with each dimension represents an image. Let us suppose
at coordinate (25,30), a fixed image has voxel intensity 100 and a moving image has voxel
intensity 150. Hence the value at position (100,150) of the joint histogram is incremented
by one. Hence the joint histogram filling needs two read accesses for input values with
an addition read access of the output value at (100,150) to increment that output by
one.

For the GPU, above example at coordinate (25,30) is executed by a thread. Similarly,
coordinate (25,31) is executed by next thread in the same warp in parallel. This is a
basic approach for a CUDA kernel for the joint histogram filling.

4.3 Porting of the joint histogram filling

In the current version of NiftyReg, the joint histogram filling in mutual information has
been identified as the major bottleneck. NiftyReg2 is a CUDA based acceleration of this
bottleneck to improve performance. Different methods are present in the literature for
GPU based histogram computation. The CUDA atomic operations and local histogram
explained in Shams et al [37] are selected.

Typically for a GPU based histogram filling, CUDA atomic operations are used to
avoid a race condition. A race condition is when two or more threads try to update
a memory location. Atomic operations make threads to update a memory location
sequentially. In histogram filling, CUDA atomic instruction called atomicAdd(Addr,
value) is used, where Addr is a memory address to be updated with a value (in this
case, value is one).

Local histogram Reduction

As shown in figure 4.3, first local histograms are filled using atomic operations on shared
memory. Then local histograms are reduced into a final histogram in global memory.
This is similar to the map-reduce algorithm used in Hadoop or distributed computing.
This approach avoids slower atomic operations on the global memory. But histogram
reduction depends on the size of shared memory, which depends on the GPU model.
Tesla 40k has 48KB of shared memory. Typically, a joint histogram has dimensions like
64x64 or 128x128. The size of a joint histogram can depend on an application. For
an integer of size 4 Bytes and a joint histogram of size 128x128, the shared memory of
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Figure 4.2: Left figure shows implementation of joint histogram in current NiftyReg
version. Right figure shows proposed changes for NiftyReg2

128 ∗ 128 ∗ 4 ≈ 64KB is needed. For GPUs with lower compute capabilities, this is a
limitation of this approach. Hence, in the final version, local histogram reduction is not
used. For this implementation, a default 64x64 histogram is used.

Figure 4.3: Figure histogram reduction method [14]

Global atomic add

The second method is to use atomic operations in the global memory. No shared memory
is used in this method and hence, no restriction on the size of a joint histogram size.
In addition to this advantage, the global atomic operations for the Kepler architecture
(Tesla K40c) has been improved as compared to previous GPU architectures like Fermi,
Maxwell [39]. Hence, global atomic operations have been selected over local histogram1.

1Implementation of local histograms reduction is also included but it is turned off. Since this project
is publicly available, developers can turn on any method for the joint histogram filling.
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4.4 NiftyRegSGD

Once NiftyReg2 is implemented, it is followed by implementation of NiftyRegSGD with
decaying step formula [26] given as,

Stepsize =
δ ∗ a

(A+ k)α
(4.2)

where δ is the maximum spacing among x,y and z axes. a, A and α are constants. k
is the current iteration and kmax is the maximum number of iterations. The line search
is removed from this implementation. In NiftyRegSGD, interpolation, cost function,
transformations and voxel gradient calculations will be computed with a small subset of
the data. Original NiftyReg has a line search which makes iterative registration to stop
before the maximum number of iterations. This line search is removed for NiftyRegSGD.
So kmax is the only stopping criteria for NiftyRegSGD.

Masking and sampling

In medical imaging, sometimes only an organ can be a point of interest. For example, in
a CT scan of a thorax, only left lung is a point of interest. In such cases, a mask is used.
A mask is a boolean image having the same size as the input image. In a mask, only
valid co-ordinates have boolean value true while others have false value. Thus, only the
left lung is considered in the image registration or similar medical image processing.

Figure 4.4: Figure shows a mask for the left lung. Co-ordinates at green colour are valid
or true. Thus only green co-ordinates are used in the registration. This is similar to
using a subset of an image.

Thus, this concept of a mask is extended in order to create a random subset (or a
random mask). Hence a random sampler is implemented in NiftyReg to create a random
mask at each iteration. This is implemented as shown in figure 4.5.
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Figure 4.5: Figure shows a NiftyRegSGD changes in NiftyReg. A new CPU based
random sampling function is introduced and modules in green colours are now using a
subset of input data.

As shown in figure 4.5, the random sampling function will create a fresh random
subset of data at each iteration for SGD. Original NiftyReg has two different implemen-
tations of the mask, one each for CPU and GPU. For the CPU, a mask has the same size
as the fixed image and has boolean values as discussed earlier. For the GPU, the size of
a mask is equal to the number of valid coordinates and have values same as the position
of valid coordinates. For example, a fixed image of size ten is used, and only 0,5 and 7
are valid coordinates. So mask for CPU will be {1, 0, 0, 0, 0, 1, 0, 1, 0, 0}. But GPU mask
will be {0, 5, 7} of size 3. If no mask is used, then CPU and GPU mask will have the
same size. In this case, GPU mask will be 0, 1, 2, · · · ,ΩF , where ΩF is the image space
of the fixed image. Since we are using the GPU version of NiftyReg, the GPU mask
will be our point of interest. Creating a different mask for GPU reduces the size of the
mask which utilizes less GPU memory. It only computes for a valid point, this avoids
the computation for a invalid point. If a random subset is applied to the cost function
equation 2.1, then xi = Ωr and Ωr ⊂ ΩF , where Ωr is a random mask created by the
random sampling function. Such a random mask is used as an input to CUDA kernels
shown in green in figure 4.5. A random GPU mask is implemented using the read-only
texture memory. The advantage of the texture memory is to have a faster read access
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than the global memory.

4.5 Random chunk sampling

Although, the computational intensity is reduced due to SGD, there is still a
memory bottleneck with the random sampling. Suppose, a GPU mask has value
{100, 598, 12, 1111, 15634, 359, · · · }. If only first four values are considered, 4 CUDA
threads in a warp will access 100, 598, 12 and 1111 co-ordinate positions. These are ran-
dom memory locations to be accessed by parallel threads, and these memory locations
will not be accessed in parallel as shown in figure 4.6. Instead, threads will access them
sequentially, and memory bandwidth will be wasted. GPU has 128-bit cache line, which
means in case of a coalesced memory access, 32 floating values (4 bytes each) can be
accessed in parallel for a warp. But since only one value (out of 32) is used, other 124
bytes are wasted for each warp in a worst-case scenario.

To solve this, a novel random chunk sampling is proposed. In this strategy, every first
sample out of 32 samples is created randomly, followed by 31 samples adjacent to this
first sample. So, the GPU issues only a single 128-byte load. This enables 32 threads in
a warp to have a coalesced memory access, which results in faster memory access and
increase in GPU throughput. Refer figure 4.6.

Figure 4.6: Non coalesced(left) and coalesced (right) memory access

This novel random chunk sampling may reduce the randomness property of the subset
but improves the memory access for the GPU. To visualize a set of random samples, a
GPU mask is stored at an iteration, and a nifty mask image is created using NiBabel
python package [40]. This mask image is visualized in MeVisLab [41] and shown in figure
4.7 for both sampling strategies.
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Figure 4.7: Left figure shows the random chunk sampling for GPU hardware and right
figure shows the naive random sampling.

4.6 Summary

In this chapter, NiftyReg2 and, NiftyRegSGD with a naive random sampler and random
chunk sampler are proposed. Experiments and results will be discussed in the next
chapter in details. For NiftyRegSGD, a tuning is required. A tuning in registration is to
select the user-defined parameters to get better registration quality. This tuning is also
explained in next chapter.
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Results and discussion 5
This chapter discusses the performance of all proposed methods using the SPREAD
dataset which was used for the profiling. Boxplots are used to evaluate registration
quality using 100 truth points, and timing analysis is done using the log files.

5.1 NiftyReg2

The first optimization is to accelerate the joint histogram filling on GPU as shown in
figure 4.2. In original NiftyReg, a warped image is computed on the GPU, but for a joint
histogram filling, this warped image is transferred to the CPU. In proposed method,
transfer of a warped image (of size around 13 millions) is avoided and transfer of a joint
histogram (of size around 4 thousands) is used. This joint histogram is further needed to
calculate entropy values using the CPU. So, this method not only accelerates a histogram
filling but also uses smaller and faster data transfer (cuda memcpy). This implementation
speeds up NiftyReg 2.7 times using default settings. The average computational time
for original NiftyReg is 36 seconds and for NiftyReg2 is 13.02 seconds.

Figure 5.1: Boxplots of FASGD, NiftyReg and NiftyReg2.

Above figure 5.1 shows the TRE evaluation of the NiftyReg2. From the boxplots,
NiftyReg2 has similar registration quality as compared to the original NiftyReg while
NiftyReg2 runs 2.7 times faster than original and FASGD.
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Figure 5.2: Average computational time of FASGD, NiftyReg and NiftyReg2 in seconds.

5.2 NiftyRegSGD

NiftyReg2 is extended using decaying step size given by equation 2.9 using a random
subset of data generated by the random sampler. Random sampling function is im-
plemented with user-defined random sampling percentage, s. Also in equation 2.9,
a, A, and α are user defined. The stopping criteria kmax is also user defined, where
k = {1, 2, 3, · · · , kmax}. Hence, the selection of these parameters is important to get
optimal registration accuracy. This selection can be called as registration tuning.

Figure 5.3: Figure shows cost metric reaches optimum value after 100 iterations for
multiresolution approach. Due to the stochastic nature, the cost plot becomes noisy.
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The values for A and α were chosen as 20 and 0.90 as stated in this paper [22]. Before
the tuning, NiftyRegSGD was validated with cost plots, shown in figure 5.3 using the
decaying step size, shown in figure 5.4. The noisy nature of the cost function represents
a stochastic property of the optimizer. The expected cost plots of NiftyRegSGD were
obtained. Before evaluating NiftyRegSGD further, random chunk sampling is evaluated
first.

Figure 5.4: Figure shows the decaying step size used for cost plot in figure 5.3.

5.3 Random chunk sampling

The plots of throughput (giga voxel per seconds) for B-spline kernel (figure 5.5) and
resampler kernel (figure 5.6) were plotted for both sampling strategies for sampling per-
centage, s = [15, 35, 65]. Typically, the modern CPUs and GPUs have a roof line model
for their performance. From figure 5.5, for the naive random sampling, throughput is
lowest for all levels at s = 65. This shows the memory bottleneck, which is discussed in
4.5, which introduces more delay at a higher sampling percentage than a lower sampling
percentage. The throughput for B-spline using the random chunk sampling is increased
as compared to naive random sampling. For the random chunk sampling, increasing
throughput is observed at s = [15, 35] with higher resolution. But for s = 65, through-
put is same for all three levels. The reason for this can be 1) GPU is operating at peak
performance for this kernel, 2) there may be some other bottleneck present in this kernel.

Similarly for resampler kernel, the increase in GPU throughput is observed in case of
random chunk sampling, refer figure 5.6. The performance of GPU for resample kernel
is as expected in the roof line model, which means the throughput increases as size of
the data increases.

Regarding the runtime, the speedup is different for different sampling percentage.



34 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: Figure shows the average throughput for B-spline kernel for different levels.
’-chunks’ represents the throughput for the random chunk sampling.

Figure 5.6: Figure shows the average throughput for resampler kernel at different levels
for different sampling percentage. ’-chunks’ represents the throughput for the random
chunk sampling.

The average computation times are plotted for both kernels for all levels using both
sampling strategies, as shown in figure 5.7 and 5.8. From both figures, it is observed
that the speedup increases with higher resolution and higher sampling percentage. For
the analysis, only b-spline and resampler kernels were profiled because these two are the
most time-consuming kernels which are dependent on the random sampling.
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Figure 5.7: Figure shows the average computation time for B-spline kernel at different
levels for different sampling percentage for both sampling strategies. ’-chunks’ represents
the computational time for the random chunk sampling.

Figure 5.8: Figure shows the average computation time for B-spline kernel at different
levels for different sampling percentage for both sampling strategies. ’-chunks’ represents
the computational time for the random chunk sampling.
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5.4 Tuning

The registration tuning was done using the random chunk sampling. As explained in the
section 5.2, tuning is the selection of s, a and k to obtain better registration quality. So
experiments were performed for the different values of user-defined parameters. These
ranges of values are shown in the table5.1. For the tuning, SPREAD data (19 patients)
is divided into two datasets, train data (10 patients) and test data (9 patients). The
tuning was done using the train data.

Parameters Values

a [0.15,0.25,0.35]

s [10,20,30.....,300]

k [5,10,15,20,......80]

Table 5.1: Table depicts the range of values for parameters used for tuning.

The tuning took more than 48 hours. The figure 5.9 shows the plots of median TRE
values for the train data against the sampling percentage and computational time. Each
black dot represents a median TRE value at an iteration value k and values for k are
shown in table 5.1.

Figure 5.9: The median of TRE are plotted for a = [0.15, 0.25, 0.35] (from left to right)
using the train data. For a = 0.25, NiftyRegSGD performs fastest with similar accuracy
as FASGD.

The another purpose of this tuning is to find the fastest setting for NiftyRegSGD to
match the accuracy of elastix-FASGD . So, the white curve in the above plots represents
FASGD accuracy (i.e., the median of TRE) for the same train data. From the plots, it
is observed that for a = 0.25, NiftyRegSGD performs fastest to match FASGD accuracy.
The higher values of a are avoided. Because for these values registration may become
unstable.

Hence, a similar contour plot for a = 0.25 is shown in figure 5.10. In this plot, the
leftmost point on the white curve was chosen as the final setting for the registration.
Because at this point, NiftyRegSGD is performing fastest to match FASGD accuracy.
The table 5.2 shows the fastest setting for the registration.
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Figure 5.10: Contour plot of the median TRE is plotted for a = 0.25.

5.5 NiftyRegSGD with fastest settings

The final fastest settings which are shown by table 5.2 are applied to the test data to
find out registration performance of NiftyRegSGD.

Parameters Values

a 0.25

s 15

k 20

A 20

α 0.90

Table 5.2: Table shows the fastest registration setting for NiftyRegSGD to match FASGD
accuracy.

The figure 5.11 shows TRE boxplots for all the methods using train and test data.
The train data accuracy is plotted for NiftyRegSGD with and without random chunk
sampling.

From the figure 5.11, the train data has slightly better accuracy than test data in
case of NiftyRegSGD with or without random chunk sampling. The accuracy of both
NiftyRegSGD has found to be better than NiftyReg and NiftyReg2 for both data sets.
On FASGD point of view, accuracy for NiftyRegSGD is better in case of train data while
FASGD has better accuracy for test data than both NiftyRegSGD.

The figure 5.12 shows accuracies for all methods using overall SPREAD dataset. The
accuracies for both NiftyRegSGD are same as the accuracy of FASGD and, are better
than NiftyReg and NiftyReg2.
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Figure 5.11: Figure shows boxplots for all methods using train and test data sets.

Figure 5.12: Figure shows boxplots for all methods using SPREAD data sets.

Signed rank test and final timings

To measure the performance of TRE with respect to FASGD, Wilcoxon signed rank
test is performed in Matlab for train and test data separately (table 5.3) and on the
whole dataset (table 5.4). Wilcoxon signed-rank test is used for the null hypothesis. The
null hypothesis is a statistical test to check if there is no significant difference between
two sets (here, TRE). This test returns two values p and h, where p is probabilities in
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the tail of the distribution and h is a logical value. If p < 0.05, the test rejects null
hypothesis and for p >= 0.05, the test fails to reject the null hypothesis. In short, for
values p >= 0.05, there is no significant difference between two datasets.

NiftyReg NiftyReg2 NiftyRegSGD NiftyRegSGD-chunk
Train Test Train Test Train Test Train Test

p-value 0.06 9 ∗ 10−6 0.062 2 ∗ 10−5 0.26 0.10 0.15 0.03

Hypothesis X 7 X 7 X X X 7

Table 5.3: Table shows Wilcoxon signed rank test result for each methods as compared
to FASGD for train and test dataset.

Table 5.3 shows the result for the signed rank test. For the train data, the null
hypothesis holds, which means there is no significant difference in accuracy between all
NiftyReg implementations and FASGD. For test data, NiftyRegSGD with naive random
sampling has no significant difference in accuracy. NiftyRegSGD with chunk sampling
has a marginal difference wrt FASGD, but has a much higher p value than original
NiftyReg and NiftyReg2. This means NiftyRegSGD with chunk sampling is not as sig-
nificantly different as original NiftyReg and NiftyReg2.

NiftyReg NiftyReg2 NiftyRegSGD NiftyRegSGD-chunk

p-value 1.1 ∗ 1005 2.3 ∗ 1005 0.88 0.68

Hypothesis 7 7 X X

Table 5.4: Table shows Wilcoxon signed rank test result for each methods as compared
to FASGD for overall dataset.

Table 5.4 shows signed rank test results for all methods using overall dataset. Orig-
inal NiftyReg and NiftyReg2 have lower p values and null hypothesis does not hold in
these cases. Both NiftyRegSGD have higher p values and hold the null hypothesis. So
using fastest settings, our implementation matches the accuracy of FASGD. The figure
5.13 shows the computational time for all methods. NiftyRegSGD with random chunk
sampling performs fastest with 2.8 seconds with similar accuracy as FASGD.

5.6 Discussion

With the fastest settings from table 5.1, NiftyRegSGD performs almost ten times faster
than FASGD with similar accuracy for the overall dataset. Using random chunk sam-
pling, 1.6 times speedup is observed in NiftyRegSGD using fastest settings. The accuracy
for the test data is slightly less according to the signed rank test results from table 5.3.
This can be improved by using some extra iterations. From figure 5.10, accuracy in-
creases with number of iterations. So, instead of using the leftmost point on the white
curve, a leftmost point with the highest accuracy (in the whole contour) can be chosen.
This setting will increase computation time (which is still faster than FASGD), but it
can improve the accuracy even better than FASGD.
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Figure 5.13: Figure shows the plot for computational time for all methods.

5.7 Summary

In this section, results and evaluations of all proposed methods are discussed. In gen-
eral, boxplots and timings represent the main evaluation criteria. The contour plots were
plotted to justify the selection of optimal registration parameters using tuning experi-
ment. CUDA kernels were evaluated using the throughput plots. In the next chapter,
the conclusion is stated using the result discussed in this section. Also, the future rec-
ommendations are proposed in the next section.



Conclusions and future work 6
In the previous chapter, results and performance of all implementations were discussed.
This chapter discusses the conclusion and future recommendations for this work. In
this thesis, a high performance non-rigid registration, NiftyRegSGD is implemented us-
ing stochastic gradient optimizer. The thesis started with the optimization of original
NiftyReg to remove the present bottlenecks which are identified by the profiling. The next
step was to implement stochastic gradient descent, NiftyRegSGD. Further, NiftyRegSGD
was improved with optimized memory access using the random chunk sampling.

6.1 Conclusion

For our first method NiftyReg2, 2.7 speedup was observed with similar accuracy as the
original NiftyReg. Typically, speed up and throughput for a registration depends on
a number of iterations k and sampling percentage s. From the plots from 5.5 to 5.8,
it can be concluded that the higher value of s results into the higher throughput and
speedup using our random chunk sampling. Our implementation is thus following a
typical roofline model for a modern CPUs or GPUs using the random chunk sampling.

FASGD NiftyReg2 NiftyRegSGD (chunk)

Resolutions 3 3 3
Transform B-spline B-spline B-spline

3D Parameters ≈ 1k/6k/35k ≈ 6k/35k/230k ≈ 6k/35k/230k
Metric NMI NMI NMI

Optimizer FASGD Conjugate gradient SGD
Step size adaptive line search Equation 4.2

Iterations 500/500/500 ≈ 54/64/169 20/20/20
Sampler random full random (chunk)
Samples 0.04% 100% 15%

Total time in sec 21.2 13.02 4.4 (2.8)

Table 6.1: Algorithmic and settings overview of the various registration methods.

The table 6.1 compares all registration methods used in this thesis. The main differ-
ences lie in optimization technique and number of samples used in the registration. CPU
based FASGD uses around 5000 (0.04%) samples at each resolution. On the other hand,
NiftyReg2 uses full 12 million (100%) sampling. Our SGD implementation NiftyRegSGD
uses 15% samples. As compared to FASGD, this sampling percentage is much higher.
But, a GPU can afford such a high sampling percentage. This high percentage has
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two advantages, one, GPU performs at higher throughput, and second, a cost function
converges faster with a higher percentage.

Our random chunk sampling has improved the memory access. GPU CUDA kernels
have higher throughput as compared to naive random sampling. The improvement in
throughput is found to be different with different resolution and sampling percentage.
The throughput plots for the random chunk sampling is following the roofline model for
modern computer and GPU architecture.

Thus, both mathematical method and parallel computing have been implemented to
achieve a fast non-rigid medical image registration NiftyRegSGD, which performs almost
ten times faster than recently proposed FASGD while maintaining a similar accuracy.

6.2 Future recommendations

Extensions

To have the better accuracy, NiftyRegSGD depends on a tuning of the registration
parameters. Such tuning is difficult and time consuming. The tuning done during this
thesis took more than two days to complete. Even though NiftyRegSGD performs within
few seconds, this tuning defeats the main purpose of being near real time. FASGD is
proposed to tackle this problem. Hence, the next step can be NiftyRegFASGD, which is
an implementation of FASGD in NiftyReg to avoid time consuming tuning.

Currently, elastix-FASGD and NiftyRegSGD use kmax as a stopping criterion, which
means tuning is still needed to chose kmax. The registration should take more iterations
when there are more deformations between two images. Thus, kmax depends on the
input data. The images of a certain patient can take a longer time to align than images
of another patient. On the other hand, the original NiftyReg and our NiftyReg2 use line
search as a stopping criterion. Using a line search, registration can be terminated smartly
without tuning kmax. The word smartly means the line search lets a registration run
until the cost function converges. Therefore, an extension of a line search in FASGD is
highly recommended in both elastix and NiftyRegSGD to use a fast non-rigid registration
in online therapy.

NiftyRegSGD only supports one to one registration. In some medical application,
many to one registration is needed, in which there are one reference image and many
moving images. Our implementation also does not support masking. This means an
extension can be implemented to create random sampling from a given mask. These can
be extensions to our implementation.

Further validations

Our implementation has been evaluated using only one dataset and TRE. It is recom-
mended to evaluate present NiftyRegSGD using different dataset and different evaluation
criteria. For example, Hammer data [42] can be used for registration where an image
segmentation is mapped. This quality of mapping can be measured by the dice overlap.
NiftyRegSGD can also be validated using different cost functions as well. In this thesis,
only NMI is used as the cost function.
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The accuracy of random chunk sampling is tested using TRE only. This thesis does
not answer the validity of the random chunk sampling in details. Further statistical
testings can be used to compare random chunk sampling to naive random sampling to
validate our new sampling strategy.

Optimization iteration-3

By further analysis and profiling on NiftyRegSGD, we have found that voxel gradient
smoothing is performed on whole image space and only a few the voxel gradients are used
to compute the node gradients. For example, at highest resolution, around 13 million
voxel gradients are smoothed but, only 230k gradients are used for the node gradient
computation. This approach is wasting the GPU memory and computational time. This
can be solved by smoothing with downsampling. In downsampling, only 230k voxels
are smoothed instead of 13 million. In programming point of view, this strategy can
combine two CUDA kernels (voxel gradient smoothing and node gradient calculation)
into a single kernel and may decrease the computation time.

In our implementation, only joint histogram is implemented on GPU while other
kernels were used as they are. These kernels were developed using NVidia 8800 GTX
GPU [27] which has 1 compute capability. In this thesis, we have used Tesla 40k, which
has 3.5 compute capability. The design of these kernels needs to be tailored for the latest
GPU architecture. Thus, NiftyRegSGD with above recommendations can be a possible
solution for the non-rigid registration for a time critical application. Our paper abstract
related to this thesis has been accepted by the SPIE medical imaging conference and the
final paper will be published in February 2018.



44 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Bibliography

[1] “X-ray wikipedia,” https://en.wikipedia.org/wiki/X-ray.

[2] “Tabulating machine wikipedia,” https://en.wikipedia.org/wiki/Tabulating
machine.

[3] “CT scan sketch by godfrey hounsfield,” https://en.wikipedia.org/wiki/Godfrey
Hounsfield.

[4] “Philips website,” https://www.usa.philips.com/healthcare/product.

[5] “ADAPTNOW-high-precision cancer treatment by online adaptive proton therapy,”
https://www.lumc.nl/org/radiologie/research/LKEB/969723/ADAPTNOW/.

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, “The itk software guide,” 2005.

[7] S. Klein and M. Staring, “Elastix manual,” pp. 1–65, 2015.

[8] “Museum of cultural history, oslo,” http://www.khm.uio.no/english/visit-us/
viking-ship-museum/exhibitions/gokstad/.

[9] “Spline wikipedia,” https://en.wikipedia.org/wiki/Spline (mathematics).

[10] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix:
A toolbox for intensity-based medical image registration,” IEEE Transactions on
Medical Imaging, vol. 29, no. 1, pp. 196–205, Jan 2010.

[11] “Conjugate gradient wikipedia,” https://en.wikipedia.org/wiki/Conjugate
gradient method.

[12] Y. Qiao, B. van Lew, B. P. F. Lelieveldt, and M. Staring, “Fast automatic step size
estimation for gradient descent optimization of image registration,” IEEE Transac-
tions on Medical Imaging, vol. 35, no. 2, pp. 391–403, Feb 2016.

[13] L. Hasan, M. Kentie, and Z. Al-Ars, “Dopa: Gpu-based protein alignment using
database and memory access optimizations,” BMC Research Notes, vol. 4, no. 1, p.
261, Jul 2011. [Online]. Available: http://dx.doi.org/10.1186/1756-0500-4-261

[14] “Nvidia online blog on fast histogram computation,” https://devblogs.nvidia.
com/parallelforall/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
#more-4175.

[15] S. T. Ratliff, “Webb’s physics of medical imaging, second edition.” Medical
Physics, vol. 40, no. 9, pp. 097 301–n/a, 2013, 097301. [Online]. Available:
http://dx.doi.org/10.1118/1.4818282

[16] G. O’Regan, Pillars of Computing: A Compendium of Select, Pivotal
Technology Firms. Springer International Publishing, 2015. [Online]. Available:
https://books.google.nl/books?id=RBKcCgAAQBAJ

45

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Tabulating_machine
https://en.wikipedia.org/wiki/Tabulating_machine
https://en.wikipedia.org/wiki/Godfrey_Hounsfield
https://en.wikipedia.org/wiki/Godfrey_Hounsfield
https://www.usa.philips.com/healthcare/product
https://www.lumc.nl/org/radiologie/research/LKEB/969723/ADAPTNOW/
http://www.khm.uio.no/english/visit-us/viking-ship-museum/exhibitions/gokstad/
http://www.khm.uio.no/english/visit-us/viking-ship-museum/exhibitions/gokstad/
https://en.wikipedia.org/wiki/Spline_(mathematics)
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
http://dx.doi.org/10.1186/1756-0500-4-261
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/#more-4175
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/#more-4175
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/#more-4175
http://dx.doi.org/10.1118/1.4818282
https://books.google.nl/books?id=RBKcCgAAQBAJ


46 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

[17] H. A. D. Nguyen, Z. Al-Ars, G. Smaragdos, and C. Strydis, “Accelerating complex
brain-model simulations on GPU platforms,” in 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2015, pp. 974–979.

[18] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos, D. Rodopoulos,
I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris, C. D. Zeeuw, and C. Strydis, “Brain-
frame: A node-level heterogeneous accelerator platform for neuron simulations,”
Journal of Neural Engineering, vol. 14, November 2017.

[19] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “GPU-accelerated bwa-mem
genomic mapping algorithm using adaptive load balancing,” in Proceedings of the
29th International Conference on Architecture of Computing Systems – ARCS 2016
- Volume 9637. New York, NY, USA: Springer-Verlag New York, Inc., 2016, pp.
130–142. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-30695-7 10

[20] S. Ren, K. Bertel, and Z. Al-Ars, “Exploration of alternative GPU implementations
of the pair-hmms forward algorithm,” in 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Dec 2016, pp. 902–909.

[21] P. Bhosale, M. Staring, Z. Al-Ars, and F. F. Berendsen, “GPU-based stochastic-
gradient optimization for non-rigid medical image registration in time-critical ap-
plications,” SPIE on Medical Imaging, to appear in Feb 2018.

[22] S. Klein, J. P. Pluim, M. Staring, and M. A. Viergever, “Adaptive stochastic gradi-
ent descent optimisation for image registration,” International journal of computer
vision, vol. 81, no. 3, p. 227, 2009.

[23] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registra-
tion,” Physics in medicine and biology, vol. 46, no. 3, p. R1, 2001.

[24] R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for mini-
mization,” vol. 6, pp. 163 – 168, 08 1963.

[25] “Lumc image registration,” https://www.lumc.nl/org/radiologie/research/LKEB/
969723/1301100528142222/.

[26] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

[27] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes,
N. C. Fox, and S. Ourselin, “Fast free-form deformation using graphics processing
units,” Comput. Methods Prog. Biomed., vol. 98, no. 3, pp. 278–284, Jun. 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.cmpb.2009.09.002

[28] B. Haghighi, N. D. Ellingwood, Y. Yin, E. A. Hoffman, and C.-L. Lin,
“A gpu-based symmetric non-rigid image registration method in human lung,”
Medical & Biological Engineering & Computing, Aug 2017. [Online]. Available:
https://doi.org/10.1007/s11517-017-1690-2

http://dx.doi.org/10.1007/978-3-319-30695-7_10
https://www.lumc.nl/org/radiologie/research/LKEB/969723/1301100528142222/
https://www.lumc.nl/org/radiologie/research/LKEB/969723/1301100528142222/
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
https://doi.org/10.1007/s11517-017-1690-2


6.2. FUTURE RECOMMENDATIONS 47

[29] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based streaming
architectures for fast cone-beam CT image reconstruction and demons deformable
registration,” Phys Med Biol, vol. 52, no. 19, pp. 5771–5783, Oct 2007.

[30] D. Shamonin, E. Bron, B. Lelieveldt, M. Smits, S. Klein, and M. Staring,
“Fast parallel image registration on cpu and gpu for diagnostic classification of
alzheimer’s disease,” Frontiers in Neuroinformatics, vol. 7, p. 50, 2014. [Online].
Available: http://journal.frontiersin.org/article/10.3389/fninf.2013.00050

[31] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, “Elastix: a tool-
box for intensity-based medical image registration,” IEEE transactions on medical
imaging, vol. 29, no. 1, pp. 196–205, 2010.

[32] D. Zastrau and S. Edelkamp, Stochastic Gradient Descent with GPGPU. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 193–204. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33347-7 17

[33] F. F. Berendsen, A. N. Kotte, A. A. de Leeuw, M. A. Viergever, and J. P.
Pluim, “Free-form registration involving disappearing structures: application to
brachytherapy mri,” in International MICCAI Workshop on Computational and
Clinical Challenges in Abdominal Imaging. Springer, Berlin, Heidelberg, 2013, pp.
136–144.

[34] F. F. Berendsen, K. Marstal, S. Klein, and M. Staring, “The design of superelastix
2014; a unifying framework for a wide range of image registration methodologies,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), June 2016, pp. 498–506.

[35] “Insight segmentation and registration toolkit,” http://www.itk.org, accessed:
2010-09-30.

[36] J. Stolk, H. Putter, E. M. Bakker, S. B. Shaker, D. G. Parr, E. Piitulainen,
E. W. Russi, E. Grebski, A. Dirksen, R. A. Stockley, J. H. Reiber, and
B. C. Stoel, “Progression parameters for emphysema: A clinical investigation,”
Respiratory Medicine, vol. 101, no. 9, pp. 1924 – 1930, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0954611107001862

[37] R. Shams and R. Kennedy, “Efficient histogram algorithms for nvidia cuda compati-
ble devices,” in Proc. Int. Conf. on Signal Processing and Communications Systems
(ICSPCS), 2007, pp. 418–422.

[38] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365490.1365500

[39] “Kepler tunning guide nvidia,” http://docs.nvidia.com/cuda/kepler-tuning-guide/
#axzz4lJ5wP6Tw, accessed: 2010-09-30.

[40] “Nibabel python package,” http://nipy.org/nibabel/.

http://journal.frontiersin.org/article/10.3389/fninf.2013.00050
http://dx.doi.org/10.1007/978-3-642-33347-7_17
http://www.itk.org
http://www.sciencedirect.com/science/article/pii/S0954611107001862
http://doi.acm.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/kepler-tuning-guide/#axzz4lJ5wP6Tw
http://docs.nvidia.com/cuda/kepler-tuning-guide/#axzz4lJ5wP6Tw
http://nipy.org/nibabel/


48 BIBLIOGRAPHY

[41] “Mevislab-a powerful modular framework for image processing research and devel-
opment,” https://www.mevislab.de/.

[42] A. Hammers, R. Allom, M. Koepp, S. L Free, R. Myers, L. Lemieux, T. N Mitchell,
D. Brooks, and J. S Duncan, “Three-dimensional maximum probability atlas of the
human brain, with particular reference to the temporal lobe,” vol. 19, pp. 224–47,
08 2003.

https://www.mevislab.de/


A
A.1 Intel E5-1620 CPU specifications

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 8

On-line CPU(s) list: 0-7

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 79

Model name: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz

Stepping: 1

CPU MHz: 1199.980

CPU max MHz: 3800.0000

CPU min MHz: 1200.0000

BogoMIPS: 6984.19

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 10240K

NUMA node0 CPU(s): 0-7

A.2 GPU specifications

Device 0: "Tesla K40c"

CUDA Driver Version / Runtime Version 8.0 / 8.0

CUDA Capability Major/Minor version number: 3.5

Total amount of global memory: 11440 MBytes

(15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores

GPU Max Clock rate: 745 MHz (0.75 GHz)
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Memory Clock rate: 3004 Mhz

Memory Bus Width: 384-bit

L2 Cache Size: 1572864 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536),2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384),2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0

A.3 NiftyRegSGD command line arguments

reg_f3d -ref /srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/baseline_1_crop.nii

-flo /srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/followup_1_crop.nii

-res /srv/2-lkeb-16-reg1/pbhosale/SPREAD/Results_lap/p000_Aard_out.nii

-aff /srv/2-lkeb-16-reg1/pbhosale/SPREAD/param/affine_matrix_p000_Aard_1.txt

-cpp /srv/2-lkeb-16-reg1/pbhosale/SPREAD/Results_lap/p000_Aard_cpp.nii

-rdmsam 1 -maxit 10

-SGD 0.25 20 0.9

-noConj

-ln 3

-gpu

Above snippet is an example of NiftyRegSGD command. To profile with Nvidia profiler,
nvpp is added at the start. For Vtune profiler, binary reg f3d is selected (compiled with
-g flag) and command line arguments are provided. The following table explains each
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command line inputs.
-ref fixed or reference file location
-flo floting or moving image
-res ouput aligned image
-aff input affine parameters
-res output aligned image
-cpp output control point image

-rdmsam sampling percentage
-SGD

〈
a
〉〈
A
〉〈
α
〉
from equation 2.9

-noConj not to use conjugate gradient
-ln number of resolutions

-gpu use GPGPU

A.4 reg f3d log file

Following snippet shows a log file from reg f3d. At the start of the log file, command line
and, details about input images, and control point grid are shown. Then, at each level
respective resolution images are shown starting with lowest resolution. Cost function
value is defined by Current objective function at each iteration after adjusting with
bending energy penalty. This value is used to plot cost plots in the result chapter.
The decreasing step size is obtained by the value followed by

[
+ after cost function.

The time taken by B-spline and resampler are also stated, which are used to calculate
for throughput discussion. The final timing is logged by Transformation performed
time at the end of the file. All the plots are generated using python and Matlab, and
the scripts can be found here.

[NiftyReg F3D] Command line:

/home/pbhosale/tools/git/implement/build/install/bin/reg_f3d -ref

/srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/baseline_1_crop.nii

-flo /srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/followup_1_crop.nii

-res /srv/2-lkeb-16-reg1/pbhosale/SPREAD/Results_lap/p000_Aard_out.nii

-aff /srv/2-lkeb-16-reg1/pbhosale/SPREAD/param/affine_matrix_p000_Aard_1.txt

-cpp /srv/2-lkeb-16-reg1/pbhosale/SPREAD/Results_lap/p000_Aard_cpp.nii

-rdmsam 1 -maxit 10 -SGD 0.25 20 0.9 -noConj -ln 3 -gpu

[NiftyReg F3D] GPU implementation is used

[NiftyReg F3D] OpenMP is used with 8 thread(s)

[NiftyReg F3D] **************************************************

[NiftyReg F3D] INPUT PARAMETERS

[NiftyReg F3D] **************************************************

[NiftyReg F3D] Reference image:

[NiftyReg F3D] * name: /srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/

baseline_1_crop.nii

[NiftyReg F3D] * image dimension: 446 x 315 x 129 x 1
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[NiftyReg F3D] * image spacing: 0.683 x 0.683 x 2.5 mm

[NiftyReg F3D] * intensity threshold for timepoint 1/1: [-3.4e+38

3.4e+38]

[NiftyReg F3D] * binnining size for timepoint 1/1: 64

[NiftyReg F3D] * gaussian smoothing sigma: 0

[NiftyReg F3D]

[NiftyReg F3D] Floating image:

[NiftyReg F3D] * name: /srv/2-lkeb-16-reg1/pbhosale/SPREAD/nifty/p000_Aard/

followup_1_crop.nii

[NiftyReg F3D] * image dimension: 458 x 332 x 131 x 1

[NiftyReg F3D] * image spacing: 0.683 x 0.683 x 2.5 mm

[NiftyReg F3D] * intensity threshold for timepoint 1/1: [-3.4e+38

3.4e+38]

[NiftyReg F3D] * binnining size for timepoint 1/1: 64

[NiftyReg F3D] * gaussian smoothing sigma: 0

[NiftyReg F3D]

[NiftyReg F3D] Warped image padding value: nan

[NiftyReg F3D]

[NiftyReg F3D] Level number: 3

[NiftyReg F3D]

[NiftyReg F3D] Maximum iteration number per level: 10

[NiftyReg F3D]

[NiftyReg F3D] Final spacing in mm: -5 -5 -5

[NiftyReg F3D]

[NiftyReg F3D] The NMI is used as a similarity measure.

[NiftyReg F3D] The Parzen window joint histogram filling is approximated

[NiftyReg F3D] Similarity measure term weight: 0.995

[NiftyReg F3D]

[NiftyReg F3D] Bending energy penalty term weight: 0.005

[NiftyReg F3D]

[NiftyReg F3D] Linear energy penalty term weights: 0 0

[NiftyReg F3D]

[NiftyReg F3D] L2 norm of the displacement penalty term weights: 0

[NiftyReg F3D]

[NiftyReg F3D] Jacobian-based penalty term weight: 0

[NiftyReg F3D] **************************************************

[NiftyReg F3D] Current level: 1 / 3

[NiftyReg F3D] Current reference image

[NiftyReg F3D] * image dimension: 111 x 78 x 32 x 1

[NiftyReg F3D] * image spacing: 2.732 x 2.732 x 10 mm

[NiftyReg F3D] Current floating image

[NiftyReg F3D] * image dimension: 114 x 83 x 32 x 1

[NiftyReg F3D] * image spacing: 2.732 x 2.732 x 10 mm

[NiftyReg F3D] Current control point image

[NiftyReg F3D] * image dimension: 27 x 20 x 11
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[NiftyReg F3D] * image spacing: 13.66 x 13.66 x 50 mm

[NiftyReg F3D] Total samples=277056 Percents=1.000000 Number of random

samples=2770

[NiftyReg F3D] MaxStepsize=10.000000

[NiftyReg F3D] reg_bspline_getDeformationField time =0.115000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.312000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.080000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.296000 msec

[NiftyReg F3D] [2] Current objective function: -1.96343 = (wNMI)1.08816

- (wBE)3.05e+00 [+ 0.161415 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.081000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.295000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.084000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.297000 msec

[NiftyReg F3D] [4] Current objective function: -1.76927 = (wNMI)1.11638

- (wBE)2.89e+00 [+ 0.148725 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.085000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.312000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.086000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.298000 msec

[NiftyReg F3D] [6] Current objective function: -1.44237 = (wNMI)1.10499

- (wBE)2.55e+00 [+ 0.137973 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.084000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.297000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.085000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.298000 msec

[NiftyReg F3D] [8] Current objective function: -1.52079 = (wNMI)1.12316

- (wBE)2.64e+00 [+ 0.12874 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.084000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.297000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.086000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.297000 msec

[NiftyReg F3D] [10] Current objective function: -3.20975 = (wNMI)1.11812

- (wBE)4.33e+00 [+ 0.120721 mm]

[NiftyReg F3D] Current registration level done

[NiftyReg F3D] --------------------------------------------------

[NiftyReg F3D] **************************************************

[NiftyReg F3D] Current level: 2 / 3

[NiftyReg F3D] Current reference image

[NiftyReg F3D] * image dimension: 223 x 157 x 64 x 1

[NiftyReg F3D] * image spacing: 1.366 x 1.366 x 5 mm

[NiftyReg F3D] Current floating image

[NiftyReg F3D] * image dimension: 229 x 166 x 65 x 1

[NiftyReg F3D] * image spacing: 1.366 x 1.366 x 5 mm

[NiftyReg F3D] Current control point image
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[NiftyReg F3D] * image dimension: 49 x 36 x 17

[NiftyReg F3D] * image spacing: 6.83 x 6.83 x 25 mm

[NiftyReg F3D] Total samples=2240704 Percents=1.000000 Number of random

samples=22407

[NiftyReg F3D] MaxStepsize=5.000000

[NiftyReg F3D] reg_bspline_getDeformationField time =0.125000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.332000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.106000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.305000 msec

[NiftyReg F3D] [2] Current objective function: 0.82634 = (wNMI)1.1099 -

(wBE)2.84e-01 [+ 0.0807073 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.104000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.304000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.106000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.304000 msec

[NiftyReg F3D] [4] Current objective function: 0.871169 = (wNMI)1.12887

- (wBE)2.58e-01 [+ 0.0743627 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.104000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.311000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.105000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.312000 msec

[NiftyReg F3D] [6] Current objective function: 0.8868 = (wNMI)1.12412 -

(wBE)2.37e-01 [+ 0.0689865 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.104000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.309000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.106000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.308000 msec

[NiftyReg F3D] [8] Current objective function: 0.902789 = (wNMI)1.12849

- (wBE)2.26e-01 [+ 0.0643699 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.104000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.308000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.107000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.318000 msec

[NiftyReg F3D] [10] Current objective function: 0.908478 = (wNMI)1.12253

- (wBE)2.14e-01 [+ 0.0603604 mm]

[NiftyReg F3D] Current registration level done

[NiftyReg F3D] --------------------------------------------------

[NiftyReg F3D] **************************************************

[NiftyReg F3D] Current level: 3 / 3

[NiftyReg F3D] Current reference image

[NiftyReg F3D] * image dimension: 446 x 315 x 129 x 1

[NiftyReg F3D] * image spacing: 0.683 x 0.683 x 2.5 mm

[NiftyReg F3D] Current floating image

[NiftyReg F3D] * image dimension: 458 x 332 x 131 x 1

[NiftyReg F3D] * image spacing: 0.683 x 0.683 x 2.5 mm
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[NiftyReg F3D] Current control point image

[NiftyReg F3D] * image dimension: 94 x 67 x 30

[NiftyReg F3D] * image spacing: 3.415 x 3.415 x 12.5 mm

[NiftyReg F3D] Total samples=18123210 Percents=1.000000 Number of random

samples=181232

[NiftyReg F3D] MaxStepsize=2.500000

[NiftyReg F3D] reg_bspline_getDeformationField time =0.373000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.398000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.351000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.387000 msec

[NiftyReg F3D] [2] Current objective function: 1.10396 = (wNMI)1.11966 -

(wBE)1.57e-02 [+ 0.0403536 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.351000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.387000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.351000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.387000 msec

[NiftyReg F3D] [4] Current objective function: 1.10694 = (wNMI)1.12339 -

(wBE)1.65e-02 [+ 0.0371813 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.351000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.390000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.351000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.389000 msec

[NiftyReg F3D] [6] Current objective function: 1.10705 = (wNMI)1.12388 -

(wBE)1.68e-02 [+ 0.0344932 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.355000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.388000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.346000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.365000 msec

[NiftyReg F3D] [8] Current objective function: 1.11203 = (wNMI)1.12919 -

(wBE)1.72e-02 [+ 0.0321849 mm]

[NiftyReg F3D] reg_bspline_getDeformationField time =0.346000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.364000 msec

[NiftyReg F3D] reg_bspline_getDeformationField time =0.346000 msec

[NiftyReg F3D] reg_resampleSourceImage_kernel time =0.365000 msec

[NiftyReg F3D] [10] Current objective function: 1.1146 = (wNMI)1.13197 -

(wBE)1.74e-02 [+ 0.0301802 mm]

[NiftyReg F3D] Current registration level done

[NiftyReg F3D] --------------------------------------------------

[NiftyReg F3D] Transformation performed time is 2.039961 sec

[NiftyReg F3D] Transformation performed in 0 min 2 sec

[NiftyReg F3D] Registration Performed in 0 min 3 sec

[NiftyReg F3D] Have a good day !
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A.5 GitHub link

The work done during the thesis is publicly available on github. To download
NiftyRegSGD, please download the branch random sampling.

git clone -b random_sampling https://github.com/SuperElastix/NiftyRegSGD.git

A.6 SPIE paper abstract

An abstract of the paper has been accepted by the medical imaging conference by the
SPIE which will be held in February 2018 at Houston, Texas. The main paper is under
development right now.

https://github.com/SuperElastix/NiftyRegSGD
https://spie.org/conferences-and-exhibitions/medical-imaging
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ABSTRACT

Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical ap-
plications. Existing implementations that focus on speed typically address this by either parallelization on
GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gra-
dient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational
burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its
stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registra-
tion tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory
bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which
compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD
(FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD
without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our
method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.

Keywords: Non-rigid image registration, stochastic gradient descent, GPGPU, memory access optimization,
random chunk sampling

1. DESCRIPTION OF PURPOSE

Image registration is widely used in clinical applications. The high number of parameters in non-rigid registration
(up to 100k in some cases) makes this approach computationally intensive, resulting in a rather high computation
time. This limits non-rigid registration from being used in real-time critical applications, such as image-guided
surgery or online adaptive radiotherapy.

To address this problem, FASGD1 was proposed recently, which speeds up the adaptive2 version of stochastic
gradient descent optimization (SGD).3 In SGD, the cost function gradients are computed using a random subset
of samples (i.e. voxels) instead of the entire set of sample space (i.e. full image). A random subset is generated
each iteration. Hence, this approach reduces data intensity which results in less computation time as compared
to conventional gradient descent methods. High performance computation approaches such as NiftyReg4 and
Plastimatch5 take advantages of the GPU architecture for parallel computing. These implementations are,
however, based on gradient descent optimization using full image sampling. In Shamonin et al.,6 CPU and GPU
parallelization were implemented in elastix.7 In the field of machine learning or neural networks, there exist
implementations of SGD on the GPU.8 However, these methods typically optimize over a large collection of data
and the term stochastic refers to random batches of data instead of random voxels within one image, which is a
fundamental difference from a registration point of view.

This paper presents the implementation of SGD on the GPU architecture for image registration to take advan-
tage of both stochastic optimization as well as parallel computing. For the proposed work, coined NiftyRegSGD,
NiftyReg was chosen as a foundation of our implementation for its public access and pre-existing use of the
GPU. The accuracies and timings of lung CT registrations are compared with elastix-FASGD, which has been
evaluated using the same data and is the fastest publicly available method to our knowledge.

Further author information: (Send correspondence to Parag Bhosale)
Parag Bhosale: E-mail: P.S.Bhosale@student.tudelft.nl, Telephone: +31 65 15 11725
Floris Berendsen: E-mail: F.Berendsen@lumc.nl, Telephone: +31 71 52 66206



2. METHOD

Our implementation NiftyRegSGD is based on NiftyReg. In this section we discuss the several changes that
have been carried out to implement a stochastic gradient descent method and we introduce the random chunk
sampler. Image registration may be formulated as an iterative optimization problem, using:

µk+1 = µk − γkgk, (1)

where µ represents the transformation parameters at iteration k, g is the search direction and γk the stepsize.

The optimizer of NiftyReg uses a search direction gk based on the gradient in combination with a line search
strategy to select the optimal stepsize γk. The line search of NiftyReg inherently imposes a stopping criterion
for k. For the search direction either the gradient gk := ∂C/∂µ, or the conjugate gradient of the cost function
C can be selected. The cost function in image registration typically takes the following form:

C(µ) = Ψ

(
1

|ΩF |
∑

xi∈ΩF

ξ(F (xi),M(T(xi, µ)))

)
, (2)

where Ψ(u) and ξ(u, v) are continuous and differentiable functions, and where ΩF is a discrete set of voxel
coordinates from the fixed image. The key idea in SGD3 is to compute a fast but noisy approximation of the
search direction g̃k := ∂C̃/∂µ, by randomly selecting a small subset of all fixed image coordinates. In each
iteration a new random subset is drawn. An exponentially decaying stepsize γk is typically used:

γk =
δa

(A+ k)α
, (3)

where δ is the maximum voxel spacing among the x, y and z axes. Parameters a, A and α are constants that
typically need to be tuned for the type of data. Since stochastic gradient descent does not have a trivial stopping
criterion the maximum number of iterations kmax needs to be set as well.

The architectural changes applied to NiftyReg allow for the implementation of a random sampler, enabling
the calculation of the approximate gradient and replacing the line search strategy with a stopping criterion by the
decaying step size function using a fixed number of iterations. We implemented a naive sampler that randomly
picks samples from the fixed image. This randomness, however, prevents the GPU from accessing memory in
parallel, forcing sequential global memory reads, which lead to higher memory access time and wastage of memory
bandwidth. Therefore, we propose a new sampling strategy that is better tailored to GPU hardware, coined
random chunk sampling. In this strategy, every first sample out of 32 samples is created randomly, followed by
31 samples adjacent to this first sample. This enables 32 threads on a GPU to have a coalesced memory access,
which results in faster memory access and increased GPU throughput.

3. EXPERIMENTS AND RESULTS

The proposed NiftyRegSGD method with naive random sampling as well as with random chunk sampling is
compared with elastix-FASGD and the original NiftyReg.

For the experiments, CT lung data from the SPREAD study9 have been used. It consists of 19 patients with
baseline (fixed) and follow-up (moving) images. Each patient has 100 corresponding landmarks that serve as
a ground truth to evaluate the target registration error (TRE). The data was divided into a training set of 10
patients, to find the optimal registration settings, and a testing set of 9 patients to perform the final evaluation.
All experiments were run on an Intel Xeon E5-1620 CPU with a Tesla K40c GPU.

The registration settings we used for elastix-FASGD where proposed by its authors1 and were determined
for the same SPREAD data set. To have a fair comparison based on speed we tuned NiftyRegSGD with the
random chunk sampler to match the median TRE accuracy to that of elastix-FASGD. NiftyReg could not
be tuned to achieve a sufficient median TRE, therefore we report using the default settings. For NiftyRegSGD
we used the same B-spline grid spacing as NiftyReg. The values α = 0.90 and A = 20 were chosen from the
literature.2 We optimized the parameters gain factor a ∈ [0.05, 0.65], sampling percentage s% ∈ [10, 80] and



maximum number of iteration kmax ∈ [10, 300], over the training set. Keeping computation time in mind, the
optimal value of a was found to be 0.25. For a = 0.25, optimal values for s% = 15% and kmax = 20 were found,
see Figure 1. All settings are summarized in Table 1.

Profiling the most time consuming GPU kernels, i.e. the B-spline transform and the resampler, shows a ten
and six fold improvement of the throughput from the naive random sampler to the random chunk sampler for
the B-spline and resampler kernel respectively.

elastix-FASGD Original NiftyReg NiftyRegSGD (both)
Resolutions 3 3 3
Transform B-spline B-spline B-spline

3D Parameters ≈ 1k/6k/35k ≈ 6k/35k/230k ≈ 6k/35k/230k
Metric NMI NMI NMI

Optimizer FASGD Conjugate gradient SGD
Step size adaptive line search Equation (3)
Iterations 500/500/500 ≈ 54/64/169 20/20/20
Sampler random full random or random chunk
Samples 5000/5000/5000 (0.04%) ≈ 4 · 105/3 · 106/2 · 107 (100%) ≈ 6 · 104/5 · 105/4 · 106 (15%)

Table 1: Algorithmic and settings overview of the various registration methods.

The accuracies and average timings of the four methods are compared in Figure 2 for both the training and
the test set. For the training data, Wilcoxon signed rank tests indicated that there were no significant differences
in median accuracies of both NiftyRegSGD methods with respect to elastix-FASGD (p > 0.05). For the test
data, the differences with respect to elastix-FASGD were found to be just significant for the NiftyRegSGD
with random chunk sampling and not for the NiftyRegSGD with naive random sampling.

Figure 1: The median TRE for NiftyRegSGD with
random chunk sampling is plotted against s% in steps
of 5% and kmax in steps of 10 for a = 0.25 for the
training set. The background color indicates the me-
dian TRE. The white curve equals the median TRE of
elastix-FASGD. The left-most point on this white
curve indicates the fastest setting equally accurate
as FASGD. The optimal settings are s% = 15% and
kmax = 20.

Figure 2: Target registration error (TRE) in mm and
average runtime (indicated in the labels) using set-
tings of Table 1 for the training and test data set.
Proposed NiftyRegSGD with random chunk sampling
performs fastest with better accuracy for the training
data and less accuracy for the test data compared to
elastix-FASGD.

4. DISCUSSION AND CONCLUSION

We presented our image registration method NiftyRegSGD which introduces stochastic gradient descent (SGD)
optimization in a high performance GPU implementation. Experiments have been performed on follow-up lung



CT scans. The use of SGD drastically speeds up registration time (to 2.8s) compared to the current GPU-
based registration method (NiftyReg, 35.2s) that uses fully deterministic gradients. At an equal median target
registration error, our GPU implementation also outperforms elastix-FASGD (21.5s), to our knowledge the
currently fastest method on this dataset.

We introduced a random chunk sampler as part of our SGD, which shows a speed improvement over a
naive random sampler (4.4s). Due to its coalesce memory access, the throughput of GPU kernels is drastically
increased. Sacrificing some of the randomness-properties only harmed the convergence rate a little (as observed
in the test set), which might easily be compensated for by an extra iteration.

Experiments from Figure 1 have shown that the stochastic sub-sampling percentage of NiftyRegSGD was
found to be optimal at 15%, in contrast to the CPU-based SGD of elastix-FASGD of around 0.04%. A smaller
percentage of data reduces the computation time per iteration, but typically degrades the convergence rate. On
the GPU, this trade-off favors a higher sampling percentage due to its parallel computation.

The small difference in accuracy for training and test data shows that accuracy depends on manual tuning,
that is currently needed for NiftyRegSGD. For future work we may adopt the automatic parameter estimation
methods from FASGD to remedy this. We may accelerate this estimation procedure on the GPU as well. The
current results however still yield sub-voxel accuracy within 2.8s for a non-rigid registration procedure. We
therefore conclude that the proposed methods open up possibilities to embed online registration in the clinical
workflow, and consequently may benefit e.g. image-guided surgery and adaptive radiotherapy. Our fork of
NiftyReg is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
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